WO2002006387A2 - Composition stabilisante pour polymeres halogenes comprenant un compose insature heterocyclique - Google Patents

Composition stabilisante pour polymeres halogenes comprenant un compose insature heterocyclique Download PDF

Info

Publication number
WO2002006387A2
WO2002006387A2 PCT/FR2001/002242 FR0102242W WO0206387A2 WO 2002006387 A2 WO2002006387 A2 WO 2002006387A2 FR 0102242 W FR0102242 W FR 0102242W WO 0206387 A2 WO0206387 A2 WO 0206387A2
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
radical
optionally
atom
composition according
Prior art date
Application number
PCT/FR2001/002242
Other languages
English (en)
Other versions
WO2002006387A3 (fr
Inventor
Dominique Hebrault
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to CA002416296A priority Critical patent/CA2416296A1/fr
Priority to US10/333,080 priority patent/US20040019137A1/en
Priority to MXPA03000464A priority patent/MXPA03000464A/es
Priority to EP01954079A priority patent/EP1301562A2/fr
Priority to JP2002512286A priority patent/JP2004504434A/ja
Priority to AU2001276433A priority patent/AU2001276433A1/en
Priority to KR10-2003-7000769A priority patent/KR20030028548A/ko
Publication of WO2002006387A2 publication Critical patent/WO2002006387A2/fr
Publication of WO2002006387A3 publication Critical patent/WO2002006387A3/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/35Heterocyclic compounds having nitrogen in the ring having also oxygen in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/45Heterocyclic compounds having sulfur in the ring
    • C08K5/46Heterocyclic compounds having sulfur in the ring with oxygen or nitrogen in the ring

Definitions

  • the present invention relates to a stabilizing composition for halogenated polymer comprising one or more compounds having at least one ethylenic unsaturation (C ⁇ C) and at least one heterocycle.
  • Halogenated polymers and in particular chlorinated polymers, require the use of stabilization additives, which act during the shaping of the polymers, or even after the shaping of the latter (aging). Indeed, these polymers are sensitive to heat and light. The sensitivity to heat is noted by a degradation of the coloration of the polymer part, which then changes from an initial light color (white to light yellow) to brown, then to black.
  • halogenated polymers Many additives have been developed so far in order to stabilize halogenated polymers. Thus, it is known to. using alkaline earth metal (calcium) and / or transition (zinc) carboxylates, compounds of the organotin type, or also based on lead. These additives have also been used in combination with other compounds such as, for example, organic compounds of the type of ⁇ -diketones or ⁇ -ketoesters, phosphites, etc., or even mineral compounds such as hydrotalcites, etc.
  • One of the objectives of the present invention is to provide a stabilizing composition for halogenated polymers, comprising new compounds.
  • Another object of the invention is to provide a means for stabilizing halogenated polymers which do not use additives comprising metals, or a lower content than that usually used in the field.
  • the subject of the present invention is a stabilizing composition for halogenated polymer comprising at least one compound of formula (I) or (II) below:
  • X, Y, Z identical or not, represent an oxygen atom, a nitrogen atom, a sulfur atom, or a phosphorus atom; ,
  • R 1 represents a radical comprising 1 to 20 carbon atoms of alkyl type; alkenyl carrying one or more ethylenic unsaturations, conjugated or not; cyclic carrying one or more ethylenic unsaturations, conjugated or not; aromatic optionally substituted;
  • R2 represents a hydrogen atom; a radical comprising 1 to 20 carbon atoms, of alkyl type; alkenyl carrying one or more ethylenic unsaturations, conjugated or not; cyclic carrying one or more ethylenic unsaturations, conjugated or not; aromatic, substituted or not, optionally condensed with an aromatic ring or not; a radical -COR with R representing an alkyl radical comprising 1 to 20 carbon atoms;
  • R 1 and R 2 are optionally linked together so as to form a cycle which optionally carries one or more ethylenic unsaturations, conjugated or not;
  • R3 and R4 identical or not, represent a hydrogen atom; a radical comprising 1 to 20 alkyl type carbon atoms; alkenyl, carrying one or more ethylenic unsaturations, conjugated or not; cyclic optionally carrying one or more ethylenic unsaturations, conjugated or not; aromatic optionally substituted; said radicals Ri, R2, R3 and R4, being optionally interrupted by one or more groups -O-, -S-, -CO-, -NR-, -NRCO-, and / or optionally carrying at least one group - OH, -OR, -R'OH, with R and R 'representing a hydrogen atom or an alkyl radical comprising 1 to 20 carbon atoms; at least one of the radicals R2 or R3 being a hydrogen atom; n is 1 to 3 depending on the valence of X; m is 0 to 2 depending on the valence of Y; p is 0 to 2 depending on the valence
  • the radical R1 is an alkyl radical comprising 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, optionally carrying at least one group -OH, -OR, -R'OH, with R representing a monovalent alkyl radical comprising 1 to 20 carbon atoms, and R ′ representing a divalent alkyl radical comprising 1 to 20 carbon atoms.
  • radicals By way of example of such radicals, mention may be made of methyl, ethyl, propyl,
  • the compounds of formula (I) and / or (II) are such that the coefficient q is 2 or 3.
  • a first family of compounds is constituted by those of formula (I). More particularly, within the framework of this first family, a type of advantageous compounds is represented by those in which, X and Y, identical or not, represent nitrogen or sulfur, and preferably nitrogen. According to this variant, Z preferably represents oxygen or nitrogen.
  • R2 preferably represents an aromatic radical comprising 4 to 6 carbon atoms optionally condensed with an aromatic radical comprising 6 carbon atoms, a -COR radical with R representing an alkyl radical comprising 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, or an alkyl radical comprising 1 to 20 carbon atoms, preferably 1 to 10 carbon atoms, optionally interrupted by an -O- or -S- group.
  • R2 can be an aromatic cyclic radical including or not including the nitrogen atom.
  • the atom X is itself part of the pyrrole or indole radical, if R2 is condensed with an aromatic ring.
  • radical R2 represents hydrogen.
  • an ⁇ , ⁇ unsaturated aldehyde such as aminocrotonate
  • hydrogen sulfide is reacted with hydrogen sulfide.
  • the reaction is carried out by introducing the aldehyde into a solvent, chosen in particular from chlorinated solvents (chloroform), saturated with hydrogen sulfide.
  • a solvent chosen in particular from chlorinated solvents (chloroform), saturated with hydrogen sulfide.
  • Said solvent can also comprise a tertiary amine.
  • reaction medium is maintained under a flow of hydrogen sulfide.
  • the introduction of the aldehyde is preferably carried out drop by drop.
  • the duration of introduction is generally between 2 and 10 hours.
  • This first step is carried out at a temperature below 0 ° C, and more particularly of the order of -20 to -10 ° C. Once the aldehyde has been added, the reaction medium is kept under stirring at a temperature of the order of -25 ° C.
  • reaction product is separated by conventional means.
  • a second step consists in reacting the compound resulting from the preceding step, with a compound of formula HO- (CH2) q-OH (for example ethylene glycol), or with HO- (CH2) q-NH2 (by example ethanolamine), or with H2N- (CH2) q-NH2 (for example ethylene diamine), in the presence of a catalyst such as paratoluene sulfonic acid in particular.
  • a compound of formula HO- (CH2) q-OH for example ethylene glycol
  • HO- (CH2) q-NH2 by example ethanolamine
  • H2N- (CH2) q-NH2 for example ethylene diamine
  • the molar ratio of the compound from the previous step and the glycol is around 1/2.
  • the reaction preferably takes place in the presence of a solvent, such as, for example, toluene.
  • a solvent such as, for example, toluene.
  • the reaction temperature is close to the reflux of the solvent used.
  • the product is then separated by conventional methods.
  • the acetal obtained is reacted with a chlorinating agent such as, for example, N-chlorosuccinimide.
  • a chlorinating agent such as, for example, N-chlorosuccinimide.
  • the operation can take place in the presence of a chlorinated solvent.
  • the reaction can advantageously be carried out at a temperature close to room temperature.
  • the resulting product once the solvent has been removed, is brought into contact with a solution of an alkali metal alcoholate, preferably potassium tert-butoxide, in an anhydrous medium.
  • an alkali metal alcoholate preferably potassium tert-butoxide
  • the solvent used is preferably an ether such as tetrahydrofuran.
  • the contacting and the reaction are preferably carried out at a temperature below ambient temperature, more particularly below 10 ° C., preferably of the order of 0 ° C.
  • the resulting product corresponding to the compound of formula (I) as described above, is isolated in a conventional manner. It is specified that the resulting compound can undergo a dehydrogenation step, in the case where one or both heteroatoms of the ring are nitrogen atoms. This step leads to a compound of formula (II).
  • the dehydrogenation can in particular take place by implementing a heat treatment in the presence of a catalyst chosen for example from manganese oxide, or terbutylhydroperoxide combined with a ruthenium salt.
  • a catalyst chosen for example from manganese oxide, or terbutylhydroperoxide combined with a ruthenium salt.
  • a compound of formula (II) By way of example of synthesis of a compound of formula (II), one can exemplify that giving access to a compound for which X represents a nitrogen atom, Z represents an oxygen or nitrogen atom, R1 an alkyl radical.
  • an ⁇ , ⁇ unsaturated ester (for example an alkyl aminocrotonate, the alkyl part comprising more particularly 1 to 4 carbon atoms), with other part, an amino alcohol of formula HO- (CH2) q-NH2 or also with a diamine of formula H2N- (CH2) q-NH2.
  • the reaction is usually carried out with stirring and at a temperature generally between 150 and 250 ° C.
  • the molar ratio of the ester to the amino alcohol or the diamine is between approximately 0.5 and 1.2.
  • This reaction can be carried out in the presence of an appropriate solvent.
  • the solvent is more particularly chosen from those whose boiling point is higher than that of the alcohol eliminated during the reaction.
  • chlorobenzene is an example of a suitable solvent. But advantageously, a solvent is not necessary.
  • the compound obtained is then put under conditions such that the cycle is formed.
  • Such conditions can be achieved for example in the presence of thionyl chloride. It should be noted that, depending on the nature of the atoms, an agent which aids in cyclization is not necessary.
  • the temperature is usually between 50 to 80 ° C, in the presence of compounds such as thionyl chloride. If this type of compound is not used, the temperature is then usually between 150-250 ° C.
  • this reaction can also be carried out in the presence of an appropriate solvent such as for example alkylated or aromatic chlorinated solvents, aromatic solvents, such as in particular toluene, xylene).
  • an appropriate solvent such as for example alkylated or aromatic chlorinated solvents, aromatic solvents, such as in particular toluene, xylene.
  • aromatic solvents such as in particular toluene, xylene.
  • no solvent is used.
  • the compounds which have just been described are used in stabilizing compositions for halogenated polymers.
  • halogenated polymer forming part of the composition according to the invention is intended to denote more particularly, chlorinated polymers, such as polyvinyl chloride (PVC).
  • PVC polyvinyl chloride
  • any type of PVC is suitable, whatever its method of preparation: bulk, suspension, emulsion or any other type polymerization and whatever its intrinsic viscosity.
  • Homopolymers of vinyl chloride can also be modified chemically, for example by chlorination.
  • copolymers of vinyl chloride can also be stabilized against the effects of heat, i.e. yellowing and degradation.
  • these are in particular the copolymers obtained by copolymerization of vinyl chloride with other monomers having a polymerizable ethylenic bond, such as for example vinyl acetate or vinylidene chloride; maleic, fumaric acids, and / or their esters; olefins such as ethylene, propylene, hexene; acrylic or methacrylic esters; styrene; vinyl ethers such as vinyldodecyl ether.
  • copolymers contain at least 50% by weight of vinyl chloride units and preferably at least 80% by weight of vinyl chloride units.
  • compositions capable of being stabilized according to the process of the invention may also contain mixtures based on chlorinated polymer containing minority amounts of other polymers, such as halogenated polyolefins or acrylonitrile / butadiene / styrene copolymers.
  • the total content of compounds (I) and / or (II) used is more particularly between 0.005 and 5% by weight relative to the weight of halogenated polymer (s), preferably between 0.5 and 5% by weight relative to the weight of halogenated polymer (s).
  • the formulations comprising the halogenated polymer can be rigid formulations, that is to say without plasticizer, or semi-rigid, that is to say with reduced plasticizer contents, such as for applications in the building the manufacture of various profiles or electrical cables, or formulations containing only additives approved for food contact, for the manufacture of bottles.
  • These formulations most often contain an impact enhancer, such as a methacrylate / butadiene / styrene copolymer for example.
  • They can also be plasticized formulations such as for the manufacture of films for agricultural use.
  • compositions of halogenated polymers comprising the stabilizing composition according to the invention may also contain stabilizing additives conventional in the field, whether they are of mineral or organic nature.
  • a mineral type stabilizer By way of example of a mineral type stabilizer, mention may be made of sulphates, and / or carbonates, of aluminum and / or magnesium, in particular of the hydrotalcite type. It is recalled that the compounds of the hydrotalcite type correspond to the following formula: Mgi- ⁇ Al ⁇ (OH) 2A n " ⁇ / n • mH2 ⁇ , in which x is between 0 excluded and 0.5, A n" represents an anion such that carbonate in particular, n varies from 1 to 3 and m is positive. It should be noted that products of this type can be used, having undergone a surface treatment with an organic compound.
  • stabilizer of organic type mention may likewise be made of polyols comprising 2 to 32 carbon atoms and having 2 to 9 hydroxyl groups.
  • C3-C30 diols such as propylene glycol, butanediol, hexanediol, dodecanediol, neopentyl glycol, polyols such as trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, xylitol, mannitol, sorbitol, glycerin, mixtures of glycerol oligomers having a degree of polymerization from 2 to 10.
  • diols such as propylene glycol, butanediol, hexanediol, dodecanediol, neopentyl glycol, polyols such as trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, xylitol, mannitol
  • Another family of polyols which can be suitably used is constituted by partially acetylated polyvinyl alcohols.
  • hydroxyl compounds comprising isocyanurate groups, alone or in combination with the abovementioned polyols, such as for example tris (2-hydroxyethyl) isocyanurate.
  • the quantity of polyol and / or of hydroxylated compound used is generally between 0.05 and 5 g per 100 g of halogenated polymer. More particularly, it is less than 2 g per 100 g of halogenated polymer.
  • halogenated polymer compounds of the organic phosphite type, such as, for example, trialkyl, aryl, triaryl, dialkylaryl phosphites, or diarylalkyl, for which the term alkyl denotes hydrocarbon groups of monoalcohols or of C8-C22 polyols. and the term aryl denotes aromatic groups of phenol or of phenol substituted by C group-Ci 2- alkyl groups.
  • calcium phosphites such as for example compounds of the Ca (HP ⁇ 3) type. (H2 ⁇ ) thus than phosphite - hydroxy - aluminum - calcium complexes.
  • the additive content of this type is usually between 0.1 and 2 g per 100 g of halogenated polymer. It is likewise conceivable to use at least one alkali, crystalline, synthetic metal aluminosilicate having a water content of between 13 and
  • NaA type zeolites are particularly suitable, as described in US Pat. No. 4,590,233.
  • the content of this type of compound generally varies between 0.1 and 5 g per 100 g of halogenated polymer.
  • epoxide type can likewise be used. These compounds are generally chosen from epoxidized polyglycerides, or esters of epoxidized fatty acids, such as epoxidized linseed, soybean or fish oils.
  • the amount of these compounds, if present, usually varies between 0.5 and 10 g per 100 g of halogenated polymer.
  • titanium dioxide is in the rutile form.
  • particle size of the titanium dioxide used in the compositions according to the invention is between 0.1 and 0.5 ⁇ m.
  • titanium dioxide is used in rutile form having undergone a surface treatment, preferably mineral, such as titanium dioxide Rhoditan® RL18, Rhoditan® RL90, marketed by Rhodia Chimie, Kronos 2081® and 2220® titanium dioxides marketed by
  • Formulations based on halogenated polymers may include other white or colored pigments.
  • the colored pigments there may be mentioned in particular cerium sulfide.
  • the quantity of pigment introduced into the formulation varies within wide limits and depends in particular on the coloring power of the pigment and on the desired final coloration. However, by way of example and if the polymer composition contains it, the amount of pigment may vary from 0.1 to 20 g per 100 g of halogenated polymer, preferably from 0.5 to 15 g relative to the same reference. .
  • Additives such as phenolic antioxidants, anti-UV agents such as
  • 2-hydroxybenzophenones 2-hydroxybenzotriazoles or sterically hindered amines, usually known as Hais, can be included in the halogenated polymer composition.
  • the content of this type of additive generally varies between 0.05 and 3 g per 100 g of halogenated polymer.
  • lubricants can also be used which will facilitate implementation, chosen in particular from glycerol monostearates or even propylene glycol, fatty acids or their esters, montanate waxes, poylethylene waxes or their oxidized derivatives, paraffins, metallic soaps, functionalized polymethylsiloxane oils such as, for example, ⁇ -hydroxypropylenated oils.
  • the amount of lubricant entering the halogenated polymer formulation generally varies between 0.05 and 2 g per 100 g of halogenated polymer.
  • the formulation can also comprise plasticizers chosen from alkyl phthalates.
  • the most generally used compounds are chosen from di (ethyl-2-hexyl) phthalate, the esters of linear C 6 -C 12 diacids. 'es triméllitates or ester phosphates.
  • the amount of plasticizer used in the formulations varies over a wide range, depending on the rigid or flexible nature of the final polymer. As an indication, the content varies from 0 to 100 g per 100 g of polymer.
  • composition according to the invention does not require the use of metallic type stabilizers, or in lower contents than those usually used.
  • metallic stabilizers examples include compounds comprising an alkaline earth metal or a metal chosen from columns IIB, MA, IVB of the periodic table of the elements (published in the supplement to the Bulletin of the Company Chimique de France, no. 1, January 1966).
  • the metals are more particularly chosen from calcium, barium, magnesium, strontium, zinc, cadmium, tin or even lead.
  • the most commonly used are for example the salts of elements IIA or IIB of maleic, acetic, diacetic, propionic, hexanoic, 2-ethylhexanoic, decanoic, undecanoic, lauric, myristic, palmitic, stearic, oleic, ricinoleic, behenic (docosanoic) acids. ), hydroxystearic, hydroxy- undecanoic, benzoic, phenylacetic, paratertiobutylbenzoic and salicylic, phenolates, alcoholates derived from naphthol or phenols substituted by one or more alkyl radicals, such as nonylphenols.
  • dibasic lead carbonate tribasic lead sulfate, tetrabasic lead sulfate, dibasic lead phosphite, lead porthosilicate, basic lead silicate, silicate and lead sulfate coprecipitate, basic lead chlorosilicate, silica gel and lead orthosilicate coprecipitate, dibasic lead phatalate, neutral lead stearate, dibasic stearate lead, tetrabasic lead fumarate, dibasic lead maleate, 2-ethyl lead hexanoate, lead laurate (see in particular ENCYCLOPEDIA of PVC by Léonard I. NASS (1976) page 299-303).
  • tin-based compounds mention may in particular be made of mono- or di-alkyltin carboxylates and mercaptides of mono- or di-alkyltin; but also more commonly, the derivatives of di-n-methyltin, of di-n-butyltin or of di-n-octyltin such as, for example, dibutyltin dilaurate.
  • dibutyltin maleate dibutyltin laurate-maleate, bis dibutyltin (mono-C ⁇ Cs-alkyl maleate), dibutyltin bis (lauryl-mercaptide), dibutyltin SS '(isooctyl mercatoacetate), dibutyltin ⁇ -mercapto propionate, di-n- maleate octyltin polymer, bis-S-S '(isooctyl mercaptoacetate) di-n-octyltin, ⁇ -mercapto-propionate di-n-octyltin.
  • the content of metallic stabilizer can vary between 0 and 100 ppm, expressed relative to the metal, per 100 g of halogenated polymer. More particularly, this content can be between 0 and 50 ppm per 100 g of halogenated polymer.
  • the preparation of the halogenated polymer formulation can be done by any means known to those skilled in the art.
  • this operation can be carried out in a mixer fitted with a blade and counter-blade system operating at a high speed.
  • the mixing operation is carried out at a temperature below 130 ° C.
  • the composition is formed according to the usual methods in the field such as injection, extrusion blow molding, extrusion, calendering or even rotational molding.
  • the temperature at which the shaping is carried out generally varies from 150 to 220 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

La présente invention a pour objet une composition stabilisante pour polymère halogéné comprenant au moins un composé de formules (I) et/ou (II) suivantes (formules I et II); formules dans lesquelles: X, Y, Z, identiques ou non, représentent un atome d'oxygène, un atome d'azote, un atome de soufre, ou un atome de phosphore; R1 représente un radical comprenant 1 à 20 atomes de carbone ; R2 représente un atome d'hydrogène ; un radical comprenant 1 à 20 atomes de carbone, un radical -COR; R1 et R2 sont éventuellement reliés entre eux de manière à former un cycle; R3 et R4, identiques ou non, représentent un atome d'hydrogène ; un radical comprenant 1 à 20 atomes de carbone; n vaut 1 à 3 selon la valence de X; m vaut 0 à 2 selon la valence de Y; p vaut 0 à 2 selon la valence de Z; q est un nombre entier compris entre 1 et 10, de préférence entre 1 et 4.

Description

COMPOSITION STABILISANTE POUR POLYMERES HALOGENES COMPRENANT UN COMPOSE INSATURE HETEROCYCLIQUE
La présente invention a pour objet une composition stabilisante pour polymère halogène comprenant un ou plusieurs composés présentant au moins une insaturation éthylénique (C≈C) et au moins un hétérocycle.
Les polymères halogènes, et notamment les polymères chlorés, nécessitent l'emploi d'additifs de stabilisation, qui agissent lors de la mise en forme des polymères, ou bien encore après la mise en forme de ces derniers (vieillissement). En effet, ces polymères sont sensibles à la chaleur et à la lumière. La sensibilité à la chaleur se constate par une dégradation de la coloration de la pièce de polymère, qui passe alors d'une couleur initiale claire (blanc à jaune clair) au marron, puis au noir.
De nombreux additifs ont été développés jusqu'à présent dans le but de stabiliser les polymères halogènes. Ainsi, il est connu de. mettre en oeuvre des carboxylates de métaux alcalino-terreux (calcium) et/ou de transition (zinc), des composés de type organo-étain, ou encore à base de plomb. Ces additifs ont été de même utilisés en combinaison avec d'autres composés comme par exemple, des composés organiques du type des β-dicétones ou des β-cétoesters, des phosphites, etc., ou encore de composés minéraux comme les hydrotalcites, etc. L'un des objectifs de la présente invention est de proposer une composition stabilisante pour polymères halogènes, comprenant de nouveaux composés.
Un autre objet de l'invention est de proposer un moyen de stabilisation de polymères halogènes ne mettant pas en œuvre d'additifs comprenant des métaux, ou une teneur plus faible que celle mise en jeu habituellement dans le domaine. Ainsi, la présente invention a pour objet une composition stabilisante pour polymère halogène comprenant au moins un composé de formule (I) ou (II) suivante :
(R2)n (R3)m (R2)n
\ / \
X Y X N
\ / \ \ // \
C = CH - CH (CH2)q C = = CH - - C (CH2)q / \ / / \ /
Ri Z Ri Z
! I
(R )P (I) (R4)P (il)
Formules dans lesquelles:
X, Y, Z, identiques ou non, représentent un atome d'oxygène, un atome d'azote, un atome de soufre, ou un atome de phosphore ; ,
Ri représente un radical comprenant 1 à 20 atomes de carbone de type alkyle ; alcényle porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; cyclique porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; aromatique éventuellement substitué ;
R2 représente un atome d'hydrogène ; un radical comprenant 1 à 20 atomes de carbone, de type alkyle ; alcényle porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; cyclique porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; aromatique, substitué ou non, éventuellement condensé avec un cycle aromatique ou non ; un radical -COR avec R représentant un radical alkyle comprenant 1 à 20 atomes de carbone ;
Ri et R2 sont éventuellement reliés entre eux de manière à former un cycle éventuellement porteur d'une ou plusieurs insaturations éthyléniques, conjuguées ou non ;
R3 et R4, identiques ou non, représentent un atome d'hydrogène ; un radical comprenant 1 à 20 atomes de carbone de type alkyle ; alcényle, porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; cyclique éventuellement porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; aromatique éventuellement substitué ; lesdits radicaux Ri, R2, R3 et R4, étant éventuellement interrompus par un ou plusieurs groupements -O-, -S-, -CO-, -NR-, -NRCO-, et/ou éventuellement porteurs d'au moins un groupement -OH, -OR, -R'OH, avec R et R' représentant un atome d'hydrogène ou un radical alkyle comprenant 1 à 20 atomes de carbone ; l'un au moins des radicaux R2 ou R3 étant un atome d'hydrogène ; n vaut 1 à 3 selon la valence de X ; m vaut 0 à 2 selon la valence de Y ; p vaut 0 à 2 selon la valence de Z ; q est un nombre entier compris entre 1 et 10, de préférence entre 1 et 4.
Plus particulièrement, le radical R1 est un radical alkyle comprenant 1 à 20 atomes de carbone, de préférence 1 à 10 atomes de carbone, éventuellement porteur d'au moins un groupement -OH, -OR, -R'OH, avec R représentant un radical alkyle monovalent comprenant 1 à 20 atomes de carbone, et R' représentant un radical alkyle divalent comprenant 1 à 20 atomes de carbone.
A titre d'exemple de tels radicaux, on peut citer le méthyle, éthyle, le propyle,
Pisopropyle, le butyle et ses isomères, l'hydrométhyle, l'hydroxyéthyle.
Selon un mode de réalisation avantageux de la présente invention, les composés de formule (I) et/ou (II) sont tels que le coefficient q vaut 2 ou 3. Une première famille de composés est constituée par ceux de formule (I). Plus particulièrement, dans le cadre de cette première famille, un type de composés avantageux est représenté par ceux dans lesquels, X et Y, identiques ou non, représentent l'azote ou le soufre, et de préférence l'azote. Selon cette variante, Z représente de manière préférée, l'oxygène ou l'azote.
En outre, selon la valence de Y, m vaut 0 ou 1. Ainsi, dans le cas où Y représente le soufre, m vaut 0. Par ailleurs, dans le cas où Y représente l'azote, m vaut 1 et R3 représente de préférence l'hydrogène. Toujours selon cette variante particulière, R2 représente de préférence un radical aromatique comprenant 4 à 6 atomes de carbone éventuellement condensé avec un radical aromatique comprenant 6 atomes de carbone, un radical -COR avec R représentant un radical alkyle comprenant 1 à 20 atomes de carbone, de préférence 1 à 10 atomes de carbone, ou un radical alkyle comprenant 1 à 20 atomes de carbone, de préférence 1 à 10 atomes de carbone, éventuellement interrompu par un groupement -O- ou -S-.
Il est à noter que dans le cas où X représente l'azote, R2 peut être un radical cyclique aromatique incluant ou non l'atome d'azote. Dans cette dernière possibilité, l'atome X fait lui-même partie du radical pyrrole ou indole, si R2 est condensé avec un cycle aromatique.
Une autre variante entrant dans le cadre de la première famille de composés, correspondant à ceux de formule (I), est constituée par des composés dans lesquels X représente le soufre et Y et Z représentent l'oxygène.
Plus particulièrement, le radical R2 représente l'hydrogène. Ces composés peuvent être obtenus par tout moyen connu de l'homme de l'art:
Un exemple de synthèse de composé de formule (I) va maintenant être précisé, dans lequel X représente le soufre, Y et Z, identiques ou non, représentent un atome d'oxygène ou d'azote, et Ri un radical alkyle.
Dans une première étape, on fait réagir un aldéhyde α,β insaturé, comme par exemple l'aminocrotonate, avec du sulfure d'hydrogène.
La réaction est réalisée en introduisant l'aldéhyde dans un solvant, choisi notamment parmi les solvants chlorés (chloroforme), saturé en sulfure d'hydrogène. Ledit solvant peut comprendre en outre une aminé tertiaire.
Il est à noter que pendant l'introduction de l'aldéhyde, on maintient le milieu réactionnel sous un flux de sulfure d'hydrogène.
De plus, l'introduction de l'aldéhyde est de préférence réalisée goutte à goutte.
La durée d'introduction est généralement comprise entre 2 et 10 heures.
On met en œuvre cette première étape à une température inférieure à 0°C, et plus particulièrement de l'ordre de -20 à -10°C. Une fois l'aldéhyde ajouté, le milieu réactionnel est conservé sous agitation à une température de l'ordre de -25°C.
A l'issue de la réaction, on ajoute un acide fort, par exemple l'acide chlorhydrique et l'on agite le milieu réactionnel. Le produit réactionnel est séparé par des moyens classiques.
Une seconde étape consiste à faire réagir le composé issu de l'étape précédente, avec un composé de formule HO-(CH2)q-OH (par exemple l'éthylène glycol), ou avec HO-(CH2)q-NH2 (par exemple l'ethanolamine), ou encore avec H2N-(CH2)q-NH2 (par exemple l'éthylène diamine), en présence d'un catalyseur comme notamment l'acide paratoluène sulfonique.
Habituellement, le rapport molaire du composé issu de l'étape précédente et du glycol est d'environ de 1/2.
La réaction a lieu de préférence en présence d'un solvant, comme par exemple le toluène.
La température de la réaction est voisine du reflux du solvant employé.
Le produit est ensuite séparé par les méthodes classiques.
Dans une troisième étape, l'acétal obtenu est mis à réagir avec un agent chlorurant comme par exemple le N-chlorosuccinimide. L'opération peut avoir lieu en présence d'un solvant chloré.
La réaction peut être effectuée, de manière avantageuse, à température voisine de la température ambiante.
Enfin, le produit résultant, une fois le solvant éliminé, est mis en contact avec une solution d'un alcoolate de métal alcalin, de préférence le tertiobutylate de potassium, en milieu anhydre.
Le solvant mis en œuvre est de préférence un éther comme le tétrahydrofuranne.
On met en œuvre de préférence un excès d'alcoolate de 50 à 100% molaire par rapport au produit. La mise en contact et la réaction sont de manière préférée, réalisées à une température inférieure à la température ambiante, plus particulièrement inférieure à 10°C, de préférence de l'ordre de 0°C.
Le produit résultant, correspondant au composé de formule (I) tel que décrit plus haut, est isolé de manière classique. II est précisé que le composé résultant peut subir une étape de déshydrogénation, dans le cas où l'un ou les deux hétéroatomes du cycle sont des atomes d'azote. Cette étape permet d'aboutir à un composé de formule (II).
La déshydrogénation peut notamment avoir lieu en mettant en œuvre un traitement thermique en présence d'un catalyseur choisi par exemple parmi l'oxyde de manganèse, ou le terbutylhydroperoxyde associé à un sel de ruthénium.
A titre d'exemple de synthèse d'un composé de formule (II), on peut exemplifier celle permettant d'accéder à un composé pour lequel X représente un atome d'azote, Z représente un atome d'oxygène ou d'azote, R1 un radical alkyle. Ainsi, dans une première étape, on fait réagir d'une part, un ester α,β insaturé, (comme par exemple un aminocrotonate d'alkyle, la partie alkyle comprenant plus particulièrement 1 à 4 atomes de carbone), avec d'autre part, un aminoalcool de formule HO-(CH2)q-NH2 ou encore avec une diamine de formule H2N-(CH2)q-NH2. La réaction est habituellement effectuée sous agitation et à une température en général comprise entre 150 et 250°C.
De manière avantageuse, le rapport molaire de l'ester à Paminoalcool ou la diamine est compris entre 0,5 et 1,2 environ.
Cette réaction peut être effectuée en présence d'un solvant approprié. Le solvant est plus particulièrement choisi parmi ceux dont le point d'èbullition est supérieur à celui de l'alcool éliminé en cours de réaction. Par exemple, le chlorobenzène est un exemple de solvant convenable. Mais de manière avantageuse, un solvant n'est pas nécessaire.
Le composé obtenu est ensuite mis dans des conditions telles que le cycle se forme. De telles conditions peuvent être atteintes par exemple en présence de chlorure de thionyle. Il est à noter que selon la nature des atomes, un agent aidant à la cyclisation n'est pas nécessaire.
La réaction est là encore mise en œuvre sous agitation.
La température est habituellement comprise entre 50 à 80°C, en présence de composés comme le chlorure de thionyle .Si ce type de composés n'est pas employé, la température est alors habituellement comprise entre 150-250°C.
Enfin, cette réaction peut être, elle aussi, réalisée en présence d'un solvant approprié comme par exemple les solvants chlorés alkylés ou aromatiques, les solvants aromatiques , comme notamment le toluène, le xylène). Mais de préférence on ne met pas en œuvre de solvant.
Ainsi que cela a été indiqué auparavant, les composés qui viennent d'être décrits sont utilisés dans des compositions stabilisantes pour polymères halogènes.
Par polymère halogène entrant dans la composition selon l'invention, on entend désigner plus particulièrement, les polymères chlorés, tels que le polychlorure de vinyle (PVC).
De manière générale tout type de PVC convient, quel que soit son mode de préparation : polymérisation en masse, en suspension, en émulsion ou de tout autre type et quelle que soit sa viscosité intrinsèque.
Les homopolymères du chlorure de vinyle peuvent également être modifiés chimiquement, par exemple par chloration.
De nombreux copolymères du chlorure de vinyle peuvent également être stabilisés contre les effets de la chaleur, c'est-â-dire le jaunissement et la dégradation. Ce sont en particulier les copolymères obtenus par copolymérisation du chlorure de vinyle avec d'autres monomères présentant une liaison éthylénique polymérisable, comme par exemple l'acétate de vinyle ou le chlorure de vinylidène ; les acides maléique, fumarique, et/ou leurs esters ; les oléfines telles que l'éthylène, le propylène, l'hexène ; les esters acryliques ou méthacryliques ; le styrène ; les éthers vinyliques tels que le vinyldodécyléther.
Habituellement ces copolymères contiennent au moins 50 % en poids de motifs chlorure de vinyle et de préférence au moins 80 % en poids de motifs chlorure de vinyle.
Les compositions susceptibles d'être stabilisées selon le procédé de l'invention peuvent également contenir des mélanges à base de polymère chloré contenant des quantités minoritaires d'autres polymères, comme les polyoléfines halogénées ou les copolymères acrylonitrile/ butadiène / styrène.
Le PVC seul ou en mélange avec d'autres polymères, est le polymère chloré le plus largement utilisé dans l'invention. Lorsque la composition selon l'invention est utilisée pour la stabilisation de polymère(s) halogéné(s), la teneur totale en composés (I) et/ou (II) mise en œuvre, est plus particulièrement comprise entre 0,005 et 5 % en poids par rapport au poids de polymère(s) halogéné(s), de préférence comprise entre 0, 5 et 5 % en poids par rapport au poids de polymère(s) halogéné(s). Les formulations comprenant le polymère halogène peuvent être des formulations rigides, c'est-à-dire sans plastifiant, ou semi-rigides, c'est à dire avec des teneurs en plastifiant réduites, telles que pour les applications dans le bâtiment la fabrication de profilés divers ou câblerie électrique, ou encore des formulations ne contenant que des additifs agréés contact alimentaire, pour la fabrication de bouteilles. Ces formulations contiennent le plus souvent un renforçateur de chocs, tel qu'un copolymère méthacrylate / butadiène / styrène par exemple.
Elles peuvent également être des formulations plastifiées telles que pour la fabrication de films à usage agricole.
Les formulations de polymères halogènes comprenant la composition stabilisante selon l'invention, peuvent aussi contenir des additifs stabilisants classiques dans le domaine, qu'ils soient de nature minérale ou organique.
A titre d'exemple de stabilisant de type minéral, on peut citer les sulfates, et/ou les carbonates, d'aluminium et/ou de magnésium, du type hydrotalcite notamment. Il est rappelé que les composés du type hydrotalcite correspondent à la formule suivante : Mgi-χAlχ(OH)2An"χ/n • mH2θ, dans laquelle x est compris entre 0 exclu et 0,5, An" représente un anion tel que le carbonate notamment, n varie de 1 à 3 et m est positif. Il est à noter que l'on peut mettre en œuvre des produits de ce type, ayant subi un traitement de surface avec un composé organique. On ne sortirait de même pas du cadre de la présente invention en mettant en œuvre un produit du type hydrotalcite dopé par du zinc, ayant éventuellement subi un traitement de surface par un composé organique. Parmi les produits de ce type, on peut citer tout particulièrement PAIcamizer® 4 (commercialisé par la société Kyowa). On peut aussi utiliser des composés essentiellement amorphes de formule
(MgO)y, AI2O3, (Cθ2)χ, (H2θ)z, dans laquelle x, y et z vérifient les inéquations suivantes : 0 < x < 0,7 ; 0 < y < 1 ,7 et z > 3. Ces composés sont notamment décrits dans la demande de brevet EP 509 864. Par ailleurs, les composés appelés catoïtes de formule Ca3Al2(OH)ι 2 ou encore Ca3Al2(SiO)4(OH)ι 2 peuvent aussi être utilisés. S'il est présent, la teneur en ce type de composé peut varier entre 0,05 et 2 g pour
100 g de polymère halogène.
A titre de stabilisant de type organique, on peut de même citer les polyols comprenant 2 à 32 atomes de carbone et présentant 2 à 9 groupements hydroxyles.
Parmi ces composés on peut mentionner les diols en C3-C30 tels que le propylène glycol, le butanediol, l'hexanediol, le dodécanediol, le néopentylglycol, les polyols tels que le triméthylolpropane, le pentaérythritol, le dipentaérythritol, le tripentaérythritol, le xylitol, le mannitol, le sorbitol, la glycérine, les mélanges d'oligomères de la glycérine présentant un degré de polymérisation de 2 à 10.
Une autre famille de polyols pouvant être convenablement mise en oeuvre, est constituée par les alcools polyvinyliques partiellement acétylés.
On peut de même utiliser des composés hydroxyles comprenant des groupements isocyanurates, seuls ou en combinaison avec les polyols précités, tels que par exemple le tris (2-hydroxyéthyl) isocyanurate.
S'ils sont présents, la quantité de polyol et/ou de composé hydroxylé mise en œuvre est en général comprise entre 0,05 et 5 g pour 100 g de polymère halogène. Plus particulièrement elle est inférieure à 2 g pour 100 g de polymère halogène.
On peut éventuellement incorporer dans la formulation comprenant le(s) polymère(s) halogéné(s), des composés du type des phosphites organiques, comme par exemple, les phosphites de trialkyle, d'aryle, de triaryle, de dialkylaryle, ou de diarylalkyle, pour lesquels le terme alkyle désigne des groupements hydrocarbonés de monoalcools ou de polyols en C8-C22. et le terme aryle désigne des groupements aromatiques de phénol ou de phénol substitué par des groupements alkyles en CQ- Ci 2- On peut de même utiliser des phosphites de calcium, comme par exemple des composés du type Ca(HPθ3).(H2θ) ainsi que des complexes phosphite - hydroxy - aluminium - calcium.
La teneur en additif de ce type, s'il est utilisé, est habituellement comprise entre 0,1 et 2 g pour 100 g de polymère halogène. Il est de même envisageable de mettre en œuvre au moins un aluminosilicate de métal alcalin, cristallin, synthétique, présentant une teneur en eau comprise entre 13 et
25 % en poids, de composition 0,7-1 M2θ.Al2θ3.1,3-2,4Siθ2 dans laquelle M représente un métal alcalin tel que notamment le sodium. Conviennent notamment les zéolites de type NaA, telles que décrites dans le brevet US 4 590 233.
Lorsqu'il est utilisé, la teneur en ce type de composé varie généralement entre 0,1 et 5 g pour 100 g de polymère halogène.
Les composés du type des époxydés peuvent de même être employés. Ces composés sont généralement choisis parmi les polyglycérides époxydés, ou les esters d'acides gras époxydés, tels que les huiles époxydées de lin, de soja ou de poisson.
La quantité en ces composés, s'ils sont présents, varie habituellement entre 0,5 et 10 g pour 100 g de polymère halogène.
Enfin, parmi les additifs classiques dans le domaine, on peut citer le dioxyde de titane. De préférence, le dioxyde de titane est sous le forme rutile. Généralement, la granulométrie du dioxyde de titane entrant dans les compositions selon l'invention, est comprise entre 0,1 et 0,5 μm.
Selon un mode de réalisation particulier de l'invention, on utilise du dioxyde de titane sous forme rutile ayant subi un traitement de surface, de préférence minéral, comme les dioxyde de titane Rhoditan® RL18, Rhoditan® RL90, commercialisés par Rhodia Chimie, les dioxydes de titane Kronos 2081® et 2220® commercialisés par
Kronos.
Les formulations à base de polymères halogènes peuvent comprendre d'autres pigments blancs ou colorés. Parmi les pigments colorés, on peut citer notamment le sulfure de cérium. II est à noter que la quantité de pigment introduite dans la formulation varie dans de larges limites et dépend notamment du pouvoir colorant du pigment et de la coloration finale souhaitée. Cependant, à titre d'exemple et si la composition polymérique en contient, la quantité de pigment peut varier de 0,1 à 20 g pour 100 g de polymère halogène, de préférence de 0,5 à 15 g par rapport à la même référence. Des additifs tels que les antioxydants phénoliques, les agents anti-UV tels que les
2-hydroxybenzophénones, les 2-hydroxybenzotriazoles ou les aminés stériquement encombrées, connues habituellement sous le terme Hais, peuvent entrer dans la composition de polymère halogène.
La teneur en ce type d'additif varie généralement entre 0,05 et 3 g pour 100 g de polymère halogène.
Si nécessaire, on peut aussi utiliser des lubrifiants qui vont faciliter la mise en œuvre, choisis notamment parmi les monostéàrates de glycérol ou encore le propylène glycol, les acides gras ou leurs esters, les cires montanates, les cires de poyléthylène ou leur dérivés oxydés, les paraffines, les savons métalliques, les huiles polyméthylsiloxanes fonctionnalisées comme par exemple les huiles γ- hydroxypropylénées.
La quantité de lubrifiant entrant dans la formulation à base de polymère halogène varie en général entre 0,05 et 2 g pour 100 g de polymère halogène.
La formulation peut aussi comprendre des plastifiants choisis parmi les phtalates d'alkyle. Les composés les plus généralement utilisés sont choisis parmi le phtalate de di (éthyl- 2 - hexyle), les esters de diacides linéaires en C6-C12. 'es triméllitates ou encore les phosphates esters. La quantité d'agent plastifiant employée dans les formulations, varie dans un large domaine, en fonction du caractère rigide ou souple du polymère final. A titre indicatif, la teneur varie de 0 à 100 g pour 100 g de polymère.
Ainsi que cela a été indiqué auparavant, l'utilisation de la composition selon l'invention ne nécessite pas l'emploi de stabilisants de type métalliques, ou dans des teneurs plus faibles que celles mises en œuvre habituellement.
Ainsi, à titre d'exemple de stabilisants métalliques, on peut citer les composés comprenant un métal alcalino-terreux ou un métal choisi dans les colonnes IIB, MA, IVB de la classification périodique des éléments (parue dans le supplément au Bulletin de la Société Chimique de France, no. 1, janvier 1966). Les métaux sont plus particulièrement choisis parmi le calcium, le baryum, le magnésium, le strontium, le zinc, le cadmium, l'étain ou encore le plomb.
Il est à noter que des associations sont envisageables comme par exemple les mélanges à base de calcium et de zinc, de baryum et de zinc, de baryum et de cadmium, la première association étant préférée. En ce qui concerne les composés de type organique comprenant au moins l'un des éléments des colonnes IIB et MA, on peut citer tout particulièrement les sels d'acides organiques, tels que les acides carboxyliques aliphatiques, aromatiques ou les acides gras, ou encore les phénolates ou les alcoolates aromatiques.
Les plus couramment utilisés sont par exemple les sels des éléments IIA ou IIB des acides maléique, acétique, diacétique, propionique, hexanoïque, éthyl-2 hexanoïque, décanoïque, undécanoïque, laurique, myristique, palmitique, stéarique, oléïque, ricinoléïque, béhénique (docosanoïque), hydroxystéarique, hydroxy- undécanoïque, benzoïque, phénylacétique, paratertiobutylbenzoïque et salicylique, les phénolates, les alcoolates dérivés du naphtol ou des phénols substitués par un ou plusieurs radicaux alkyle, tels que les nonylphénols.
En ce qui concerne les composés de type organique comprenant du plomb, on peut citer notamment le carbonate dibasique de plomb, le sulfate tribasique de plomb, le sulfate tétrabasique de plomb, le phosphite dibasique de plomb, Porthosilicate de plomb, le silicate basique de plomb, le coprécipitat de silicate et de sulfate de plomb, le chlorosilicate basique de plomb, le coprécipitat de gel de silice et d'orthosilicate de plomb, le phatalate dibasique de plomb, le stéarate neutre de plomb, le stéarate dibasique de plomb, le fumarate tétrabasique de plomb, le maléate dibasique de plomb, l'éthyl-2 hexanoate de plomb, le laurate de plomb (voir notamment ENCYCLOPEDIA of PVC de Léonard I. NASS (1976) page 299-303).
Pour ce qui a trait aux composés à base d'étain, on peut notamment citer les carboxylates de mono- ou di-alkylétain et les mercaptides de mono- ou di-alkylétain ; mais aussi plus couramment, les dérivés de di-n-méthylétain, de di-n-butylétain ou de di-n-octylétain tels que par exemple le dilaurate de dibutylètain.le maléate de dibutylétain, le laurate-maléate de dibutylétain, le bis(maléate de mono-C^Cs-alkyle) de dibutylétain, le bis(lauryl-mercaptide) de dibutylétain, le S-S' (mercatoacétate d'isooctyle) dibutylétain, le β-mercapto propionate de dibutylétain, le maléate de di-n- octylétain polymère, le bis-S-S'(mercaptoacétate d'isooctyle)di-n-octylétain, le β- mercapto-propionate de di-n-octylétain. Les dérivés monoalkylés des composés cités ci- dessus sont aussi convenables (voir aussi l'ouvrage "PLASTICS AUDITIVES HANDBOOK" de GACHTER/MULLER (1985) pages 204-210 ou dans ENCYCLOPEDIA OF PVC de Léonard I. NASS (1976) pages 313-325).
Ainsi la teneur en stabilisant métallique peut varier entre 0 et 100 ppm, exprimé par rapport au métal, pour 100 g de polymère halogène. Plus particulièrement, cette teneur peut être comprise entre 0 et 50 ppm pour 100 g de polymère halogène.
La préparation de la formulation à base de polymère halogène peut être faite par tout moyen connu de l'homme du métier.
On peut ainsi incorporer la composition stabilisante, les additifs classiques dans le domaine, au polymère individuellement ou bien après avoir préparé préalablement un mélange de plusieurs de ces constituants.
Les méthodes classiques d'incorporation conviennent parfaitement à l'obtention de la formulation à base de PVC.
Ainsi, et seulement à titre indicatif, on peut effectuer cette opération dans un mélangeur muni d'un système de pâles et de contre-pales fonctionnant à une vitesse élevée.
Généralement, l'opération de mélange est conduite à une température inférieure à 130°C.
Une fois le mélange réalisé, on effectue une mise en forme de la composition selon les méthodes habituelles dans le domaine comme l'injection, l'extrusion-soufflage, l'extrusion, le calandrage ou encore le moulage par rotation.
La température à laquelle est réalisée la mise en forme varie en général de 150 à 220°C.

Claims

REVENDICATIONS
1. Composition stabilisante pour polymère halogène comprenant au moins un composé de formules (I) et/ou (II) suivantes :
(R2)n (R3)m (R2)n
\ / \
X Y X N
\ / \ \ // \ c = - CH - CH (CH2)q c = = CH - - C (CH2)q
/ \ / / \ /
Ri z Ri Z
I
(R4)P (I) ((RR44))pP (II)
Formules dans lesquelles:
X, Y, Z, identiques ou non, représentent un atome d'oxygène, un atome d'azote, un atome de soufre, ou un atome de phosphore ; Ri représente un radical comprenant 1 à 20 atomes de carbone de type alkyle ; alcényle porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; cyclique porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; aromatique éventuellement substitué ;
R2 représente un atome d'hydrogène ; un radical comprenant 1 à 20 atomes de carbone, de type alkyle ; alcényle porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou. non ; cyclique porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; aromatique, substitué ou non, éventuellement condensé avec un cycle aromatique ou non ; un radical -COR avec R représentant un radical alkyle comprenant 1 à 20 atomes de carbone ; Ri et R2 sont éventuellement reliés entre eux de manière à former un cycle éventuellement porteur d'une ou plusieurs insaturations éthyléniques, conjuguées ou non ;
R3 et R4, identiques ou non, représentent un atome d'hydrogène ; un radical comprenant 1 à 20 atomes de carbone de type alkyle ; alcényle, porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; cyclique éventuellement porteur d'une ou plusieurs insaturations éthyléniques conjuguées ou non ; aromatique éventuellement substitué ; lesdits radicaux Ri, R2, R3 et R4, étant éventuellement interrompus par un ou plusieurs groupements -O-, -S-, -CO-, -NR-, -NRCO-, et/ou éventuellement porteurs d'au moins un groupement -OH, -OR, -R'OH, avec R et R' représentant un atome d'hydrogène ou un radical alkyle comprenant 1 à 20 atomes de carbone ; l'un au moins des radicaux R2 ou R3 étant un atome d'hydrogène ; n vaut 1 à 3 selon la valence de X ; m vaut 0 à 2 selon la valence de Y ; p vaut 0 à 2 selon la valence de Z ; q est un nombre entier compris entre 1 et 10, de préférence entre 1 et 4.
2. Composition selon la revendication précédente, caractérisée en ce que le radical Ri est un radical alkyle comprenant 1 à 20 atomes de carbone, de préférence 1 à 10 atomes de carbone, éventuellement porteur d'au moins un groupement -OH, -OR, -R'OH, avec R représentant un radical alkyle monovalent comprenant 1 à 20 atomes de carbone et R' représentant un radical alkyle divalent comprenant 1 à 20 atomes de carbone.
3. Composition selon l'une des revendications précédentes, caractérisée en ce que, q vaut 2 ou 3.
4. Composition selon l'une des revendications précédentes, caractérisée en ce que, dans la formule (I), X représente l'azote ou le soufre.
5 . Composition selon la revendication précédente, caractérisée en ce que Y et Z, identiques ou non représentent l'azote ou le soufre.
6. Composition selon l'une quelconque des revendications 4 ou 5, caractérisée en ce que :
*selon la valence de Y, m vaut 0 ou R3 représente l'hydrogène, et *R2 représente un radical cyclique aromatique comprenant 4 à 6 atomes de carbone, incluant ou non l'atome Y, ledit radical cyclique aromatique étant éventuellement condensé avec un radical aromatique comprenant 6 atomes de carbone ; un radical -COR formule dans laquelle R représente un radical alkyle comprenant 1 à 20 atomes de carbone, de préférence 1 à 10 atomes de carbone, ou un radial alkyle comprenant 1 à 20 atomes de carbone, de préférence 1 à 10 atomes de carbone , éventuellement interrompu par un groupement -O- ou -S-.
7. Composition selon l'une quelconque des revendications 1 à 4, caractérisée en ce que X représente le soufre et Y et Z représentent l'oxygène.
8. Composition selon l'une quelconque des revendications 1 à 3, caractérisée en ce que dans la formule (II) X représente l'azote et Z représente l'oxygène ou le soufre.
9. Utilisation de la composition selon l'une des revendications précédentes pour la stabilisation de polymère(s) halogéné(s), dans laquelle la teneur totale en composés (I) et/ou (II) est plus particulièrement comprise entre 0,005 et 5 % en poids par rapport au poids de polymère(s) halogéné(s), de préférence comprise entre 0, 5 et 5 % en poids par rapport au poids de polymère(s) halogéné(s).
PCT/FR2001/002242 2000-07-17 2001-07-11 Composition stabilisante pour polymeres halogenes comprenant un compose insature heterocyclique WO2002006387A2 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CA002416296A CA2416296A1 (fr) 2000-07-17 2001-07-11 Composition stabilisante pour polymeres halogenes comprenant un compose insature heterocyclique
US10/333,080 US20040019137A1 (en) 2000-07-17 2001-07-11 Stabilising composition for halogenated polymers comprising a unsaturated heterocyclic compound
MXPA03000464A MXPA03000464A (es) 2000-07-17 2001-07-11 Composicion estabilizadora para polimeros halogenados, que comprende un compuesto heterociclico insaturado.
EP01954079A EP1301562A2 (fr) 2000-07-17 2001-07-11 Composition stabilisante pour polymeres halogenes comprenant un compose insature heterocyclique
JP2002512286A JP2004504434A (ja) 2000-07-17 2001-07-11 不飽和ヘテロ環状化合物を含有するハロゲン系重合体安定化組成物
AU2001276433A AU2001276433A1 (en) 2000-07-17 2001-07-11 Stabilising composition for halogenated polymers comprising a unsaturated heterocyclic compound
KR10-2003-7000769A KR20030028548A (ko) 2000-07-17 2001-07-11 불포화 복소환 화합물을 함유하는 할로겐화 중합체용안정화 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR00/09311 2000-07-17
FR0009311A FR2811673B1 (fr) 2000-07-17 2000-07-17 Utilisation de composes insatures comprenant un heterocycle comme stabilisants de polymeres halogenes

Publications (2)

Publication Number Publication Date
WO2002006387A2 true WO2002006387A2 (fr) 2002-01-24
WO2002006387A3 WO2002006387A3 (fr) 2002-03-21

Family

ID=8852561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/002242 WO2002006387A2 (fr) 2000-07-17 2001-07-11 Composition stabilisante pour polymeres halogenes comprenant un compose insature heterocyclique

Country Status (10)

Country Link
US (1) US20040019137A1 (fr)
EP (1) EP1301562A2 (fr)
JP (1) JP2004504434A (fr)
KR (1) KR20030028548A (fr)
CN (1) CN1446245A (fr)
AU (1) AU2001276433A1 (fr)
CA (1) CA2416296A1 (fr)
FR (1) FR2811673B1 (fr)
MX (1) MXPA03000464A (fr)
WO (1) WO2002006387A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129411B2 (en) 2005-12-30 2012-03-06 Novartis Ag Organic compounds
US8383650B2 (en) 2007-06-25 2013-02-26 Novartis Ag Organic compounds

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0505969D0 (en) * 2005-03-23 2005-04-27 Novartis Ag Organic compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380975A (en) * 1966-07-07 1968-04-30 Commercial Solvents Corp Vinyl halide resins containing oxazoline heat stabilizers
EP0503338A1 (fr) * 1991-03-08 1992-09-16 BASF Aktiengesellschaft Hétérocycles aminovinyl-substitués comme stabiliseurs pour des matières organiques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5962683A (en) * 1996-06-28 1999-10-05 Ciba Specialty Chemicals Corp. Oxazoline compounds as stabilizers

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3380975A (en) * 1966-07-07 1968-04-30 Commercial Solvents Corp Vinyl halide resins containing oxazoline heat stabilizers
EP0503338A1 (fr) * 1991-03-08 1992-09-16 BASF Aktiengesellschaft Hétérocycles aminovinyl-substitués comme stabiliseurs pour des matières organiques

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8129411B2 (en) 2005-12-30 2012-03-06 Novartis Ag Organic compounds
US8383650B2 (en) 2007-06-25 2013-02-26 Novartis Ag Organic compounds
US8497286B2 (en) 2007-06-25 2013-07-30 Novartis Ag Organic compounds

Also Published As

Publication number Publication date
AU2001276433A1 (en) 2002-01-30
FR2811673A1 (fr) 2002-01-18
JP2004504434A (ja) 2004-02-12
EP1301562A2 (fr) 2003-04-16
CA2416296A1 (fr) 2002-01-24
US20040019137A1 (en) 2004-01-29
MXPA03000464A (es) 2003-06-06
CN1446245A (zh) 2003-10-01
FR2811673B1 (fr) 2002-09-13
KR20030028548A (ko) 2003-04-08
WO2002006387A3 (fr) 2002-03-21

Similar Documents

Publication Publication Date Title
EP0508857B1 (fr) Compositions de polymère halogéné stabilisées à l&#39;aide d&#39;un additif minéral
CA2040790A1 (fr) Compositions stabilisees d&#39;un polymere halogene
EP0108023B1 (fr) Procédé de stabilisation de polymères à base de chlorure de vinyle
FR2764286A1 (fr) Acetylacetonate de calcium enrobe et son utilisation comme stabilisant de polymeres halogenes
WO2002006387A2 (fr) Composition stabilisante pour polymeres halogenes comprenant un compose insature heterocyclique
WO1999046322A1 (fr) Utilisation d&#39;acetylacetonate de zinc monohydrate comme stabilisant de polymeres halogenes et son procede de preparation
EP1833900B1 (fr) Ingredient de stabilisation de polymeres halogenes comprenant un compose beta-dicarbonyle
EP0100741B1 (fr) Procédé de stabilisation de polymères à base de chlorure de vinyle
EP0986604A1 (fr) Composition a base d&#39;acetylacetonate de calcium ou de magnesium et de beta-dicetones libres ou chelatees, sa preparation et son utilisation
EP0895524A1 (fr) Stabilisation de polymeres halogenes vis-a-vis de la lumiere et compositions stabilisantes
WO2002002685A2 (fr) Stabilisation de polymeres halogenes au moyen de pyrroles ou derives et compositions les comprenant
FR2782087A1 (fr) Utilisation d&#39;acetylacetonate de zinc monohydrate comme stabilisant de polymeres halogenes et son procede de preparation
WO2002036674A1 (fr) Utilisation de composes beta-dicarbonyles silyles comme stabilisants de polymeres halogenes.
WO2004016682A2 (fr) Composition associant un compose mineral ou de l’acetylacetonate de zinc et un melange comprenant au moins un compose b-dicarbonyle, utilisation comme stabilisant de polymeres halogenes
EP1383830A1 (fr) UTILISATION DE $g(b)-DICETONE DIAROMATIQUE SUBSTITUEE COMME STABILISANT DE POLYMERES HALOGENES ET POLYMERE OBTENU

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001954079

Country of ref document: EP

Ref document number: 2416296

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/000464

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020037000769

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2001276433

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 018140335

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037000769

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001954079

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10333080

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2001954079

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020037000769

Country of ref document: KR