WO2002036674A1 - Utilisation de composes beta-dicarbonyles silyles comme stabilisants de polymeres halogenes. - Google Patents

Utilisation de composes beta-dicarbonyles silyles comme stabilisants de polymeres halogenes. Download PDF

Info

Publication number
WO2002036674A1
WO2002036674A1 PCT/FR2001/003369 FR0103369W WO0236674A1 WO 2002036674 A1 WO2002036674 A1 WO 2002036674A1 FR 0103369 W FR0103369 W FR 0103369W WO 0236674 A1 WO0236674 A1 WO 0236674A1
Authority
WO
WIPO (PCT)
Prior art keywords
radical
carbon atoms
use according
weight
aliphatic
Prior art date
Application number
PCT/FR2001/003369
Other languages
English (en)
Inventor
Christian Prud'homme
Michel Gay
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to JP2002539425A priority Critical patent/JP2004513199A/ja
Priority to CA002427728A priority patent/CA2427728A1/fr
Priority to AU2002215089A priority patent/AU2002215089A1/en
Priority to EP01983655A priority patent/EP1330487A1/fr
Priority to MXPA03003890A priority patent/MXPA03003890A/es
Priority to KR10-2003-7006104A priority patent/KR20030051774A/ko
Priority to US10/415,575 priority patent/US20060122296A1/en
Publication of WO2002036674A1 publication Critical patent/WO2002036674A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/541Silicon-containing compounds containing oxygen
    • C08K5/5425Silicon-containing compounds containing oxygen containing at least one C=C bond

Definitions

  • the present invention relates to the use of silylated ⁇ -dicarbonylated compounds as stabilizers for halogenated polymers.
  • the subject of the invention is silylated compounds derived from ⁇ -dicarbonylated compounds whose boiling point is lower or equal, or even slightly higher than the forming temperature of halogenated polymers.
  • ⁇ -dicarbonylated compounds such as ⁇ -diketones or ⁇ -ketoesters
  • stabilizers for halogenated polymers such as polyvinyl chloride.
  • Acetylacetone is an example of this type of compound. Indeed, its boiling temperature is around 140 ° C. This ⁇ -diketone is very effective but it has the disadvantage of being volatile. However, in most cases, the forming temperatures of the halogenated polymers are sufficiently high for the acetylacetone to vaporize and escape from the polymeric composition.
  • the object of the present invention is therefore to remedy these problems by proposing a compound derived from a ⁇ -diketone or from a ⁇ -ketoester which remains as effective as the ⁇ -diketone or the initial ⁇ -ketoester and which does not risk to be removed from the polymer composition during the shaping of the latter.
  • R 1 identical or not, represent an aliphatic or aromatic radical; said radicals being chosen such that the silylated compound has a boiling point at least 30 ° C higher than the shaping temperature of said polymer;
  • R 3 represents an aliphatic radical R or a radical -OR ';
  • R 2 , R and R ′ which may or may not be identical, represent an aliphatic radical, linear or not, comprising 1 to 10 carbon atoms, or an aromatic radical, preferably comprising 6 carbon atoms, optionally substituted by at least one aliphatic radical comprising 1 to 10 carbon atoms; x is 1 or 2.
  • boiling temperatures are those measured at ambient temperature (20 ° C.) and at atmospheric pressure (10 5 Pa).
  • the stabilizing composition comprises at least one compound of formula (R 1 ) 4 .
  • the radical R 3 may represent an aliphatic radical R, in this case, the compound is a ⁇ -diketone.
  • the radical R 3 may represent a radical -OR '; in this case, the compound is a ⁇ -ketoester.
  • R 2 , R and R ′ which may or may not be identical, each represent an aliphatic radical, linear or not, comprising 1 to 10 carbon atoms, or an aromatic radical, preferably comprising 6 carbon atoms, optionally substituted by at least one radical aliphatic comprising 1 to 10 carbon atoms.
  • alkyl radicals such as methyl, ethyl, propyl and its isomers, butyl and its isomers, pentyl and isomers, hexyl and isomers.
  • aromatic radical there may be mentioned in particular benzyl, phenyl, toluyl, xylyl.
  • radicals are more particularly chosen so that the ⁇ -diketone (or the ⁇ -ketoester) from which the silylated compound is derived, has a boiling point such that the difference between the setting temperature does not form of said halogenated polymer and that of boiling of said ⁇ -diketone (or of said ⁇ -keto ester) is less than 30 ° C. It is specified that the difference between these two temperatures can be positive or negative.
  • the radical R or the radical R ' represents an aliphatic radical, preferably an alkyl radical comprising 1 to 10 carbon atoms.
  • the radical R 3 represents an aliphatic radical R as defined above.
  • radicals R 1 which may or may not be identical, they are first of all chosen so that the silylated compound has a boiling point at least higher minus 30 ° C relative to the forming temperature of said polymer.
  • the boiling point at least 60 ° C higher and even more advantageously at least 80 ° C.
  • these radicals represent an alkyl radical comprising 1 to 10 carbon atoms, or an aromatic radical comprising 6 carbon atoms, optionally substituted by at least one alkyl radical comprising 1 to 10 carbon atoms.
  • radicals R 1 which may or may not be identical, are chosen from the methyl, ethyl, propyl and isomers, butyl and isomers, pentyl and isomers, hexyl and isomers, benzyl, phenyl, toluyl, xylyl radicals.
  • the stabilizing composition can comprise one or more silylated compounds. More particularly, the silylated compound entering into the stabilizing composition is present at a content of between 0.05 and 2 parts by weight per 100 parts by weight of halogenated polymer. Preferably, the content of silylated compound is between 0.05 and 1 part by weight relative to the same reference.
  • the silylated compounds can be obtained by any means known to those skilled in the art.
  • the ⁇ -dicarbonyl compound with the halosilane, optionally in the presence of an amino base (such as pyridine, imidazole), preferably in stoichiometric amount, because its role is to capture the hydrochloric acid formed.
  • an amino base such as pyridine, imidazole
  • This reaction generally takes place in the presence of a solvent chosen from ethers, aliphatic hydrocarbons (pentane for example), or aromatic (toluene for example).
  • halosilane and the ⁇ -dicarbonylated compound are used, advantageously, in stoichiometric amount, or even in the presence of a slight excess of halososilane.
  • reaction temperature can be easily determined by a person skilled in the art. For purely illustrative purposes, the temperature varies between 20 and 100 ° C.
  • the stabilizing composition used for the stabilization of halogenated polymers may also comprise at least one organometallic stabilizer comprising a metal chosen from columns HA, IIB and IIIB of the periodic table of elements (published in the bulletin of the chemical company of France - January 1966).
  • organometallic stabilizer comprising a metal chosen from columns HA, IIB and IIIB of the periodic table of elements (published in the bulletin of the chemical company of France - January 1966).
  • calcium, barium, zinc, cadmium, lead, retain are suitable, as well as their associations.
  • the stabilizer comprises at least calcium, zinc or their mixtures.
  • the organometallic stabilizers are chosen more particularly from the metal salts of aliphatic carboxylic acids, saturated or not, aromatic or not, optionally carrying one or more hydroxyl groups, or also chosen from aromatic alcoholates or not.
  • organometallic stabilizers include the salts of maleic, acetic, diacetic, propionic, hexanoic, 2-ethyl hexanoic, decanoic, undecanoic, lauric, myristic, palmitic, stearic, oleic, ricinoleic, behenic (docosanoic) acids.
  • hydroxystearic hydroxy-undecanoic
  • benzoic phenylacetic, paratertiobutylbenzoic and salicylic
  • phenolates alcoholates derived from naphthol or phenols substituted by one or more alkyl radicals, such as nonylphenols.
  • the stabilizing composition advantageously has an organometallic stabilizer content of between 10 and 200 ppm, expressed as metal, relative to the weight of halogenated polymer.
  • the content of organometallic stabilizer is between 30 and 150 ppm expressed as metal, relative to the weight of halogenated polymer. It should be noted that these ranges represent more particularly the total content of this metal present in the stabilizing composition.
  • the composition advantageously has an organometallic stabilizer content of between 30 and 600 ppm, expressed as metal, relative to the weight of halogenated polymer. Again, it should be noted that these values represent more particularly the total content of this metal present in the stabilizing composition.
  • the stabilizing composition can comprise other additives conventional in the field, or else be used with additives conventional in the field.
  • these products can be used in a purified form or not.
  • the following commercial products can be advantageously used:
  • the content of free or chelated ⁇ -diketone is usually between 0.05 and 1 part by weight per 100 parts by weight of halogenated polymer. Note that if a ⁇ -diketone chelated with calcium or zinc is present, the content of this chelated compound is such that the total content of zinc or calcium is included in the ranges indicated above.
  • Polyols comprising 2 to 32 carbon atoms and having two to nine hydroxyl groups can also be used as additives in this field.
  • diols C3-C 30 such as propylene glycol, butanediol, hexanediol, dodecanediol, neopentyl glycol, polyols such as trimethylolpropane, pentaerythritol, dipentaerythritol, tripentaerythritol, xylitol, mannitol, sorbitol, glycerin, mixtures of glycerol oligomers having a degree of polymerization from 2 to 10.
  • Another family of polyols which can be suitably used, is constituted by partially acetylated polyvinyl alcohols.
  • hydroxyl compounds comprising isocyanurate groups, alone or in combination with the abovementioned polyols, such as for example tris (2-hydroxyethyl) isocyanurate.
  • the amount of polyol used is generally between 0.05 and 5 parts by weight per 100 parts by weight of polymer. More particularly, it is less than 2 parts by weight per 100 parts by weight of halogenated polymer.
  • compounds of the organic phosphite type such as, for example, trialkyl, aryl, triaryl, dialkylaryl or diarylalkyl phosphites, for which the term alkyl denotes hydrocarbon groups of monoalcohols or of C 8 -C 2 polyols, and the term aryl denotes aromatic groups of phenol or of phenol substituted by alkyl groups of C ⁇ -Ci 2.
  • mineral phosphites such as calcium phosphites.
  • compounds of the Ca (HP ⁇ 3) (H 2 ⁇ ) type as well as phosphite - hydroxy - aluminum - calcium complexes can be used.
  • the content of additive of this type is usually between 0.1 and 2 parts by weight per 100 parts by weight of halogenated polymer.
  • the stabilizing composition can comprise, or be used with compounds of the epoxide type. These compounds are generally chosen from epoxy polyglycerides, or esters of epoxy fatty acids, such as epoxidized linseed, soybean or fish oils.
  • the amount of compounds of this type usually varies between 0.5 and 10 parts by weight per 100 parts by weight of halogenated polymer.
  • sulfates, and / or carbonates, of aluminum and / or magnesium in particular of the hydrotalcite type.
  • These are more particularly compounds of formula Mg 1 . x Al x (OH) 2 A n - ⁇ / n .mH 2 O, in which x is between 0 excluded and 0.5, A n_ represents an anion such as carbonate in particular, n varies from 1 to 3 and m is positive.
  • products of this type can be used, having undergone a surface treatment with an organic compound. It would not even depart from the scope of the present invention to use a product of the hydrotalcite type doped with zinc, having possibly undergone a surface treatment with an organic compound.
  • PAIcamizer® 4 marketed by the company Kyowa.
  • NaA type zeolites are particularly suitable, as described in US Pat. No. 4,590,233.
  • the content of this type of compound generally varies between 0.1 and 5 parts by weight per 100 parts by weight of halogenated polymer.
  • compositions can also comprise (or be used with) titanium dioxide, preferably in rutile form, possibly having undergone a surface treatment, preferably mineral.
  • the particle size of titanium dioxide is between 0.1 and 0.5 ⁇ m.
  • titanium dioxides Rhoditan® RL18, Rhoditan® RL90, sold by Rhodia Chimie the titanium dioxides KRONOS 2081® and 2220® sold by Kronos.
  • the formulations based on halogenated polymers can likewise comprise other white or colored pigments.
  • the colored pigments there may be mentioned in particular cerium sulfide.
  • the quantity of pigment introduced into the formulation varies within wide limits and depends in particular on the coloring power of the pigment and on the desired final coloration.
  • the amount of pigment can vary from 0.1 to 20 parts by weight per 100 parts by weight of halogenated polymer, preferably from 0.5 to 15 parts by weight relative to the same reference.
  • the formulation may include phenolic antioxidants, UV stabilizers such as 2-hydroxybenzophenones, 2-hydroxybenzotriazoles or sterically hindered amines, commonly known as Hais.
  • the content of this type of additive generally varies between 0.05 and 3 parts by weight per 100 parts by weight of halogenated polymer.
  • lubricants can also be used which will facilitate implementation, chosen in particular from glycerol monostearates or even propylene glycol, fatty acids or their esters, montanate waxes, poylethylene waxes or their oxidized derivatives, paraffins, metallic soaps, functionalized polymethylsiloxane oils such as, for example, ⁇ -hydroxypropylenated oils.
  • the amount of lubricant entering the halogenated polymer formulation generally varies between 0.05 and 2 parts by weight per 100 parts by weight of halogenated polymer. It is also possible to use plasticizers chosen from alkyl phthalates. The most generally used compounds are chosen from di (ethyl-2-hexyl) phthalate, esters of linear C 6 -C 12 diacids, trimellitates or also phosphate esters.
  • the amount of plasticizer used in the formulations varies over a wide range, depending on the desired rigid or flexible character. As an indication, the content varies from 0 to 100 parts by weight per 100 parts by weight of halogenated polymer.
  • halogenated polymers which can be stabilized by the composition comprising at least one silylated compound
  • the latter are more especially chlorinated polymers.
  • the invention is particularly well suited for the stabilization of formulations based on polyvinyl chloride (PVC).
  • PVC polyvinyl chloride
  • polyvinyl chloride is meant compositions in which the polymer is a homopolymer of vinyl chloride.
  • the homopolymer can be chemically modified, for example by chlorination.
  • copolymers of vinyl chloride can also be stabilized using the composition according to the invention.
  • These are in particular polymers obtained by copolymerization of vinyl chloride with monomers having an ethylenically polymerizable bond, such as for example vinyl acetate, vinylidene chloride; maleic, fumaric acids or their esters; olefins such as ethylene, propylene, hexene; acrylic or methacrylic esters; styrene; vinyl ethers such as vinyldodecyl ether.
  • the copolymers contain at least 50% by weight of vinyl chloride units and preferably at least 80% by weight of such units.
  • PVC alone or in admixture with other polymers is the most widely used chlorinated polymer in stabilized formulations according to the invention.
  • any type of polyvinyl chloride is suitable, whatever its method of preparation.
  • the polymers obtained for example by using bulk, suspension, emulsion processes can be stabilized using the composition according to the invention, and this regardless of the intrinsic viscosity of the polymer.
  • the shaping of the halogenated polymer comprising the stabilizing composition can be done by any means known to those skilled in the art.
  • this operation can be carried out in a mixer fitted with a blade and counter-blade system operating at a high speed.
  • the mixing operation is carried out at a temperature below 130 ° C.
  • the composition is formed according to the usual methods in the field such as injection, extrusion blow molding, extrusion, calendering or even rotational molding.
  • the temperature at which the shaping is carried out generally varies from 150 to 220 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

La présente invention a pour objet l'utilisation dans une composition stabilisante pour polymères halogénés, d'au moins un composé silylé de formule suivante :(R1)4-x-Si [O-C (R2)=CH2-C(=O)(R3)]x Formule dans laquelle R1, identiques ou non, représentent un radical aliphatique ou aromatique ; lesdits radicaux étant choisis de telle sorte que le composé silylé présente une température d'ébullition supérieure d'au moins 30°C par rapport à la température de mise en forme dudit polymère ;R3 représente un radical aliphatique R ou un radical -OR' ; R2, R et R', identiques ou non, représentent un radical aliphatique, linéaire ou non, comprenant 1 à 10 atomes de carbone, ou un radical aromatique, de préférence comprenant 6 atomes de carbone, éventuellement substitué par au moins un radical aliphatique comprenant 1 à 10 atomes de carbone ; x vaut 1 ou 2.

Description

UTILISATION DE COMPOSES β-DICARBONYLES SILYLES COMME STABILISANTS DE POLYMERES HALOGENES
La présente invention a pour objet l'utilisation de composés β-dicarbonylés silylés comme stabilisants de polymères halogènes.
Plus particulièrement, l'invention a pour objet des composés silylés dérivant de composés β-dicarbonylés dont la température d'ebullition est inférieure ou égale, voire légèrement supérieure à la température de mise en forme des polymères halogènes.
Les composés β-dicarbonylés, comme les β-dicétones ou les β-cétoesters, sont des stabilisants bien connus des polymères halogènes, tels que le polychlorure de vinyle.
L'acétylacétone est un exemple de ce type de composés. En effet, sa température d'ebullition est de l'ordre de 140°C. Cette β-dicétone est très efficace mais elle présente l'inconvénient d'être volatile. Or, dans la plupart des cas, les températures de mise en forme des polymères halogènes sont suffisamment élevées pour que l'acétylacétone se vaporise et s'échappe de la composition polymérique.
Dans le cas de composés β-dicarbonylés dont la température d'ebullition est voisine de la température de mise en forme des polymères halogènes, on rencontre là encore des difficultés. En effet, dans de tels cas, la tension de vapeur en composé est très élevée, ce qui est favorable à une perte dudit composé β-dicarbonylé.
La présente invention a donc pour objet de remédier à ces problèmes en proposant un composé dérivant d'une β-dicétone ou d'un β-cétoester qui reste aussi efficace que la β-dicétone ou le β-cétoester initial et qui ne risque pas d'être éliminé de la composition polymérique lors de la mise en forme de cette dernière.
Ces buts et d'autres sont atteints par la présente invention qui a donc pour objet l'utilisation, dans une composition stabilisante pour polymère halogène, d'au moins un composé silylé de formule suivante : (R1)4-x"Si [O-C (R2)=CH-C(=O)(R3)]x
Formule dans laquelle
R1, identiques ou non, représentent un radical aliphatique ou aromatique ; lesdits radicaux étant choisis de telle sorte que le composé silylé présente une température d'ebullition supérieure d'au moins 30°C par rapport à la température de mise en forme dudit polymère ;
R3 représente un radical aliphatique R ou un radical -OR' ;
R2, R et R', identiques ou non, représentent un radical aliphatique, linéaire ou non, comprenant 1 à 10 atomes de carbone, ou un radical aromatique, de préférence comprenant 6 atomes de carbone, éventuellement substitué par au moins un radical aliphatique comprenant 1 à 10 atomes de carbone ; x vaut 1 ou 2.
On a constaté, toutes choses étant égales par ailleurs, et notamment la quantité molaire en composé β-dicarbonylé, que la stabilité de coloration d'un polymère halogène comprenant un tel composé silylé est améliorée par rapport à la stabilité de coloration d'un polymère comprenant le même composé β-dicarbonylé non silylé.
Mais d'autres caractéristiques et avantages apparaîtront plus clairement à la lecture de la description qui va suivre. II est à noter que dans ce qui va suivre, les températures d'ebullition sont celles mesurées à température ambiante (20°C) et à pression atmosphérique (105 Pa).
Comme cela a été mentionné auparavant, la composition stabilisante comprend au moins un composé de formule (R1)4.x-Si [O-C (R2)=CH-C(=0)(R3)]x.
Dans la formule ci-dessus, ainsi que cela a été indiqué plus haut, le radical R3 peut représenter un radical aliphatique R, dans ce cas, le composé est une β- dicétone. Alternativement, le radical R3 peut représenter un radical -OR' ; dans ce cas, le composé est un β-cétoester.
R2, R et R', identiques ou non, représentent chacun un radical aliphatique, linéaire ou non, comprenant 1 à 10 atomes de carbone, ou un radical aromatique, de préférence comprenant 6 atomes de carbone, éventuellement substitué par au moins un radical aliphatique comprenant 1 à 10 atomes de carbone.
A titre d'exemple de radical aliphatique, linéaire ou non, on peut citer les radicaux alkyles comme le méthyle, Péthyle, le propyle et ses isomères, le butyle et ses isomères, pentyle et isomères, hexyle et isomères. En tant que radical aromatique, on peut citer notamment le benzyle, le phényle, le toluyle, le xylyle.
Il est à noter que lesdits radicaux sont plus particulièrement choisis de manière à ce que la β-dicétone (ou le β-cétoester) dont dérive le composé silylé, présente une température d'ebullition telle que la différence entre la température de mise ne forme dudit polymère halogène et celle d'ebullition de ladite β-dicétone (ou dudit β- cétoester) est inférieure à 30°C. Il est précisé que la différence entre ces deux températures peut être positive ou négative.
De manière avantageuse, le radical R ou le radical R' représente un radical aliphatique, de préférence un radical alkyle comprenant 1 à 10 atomes de carbone. Selon un mode de réalisation préféré de l'invention, le radical R3 représente un radical aliphatique R tel que défini ci-dessus.
Quant aux radicaux R1 , identiques ou non, ils sont tout d'abord choisis de telle sorte que le composé silylé présente une température d'ebullition supérieure d'au moins 30°C par rapport à la température de mise en forme dudit polymère. De préférence, la température d'ebullition supérieure d'au moins 60°C et de manière encore plus avantageuse, d'au moins 80°C.
Plus précisément, ces radicaux représentent un radical alkyle comprenant 1 à 10 atomes de carbone, ou un radical aromatique comprenant 6 atomes de carbone, éventuellement substitué par au moins un radical alkyle comprenant 1 à 10 atomes de carbone.
A titre d'exemple, les radicaux R1, identiques ou non, sont choisis parmi les radicaux méthyle, éthyle, propyle et isomères, butyle et isomères, pentyle et isomères, hexyle et isomères, benzyle, phényle, toluyle, xylyle.
Enfin, les composés silylés peuvent comprendre une molécule de composé β- dicarbonylé (x=1) ou deux molécules de composé β-dicarbonylé (x=2).
Notons que la composition stabilisante peut comprendre un ou plusieurs composés silylés. Plus particulièrement, le composé silylé entrant dans la composition stabilisante est présent à une teneur comprise entre 0,05 et 2 parties en poids pour 100 parties en poids de polymère halogène. De préférence, la teneur en composé silylé est comprise entre 0,05 et 1 partie en poids par rapport à la même référence.
Les composés silylés peuvent être obtenus par tout moyen connu de l'homme de l'art.
A titre d'exemple il est possible de faire réagir le composé β-dicarbonylé avec l'halogénosilane, éventuellement en présence d'une base aminée (comme la pyridine, l'imidazole), de préférence en quantité stœchiométrique, car son rôle est de capter l'acide chlorhydrique formé. Cette réaction a lieu généralement en présence d'un solvant choisi parmi les éthers, les hydrocarbures aliphatiques (pentane par exemple), ou aromatique (le toluène par exemple).
De plus, l'halogénosilane et le composé β-dicarbonylé sont mis en oeuvre, de manière avantageuse, en quantité stœchiométrique, voire en présence d'un léger excès d'halogénosilane.
Il est de même recommandé d'effectuer la réaction sous une atmosphère anhydre, comme les gaz rares (tel que l'argon), l'azote, entre autres.
La température de réaction peut être déterminée aisément par l'homme du métier. A titre purement illustratif, la température varie entre 20 et 100°C. Une fois la réaction terminée, le composé silylé est séparé du mélange réactionnel, par exemple, par distillation.
La composition stabilisante mise en œuvre pour la stabilisation de polymères halogènes, peut comprendre en outre au moins un stabilisant organometallique comprenant un métal choisi parmi les colonnes HA, IIB et IIIB de la classification périodique des éléments (parue au bulletin de la société chimique de France - janvier 1966). Notamment, le calcium, le baryum, le zinc, le cadmium, le plomb, rétain conviennent, ainsi que leurs associations. De préférence, le stabilisant comprend au moins du calcium, du zinc ou leurs mélanges.
Les stabilisants organométalliques sont choisis plus particulièrement parmi les sels métalliques d'acides carboxyliques aliphatiques, saturés ou non, aromatiques ou non, éventuellement porteurs d'un ou plusieurs groupements hydroxyles, ou encore choisis parmi des alcoolates aromatiques ou non. A titre d'exemples de tels composés, on peut citer les sels des acides maléique, acétique, diacétique, propionique, hexanoïque, éthyl-2 hexanoïque, décanoïque, undécanoïque, laurique, myristique, palmitique, stéarique, oléïque, ricinoléïque, béhénique (docosanoïque), hydroxystéarique, hydroxy-undécanoïque, benzoïque, phénylacétique, paratertiobutylbenzoïque et salicylique, les phénolates, les alcoolates dérivés du naphtol ou des phénols substitués par un ou plusieurs radicaux alkyle, tels que les nonylphénols.
Dans le cas de stabilisant organometallique à base de zinc, la composition stabilisante présente de manière avantageuse une teneur en stabilisant organometallique comprise entre 10 et 200 ppm, exprimée en métal, par rapport au poids de polymère halogène. De préférence, la teneur en stabilisant organometallique est comprise entre 30 et 150 ppm exprimée en métal, par rapport au poids de polymère halogène. Il est à noter que ces gammes représentent plus particulièrement la teneur totale en ce métal présent dans la composition stabilisante.
Dans le cas de stabilisant organometallique comprenant du calcium, la composition présente de manière avantageuse une teneur en stabilisant organometallique comprise entre 30 et 600 ppm, exprimé en métal, par rapport au poids de polymère halogène. Là encore, il est à noter que ces valeurs représentent plus particulièrement la teneur totale en ce métal présent dans la composition stabilisante. La composition stabilisante peut comprendre d'autres additifs classiques dans le domaine, ou bien être employée avec des additifs classiques dans le domaine.
A titre d'additifs envisageables, on peut citer les β-dicétones libres ou chélatées dont la température d'ebullition est supérieure d'au moins 30°C, plus particulièrement d'au moins 60°C, de préférence d'au moins 80°C, par rapport à la température de mise en forme dudit polymère halogène.
A titre d'exemple de tels composés, on peut mentionner tout particulièrement l'octanoylbenzoylméthane, le stéaroylbenzoylméthane, le dibenzoylméthane ou encore l'acétylbenzoylméthane. Pour les composés se présentant sous la forme de chélate, donc associée à un métal, ce dernier est habituellement le zinc, le calcium, l'aluminium, le magnésium, le lanthane ; le calcium et le zinc étant préférés.
De plus, ces produits peuvent être mis en œuvre sous une forme purifiée ou non. Les produits commerciaux suivants peuvent être avantageusement employés :
Rhodiastab 50®, Rhodiastab X5®, Rhodiastab 83®, Rhodiastab X2®, Rhodiastab X7®, Rhodiastab X9®, commercialisés par Rhodia Chimie.
La teneur en β-dicétone libre ou chélatée est habituellement comprise entre 0,05 et 1 partie en poids pour 100 parties en poids de polymère halogène. A noter que si une β-dicétone chélatée avec du calcium ou du zinc est présente, la teneur en ce composé chélaté est telle que la teneur totale en zinc ou en calcium figure dans les gammes indiquées auparavant.
Les polyols comprenant 2 à 32 atomes de carbone et présentant deux à neuf groupements hydroxyles, peuvent aussi être utilisés comme additifs dans ce domaine. Parmi ces composés on peut mentionner les diols en C3-C30 tels que le propylène glycol, le butanediol, Phexanediol, le dodécanediol, le néopentylglycol, les polyols tels que le triméthylolpropane, le pentaérythritol, le dipentaérythritol, le tripentaérythritol, le xylitol, le mannitol, le sorbitol, la glycérine, les mélanges d'oligomères de la glycérine présentant un degré de polymérisation de 2 à 10. Une autre famille de polyols pouvant être convenablement mise en oeuvre, est constituée par les alcools polyvinyliques partiellement acétylés.
On peut de même utiliser des composés hydroxyles comprenant des groupements isocyanurates, seuls ou en combinaison avec les polyols précités, tels que par exemple le tris (2-hydroxyéthyl) isocyanurate. La quantité de polyol mise en œuvre est en général comprise entre 0,05 et 5 parties en poids pour 100 parties en poids de polymère. Plus particulièrement elle est inférieure à 2 parties en poids pour 100 parties en poids de polymère halogène.
On peut éventuellement incorporer dans la formulation ou employer avec cette dernière, des composés du type des phosphites organiques, comme par exemple, les phosphites de trialkyle, d'aryle, de triaryle, de dialkylaryle, ou de diarylalkyle, pour lesquels le terme alkyle désigne des groupements hydrocarbonés de monoalcools ou de polyols en C8-C22, et le terme aryle désigne des groupements aromatiques de phénol ou de phénol substitué par des groupements alkyles en Cβ-Ci 2.
On peut de même utiliser des phosphites minéraux comme les phosphites de calcium. Par exemple des composés du type Ca(HPθ3).(H2θ) ainsi que des complexes phosphite - hydroxy - aluminium - calcium, peuvent être employés.
La teneur en additif de ce type est habituellement comprise entre 0,1 et 2 parties en poids pour 100 parties en poids de polymère halogène. La composition stabilisante peut comprendre, ou être employée avec des composés du type des époxydes. Ces composés sont généralement choisis parmi les polyglycérides époxydes, ou les esters d'acides gras époxydes, tels que les huiles époxydées de lin, de soja ou de poisson. La quantité de composés de ce type varie habituellement entre 0,5 et 10 parties en poids pour 100 parties en poids de polymère halogène.
Parmi les additifs classiques, on peut citer de même les sulfates, et/ou carbonates, d'aluminium et/ou de magnésium, du type hydrotalcite notamment. Ce sont plus particulièrement des composés de formule Mg1.xAlx(OH)2An-χ/n.mH2O, dans laquelle x est compris entre 0 exclu et 0,5, An_ représente un anion tel que le carbonate notamment, n varie de 1 à 3 et m est positif. Il est à noter que l'on peut mettre en œuvre des produits de ce type, ayant subi un traitement de surface avec un composé organique. On ne sortirait de même pas du cadre de la présente invention en mettant en œuvre un produit du type hydrotalcite dopé par du zinc, ayant éventuellement subi un traitement de surface par un composé organique. Parmi les produits de ce type, on peut citer tout particulièrement PAIcamizer® 4 (commercialisé par la société Kyowa).
On peut aussi utiliser des composés essentiellement amorphes de formule
(MgO)y, AI2O3, (CO2)x, (H2O)z, dans laquelle x, y et z vérifient les inéquations suivantes : 0 < x ≤ 0,7 ; 0 < y ≤ 1 ,7 et z ≥ 3. Ces composés sont notamment décrits dans la demande de brevet EP 509 864. Par ailleurs, les composés appelés catoïtes de formule Ca3AI2(OH)i2 ou encore Ca3Al2(SiO)4(OH)12 peuvent être utilisés.
Il est de même possible d'employer des additifs du type des aluminosilicates de métal alcalin, cristallin, synthétique, présentant une teneur en eau comprise entre 13 et
25 % en poids, de composition 0,7-1 M2θ.Al2θ3.1,3-2,4Siθ2 dans laquelle M représente un métal alcalin tel que notamment le sodium. Conviennent notamment les zéolites de type NaA, telles que décrites dans le brevet US 4590233.
La teneur en ce type de composés varie généralement entre 0,1 et 5 parties en poids pour 100 parties en poids de polymère halogène.
Les compositions peuvent aussi comprendre (ou être utilisées avec) du dioxyde de titane, de préférence sous forme rutile, ayant éventuellement subi un traitement de surface, de préférence minéral.
Généralement, la granulométrie du dioxyde de titane est comprise entre 0,1 et 0,5 μm.
Parmi les dioxydes de titane convenables, on peut citer entre autres les dioxydes de titane Rhoditan® RL18, Rhoditan® RL90, commercialisés par Rhodia Chimie, les dioxydes de titane KRONOS 2081® et 2220® commercialisés par Kronos. Les formulations à base de polymères halogènes peuvent comprendre de même d'autres pigments blancs ou colorés. Parmi les pigments colorés, on peut citer notamment le sulfure de cérium.
Il est à noter que la quantité de pigment introduite dans la formulation varie dans de larges limites et dépend notamment du pouvoir colorant du pigment et de la coloration finale souhaitée. Cependant, à titre d'exemple, la quantité de pigment peut varier de 0,1 à 20 parties en poids pour 100 parties en poids de polymère halogène, de préférence de 0,5 à 15 parties en poids par rapport à la même référence.
D'autres additifs classiques peuvent compléter la formulation, selon l'application à laquelle elle est destinée.
En règle générale, la formulation peut comprendre des antioxydants phénoliques, des agents anti-UV tels que les 2-hydroxybenzophénones, les 2-hydroxybenzotriazoles ou les aminés stériquement encombrées, connues habituellement sous le terme Hais.
La teneur en ce type d'additif varie généralement entre 0,05 et 3 parties en poids pour 100 parties en poids de polymère halogène
Si nécessaire, on peut aussi utiliser des lubrifiants qui vont faciliter la mise en oeuvre, choisis notamment parmi les monostéarates de glycérol ou encore le propylène glycol, les acides gras ou leurs esters, les cires montanates, les cires de poyléthylène ou leur dérivés oxydés, les paraffines, les savons métalliques, les huiles polymethylsiloxanes fonctionnalisées comme par exemple les huiles γ- hydroxypropylénées.
La quantité de lubrifiant entrant dans la formulation à base de polymère halogène varie en général entre 0,05 et 2 parties en poids pour 100 parties en poids de polymère halogène. On peut aussi mettre en œuvre des plastifiants choisis parmi les phtalates d'alkyle. Les composés les plus généralement utilisés sont choisis parmi le phtalate de di (éthyl- 2 - hexyle), les esters de diacides linéaires en C6-C12, les triméllitates ou encore les phosphates esters.
La quantité d'agent plastifiant employée dans les formulations, varie dans un large domaine, en fonction du caractère rigide ou souple souhaité. A titre indicatif, la teneur varie de 0 à 100 parties en poids pour 100 parties en poids de polymère halogène.
En ce qui concerne les polymères halogènes pouvant être stabilisés par la composition comprenant au moins un composé silylé, ces derniers sont plus spécialement des polymères chlorés. L'invention est particulièrement bien appropriée à la stabilisation de formulations à base de polychlorure de vinyle (PVC). Par polychlorure de vinyle, on entend des compositions dont le polymère est un homopolymère de chlorure de vinyle. L'homopolymère peut être modifié chimiquement par exemple par chloration.
De nombreux copolymères du chlorure de vinyle peuvent également être stabilisés en utilisant la composition selon l'invention. Ce sont en particulier des polymères obtenus par copolymérisation du chlorure de vinyle avec des monomères présentant une liaison éthyléniquement polymérisable, comme par exemple l'acétate de vinyle, le chlorure de vinylidène ; les acides maléique, fumarique ou leurs esters ; les oléfines telles que Péthylène, le propylène, l'hexène ; les esters acryliques ou méthacryliques ; le styrène ; les éthers vinyliques tels que le vinyldodécyléther.
Habituellement les copolymères contiennent au moins 50 % en poids de motifs de chlorure de vinyle et de préférence au moins 80 % en poids de tels motifs.
Le PVC seul ou en mélange avec d'autres polymères est le polymère chloré le plus largement utilisé dans les formulations stabilisées selon l'invention. D'une manière générale, tout type de polychlorure de vinyle convient, quel que soit son mode de préparation. Ainsi les polymères obtenus par exemple en mettant en oeuvre des procédés en masse, en suspension, en emulsion peuvent être stabilisés en utilisant la composition selon l'invention, et ceci quelle que soit la viscosité intrinsèque du polymère. La mise en forme du polymère halogène comprenant la composition stabilisante peut être faite par tout moyen connu de l'homme du métier.
On peut ainsi incorporer les divers constituants au polymère individuellement ou bien après avoir préparé préalablement un mélange de plusieurs de ces constituants.
Les méthodes classiques d'incorporation conviennent parfaitement à l'obtention de la formulation à base de PVC.
Ainsi, et seulement à titre indicatif, on peut effectuer cette opération dans un mélangeur muni d'un système de pâles et de contre-pales fonctionnant à une vitesse élevée.
Généralement, l'opération de mélange est conduite à une température inférieure à 130°C.
Une fois le mélange réalisé, on effectue une mise en forme de la composition selon les méthodes habituelles dans le domaine comme l'injection, i'extrusion-soufflage, Pextrusion, le calandrage ou encore le moulage par rotation.
La température à laquelle est réalisée la mise en forme varie en général de 150 à 220°C.

Claims

REVENDICATIONS
1. Utilisation dans une composition stabilisante pour polymères halogènes, d'au moins un composé silylé de formule suivante : (Ri)4.x-Si [O-C (R )=CH2-C(=0)(R3)]x Formule dans laquelle
R1, identiques ou non, représentent un radical aliphatique ou aromatique ; lesdits radicaux étant choisis de telle sorte que le composé silylé présente une température d'ebullition supérieure d'au moins 30°C par rapport à la température de mise en forme dudit polymère ;
R3 représente un radical aliphatique R ou un radical -OR' ;
R2, R et R', identiques ou non, représentent un radical aliphatique, linéaire ou non, comprenant 1 à 10 atomes de carbone, ou un radical aromatique, de préférence comprenant 6 atomes de carbone, éventuellement substitué par au moins un radical aliphatique comprenant 1 à 10 atomes de carbone ; x vaut 1 ou 2.
2. Utilisation selon la revendication précédente, caractérisée en ce que le radical R1 est un radical alkyle comprenant 1 à 10 atomes de carbone, ou un radical aromatique comprenant 6 atomes de carbone, éventuellement substitué par au moins un radical alkyle comprenant 1 à 10 atomes de carbone.
3. Utilisation selon la revendication 2, caractérisé en ce que R1, identiques ou non, représentent un radical méthyle, éthyle, propyle, isopropyle, butyle et isomères, pentyle et isomères, hexyle et isomères, phényle, toluyle, xylyle.
4. Utilisation selon l'une des revendications précédentes, caractérisée en ce que R2, R ou R', identiques ou non, représentent chacun un radical alkyle comprenant 1 à 10 atomes de carbone.
5. Utilisation selon l'une des revendications précédentes, caractérisée en ce que R3 représente un radical R choisi parmi les alkyles comprenant 1 à 10 atomes de carbone.
6. Utilisation selon l'une des revendications précédentes, caractérisée en ce que la teneur en composé silylé est comprise entre 0,05 et 2 parties en poids pour 100 parties en poids de polymère halogène, de préférence, comprise entre 0,05 et 1 partie en poids par rapport à la même référence.
7. Utilisation selon l'une des revendications précédentes, caractérisée en ce que la composition comprend au moins un stabilisant organometallique comprenant un métal choisi parmi les colonnes IIA, IIB et IIIB de la classification périodique des éléments, de préférence le calcium, le zinc ou leur association.
8. Utilisation selon la revendication 7, caractérisée en ce que le stabilisant organometallique est choisi parmi les sels métalliques d'acides carboxyliques aliphatiques, saturés ou non, aromatiques ou non, éventuellement porteurs d'un ou plusieurs groupements hydroxyles, ou des alcoolates aromatiques ou non.
9. Utilisation selon l'une des revendications 7 ou 8, caractérisée en ce que la composition stabilisante présente une teneur en stabilisant organometallique à base de zinc comprise entre 10 et 200 ppm, de préférence comprise entre 30 et 150 ppm, exprimée en métal, par rapport au poids de polymère halogène ; cette teneur représentant la quantité totale en ce métal dans la composition stabilisante.
10. Utilisation selon l'une des revendications 7 ou 8, caractérisée en ce que la composition stabilisante présente une teneur en stabilisant organometallique à base de calcium comprise entre 30 et 600 ppm, exprimée en métal, par rapport au poids de polymère halogène ; cette teneur représentant la quantité totale en ce métal dans la composition stabilisante.
PCT/FR2001/003369 2000-11-03 2001-10-30 Utilisation de composes beta-dicarbonyles silyles comme stabilisants de polymeres halogenes. WO2002036674A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2002539425A JP2004513199A (ja) 2000-11-03 2001-10-30 ハロゲン化ポリマー安定剤としてのシリル化β−ジカルボニル化合物の使用
CA002427728A CA2427728A1 (fr) 2000-11-03 2001-10-30 Utilisation de composes beta-dicarbonyles silyles comme stabilisants de polymeres halogenes.
AU2002215089A AU2002215089A1 (en) 2000-11-03 2001-10-30 Use of silylated beta-dicarbonyl compounds as halogenated polymer stabilisers
EP01983655A EP1330487A1 (fr) 2000-11-03 2001-10-30 Utilisation de composes beta-dicarbonyles silyles comme stabilisants de polymeres halogenes.
MXPA03003890A MXPA03003890A (es) 2000-11-03 2001-10-30 El uso de compuestos de beta-dicarbonilo sililados como estabilizantes de polimeros halogenados.
KR10-2003-7006104A KR20030051774A (ko) 2000-11-03 2001-10-30 실릴화된 베타-디카르보닐 화합물의 할로겐화 중합체안정화제로서의 용도
US10/415,575 US20060122296A1 (en) 2000-11-03 2001-10-30 Use of silylated beta-dicarbonyl compounds as halogenated polymer stabilisers

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0014128A FR2816313A1 (fr) 2000-11-03 2000-11-03 Utilisation de composes beta dicarbonyles silyles comme stabilisants de polymeres halogenes
FR0014128 2000-11-03

Publications (1)

Publication Number Publication Date
WO2002036674A1 true WO2002036674A1 (fr) 2002-05-10

Family

ID=8856044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/003369 WO2002036674A1 (fr) 2000-11-03 2001-10-30 Utilisation de composes beta-dicarbonyles silyles comme stabilisants de polymeres halogenes.

Country Status (10)

Country Link
US (1) US20060122296A1 (fr)
EP (1) EP1330487A1 (fr)
JP (1) JP2004513199A (fr)
KR (1) KR20030051774A (fr)
CN (1) CN1478124A (fr)
AU (1) AU2002215089A1 (fr)
CA (1) CA2427728A1 (fr)
FR (1) FR2816313A1 (fr)
MX (1) MXPA03003890A (fr)
WO (1) WO2002036674A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087882A1 (fr) * 2004-03-15 2005-09-22 Tokuyama Corporation Composition de revêtement
DE102008041918A1 (de) * 2008-09-09 2010-03-11 Evonik Degussa Gmbh Silanolkondensationskatalysatoren zur Vernetzung von gefüllten und ungefüllten Polymer-Compounds

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4134325A1 (de) * 1991-10-17 1993-04-22 Henkel Kgaa Verfahren zur stabilisierung von polymerisaten auf basis chlorhaltiger olefine und mittel zur durchfuehrung des verfahrens
EP0596809A1 (fr) * 1992-11-06 1994-05-11 Rhone-Poulenc Chimie Beta-dicetones, leur procédé de préparation et leur utilisation comme stabilisant de polymères

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4134325A1 (de) * 1991-10-17 1993-04-22 Henkel Kgaa Verfahren zur stabilisierung von polymerisaten auf basis chlorhaltiger olefine und mittel zur durchfuehrung des verfahrens
EP0596809A1 (fr) * 1992-11-06 1994-05-11 Rhone-Poulenc Chimie Beta-dicetones, leur procédé de préparation et leur utilisation comme stabilisant de polymères

Also Published As

Publication number Publication date
EP1330487A1 (fr) 2003-07-30
CN1478124A (zh) 2004-02-25
MXPA03003890A (es) 2003-07-28
US20060122296A1 (en) 2006-06-08
AU2002215089A1 (en) 2002-05-15
FR2816313A1 (fr) 2002-05-10
JP2004513199A (ja) 2004-04-30
KR20030051774A (ko) 2003-06-25
CA2427728A1 (fr) 2002-05-10

Similar Documents

Publication Publication Date Title
CA2040790A1 (fr) Compositions stabilisees d&#39;un polymere halogene
EP0108023B1 (fr) Procédé de stabilisation de polymères à base de chlorure de vinyle
EP0988271B1 (fr) Acetylacetonate de calcium ou de magnesium, enrobe et son utilisation comme stabilisant de polymeres halogenes
EP0391811A1 (fr) Procédé de stabilisation des polymeres halogenes
EP1062269A1 (fr) Utilisation d&#39;acetylacetonate de zinc monohydrate comme stabilisant de polymeres halogenes et son procede de preparation
WO2002036674A1 (fr) Utilisation de composes beta-dicarbonyles silyles comme stabilisants de polymeres halogenes.
WO1998055542A1 (fr) COMPOSITION A BASE D&#39;ACETYLACETONATE DE CALCIUM OU DE MAGNESIUM ET DE βDICETONES LIBRES OU CHELATEES, SA PREPARATION ET SON UTILISATION
CA2592313C (fr) Ingredient de stabilisation de polymeres halogenes comprenant un compose beta-dicarbonyle
EP0895524A1 (fr) Stabilisation de polymeres halogenes vis-a-vis de la lumiere et compositions stabilisantes
EP0100741B1 (fr) Procédé de stabilisation de polymères à base de chlorure de vinyle
FR2782087A1 (fr) Utilisation d&#39;acetylacetonate de zinc monohydrate comme stabilisant de polymeres halogenes et son procede de preparation
FR2811673A1 (fr) Utilisation de composes insatures comprenant un heterocycle comme stabilisants de polymeres halogenes
EP1383830A1 (fr) UTILISATION DE $g(b)-DICETONE DIAROMATIQUE SUBSTITUEE COMME STABILISANT DE POLYMERES HALOGENES ET POLYMERE OBTENU
CA1090931A (fr) Compositions plastifiees et stabilisees a base de poly (chlorure de vinyle)
EP1299466A2 (fr) Stabilisation de polymeres halogenes au moyen de pyrroles ou derives et compositions les comprenant
WO2004016682A2 (fr) Composition associant un compose mineral ou de l’acetylacetonate de zinc et un melange comprenant au moins un compose b-dicarbonyle, utilisation comme stabilisant de polymeres halogenes

Legal Events

Date Code Title Description
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001983655

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: PA/a/2003/003890

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 1020037006104

Country of ref document: KR

Ref document number: 2002215089

Country of ref document: AU

Ref document number: 2427728

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2002539425

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 018198317

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037006104

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001983655

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006122296

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10415575

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2001983655

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020037006104

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10415575

Country of ref document: US