WO2002008472A1 - Procede et dispositif pour produire un gaz de traitement contenant co et h2 pour le traitement thermique de produits metalliques, et installation de traitement thermique - Google Patents

Procede et dispositif pour produire un gaz de traitement contenant co et h2 pour le traitement thermique de produits metalliques, et installation de traitement thermique Download PDF

Info

Publication number
WO2002008472A1
WO2002008472A1 PCT/EP2001/008555 EP0108555W WO0208472A1 WO 2002008472 A1 WO2002008472 A1 WO 2002008472A1 EP 0108555 W EP0108555 W EP 0108555W WO 0208472 A1 WO0208472 A1 WO 0208472A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
mixture
gas
hydrocarbon
treatment
Prior art date
Application number
PCT/EP2001/008555
Other languages
German (de)
English (en)
Inventor
Bernd Kleinpass
Original Assignee
Linde Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde Ag filed Critical Linde Ag
Priority to AU2001279779A priority Critical patent/AU2001279779A1/en
Publication of WO2002008472A1 publication Critical patent/WO2002008472A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • C21D1/763Adjusting the composition of the atmosphere using a catalyst

Definitions

  • the invention relates to a method and a device for producing a CO and H 2 -containing treatment gas for the heat treatment of metallic material at high temperatures, in which the treatment gas is formed from a hydrocarbon (mixture) with oxygen and / or an oxygen-containing gas mixture becomes.
  • oxygen-containing gas mixture should be understood in particular to mean air and air enriched or depleted with oxygen.
  • gas mixtures containing oxygen can be produced, for example, by means of so-called on-site systems.
  • On-site systems are membrane or PSA systems.
  • the invention further relates to a heat treatment plant for carrying out heat treatment processes for metallic material at high temperatures, comprising at least one device for generating a treatment gas containing CO and H 2 .
  • treatment gas should be understood to mean both protective gases which serve to prevent undesired reactions in chemical or metallurgical processes and reaction gases which serve to promote the processes mentioned.
  • the majority of the affected heat treatment processes with temperatures above 500 ° C are carried out in atmospheres containing CO and H 2 .
  • the CO and H 2 content in the treatment atmosphere varies greatly with the type of heat treatment process in a range from a total of about 5% by volume to about 98% by volume in some carburizing processes.
  • the range of generation plants used for such treatment gases is correspondingly diverse.
  • This reaction is usually accomplished with a gas generator arranged next to the one or more heat treatment furnaces or mounted directly on the furnace housing and consisting of a heated catalyst in the core.
  • the so-called endogas formed in the gas generator is usually supplied to the associated heat treatment system without any further (after) treatment, possibly after a cooling step. It is also known to be the same
  • Generation systems are used for annealing processes, which also convert a mixture of air and hydrocarbon (mixture).
  • the ratio of air to hydrocarbon (mixture) is, however, higher than in the generation of endogas and with such a ratio that the reaction takes place exothermally in a combustion chamber without additional supply of energy.
  • the resulting so-called exogas also contains CO 2 and H 2 O in considerable concentrations of a total of about 10% by volume up to about 30% by volume, depending on the air / hydrocarbon (mixture) ratio and the combustion chamber temperature.
  • a catalyst can be connected downstream to set a state close to equilibrium.
  • oxygen is added instead of or in addition to the carbon dioxide. Even a relatively small and well-dosed addition of oxygen can significantly reduce the energy requirement in the treatment gas generation and also maintain the quality of the atmosphere, in particular with regard to its carburizing effect.
  • the hydrocarbon (mixture) is reacted with oxygen and / or an oxygen-containing gas mixture either exothermally by sub-stoichiometric combustion or by an endothermic reaction in a heated catalyst bed.
  • the catalysts or catalyst materials used here generally consist of a catalytically active material based on nickel or noble metal.
  • the treatment gas generated in this way is then fed directly to a heat treatment furnace or is first subjected to a further aftertreatment, such as quenching, drying and / or carbon dioxide removal.
  • Entrance area of the catalyst bed to a very high temperature peak - i.e. to temperatures> 1100 ° C. This results in a comparatively high wear of catalyst material, which in turn has the consequence that the respective treatment gas generating device has to be overhauled comparatively frequently or even fails.
  • the object of the present invention is to provide a generic method and a generic device for producing a CO and H 2 -containing treatment gas for the heat treatment, which or a relatively large variation in the carbon dioxide content between ⁇ 1 vol .-% to about 7% by volume or more, ie from endogas to exogas qualities, is made possible in the treatment gas. Furthermore, the life of the catalyst used should be extended.
  • Treatment gas takes place in at least two stages, the first stage comprising an exothermic reaction of the hydrocarbon (mixture) with oxygen and / or an oxygen-containing gas mixture, to which carbon dioxide can also be added, and the second stage an endothermic reaction of a hydrocarbon ( mixture) with the gas mixture formed in the first stage to the treatment gas.
  • the object is achieved by a device which is characterized by - a combustion chamber, at least two lines supplying the combustion chamber with gases, with oxygen and / or an oxygen-containing gas mixture via one of the lines and a hydrocarbon (mixture ) is fed to the combustion chamber, - a catalyst chamber downstream of the combustion chamber and a further line supplying gas (s) to the region of the combustion chamber facing the catalyst space or an intermediate space arranged between the combustion chamber and the catalyst space, a hydrocarbon (mixture) being supplied via this line.
  • the treatment gas containing CO and H 2 is now produced in two process stages, namely in a first exothermic process and a second, downstream endothermic process.
  • This separation of the overall conversion process of the hydrocarbon (mixture) with oxygen and / or an oxygen-containing gas mixture, to which carbon dioxide can optionally be admixed enables a greater variation in the design options of the respective reaction spaces, which on the one hand increases the service life of the one or more used Catalysts can be increased and on the other hand a simpler and expanded adjustment of the generated treatment gas with regard to its CO / CO 2 - and H 2 / H 2 O ratio is made possible.
  • the heating device for oxygen or the oxygen-containing gas mixture enables the reaction to proceed in the partial steps described, even when using oxygen-containing gas mixtures with oxygen contents significantly below the oxygen content of air, down to values of approximately 5% by volume of oxygen.
  • a catalytic reaction of a hydrocarbon (mixture) with the gas mixture formed in the first exothermic reaction stage takes place in the endothermic reaction stage.
  • the figure shows a heat treatment furnace O, in which - as shown in the figure - one or more devices according to the invention, which are described in more detail below are described, arranged or can be.
  • a workpiece 11 is guided through the heat treatment furnace O by means of a corresponding device 10 - for example by means of a conveyor chain, by means of conveyor rollers or other conveying means.
  • oxygen and / or an oxygen-containing gas mixture - for example air or an oxygen / nitrogen mixture from an adsorption or membrane system - is fed to a heating device 3.
  • the oxygen or the oxygen-containing gas mixture is heated to a temperature between 500 and 1200 ° C., preferably between 700 and 1000 ° C.
  • the heating temperature is to be matched to the oxygen content of the oxygen-containing gas mixture and to the desired treatment gas composition.
  • a hydrocarbon (mixture) - for example natural gas, methane or propane - is fed to the device according to the invention via line 4, with a division into two lines 4 'and 4 "taking place after the control valve 5.
  • the first partial flow of the hydrocarbon (mixture) is via Line 4 'is fed to a burner-like device 7.
  • the reaction then takes place with the oxygen or oxygen-containing gas mixture coming from the heating device 3 in the combustion chamber B.
  • the burner-like device 7 must be used for correspondingly high preheating temperatures for the oxygen or oxygen -containing gas mixture can be designed and can have additional devices for swirling and mixing the reaction gases, for ignition and for flame monitoring.
  • the total amount of hydrocarbon (mixture) required for the generation of the treatment gas is therefore not converted to the desired treatment gas in one stage with oxygen and / or an oxygen-containing gas mixture, as is customary hitherto, but only a first partial stream of the hydrocarbon (mixture ) it is fed to the first reaction stage with oxygen and / or an oxygen-containing gas mixture - optionally with the addition of carbon dioxide.
  • This first partial flow is to be dimensioned such that an exothermic reaction occurs in the combustion chamber B, temperatures between 1000 and 1600 ° C. preferably between 1200 and 1400 ° C.
  • the regulation of the temperature reached in the combustion chamber B can be achieved both by the heating power of the heating device 3 and by the
  • Amount of hydrocarbon (mixture) that is supplied to the combustion chamber B can be adjusted and influenced.
  • the gas mixture already converted in the combustion chamber B is fed together with the hydrocarbon (mixture) partial stream fed into the area 8 to a catalyst space 9 and converted therein in an endothermic or slightly exothermic reaction to the desired CO and H 2 -containing treatment gas ; this enters the heat treatment furnace O directly from the catalyst space 9.
  • the catalyst space 9 has a heating device 12 which serves to heat the catalyst material. This - not necessarily to be provided - heating device 12 is used to bring the catalyst to operating temperature and to supply the energy required for the endothermic partial reactions taking place in the catalyst space 9 or to set and maintain the desired and required temperature level in the catalyst space 9.
  • control valves 2, 5 and 6 are connected to a control unit R via corresponding control lines a, b and c. This evaluates corresponding process data of the gas mixture originating from the combustion chamber B, which are transmitted via the data line d, and regulates the supply of the two hydrocarbon (mixture) flows in the lines 4 'and 4 ".
  • the preheating of the oxygen or oxygen-containing gas mixture fed to the combustion chamber B via line 1 in the heating device 3 has the consequence that the processes which endotherm without preheating the oxygen or the oxygen-containing gas mixture are now less endothermic or even exothermic.
  • the conversion performance per unit volume of the catalyst bed is therefore increased compared to a procedure in which preheating is dispensed with, since less heat has to be transferred.
  • This has the consequence that on the one hand the catalyst flow rate can be increased and on the other hand the heater 12 of the catalyst space 9 is smaller or u. U. can completely disappear. This in turn has the advantage that an additional volume is available for the catalytically active material.
  • the heating integrated in the catalyst tube in this case can be reduced or, with the same heating power, the amount of shielding gas generated can be increased.
  • the air preheated to 800 ° C is incompletely burned in the combustion chamber with part of the methane, the amount of natural gas being dimensioned so that a predetermined combustion chamber temperature is set taking heat losses into account.
  • an air / methane ratio of about 3.8: 1 has to be used.
  • the following gas composition is then established: 15 vol.% CO, 25 vol.% H 2 , 2 vol.% CO 2 , 8 vol.% H 2 O, 50 vol.% N 2 and small amounts of CH 4 .
  • the residual amount of methane still missing to produce endogas is fed into the exhaust gas stream, which is at about 1300 ° C.
  • the temperature of the total gas stream is reduced by adding the cold methane and by first endothermic reaction processes.
  • a heat-resistant (ceramic) bed in the first part of the catalytic converter can also be used as temperature protection.
  • the CO 2 and H 2 O portions still present are further reduced to CO and H 2 by the following endothermic processes:
  • the protective gas generated passes directly into the heat treatment furnace after the catalyst in the exemplary embodiment.
  • an aftertreatment for example quenching, could also take place before the gas reaches the heat treatment chamber.
  • the air must be heated to temperatures (above 800 ° C) at which appropriately selected, catalytically active materials, e.g. B. materials based on Ni and precious metals, already produce sufficient reaction results.
  • catalytically active materials e.g. B. materials based on Ni and precious metals.
  • exogas which is characterized by higher CO 2 and H 2 O contents compared to endogas, requires only minor process adjustments.
  • the first possibility is to carry out the heating of the air and the processes in the combustion chamber unchanged as in the endogas production.
  • the difference to endogas production is that less methane is added behind the combustion chamber so that larger amounts of CO 2 and H 2 O remain in the protective gas.
  • the amount of heat to be supplied in the catalyst bed can be reduced compared to endogas. If the air / methane ratio is sufficiently high, the catalyst can also be completely omitted.
  • the air preheating temperature can alternatively be reduced.
  • the heating power to be supplied in the catalyst bed must then be increased.
  • the device according to the invention can also be operated with an N 2 / O 2 gas mixture whose N2 / O 2 ratio differs from that of air.
  • This can be, for example, air generated by means of membrane or PSA technology and enriched with oxygen or nitrogen.
  • the splitting power of the catalytic converter can be increased considerably.
  • the carbon transition from the gas atmosphere into the component is accelerated compared to endogas in that the heat treatment atmosphere consists predominantly of CO and H 2 ; it also has small amounts of CO 2 , H 2 O and CH 4 .
  • a carrier gas can be generated, for example, from oxygen and propane after the formal reaction
  • the process proceeds as follows: the oxygen is preheated to the extent that the overall conversion process, taking heat losses into account, is neither exothermic nor endothermic.
  • the oxygen is burned with a partial flow of C 3 H ⁇ in such a way that the reaction takes place without soot at, for example, 1400 ° C.
  • the residual stream of C 3 H 8 is then fed to the hot exhaust gas stream and converted to the desired CO and H 2 -rich mixture in the catalytic converter without additional heating.
  • a heater in the catalytic converter would only be required to preheat the catalytic converter before starting operation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

L'invention concerne un procédé et un dispositif pour produire un gaz de traitement contenant CO et H2 pour le traitement thermique à hautes températures de produits métalliques, selon lequel ledit gaz de traitement est formé à partir d'un (mélange d')hydrocarbure avec de l'oxygène et/ou d'un mélange gazeux contenant de l'oxygène. Selon l'invention, ce gaz de traitement est réalisé en au moins deux étapes (B, 9). La première étape (B) comprend une réaction exotherme du (mélange d')hydrocarbure (4') avec l'oxygène et/ou un mélange (1) gazeux contenant de l'oxygène, du dioxyde de carbone pouvant être ajouté à ce mélange. La deuxième étape (9) est une réaction endotherme d'un (mélange d')hydrocarbure (4'') avec le mélange gazeux obtenu lors de la première étape (B), pour former le gaz de traitement. L'oxygène apporté à l'étape de réaction exotherme (B) et/ou le mélange gazeux (1) contenant de l'oxygène apporté à l'étape de réaction exotherme (B) sont chauffés (3) de préférence à une température allant de 500 à 1 200 DEG C, et mieux encore de 700 à 1 000 DEG C.
PCT/EP2001/008555 2000-07-25 2001-07-24 Procede et dispositif pour produire un gaz de traitement contenant co et h2 pour le traitement thermique de produits metalliques, et installation de traitement thermique WO2002008472A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001279779A AU2001279779A1 (en) 2000-07-25 2001-07-24 Method and device for producing treatment gas containing co and h2 for the heat treatment of metallic material and heat treatment system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000136163 DE10036163A1 (de) 2000-07-25 2000-07-25 Verfahren und Vorrichtung zur Erzeugung eines CO- und H¶2¶-haltigen Behandlungsgases für die Wärmebehandlung von metallischem Gut sowie Wärmebehandlungsanlage
DE10036163.3 2000-07-25

Publications (1)

Publication Number Publication Date
WO2002008472A1 true WO2002008472A1 (fr) 2002-01-31

Family

ID=7650125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/008555 WO2002008472A1 (fr) 2000-07-25 2001-07-24 Procede et dispositif pour produire un gaz de traitement contenant co et h2 pour le traitement thermique de produits metalliques, et installation de traitement thermique

Country Status (3)

Country Link
AU (1) AU2001279779A1 (fr)
DE (1) DE10036163A1 (fr)
WO (1) WO2002008472A1 (fr)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473527A (en) * 1945-10-12 1949-06-21 Westinghouse Electric Corp Apparatus for production of heattreating atmospheres
GB681614A (en) * 1950-01-04 1952-10-29 Birlec Ltd Improvements in, or relating to, generators of protective gaseous furnace atmosphere
FR2043848A1 (en) * 1969-05-30 1971-02-19 Koho Es Gepipari Miniszterium Controlled atmosphere gas production for - heat treatment furnace
US3836320A (en) * 1972-03-17 1974-09-17 Midland Ross Corp Minimum scale reheating furnace and means relating thereto
FR2316320A1 (fr) * 1975-07-01 1977-01-28 Vasiliev Sergei Procede d'obtention d'atmospheres controlees et dispositif pour le realiser
JPS59133318A (ja) * 1983-10-28 1984-07-31 Kanto Yakin Kogyo Kk 熱処理用雰囲気ガス発生機
EP0860512A2 (fr) * 1997-02-25 1998-08-26 Linde Aktiengesellschaft Procédé/appareil pour la préparation d'un gaz de traitement pour le traitement d'un produit métallique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1442986A1 (de) * 1964-03-10 1969-03-13 Basf Ag Verfahren zur flammenlosen Umsetzung von fluessigen verdampfbaren Kohlenwasserstoffen
DE4308803A1 (de) * 1993-03-19 1994-09-22 Leybold Durferrit Gmbh Verfahren und Vorrichtung zum Herstellen einer kohlenstoffhaltigen gasförmigen Behandlungsatmosphäre
DE19608894A1 (de) * 1996-03-07 1997-09-18 Linde Ag Verfahren zur Schutzgasversorgung eines Wärmebehandlungsofens und Wärmebehandlungsanlage
DE19827879C1 (de) * 1998-06-23 2000-04-13 Dbb Fuel Cell Engines Gmbh Wasserdampfreformierungsreaktor, insbesondere mit autothermer Prozeßführung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2473527A (en) * 1945-10-12 1949-06-21 Westinghouse Electric Corp Apparatus for production of heattreating atmospheres
GB681614A (en) * 1950-01-04 1952-10-29 Birlec Ltd Improvements in, or relating to, generators of protective gaseous furnace atmosphere
FR2043848A1 (en) * 1969-05-30 1971-02-19 Koho Es Gepipari Miniszterium Controlled atmosphere gas production for - heat treatment furnace
US3836320A (en) * 1972-03-17 1974-09-17 Midland Ross Corp Minimum scale reheating furnace and means relating thereto
FR2316320A1 (fr) * 1975-07-01 1977-01-28 Vasiliev Sergei Procede d'obtention d'atmospheres controlees et dispositif pour le realiser
JPS59133318A (ja) * 1983-10-28 1984-07-31 Kanto Yakin Kogyo Kk 熱処理用雰囲気ガス発生機
EP0860512A2 (fr) * 1997-02-25 1998-08-26 Linde Aktiengesellschaft Procédé/appareil pour la préparation d'un gaz de traitement pour le traitement d'un produit métallique

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 255 (C - 253) 21 November 1984 (1984-11-21) *

Also Published As

Publication number Publication date
DE10036163A1 (de) 2002-02-07
AU2001279779A1 (en) 2002-02-05

Similar Documents

Publication Publication Date Title
DE1417796C3 (de) Verfahren zur Herstellung eines wasserstoffreichen Gases
EP2135961B1 (fr) Procédé et dispositif destinés au traitement à chaud de matières métalliques sous atmosphère protectrice
DE3912003A1 (de) Reaktor zum reformieren von kohlenwasserstoff und verfahren zum reformieren von kohlenwasserstoff
DE102019217631B4 (de) Verfahren zur Direktreduktion von Eisenerz
DE3636024C2 (fr)
DE19545764C2 (de) Verfahren zur Schutzgaserzeugung für einen Wärmebehandlungsofen und Wärmebehandlungsanlage
EP1173274B1 (fr) Procede pour faire fonctionner un dispositif de reformage a la vapeur d'eau d'hydrocarbures, notamment de methanol
EP0261461B1 (fr) Procédé et appareil pour le traitement thermique de pièces métalliques
EP3736347A1 (fr) Utilisation d'oxygène de l'électrolyse de l'eau dans la production de fer et / ou d'acier
WO2002008472A1 (fr) Procede et dispositif pour produire un gaz de traitement contenant co et h2 pour le traitement thermique de produits metalliques, et installation de traitement thermique
EP0703994B1 (fr) Procede et dispositif de traitement thermique de pieces
EP0794263B1 (fr) Procédé pour la production d'une atmosphère protectrice pour four de traitement thermique et installation pour traitement thermique
DE10023410A1 (de) Verfahren zur Erzeugung eines CO- und H2-haltigen Behandlungsgases für die Wärmebehandlung von metallischem Gut, Gasgenerator und Wärmebehandlungsanlage
DE4308803A1 (de) Verfahren und Vorrichtung zum Herstellen einer kohlenstoffhaltigen gasförmigen Behandlungsatmosphäre
DE10237744A1 (de) Reaktorsystem zur Wasserstofferzeugung
EP0326661B1 (fr) Procédé de production de gaz de synthèse à partir d'une alimentation hydrocarbonée
EP2908054A1 (fr) Procédé et dispositif de post-combustion in-situ de substances nocives générées par un processus de combustion
DE2822048C2 (de) Anlage zur Erzeugung von Behandlungsgas für die Behandlung metallischer Gegenstände
DE2419997C2 (de) Verfahren und Einrichtung zur Erzeugung härtbarer bzw. verschleißfester Oberflächenschichten von Stahlteilen in einem Glühofen
EP1673483B1 (fr) Procede de traitement thermique de matieres ferreuses
WO2002033131A1 (fr) Procede et dispositif pour produire un gaz de traitement contenant du co et de l'h2, pour traitement thermique
EP0331929B1 (fr) Procédé pour la production d'une atmosphère protectrice pour le traitement thermique de métaux ferreux et non ferreux
EP0326662A1 (fr) Procédé à plusieurs étapes de production de gaz de synthèse contenant de l'hydrogène et de l'oxyde de carbone
EP0860512B1 (fr) Procédé/appareil pour la préparation d'un gaz de traitement pour le traitement d'un produit métallique
DE10359231A1 (de) System und Verfahren zur Erzeugung eines Reformats

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP