WO2002005715A1 - Appareil de diagnostic cardiaque a champ magnetique par potentiel ventriculaire tardif et procede de localisation d'une partie de propagation d'excitation intramyocardique inegale - Google Patents

Appareil de diagnostic cardiaque a champ magnetique par potentiel ventriculaire tardif et procede de localisation d'une partie de propagation d'excitation intramyocardique inegale Download PDF

Info

Publication number
WO2002005715A1
WO2002005715A1 PCT/JP2001/006194 JP0106194W WO0205715A1 WO 2002005715 A1 WO2002005715 A1 WO 2002005715A1 JP 0106194 W JP0106194 W JP 0106194W WO 0205715 A1 WO0205715 A1 WO 0205715A1
Authority
WO
WIPO (PCT)
Prior art keywords
myocardium
excitation
magnetic field
data
propagation
Prior art date
Application number
PCT/JP2001/006194
Other languages
English (en)
French (fr)
Inventor
Kenji Nakai
Masahito Yoshizawa
Kohei Kawazoe
Keita Yamazaki
Satoshi Fujita
Itsuro Tamura
Original Assignee
Japan Science And Technology Corporation
Takenaka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science And Technology Corporation, Takenaka Corporation filed Critical Japan Science And Technology Corporation
Priority to EP01950019A priority Critical patent/EP1302161A4/en
Priority to AU2001271070A priority patent/AU2001271070A1/en
Priority to US10/333,056 priority patent/US6941165B2/en
Publication of WO2002005715A1 publication Critical patent/WO2002005715A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/242Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents
    • A61B5/243Detecting biomagnetic fields, e.g. magnetic fields produced by bioelectric currents specially adapted for magnetocardiographic [MCG] signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/346Analysis of electrocardiograms
    • A61B5/349Detecting specific parameters of the electrocardiograph cycle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/037Emission tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/503Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5247Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from an ionising-radiation diagnostic technique and a non-ionising radiation diagnostic technique, e.g. X-ray and ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5238Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T19/00Manipulating 3D models or images for computer graphics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/74Details of notification to user or communication with user or patient ; user input means
    • A61B5/742Details of notification to user or communication with user or patient ; user input means using visual displays
    • A61B5/743Displaying an image simultaneously with additional graphical information, e.g. symbols, charts, function plots

Definitions

  • the present invention relates to an apparatus for diagnosing a cardiac magnetic field of a ventricular delay potential and a method for identifying an uneven propagation site in a myocardium. More specifically, the present invention relates to a ventricular delay potential that causes a ventricular tachycardia, that is, an excitation failure in a myocardium. The present invention relates to a cardiac magnetic field diagnostic apparatus for a ventricular delayed potential for non-invasively diagnosing the three-dimensional occurrence position of a uniform propagation site by non-contact magnetic measurement, and a method of identifying an uneven propagation site in a myocardium.
  • Background art
  • ECG is an indirect measurement method.
  • the tissue existing from the heart to the body surface, the positional relationship between the heart and other organs and bones, the size of the heart, the electrical conductivity of each tissue of the human body, etc. differ greatly from subject to subject. It was extremely difficult to pinpoint the affected part with the information obtained by such indirect measurements.
  • a mottled tissue refers to a state in which dying or degenerated tissues are present in the form of islands in normal myocardial tissue. Non-uniform excitation propagation occurs at such a myocardial site, and a ventricular delayed potential is generated. In addition, in such mottled tissue, there is a double interest due to the difference in electrical conduction characteristics between dead or degenerated tissue and normal tissue. A stray propagation path (reentry circuit) may be formed.
  • the excitement signal turns in the reentry circuit, and as a result, ventricular tachycardia is induced. Therefore, there is a strong demand for accurate identification of the site of occurrence of such a ventricular delayed potential in three dimensions.
  • endocardial mating using a catheter which is an invasive test, is performed, and the site of heterogeneous transmission of intracardiac excitation is identified by observing fragmented activity.
  • an electrophysiological examination using this catheter has been used to identify the heterogeneous propagation site of intramuscular excitement, and to further cauterize the abnormal excitation propagation site with high frequency (catheter ablation method). ing.
  • a QUID Superconducting Quantum Interference Device
  • SQUID magnetic flux using a Superconducting Quantum Interference Device (hereinafter referred to as "", a QUID) that can detect magnetic flux of about 1/1 billion of geomagnetism with high sensitivity Meter is applied in various fields.
  • a QUID Superconducting Quantum Interference Device
  • noncontact magnetic measurement of the human body using an SQUID magnetometer has been attempted.
  • the excitation propagation path from the sinoatrial node to the atrioventricular node, the His bundle and the Purkinje fiber system can be expressed by the signal source estimation method using the above-mentioned current dipole.
  • the method of imitating and visualizing a magnetic field source with one or more current dipoles only obtains the position information of the current dipole at a certain time, and the site where the ventricular delayed potential occurs in the myocardium In other words, it was not possible to identify the position, size, and shape of the site of heterogeneous transmission of myocardial excitation three-dimensionally.
  • an object of the present invention is to provide a portion of the myocardium where a ventricular delayed potential is generated, that is, the excitation of the intramyocardial excitation, based on data indicating the three-dimensional electrical activity state in the myocardium obtained by non-invasive magnetic measurement.
  • An object of the present invention is to provide an apparatus for diagnosing a cardiac magnetic field of a ventricular delayed potential and a method for identifying a non-uniformly transmitted site of a myocardium, which can safely, rapidly and accurately three-dimensionally identify a positional relationship of a non-uniformly transmitted site. Disclosure of the invention
  • a cardiac magnetic field diagnostic device for ventricular delayed potential includes a magnetic field distribution measuring device, a first arithmetic device, a second arithmetic device, and a display device.
  • the magnetic field distribution measuring device acquires a plurality of magnetic field time series data corresponding to a plurality of coordinates by non-contact magnetic measurement at a plurality of coordinates on the subject's chest, and obtains a plurality of magnetic field time series data based on the plurality of magnetic field time series data.
  • the magnetic field distribution time series data is generated.
  • the first arithmetic unit generates data indicating a three-dimensional electrical activity state in the myocardium of the subject based on the generated magnetic field distribution time-series data.
  • the second arithmetic unit processes the separately supplied chest tomographic image data of the subject to generate data indicating an anatomical image.
  • the display device is the first computing device
  • a display process is performed in which an image of a three-dimensional electrical activity state in the myocardium indicated by the generated data is superimposed on an anatomical image indicated by the data generated by the second computing device.
  • the data indicating the three-dimensional electrical activity state in the myocardium generated by the first arithmetic unit is data indicating a propagation speed of excitation in the myocardium.
  • the first arithmetic unit approximates an excitation propagation path site in the myocardium using one or a plurality of minute current elements, and calculates a temporal change in the position of the minute current element. Generates data indicating the speed of propagation of myocardial excitation.
  • the first arithmetic unit generates data indicating a difference in propagation speed of excitation in the myocardium for each excitation propagation path based on the calculated temporal change in the position of the minute current element.
  • a cardiac magnetic field diagnostic device for ventricular delayed potential includes a magnetic field distribution measuring device, a computing device, and a display device.
  • the magnetic field distribution measurement device acquires a plurality of magnetic field time series data corresponding to a plurality of coordinates by non-contact magnetic measurement at a plurality of coordinates on the subject's chest, and obtains a magnetic field on the chest based on the plurality of magnetic field time series data.
  • Generate field distribution time series data Generate field distribution time series data.
  • the arithmetic unit generates data indicating a three-dimensional electrical activity state in the myocardium of the subject based on the generated magnetic field distribution time-series data.
  • the display device Based on the data generated by the computing device, the display device displays images showing the stimulus propagation path from the sinoatrial node of the subject's heart to the Hiskin-Pukkin fiber system, and three-dimensional electrical activity in the myocardium. A display process for superimposing and displaying an image indicating the state is performed. As a result, it is possible to three-dimensionally identify the localization of the ventricular delay potential due to the uneven propagation of the excitation in the myocardium.
  • the data indicating the three-dimensional electrical activity state in the myocardium generated by the arithmetic device is data indicating a propagation speed of excitation in the myocardium.
  • the arithmetic unit approximates the excitation propagation path site in the myocardium using one or a plurality of microcurrent elements, and calculates a temporal change in the position of the microcurrent element, thereby Generate data indicating the speed of propagation of the excitement.
  • the arithmetic unit is configured to change the position of the calculated minute current element over time. Based on the data, data representing the difference in the propagation speed of the excitation in the myocardium for each excitation propagation path is generated.
  • a method for identifying a site of heterogeneous excitation in a myocardium comprises a plurality of magnetic fields corresponding to a plurality of coordinates obtained by a non-contact magnetic measurement at a plurality of coordinates on a chest of a subject.
  • the three-dimensional electrical activity state in the myocardium indicated by the first data is a propagation speed of the excitation in the myocardium.
  • the step of generating the first data includes the step of approximating an excitation propagation path in the myocardium using one or a plurality of minute current elements, and calculating a temporal change in the position of the minute current element. This generates data indicating the propagation speed of excitation in the myocardium. More preferably, the step of generating the first data generates data indicating a difference in propagation speed for each excitation propagation path based on the calculated temporal change in the position of the minute current element.
  • a method for identifying a site of heterogeneous excitation in a myocardium comprises a plurality of magnetic fields corresponding to a plurality of coordinates obtained by a non-contact magnetic measurement at a plurality of coordinates on a chest of a subject.
  • Generating three-dimensional electrical activity in the myocardium of the subject based on the time-series data of the magnetic field distribution on the chest generated based on the serial data; and
  • the excitation in the myocardium becomes uneven.
  • the data indicates that the three-dimensional electrical activity in the myocardium is a transmission Seeding speed.
  • the step of generating data includes: approximating an excitation propagation path site in the myocardium using one or more microcurrent elements, and calculating a temporal change in a position of the microcurrent element.
  • data indicating the propagation speed of the excitation in the myocardium is generated.
  • the data generating step generates data indicating a difference in the propagation speed of the intramyocardial excitation for each excitation propagation path based on the calculated temporal change in the position of the minute current element.
  • an image showing the three-dimensional electrical activity state in the myocardium obtained by non-invasive magnetic measurement is used to convert chest tomographic image data of the same subject taken by another medical diagnostic apparatus.
  • the physician can localize the site of occurrence of ventricular delayed potential that causes ventricular tachycardia, that is, the site of inhomogeneous non-uniform propagation in the myocardium. Can be identified safely, quickly and with high accuracy.
  • the image showing the three-dimensional electrical activity state in the myocardium obtained by non-invasive magnetic measurement is used to stimulate the His bundle-Purkinje fiber system from the sinoatrial node of the heart of the same subject.
  • doctors can safely, promptly, and accurately localize the site of the occurrence of ventricular delayed potential that causes ventricular tachycardia, that is, the site of uneven excitation in the myocardium. It is possible to identify with high accuracy.
  • FIG. 1 is a functional block diagram schematically showing a configuration of a cardiac magnetic field diagnostic apparatus for ventricular delayed potential according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing a more specific configuration of the cardiac magnetic field diagnostic device shown in FIG.
  • FIG. 3 is a block diagram showing a detailed configuration of the magnetic field distribution measuring device shown in FIG.
  • FIG. 4 is a diagram showing an example of the arrangement of a plurality of magnetic field sensors on the front of the chest of the subject.
  • FIG. 5 is a diagram showing magnetic field time-series data obtained from each of the plurality of sensors in FIG.
  • FIG. 6 is a diagram showing an example of a three-dimensional anatomical image displayed on the display device 4.
  • FIG. 7 is a flowchart illustrating the operation of the cardiac magnetic field diagnostic device according to Embodiment 1 of the present invention.
  • FIG. 8 is a functional block diagram schematically showing a configuration of a ventricular delayed potential cardiac magnetic field diagnostic apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a block diagram showing a more specific configuration of the cardiac magnetic field diagnostic device according to the second embodiment of the present invention shown in FIG.
  • FIGS. 1OA and 10B are diagrams schematically showing a normal stimulus propagation path and an electrocardiogram waveform in the heart.
  • FIG. 11 is a diagram showing images of the normal stimulus propagation path and the excitation propagation path actually displayed by the display device 6.
  • FIG. 12 is a flowchart illustrating the first half of the operation of the cardiac magnetic field diagnostic device according to the second embodiment.
  • FIG. 13 is a flowchart illustrating the latter half of the operation of the cardiac magnetic field diagnostic device according to the second embodiment.
  • FIG. 1 is a functional block diagram schematically showing a configuration of a cardiac magnetic field diagnostic apparatus for ventricular delayed potential according to Embodiment 1 of the present invention.
  • the magnetic field distribution measurement device 1 performs non-contact magnetic measurement at a plurality of coordinates on a subject's chest using, for example, measurement means such as an S QU ID magnetometer described in detail below. Acquire a plurality of magnetic field time-series data corresponding to a plurality of coordinates. Then, based on the plurality of acquired magnetic field time-series data, the time-series data on the chest, that is, the magnetic field distribution of the cardiac magnetic field is generated and output.
  • measurement means such as an S QU ID magnetometer described in detail below.
  • the first arithmetic device 2 Based on the time-series data of the magnetic field distribution of the heart measured by the magnetic field distribution measuring device 1, the first arithmetic device 2 uses a well-known calculation method to be described later to generate a three-dimensional Generating and outputting first data indicating a mood activity state.
  • the first arithmetic unit 2 generates data indicating the propagation speed of excitation in the myocardium.
  • this propagation velocity is calculated by approximating the site of the excitation propagation path in the myocardium using one or a plurality of minute current elements, that is, current dipoles, and calculating the temporal change in the position of the current dipole. Is obtained by Based on the temporal change of the obtained current dipole, data on the propagation velocity for each excitation propagation path can be obtained. As a result, it is possible to specify the localization of the ventricular delay potential caused by the uneven propagation of the window.
  • tomographic image data of the same subject's chest obtained separately by tomographic diagnostic equipment such as nuclear magnetic resonance (MR I), X-ray CT, echocardiography, and myocardial SPECT 1
  • tomographic diagnostic equipment such as nuclear magnetic resonance (MR I), X-ray CT, echocardiography, and myocardial SPECT 1
  • MR I nuclear magnetic resonance
  • X-ray CT X-ray CT
  • echocardiography X-ray CT
  • myocardial SPECT 1 myocardial SPECT
  • the electrical activity state obtained by the first arithmetic unit 2 is the propagation speed of the excitation in the myocardium, it is displayed on the screen in some form.
  • the nonuniformity of the propagation velocity of the excitation in the myocardium for each excitation propagation path it is possible to identify the location of the occurrence of the ventricular delay potential in three dimensions.
  • the display device 4 displays an image showing the three-dimensional electrical activity in the myocardium (for example, the propagation velocity for each excitation propagation path) indicated by the first data generated by the first arithmetic device,
  • the 3D anatomical image of the subject's chest indicated by the second data generated by 3 is superimposed and displayed.
  • FIG. 2 is a block diagram more specifically showing the configuration of the cardiac magnetic field diagnostic apparatus for ventricular delayed potential according to the first embodiment of the present invention shown in FIG.
  • the magnetic field distribution measuring device 1 has a magnetic shield room (Magnetic
  • MSR Shield Room
  • a unit 13 with a built-in SQUID magnetometer installed to perform non-contact magnetic measurement on the chest of the subject 12, and a calculation unit for magnetic field distribution data 1 and 4 are provided.
  • the SQUID magnetometer which consists of a superconducting detection coil, is housed inside.
  • Fig. 3 shows the SQUID magnetometer 15 installed in the ultra low temperature system in the dewar 13 in the MSR 11 shown in Fig. 2 and the operation unit 14 installed in the MSR 11 in the normal temperature system in more detail. It is a block diagram shown in FIG.
  • the configuration shown in Fig. 3 is a configuration for one channel for measuring magnetic field data at one point on the chest of the subject. As will be described later, in the present invention, multipoint simultaneous measurement of a magnetic field at a plurality of coordinates is performed on the chest of a subject. Therefore, the configuration for one channel shown in FIG. 3 is provided in the MSR 11 of FIG. 2 for a plurality of channels required for measurement.
  • the SQUID magnetometer 15 includes a pickup coil 16 made of a superconductor for detecting a magnetic field generated from the chest surface of the subject.
  • a current flows, and this current is drawn into the coil 17 to generate a magnetic field in the Nb shield 20.
  • a magnetic field that changes linearly with respect to this magnetic field is formed in the superconducting loop 18, and the voltage at both ends of the superconducting loop 18 is calculated by the arithmetic unit 14 installed in the normal temperature MSR 11.
  • the arithmetic unit 14 detects the current by the amplifier and adjusts the current flowing through the modulation coil 19 in the Nb shield 20 so that the detected voltage does not change.
  • the detection of the magnetic field of the living body by SQUID does not directly measure the generated magnetic field, but applies feedback so that the magnetic field in the superconducting ring 18 always has a constant value using the so-called zero-position method.
  • the arithmetic unit 14 converts the magnetic field detected by the pickup coil 16 into an electric signal and outputs the electric signal.
  • Such a feedback method is generally known as a “fl ux locked loop (FLL)”.
  • the configuration shown in Fig. 3 is necessary for measuring the magnetic field data for one channel, and the electrical signal indicating the magnetic field time-series data of the magnetic field measured at one point on the front of the subject's chest Is output.
  • many sensors SQUID magnetometer
  • the magnetic field on the front of the chest is measured at multiple points.
  • the magnetic field changes with time. For example, even during a period corresponding to one heartbeat, if the measurement location is different, the magnetic field changes differently depending on the location.
  • FIG. 4 is a diagram showing an example of the arrangement of a plurality of sensors (each of which is a single channel SQUID magnetometer) on the front of the chest of the subject.
  • FIG. 5 shows a group of magnetic field time-series data showing a change in a magnetic field during one heartbeat period obtained from each sensor corresponding to each position of the plurality of sensors in FIG. I have.
  • the data output from the magnetic field distribution measuring device 1 shown in FIG. 2 is a group of magnetic field time series data corresponding to a plurality of measurement positions (coordinates) as shown in FIG. 5, but attention is paid to a specific time Then, when these one group of magnetic field time series data is captured, a graph (figure) is used to represent the actual state of the peaks and valleys showing the distribution of the magnetic field strength at a certain time on the front of the chest to be measured. Because it is difficult to obtain, the magnetic field distribution data expressed by a contour map like the atmospheric pressure of the weather chart can be obtained. For this reason, the data output from the magnetic field distribution measuring device 1 can be regarded as magnetic field distribution time-series data on the front of the chest.
  • Such a group of magnetic field time-series data that is, magnetic field distribution time-series data output from the magnetic field distribution measuring device 1 is given to the first arithmetic device 2 in FIG.
  • the first arithmetic unit 2 functions to determine the electrical activity in the chest, for example, the propagation speed of excitation in the myocardium based on the magnetic field distribution data.
  • the first arithmetic unit 2 uses the magnetic field distribution time series data generated by the magnetic field distribution measuring device 1 to obtain information on three-dimensional electrical activity at a site in the human body (the heart in the present invention) to be measured. , For example, a method to determine the propagation speed of intracardiac excitation I will tell.
  • the first arithmetic unit 2 approximates the magnetic field distribution time-series data generated by the magnetic field distribution measuring device 1 using one or a plurality of minute current elements (that is, current dipoles). That is, the above minute current elements are scattered in the measured cardiac magnetic field distribution, and parameters (positional information and current vector) of each minute current element corresponding to each measurement point are determined by a well-known analysis method. I do.
  • the analysis method using such a current dipole is a well-known method, for example, as disclosed in detail in Japanese Patent Application Laid-Open No. 5-157735, and a detailed description thereof is omitted here. .
  • the first arithmetic unit 2 first generates data indicating such a change over time in the position of the minute current element and the direction of the current, and supplies the data to one input of the display device 4. Further, the first arithmetic unit 2 may calculate the propagation speed of the excitation in the myocardium based on the above-mentioned temporal change, and may generate the result as numerical data.
  • the image data may be generated as image data to be visually displayed based on the length of the arrow.
  • the first arithmetic unit 2 generates, from the magnetic field distribution data generated by the magnetic field distribution measuring device 1, various types of time-series data indicating the propagation speed of the excitation in the myocardium to be analyzed, and displays the data. Applied to one input of device 4.
  • the second arithmetic unit 3 shown in FIG. 2 is provided with an electrocardiogram synchronization trigger in advance by using another tomography diagnostic device (not shown), for example, an MR I method, an X-ray CT method, an echocardiogram method, a myocardial SPECT method, or the like.
  • Image data of a plurality of slice images (for example, about a dozen or so images at 5 mm pitch) of the same subject's chest photographed with the camera is input.
  • the second arithmetic unit 3 processes (interpolates) the data of the plurality of slice images, performs three-dimensional perspective transformation from a predetermined viewpoint, and generates second data indicating an anatomical image.
  • Techniques for forming a three-dimensional anatomical image from a plurality of slice images in this manner are well known. For example, Japanese Patent Application Laid-Open No. H11-12828, International Publication W ⁇ 98 / 15 It is disclosed in detail in Japanese Patent Publication No. So the details here I will not explain it.
  • the second arithmetic unit 3 generates second data indicating a three-dimensional anatomical image of the chest near the heart of the same subject, and supplies the second data to the other input of the display device 4.
  • the display device 4 shown in FIG. 2 displays the three-dimensional anatomical image of the subject's chest formed based on the second data from the second arithmetic device 3 on the three-dimensional anatomical image from the first arithmetic device 2. Images showing the time-dependent changes in the position and direction of the current in the myocardium formed based on the data of step 1 are displayed in a superimposed manner.
  • FIG. 6 shows the position and direction of the microcurrent element representing the excitation current in the myocardium in the cardiac magnetic field distribution at a certain time, superimposed on the three-dimensional anatomical image displayed by the display device4, and
  • FIG. 7 is a diagram showing a form in which an excitement propagation path up to the time is displayed.
  • Figure 6 shows a three-dimensional image obtained by interpolating about five tomographic images obtained by slicing the subject's chest at a 5 mm pitch, for example. Although it is difficult to express the sense of depth of the actual display image on the drawing, it is assumed that the image shows a three-dimensional anatomical image with a sense of depth formed by combining a plurality of slice images.
  • the arrow indicated by ⁇ indicates the position and direction of the microcurrent element representing the excitation current in the myocardium at that time, and the length of the arrow indicates the magnitude of the current.
  • the thick lines B, C, and D indicate the trajectories of the excitation propagation paths in the myocardium obtained by approximating the cardiac magnetic field by the minute current element until the time. The change of the position of the minute current element is connected over time.
  • the locus of the minute current element at the current position becomes dense, and conversely, at a site where the propagation speed is high, the position of the minute current element at the current position is small Is coarse. Therefore, it is possible to visually recognize the propagation speed of each intramyocardial excitation based on the density of the minute current element constituting each of the thick lines B, C, and D indicating the excitation propagation path displayed on the screen. It is possible.
  • the propagation speed itself of the excitation in the myocardium may be calculated by the first arithmetic device 2 and displayed on the display device 4 as a number.
  • the physician can accurately grasp the location of the ventricular delayed potential in the myocardium, that is, the relative position of the heterogeneous propagation of the excitation in the myocardium on the anatomical image by displaying the can do.
  • FIG. 7 is a flowchart showing a method of identifying a site of non-uniform propagation of excitation in the myocardium performed by the cardiac magnetic field diagnostic device according to Embodiment 1 described above.
  • step S1 non-contact magnetic measurement is performed at a plurality of coordinates on the human chest by the magnetic field distribution measuring device 1, and a plurality of time-series data is generated, and recorded if necessary.
  • step S2 an interpolation operation (three-dimensional perspective transformation from a predetermined viewpoint) is performed by the second arithmetic unit 3 on the plurality of MRI images photographed in advance with the ECG synchronization trigger, and the three-dimensional Obtain an anatomical image of.
  • step S3 the initial time of the analysis is set to t s , the end time of the analysis is set to t e , and the time interval of the analysis is set to ⁇ t.
  • step S4 the analysis is started by substituting the initial time t s for the analysis time t. Then, in step S5, the following loop-like processing is repeatedly performed until the analysis time t reaches the end time t e .
  • step S6 the first arithmetic unit 2 approximates the cardiac magnetic field distribution data at the designated analysis time t with one or a plurality of minute current elements to obtain the position, direction, and magnitude of the excitation current in the myocardium. Get data about
  • step 7 the step of the previous loop preceding by time ⁇ t
  • the data on the position, direction, and magnitude of the excitation current in the myocardium at time t— ⁇ t obtained in S6 are compared with the data at time t obtained in step S6 this time. Calculate the propagation speed of the excitement.
  • step S8 the display device 4 superimposes and displays the data indicating the propagation speed of the excitation in the myocardium from a predetermined viewpoint to an anatomical image subjected to three-dimensional perspective transformation.
  • step S9 ⁇ t is added to the analysis time t.
  • a three-dimensional image showing the propagation speed of intramyocardial excitation obtained by noninvasive magnetic measurement on the subject's chest using the SQUID magnetometer By superimposing on the anatomical image, the anatomical positional relationship, size, and shape of the site of occurrence of ventricular delayed potential in the myocardium that causes ventricular tachycardia, that is, the site of heterogeneous propagation of excitation in the myocardium, can be displayed. Doctors can be identified three-dimensionally.
  • the second embodiment of the present invention provides a cardiac magnetic field diagnostic apparatus for a ventricular delayed potential, which can reduce the number of examinations and can perform diagnosis and examination directly by eliminating the need for forming an anatomical image.
  • An object of the present invention is to provide a method for identifying a site of heterogeneous transmission of myocardial excitation.
  • FIG. 8 is a functional block diagram schematically showing a configuration of a cardiac magnetic field diagnostic apparatus for ventricular delayed potential according to Embodiment 2 of the present invention.
  • magnetic field distribution measuring apparatus 1 has already been described in relation to Embodiment 1, and will not be described again here.
  • the arithmetic unit 5 calculates the three-dimensional electrical activity state in the myocardium, for example, data on the excitation current in the myocardium, using the analysis method using the current dipole described above based on the given magnetic field distribution time-series data. Generate. Then, based on the generated data on the excitatory current, the arithmetic unit 5 calculates, from the P wave of the electrocardiogram, data indicating an excitement (stimulus) propagation path in the myocardium of the ventricle during a period corresponding to the QRS group, It is generated by superimposing data indicating the propagation speed on the display device 6.
  • the display device 6 displays an image showing the propagation speed of the intramyocardial excitation indicated by the data generated by the arithmetic unit 5 and the excitation propagation path corresponding to the period of the QRS group from the P wave of the electrocardiogram similarly obtained by the arithmetic unit 5. It is superimposed on a 3D image and displayed. As a result, it is possible to three-dimensionally identify the positional relationship between the sites of uneven propagation of myocardial excitation without using an anatomical image as in the first embodiment.
  • FIG. 9 is a block diagram more specifically showing the configuration of the cardiac magnetic field diagnostic apparatus for ventricular delayed potential according to the second embodiment of the present invention shown in FIG.
  • magnetic field distribution measuring device 1 is the same as magnetic field distribution measuring device 1 described with reference to FIGS. 2 and 3, and therefore description thereof is omitted here.
  • the magnetic field distribution time-series data output from the magnetic field distribution measuring device 1 is given to the arithmetic device 5 in FIG. 9, and the arithmetic device 5 performs the magnetic field distribution time-series data by the above-described analysis method using the current dipole. Then, data on the excitation current in the myocardium is generated.
  • an electrocardiograph 21 for recording the electrocardiogram of the subject 12 is provided, and the electrocardiogram waveform data of the subject 12 measured by this is supplied to the arithmetic unit 5.
  • FIG. 10A is a diagram schematically showing a normal stimulus propagation path in the heart
  • FIG. 10B shows an electrocardiogram waveform for one heartbeat.
  • the sinoatrial node of the heart functions as a pacemaker that determines the heart rate, and fires at regular intervals (the timing of the P wave of the electrocardiogram) to generate a pulse.
  • This pulse travels to the atrioventricular node via a predetermined stimulus propagation path, where after a certain time delay, the pulse is transmitted from the His (bundle) bundle to the lower ventricle via the pu / kine fiber system.
  • the pulse is transmitted from the His (bundle) bundle to the lower ventricle via the pu / kine fiber system.
  • contraction of the heart muscle occurs at a stretch. Pull from this His bundle
  • the propagation of the stimulus of the Kinje fiber system corresponds to the duration of the QRS complex on the ECG.
  • the arithmetic unit 5 indicates the stimulus propagation path as a normal note as shown in FIG. 10A. Generate image data.
  • Such an image of the stimulus propagation path shown in FIG. 10A can be used as a template display instead of the anatomical image of the first embodiment. That is, even if there is no three-dimensional anatomical image as in Embodiment 1, if the stimulus propagation path of the normal route shown in FIG. 10A is displayed, the ventricle generated in the surrounding ventricle is displayed.
  • a physician can easily make anatomical correspondences to the delayed potential site, that is, the site of non-uniform transmission of excitation in the myocardium, and can identify its position, size, and shape.
  • the arithmetic unit 5 in FIG. 9 generates data indicating the generated propagation speed of the intramyocardial excitation, superimposed on the display of the stimulus propagation path as such a template.
  • data indicating the generated propagation speed of the intramyocardial excitation, superimposed on the display of the stimulus propagation path as such a template.
  • the display device 6 shown in FIG. 9 displays an image showing the propagation speed of myocardial excitation, based on the data from the arithmetic device 5 and superimposed on a normal stimulus propagation path as a template. Thereby, the doctor can easily determine whether or not the reentry circuit is easily formed in the ventricular muscle.
  • Fig. 11 shows an example of a screen actually displayed by the display device 6, in which images showing the propagation speed of myocardial excitation for each excitation propagation path are displayed, superimposed on the normal stimulation propagation path as a template. Have been.
  • each of the two arrows indicates the position of the excitation propagation path approximated by a minute current element (current dipole).
  • the length of each arrow indicates the speed of the excitation propagation speed. I have.
  • a physician can easily make an anatomical correspondence based on the relative positional relationship of each excitation propagation path to the normal stimulation propagation path as a template shown in FIG. In addition, based on the difference in propagation speed between each It is possible to identify the location, size, and shape of the site of ventricular delayed potential generation in the ventricle, that is, the site of heterogeneous propagation of excitation in the myocardium.
  • FIGS. 12 and 13 are flowcharts showing a method of identifying a site of non-uniform propagation of excitation in the myocardium, which is performed by the diagnostic apparatus for ventricular delayed potential according to the second embodiment.
  • step S 11 non-contact magnetic measurement is performed at a plurality of coordinates on the human chest using the magnetic field distribution measuring device 1 to generate and record a plurality of magnetic field time series data. I do.
  • step S12 the initial time of the analysis is defined as the P wave start time t of the ECG, the analysis end time is defined as the QRS group end time t eQRS of the ECG, and the analysis time interval is defined as ⁇ .
  • step S13 t sP which is the start time of the P wave is substituted for the analysis time t.
  • step S14 the following steps S15 to S17 are repeated until the analysis time reaches the end time teQRS .
  • step S15 the arithmetic unit 5 approximates the cardiac magnetic field distribution data at the designated analysis time t with one or a plurality of minute current elements, and calculates the position, direction, and magnitude of the exciting current in the myocardium. Get data about
  • step S16 an image obtained by performing a three-dimensional perspective transformation on the data of the excitation current in the myocardium obtained in step S15 from a predetermined viewpoint is displayed.
  • step S17 ⁇ t is added to the analysis time t, and the process returns to step S14 to determine whether the end time t eQRS has been reached. If it is determined that the end time t eQRS has been reached, the image data showing the stimulus propagation path, which is the normal route shown in Fig. 1 OA, is associated with the period corresponding to the QRS group from the P wave in the ECG waveform. Is obtained.
  • step S 1 8 in FIG. 1 3 it defines the initial time of the angular family loaf and t s, defined as the end time and t e corner ⁇ , defined as delta t the analysis time interval.
  • step S19 the initial time t s is substituted for the analysis time t.
  • step S 2 until the analysis time t is determined that it has reached the end time t e, the following steps S 2 1 to S 2 4 is executed in a loop. That is, in step S21, the arithmetic unit 5 approximates the cardiac magnetic field distribution data at the specified analysis time t with one or a plurality of minute current elements, and calculates the position, direction, and magnitude of the exciting current in the myocardium. Get data about
  • step S22 data on the position, direction, and magnitude of the excitation current in the myocardium at time t- ⁇ t obtained in step S21 of the previous loop preceding by time ⁇ t, By comparing with the data at time t obtained in step S21, the propagation speed of the excitation in the myocardium is calculated.
  • step S23 the display device 6 superimposes and displays the data representing the propagation velocity of the excitation in the myocardium on the image of the normal stimulus propagation circuit subjected to three-dimensional perspective transformation from a predetermined viewpoint.
  • step S24 ⁇ t is added to the analysis time t, and the process returns to step S20 to determine whether the end time t e has been reached.
  • the data indicating the propagation rate of the excitation in the myocardium is superimposed and displayed on the image of the stimulus propagation path (FIG. 10A) obtained in the flow chart of FIG.
  • an image showing the propagation velocity of intramyocardial excitation obtained by noninvasive magnetic measurement on the subject's chest using the S QU ID magnetometer is By superimposing on the normal stimulus propagation path as a template, the site of occurrence of ventricular delayed potential in the myocardium that causes ventricular tachycardia, that is, in the myocardium, without superimposing on other anatomical images It enables doctors to identify the relative positional relationship, size, and shape of the unequally distributed excitement site with respect to the stimulus propagation path in three dimensions. Therefore, in the second embodiment, a prior examination for obtaining an anatomical image can be omitted.
  • the excitation propagation path using the current dipole is approximated to generate image data of the normal stimulation propagation path as a template display. This image can be obtained by the arithmetic unit 5 calculating the current density distribution in the myocardium from the magnetic field distribution time-series data generated by the magnetic field distribution measuring device 1.
  • the following methods can be used to determine the current density distribution in the myocardium. That is, various methods such as SAM (Synthetic Aperture Magnetometry) or MU SIC (Multiple Signal Classification) can be used.
  • SAM Synthetic Aperture Magnetometry
  • MU SIC Multiple Signal Classification
  • SAM and MU SIC have been researched and developed in fields such as radar and sonar, and their methods are well known, but they have not yet been applied to the diagnosis of cardiac magnetic fields. Absent.
  • the present invention it is possible to visually display, on a three-dimensional anatomical image, the propagation speed of intramyocardial excitation obtained by noninvasive magnetic measurement on the chest of a patient. Because of this, it is possible to three-dimensionally identify the location, size, and shape of the site where the ventricular delayed potential is generated, that is, the site of heterogeneous transmission of myocardial excitation. Therefore, it is possible to non-invasively diagnose a site of nonuniform propagation of myocardial excitation or a site of generation of a ventricular delayed potential, which causes ventricular tachycardia, thereby enabling a quick and safe examination without imposing a burden on the patient.
  • the target area for electrophysiological examination can be significantly narrowed in advance, and the effect of significantly reducing the amount of X-ray exposure to doctors and radiologists can be achieved. To play.
  • the anatomy is displayed by superimposing the propagation speed of intramyocardial excitation on the normal stimulus propagation path from the sinoatrial node of the same subject to the His bundle-Punole kinje fiber system, and displaying the three-dimensional display. It is possible to three-dimensionally identify the location of the site of heterogeneous transmission of myocardial excitability, that is, the localization and spread of ventricular delayed potentials, without obtaining a target image. In addition, an examination for obtaining an anatomical image can be omitted, and an effect that a more economically efficient diagnosis can be performed can be achieved.
  • the cardiac magnetic field diagnostic apparatus for ventricular delayed potential and the method for identifying a non-uniformly transmitted region of myocardial excitation according to the present invention, the position, size, and shape of the non-uniformly transmitted region of excitation in the myocardium are three-dimensional. This is useful for non-invasive diagnosis of the site of heterogeneous propagation of cardiac muscle excitation or ventricular delayed potential, which causes ventricular tachycardia.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Cardiology (AREA)
  • Optics & Photonics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Graphics (AREA)
  • Computer Hardware Design (AREA)
  • Pulmonology (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
  • Measuring Magnetic Variables (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Description

心室遅延電位の心臓磁界診断装置および心筋内興奮不均一伝播部位の同定方法 技術分野
この発明は、 心室遅延電位の心臓磁界診断装置および心筋内興奮不均一伝播部 位の同定方法に関し、 より特定的には、 心室頻拍の原因となる心室遅延電位、 す なわち心筋内興奮不均一伝播部位の 3次元的発生位置を非接触磁気計測により非 侵襲的に診断するための心室遅延電位の心臓磁界診断装置および心筋内興奮不均 一伝播部位の同定方法に関する。 背景技術
従来、 心疾患の診断を行なうために、 心電図を記録する方法が一般的に採用さ れている。
しかしながら、 従来の心電図法では、 たとえば心臓手術の際に治療すべき部位 の位置、 大きさ、 形状を推定するためには不充分であり、 患部位置の満足できる 推定を行なうことができなかった。
これは、 心電図法が間接的な計測方法であることによる。 すなわち、 心臓から 体表面までに存在する組織、 心臓と他の臓 や骨との位置的関係、 心臓の大きさ、 人体の各組織ごとの電気伝導率などが被験者ごとに大きく異なるため、 心電図の ような間接的計測で得られる情報では患部位置を正確に特定することは極めて困 難であった。
—方、 心筋梗塞症の発症から一定期間後に、 または心筋症などの心疾患により、 正常な心筋組織中に斑紋状組織が形成されると、 心室頻拍を誘宪することが近年 の研究から明らかにされている。
斑紋状組織とは、 正常な心筋組織中に、 寧死したまたは変性した組織が島状に 存在する状態を指すものである。 このような心筋部位で不均一な興奮伝播が生じ ることとなり、 心室遅延電位が発生する。 またこのような斑紋状組織においては、 壌死または変性した組織と正常組織との間め電気的伝導特性の違いから二重の興 奮伝播路 (リエントリ回路) が形成されることがある。
すなわち、 興奮信号はこのリエントリ回路内を旋回することとなり、 その結果 として心室頻拍が誘発される。 したがって.、 このような心室遅延電位の発生部位 を 3次元的に正確に同定することが強く要望されている。
しかしながら、 上述のように、 心電図法では、 心電図同期加算の技術を用いて 心室遅延電位の有無を非侵襲的に検出することはできても、 心筋内興奮の不均一 伝播部位の局在の 3次元的な同定はできなかった。 また、 多チャンネル心電図計 測データから心室遅延電位発生部位の位置、 大きさ、 形状を推定する試みもなさ れてきたが、 そのような位置推定を行なうには精度が不十分であり、 到底満足で きるものではなかった。
現在のところ、 侵襲的検査であるカテーテルを用いた心内膜マツビングを行な い、 fragmented activity を見ることによって心筋内興奮の不均一伝播部位の同 定を行なっている。 特に、 このカテーテルを用いた電気生理学的検査で心筋内興 奮の不均一伝播部位を同定し、 さらに異常興奮伝播部位を高周波で焼灼するとい う治療 (カテーテル焼灼法) を兼ね備えた方法が採用されている。
しかしながら、 この方法では、 胸部 X線透視をしながらカテーテルの揷入、 移 動などを行なうので、 患者、 医師、 放射線技師は長時間にわたって X線被爆を受 けることになる。 特に、 医師および放射線技師の年間 X線被爆量が大きく、 検査 時間の大幅な短縮が強く望まれている。
一方、 地磁気の 1 0億分の 1程度の磁束を高感度に検出することができる超電 導重子千渉素子 (Superconducting Quantum Interference Device:以に""、 a Q U I Dと称する) を用いた S Q U I D磁束計がさまざまな分野で応用されている。 特に、 前述のように非侵襲性の計測が強く要望されている生体計測の分野では、 S Q U I D磁束計を用いた人体の非接触磁気計測が試みられている。
特に、 近年の薄膜素子製造技術の進歩により D C— S Q U I Dが開発されたこ とにより、 S Q U I D磁束計を用いて心臓の磁界分布である心磁図を計測するこ とが試みられつつある。
しかしながら、 心磁図だけでは、 人体内における心筋内興奮の不均一伝播部位 の位置、 大きさ、 形状を直接表示することはできず、 心臓内における患部の相対 的な位置関係を医師に的確に知らせることが困難であった。
このため、 心磁図が示す心磁界分布から心筋内の電流活動を可視化する方法が 提案されてきた。 そして、 そのような方法として、 1つまたは複数個の微小電流 素片 (電流ダイポール) で磁場源を模倣して可視化する方法が採用されてきた。 このような方法では、 WPW症候群における特殊な電気生理特性を有するバイパ ス回路 (副伝播路) 、 たとえば K e n t束の位置推定については有効性が確認さ れている。
一方、 洞房結節から房室結節一ヒス束一プルキンェ繊維系に至る興奮伝播経路 を、 上述の電流ダイポールを用いた信号源推定法によって表現できることが確認 されている。
しかしながら、 1つまたは複数個の電流ダイポールで磁場源を模倣して可視化 する方法では、 ある時刻における電流ダイポールの位置情報が得られるだけであ り、 心筋内で心室遅延電位が発生している部位、 すなわち心筋内興奮の不均一伝 播部位の位置、 大きさ、 形状を 3次元的に同定することはできなかった。
それゆえに、 この発明の目的は、 非侵襲的な磁気計測により得られた心筋内の 3次元電気的活動状態を示すデータに基づいて、 心筋内における心室遅延電位の 発生部位、 すなわち心筋内興奮の不均一伝播部位の位置関係を安全、 迅速かつ高 精度に 3次元的に同定することができる心室遅延電位の心臓磁界診断装置および 心筋內興奮不均一伝播部位の同定方法を提供することである。 発明の開示
この発明による心室遅延電位の心臓磁界診断装置は、 磁界分布計測装置と、 第 1の演算装置と、 第 2の演算装置と、 表示装置とを備える。 磁界分布計測装置は、 被験者の胸部上の複数の座標における非接触磁気計測により複数の座標に対応す る複数の磁界時系列データを取得し、 かつ複数の磁界時系列データに基づいて胸 部上の磁界分布時系列データを生成する。 第 1の演算装置は、 生成された磁界分 布時系列データに基づいて被験者の心筋内の 3次元電気的活動状態を示すデータ を生成する。 第 2の演算装置は、 別途供給された被験者の胸部断層画像データを 加工して解剖学的画像を示すデータを生成する。 表示装置は、 第 1の演算装置に より生成されたデータが示す心筋内の 3次元電気的活動状態の画像を、 第 2の演 算装置により生成されたデータが示す解剖学的画像に重ね合わせて表示する表示 処理を行なう。 これにより、 心筋内興奮不均一伝播による心室遅延電位の局在を 3次元的に同定することができる。
好ましくは、 第 1の演算装置によって生成される心筋内の 3次元電気的活動状 態を示すデータは、 心筋内興奮の伝播速度を示すデータである。
さらに好ましくは、 第 1の演算装置は、 心筋内の興奮伝播路部位を 1つまたは 複数の微小電流素片を用いて近似し、 微小電流素片の位置の時間的変化を算出す ることにより、 心筋内興奮の伝播速度を示すデータを生成する。
さらに好ましくは、 第 1の演算装置は、 算出された微小電流素片の位置の時間 的変化に基づいて、 興奮伝播路ごとの心筋内興奮の伝播速度の差を示すデータを 生成する。
この発明の他の局面に従うと、 心室遅延電位の心臓磁界診断装置は、 磁界分布 計測装置と、 演算装置と、 表示装置とを備える。 磁界分布計測装置は、 被験者の 胸部上の複数の座標における非接触磁気計測により複数の座標に対応する複数の 磁界時系列データを取得し、 かつ複数の磁界時系列データに基づいて胸部上の磁 界分布時系列データを生成する。 演算装置は、 生成された磁界分布時系列データ に基づいて被験者の心筋内の 3次元電気的活動状態を示すデータを生成する。 表 示装置は、 演算装置により生成されたデータに基づいて、 被験者の心臓の洞房結 節からヒス束一プ キンェ繊維系への刺激伝播経路を示す画像と、 心筋内の 3次 元電気的活動状態を示す画像とを重ね合わせて表示する表示処理を行なう。 これ により、 心筋内興奮不均一伝播による心室遅延電位の局在を 3次元的に同定する ことができる。
好ましくは、 演算装置によって生成される心筋内の 3次元電気的活動状態を示 すデータは、 心筋内興奮の伝播速度を示すデータである。
さらに好ましくは、 演算装置は、 心筋内興奮伝播路部位を 1つまたは複数の微 小電流素片を用いて近似し、 微小電流素片の位置の時間的変化を算出することに より、 心筋内興奮の伝播速度を示すデータを生成する。
さらに好ましくは、 演算装置は、 算出された微小電流素片の位置の時間的変化 に基づいて、 興奮伝播路ごとの心筋内興奮の伝播速度の差を示すデータを生成す る。
この発明のさらに他の局面に従うと、 心筋内興奮不均一伝播部位の同定方法は、 被験者の胸部上の複数の座標における非接触磁気計測により取得された複数の座 標に対応する複数の磁界時系列データに基づいて生成された胸部上の磁界分布時 系列データに基づいて、 被験者の心筋内の 3次元電気的活動状態を示す第 1のデ ータを生成するステップと、 別途供給された被験者の胸部断層画像データを加工 して解剖学的画像を示す第 2のデータを生成するステップと、 第 1のデータが示 す心筋内の 3次元電気的活動状態の画像を、 第 2のデータが示す解剖学的画像に 重ね合わせて表示することにより、 心筋内興奮不均一伝播による心室遅延電位の 局在を 3次元的に同定することを可能にするステップとを備える。
好ましくは、 第 1のデータが示す心筋内の 3次元電気活動状態は、 心筋内興奮 の伝播速度である。
さらに好ましくは、 第 1のデータを生成するステップは、 心筋内興奮伝播路部 位を 1つまたは複数の微小電流素片を用いて近似し、 微小電流素片の位置の時間 的変化を算出することにより、 心筋内興奮の伝播速度を示すデータを生成する。 さらに好ましくは、 第 1のデータを生成するステップは、 算出された微小電流 素片の位置の時間的変化に基づいて、 興奮伝播路ごとの伝播速度の差を示すデー タを生成する。
この発明のさらに他の局面に従うと、 心筋内興奮不均一伝播部位の同定方法は、 被験者の胸部上の複数の座標における非接触磁気計測により取得された複数の座 標に対応する複数の磁界時系列データに基づいて生成された胸部上の磁界分布時 系列データに基づいて、 被験者の心筋内の 3次元電気的活動状態を示すデータを 生成するステップと、 生成されたデータに基づいて、 被験者の心臓の洞房結節か らヒス束一プルキンェ繊維系への刺激伝播経路を示す画像と、 心筋内の 3次元電 気的活動状態を示す画像とを重ね合わせて表示することにより、 心筋内興奮不均 一伝播による心室遅延電位の局在を 3次元的に同定することを可能にするステッ プとを備える。
好ましくは、 データが示す心筋内の 3次元電気的活動状態は、 心筋内興奮の伝 播速度である。
さらに好ましくは、 データを生成するステップは、 -心筋内の興奮伝播路部位を 1つまたは複数の微小電流素片を用いて近似し、 微小電流素片の位置の時間的変 化を算出することにより、 心筋内興奮の伝播速度を示すデータを生成する。
さらに好ましくは、 データを生成するステップは、 算出された微小電流素片の 位置の時間的変化に基づいて、 興奮伝播路ごとの心筋内興奮の伝播速度の差を示 すデータを生成する。
したがって、 この発明によれば、 非侵襲的な磁気計測により得た心筋内の 3次 元電気的活動状態を示す画像を、 他の医用診断装置で撮影された同一被験者の胸 部断層画像データを加工して得られた解剖学的画像上に重ね合わせて表示するこ とにより、 心室頻拍の原因となる心室遅延電位の発生部位、 すなわち心筋内の興 奮不均一伝播部位の局在を医師が安全、 迅速かつ高精度に同定することが可能と なる。
さらに、 この発明によれば、 非侵襲的な磁気計測により得た心筋内の 3次元電 気的活動状態を示す画像を、 同一被験者の心臓の洞房結節からヒス束一プルキン ェ繊維系への刺激伝播経路を示す画像上に重ね合わせて表示することにより、 心 室頻拍の原因となる心室遅延電位の発生部位、 すなわち心筋内の興奮不均一伝播 部位の局在を医師が安全、 迅速かつ高精度に同定することが可能となる。 図面の簡単な説明
図 1は、 この発明の実施の形態 1による心室遅延電位の心臓磁界診断装置の構 成を概略的に示す機能プロック図である。
図 2は、 図 1に示した心臓磁界診断装置の構成をより具体化して示したプロッ ク図である。
図 3は、 図 2に示した磁界分布計測装置の詳細な構成を示すプロック図である。 図 4は、 被験者の胸部前面上における複数の磁界センサの配列例を示す図であ る。
図 5は、 図 4の複数のセンサのそれぞれから得られた磁界時系列データを示す 図である。 図 6は、 表示装置 4に表示される 3次元的解剖学的画像の例を示す図である。 図 7は、 この発明の実施の形態 1による心臓磁界診断装置の動作を説明するフ ロー図である。
図 8は、 この発明の実施の形態 2による心室遅延電位の心臓磁界診断装置の構 成を概略的に示す機能ブロック図である。
図 9は、 図 8に示したこの発明の実施の形態 2による心臓磁界診断装置の構成 をより具体化して示したプロック図である。
図 1 O Aおよび 1 0 Bは、 心臓における正常刺激伝播経路および心電図波形を 模式的に示す図である。
図 1 1は、 表示装置 6によって実際に表示された正常刺激伝播経路および興奮 伝播路の画像を示す図である。
図 1 2は、 実施の形態 2による心臓磁界診断装置の動作の前半を説明するフロ 一図である。
図 1 3は、 実施の形態 2による心臓磁界診断装置の動作の後半を説明するフ口 一図である。 発明を実施するための最良の形態
以下、 この発明の実施の形態を図面を参照して詳しく説明する。 なお、 図中同 一または相当部分には同一符号を付してその説明は繰返さない。
[実施の形態 1 ]
図 1は、 この発明の実施の形態 1による、 心室遅延電位の心臓磁界診断装置の 構成を概略的に示す機能プロック図である。
図 1を参照して、 磁界分布計測装置 1は、 たとえば、 後で詳述する S QU I D 磁束計のような計測手段を用いて、 被験者の胸部上の複数の座標における非接触 磁気計測を行ない、 複数の座標に対応する複数の磁界時系列データを取得する。 そして、 取得した複数の磁界時系列データに基づいて、 胸部上の、 すなわち心臓 磁場の磁界分布時系列データを生成して出力する。
磁界分布計測装置 1によって計測された心臓の磁界分布時系列データに基づい て、 第 1の演算装置 2は、 後述する公知の計算手法を用いて、 心筋内の 3次元電 気的活動状態を示す第 1のデータを生成して出力する。
より特定的には、 第 1の演算装置 2は、 心筋内興奮の伝播速度を示すデータを 生成する。 この伝播速度は、 後述するように、 心筋内の興奮伝播路部位を 1つま たは複数の微小電流素片すなわち電流ダイポールを用いて近似し、 電流ダイポー ルの位置の時間的変化を算出することにより得られる。 得られた電流ダイポール の時間的変化に基づいて、 興奮伝播路ごとの伝播速度のデータが得られる。 この 結果、 興窗の不均一伝播により発生する心室遅延電位の局在を特定することがで きる。
一方、 核磁気共鳴 (MR I ) 法、 X線 C T法、 心エコー図法、 心筋 S P E C T 法などの断層診断装置によって別途得られた同一被験者の胸部の断層画像データ (複数枚の断層画像データを含む) 1 第 2の演算装置 3に与えられ、 第 2の演 算装置 3は、 これらの断層画像データを加工して 3次元的な解剖学的画像を示す 第 2のデータを生成して出力する。
ここで、 上述の第 1のデータを画像で表現した場合、 第 1の演算装置 2で得ら れた電気的活動状態が心筋内興奮の伝播速度であるときには、 画面上に何らかの 形で表示される興奮伝播路ごとの心筋内興奮の伝播速度の不均一に着目すること によって、 心室遅延電位の発生部位の 3次元的な同定が可能となる。
表示装置 4は、 第 1の演算装置によつて生成された第 1のデータが示す心筋内 の 3次元電気的活動 (たとえば興奮伝播路ごとの伝播速度) を示す画像を、 第 2 の演算装置 3によって生成された第 2のデータが示す被験者の胸部の 3次元解剖 学的画像に重ね合せて表示する。 この結果、 解剖学的画像上において心筋内の心 室遅延電位の局在を 3次元的に同定することができる。
次に、 図 2は、 図 1に示したこの発明の実施の形態 1による心室遅延電位の心 臓磁界診断装置の構成をより具体化して示したブロック図である。
図 2を参照して、 磁界分布計測装置 1は、 磁気シールドルーム (Magnetic
Shield Room :以下、 M S R) 1 1内において、 被験者 1 2の胸部上において非 接触の磁気計測を行なうように設置された、 S Q U I D磁束計を内蔵するデュヮ 一 1 3と、 磁界分布データの演算部 1 4とを備えている。
デュワー 1 3内には液体ヘリゥムが満たされて超電導が生じる低温系の環境が 形成されており、 その中に、 超電導体からなる検出コイルで構成された S Q U I D磁束計が収納されている。
図 3は、 図 2に示した M S R 1 1内のデュワー 1 3内の超低温系に設置される S Q U I D磁束計 1 5、 および常温系の M S R 1 1内に設置される演算部 1 4を より詳細に示すブロック図である。
なお、 図 3に示した構成は、 被験者の胸部上の 1点の磁界データを計測するた めの 1チャネル分の構成である。 後述するように、 この発明では、 被験者の胸部 上において複数の座標における磁場の多点同時計測を行なう。 したがって、 図 2 の M S R 1 1内には、 図 3に示す 1チャネル分の構成が、 計測に必要な複数チヤ ネル分設けられていることになる。
以下に、 図 3を参照して、 1チャネル分の S Q U I D磁束計による磁界データ の生成について説明する。
まず、 S Q U I D磁束計 1 5は、 被験者の胸部表面から発生する磁場を検出す るための、 超電導体からなるピックアップコイル 1 6を備える。 ピックアップコ ィル 1 6が磁場を捉えると電流が流れ、 この電流はコイル 1 7に引き込まれて N bシールド 2 0内に磁場を生じさせる。 '
この結果、 この磁場に対して線形に変化する磁場が超電導ループ 1 8内に形成 され、 この超電導ループ 1 8の両端の電圧を、 常温系の M S R 1 1内に設置され た演算部 1 4の増幅器によって検出し、 演算部 1 4は、 検出電圧に変化が生じな いよう、 N bシールド 2 0内のモジュレーションコイル 1 9に流れる電流を調整 する。
すなわち、 この S Q U I Dによる生体の磁場の検出は、 発生する磁場を直接計 測するものではなく、 いわゆるゼロ位法を用いて、 超電導リング 1 8内の磁場が 常に一定値となるようにフィードバックをかける (具体的にはモジュレーション コィノレ 1 9に流れる電流を調整してモジュレーションコイル 1 9に発生する磁場 を制御することにより、 超電導ループ 1 8内に常に一定の磁場が生じるようにす る) ことにより、 ピックアップコイル 1 6で検出される磁場を、 演算部 1 4が電 気信号に変換して出力するものである。 このようなフィードバックの手法は通常、 フラックスロックトループ (flux locked loop:以下、 F L L ) と呼ばれる周知 の技術である。
このような S Q U I D磁束計 1 5およびその演算部 1 4は周知の技術であるた め、 これ以上の説明を省略する。
前述のように、 図 3に示した構成は、 1チャネル分の磁界データの計測に必要 な構成であり、 被験者の胸部前面上における 1点で計測された磁場の磁界時系列 データを示す電気信号を出力するものである。
この発明では、 前述のように被験者の胸部前面に多くのセンサ (S Q U I D磁 束計) を配列し、 胸部前面上の磁場を多点測定しょうとするものである。 磁場は 時間的に変化するものであり、 たとえば 1心拍に相当する期間中においても、 測 定場所が異なれば磁場は場所に応じた異なる変化をする。
図 4は、 被験者の胸部前面上における複数のセンサ (各々が 1チャネルの S Q U I D磁束計) の配置の一例を示す図である。 また、 図 5は、 図 4の複数のセン サのそれぞれの位置に対応してそれぞれのセンサから得られた、 1心拍期間にお ける磁場の変化を示す 1群の磁界時系列データを示している。
図 2に示す磁界分布計測装置 1から出力されるデータは、 図 5に示すような複 数の測定位置 (座標) に対応する 1群の磁界時系列データであるが、 ある特定の 時刻に着目してこれらの 1群の磁界時系列データを捉えると、 測定対象である胸 部前面上におけるある時刻の磁場の強さの分布状態を示す実際の山谷の様子をグ ラフ (図) で表現するのは困難なので、 天気図の気圧のように等高線図で表現し ている磁界分布データが得られる。 この意味からも、 磁界分布計測装置 1から出 力されるデータは、 胸部前面上の磁界分布時系列データとして捉えることができ る。
磁界分布計測装置 1から出力されるこのような 1群の磁界時系列データ、 すな わち磁界分布時系列データは、 図 2の第 1の演算装置 2に与えられる。 この第 1 の演算装置 2は、 磁界分布データに基づいて胸部内の電気的活動、 たとえば心筋 内興奮の伝播速度を求めるように機能する。
第 1の演算装置 2が、 磁界分布計測装置 1によつて生成された磁界分布時系列 データから、 測定対象となる人体内の部位 (この発明では心臓) における 3次元 的な電気的活動の情報、 たとえば心筋内興奮の伝播速度を求める手法について説 明する。
第 1の演算装置 2は、 磁界分布計測装置 1によって生成された磁界分布時系列 データを、 1つまたは複数の微小電流素片 (すなわち電流ダイポール) を用いて 近似する。 すなわち、 計測された心磁界分布中に上記の微小電流素片をばらまき、 周知の解析方法により、 それぞれの測定点に対応する各微小電流素片のパラメ一 タ (位置情報および電流ベクトル) を決定する。 このような電流ダイポールを用 いた解析方法は、 たとえば特開平 5— 1 5 7 7 3 5号公報に詳細に開示されてい るように、 周知の手法であり、 ここではその詳細な説明は省略する。
上述の解析手法を用いて、 ある時刻における心磁界分布内の各微小電流素片の パラメータ (すなわち、 その位置および電流の方向) が決定されれば、 その経時 的な変化を観測することにより、 電流の伝播速度に関する情報を得ることができ る。
第 1の演算装置 2は、 まず、 このような微小電流素片の位置および電流の方向 の経時的な変化を示すデータを生成し、 表示装置 4の一方入力に与える。 また、 第 1の演算装置 2は、 上述の経時的な変化に基づいて心筋内興奮の伝播速度を計 算し、 その結果を数値データとして生成してもよく、 さらには伝播速度の速さを 矢印の長さなどで可視表示する画像データとして生成してもよい。
このようにして、 第 1の演算装置 2は、 磁界分布計測装置 1によって生成され た磁界分布データから解析対象である心筋内興奮の伝播速度を示す種々の形態の 時系列データを生成し、 表示装置 4の一方入力に与える。
一方、 図 2に示す第 2の演算装置 3には、 図示しない他の断層診断装置、 たと えば MR I法、 X線 C T法、 心エコー図法、 心筋 S P E C T法などを用いて予め、 心電図同期トリガをかけて撮影された同一被験者の胸部の複数のスライス画像 (たとえば 5ミリピッチで十数枚程度) の画像データが入力される。
第 2の演算装置 3は、 これらの複数のスライス画像のデータを加工 (補間) し て所定視点から 3次元透視変換を施し、 解剖学的画像を示す第 2のデータを生成 する。 このように複数のスライス画像から 3次元的な解剖学的画像を形成する技 術は周知であり、 たとえば特開平 1 1— 1 2 8 2 2 4号公報、 国際公開 W〇 9 8 / 1 5 2 2 6号公報などに詳細に開示されている。 したがって、 その詳細はここ では説明しない。
このようにして、 第 2の演算装置 3は、 同一被験者の心臓付近の胸部の 3次元 的な解剖学的画像を示す第 2のデータを生成し、 表示装置 4の他方入力に与える。 図 2の表示装置 4は、 第 2の演算装置 3からの第 2のデータに基づいて形成し た被験者の胸部の 3次元的な解剖学的画像上に、 第 1の演算装置 2からの第 1の データに基づいて形成した心筋内の微小電流素片の位置および電流の方向の経時 的な変化を示す画像を重ね合わせて表示する。
図 6は、 表示装置 ·4によって表示される 3次元的な解剖学的画像に重ね合わさ れた、 ある時刻における心磁界分布内の心筋内興奮電流を表わす微小電流素片の 位置および方向、 ならびにその時刻に至るまでの興奮伝播路を表示した態様を示 す図である。
図 6は、 たとえば被験者の胸部を 5ミリピッチでスライスして得た 5枚程度の 断層画像を補間処理した 3次元的画像である。 実際の表示画像の奥行き感を図面 上で表現することは困難ではあるが、 複数のスラィス画像の合成により形成され た奥行き感のある立体的な解剖学的画像を示しているものとする。
図 6において、 Αで示す矢印は、 その時刻における心筋内興奮電流を表わす微 小電流素片の位置および方向を示し、 矢印の長さは電流の大きさを示している。 また、 B, C , Dで示す太線は、 当該時刻に至るまでに、 微小電流素片によって 心磁場を近似して得られた心筋内の興奮伝播路の軌跡を示しており、 具体的には、 微小電流素片の位置の変化を経時的につなぎ合わせたものである。
したがって、 心筋内興奮の伝播速度の遅い部位では、 微小電流素片のそのとき どきの位置からなる軌跡は密となり、 逆に伝播速度の速レ、部位では、 微小電流素 片のそのときどきの位置からなる軌跡は粗となる。 したがって、 画面上に表示さ れた興奮伝播路を示す太線 B, C , Dの各々を構成する微小電流素片位置の粗密 によって、 それぞれの心筋内興奮の伝播速度を視覚的に認識することが可能とな る。
また、 前述のように、 第 1の演算装置 2によってそれぞれの心筋内興奮の伝播 速度そのものを算出して数ィ直として表示装置 4上に表示してもよい。
このように、 深さのある 3次元的な解剖学的画像上に、 心筋内興奮の伝播速度 を興奮伝播路ごとに表示することにより、 医師は心筋内の心室遅延電位の発生部 位、 すなわち心筋内興奮の不均一伝播部位の解剖学的画像上における相対的な位 置関係を的確に把握することができる。
図 7は、 以上の実施の形態 1による心臓磁界診断装置によって実行される心筋 内興奮の不均一伝播部位の同定方法を示すフロー図である。
図 7を参照すると、 まずステップ S 1において、 磁界分布計測装置 1により、 人体胸部上の複数の座標において非接触磁気計測を行ない、 複数の時系列データ を生成し、 必要であれば記録する。
次に、 ステップ S 2において、 予め心電図同期トリガをかけて撮影した複数の MR I画像に対して、 第 2の演算装置 3により補間演算 (所定視点からの 3次元 透視変換) を施し、 3次元の解剖学的画像を得る。
次に、 ステップ S 3において、 解析の初期時刻を t s、 解析の終了時刻を t e、 解析の時間間隔を Δ tと定める。
次に、 ステップ S 4において、 解析時刻 tに初期時刻 t sを代入して解析を開 始する。 そして、 ステップ S 5において、 解析時刻 tが終了時刻 t eに達するま で、 以下のループ状の処理を繰り返して行なう。
すなわち、 ステップ S 6において、 第 1の演算装置 2により、 指定解析時刻 t における心臓磁界分布データを 1つまたは複数の微小電流素片で近似して心筋内 の興奮電流の位置、 方向、 大きさに関するデータを得る。
次に、 ステップ 7において、 時間 Δ tだけ先行する前回のループのステップ
S 6において得られた、 時刻 t— Δ tにおける心筋内興奮電流の位置、 方向、 大 きさに関するデータと、 今回ステップ S 6において得られた時刻 tにおけるデー タとを対比して、 心筋内興奮の伝播速度を算出する。
次に、 ステップ S 8において、 表示装置 4により、 心筋内興奮の伝播速度を示 すデータを、 所定視点から 3次元透視変換を施した解剖学的画像に重ね合わせて 表示する。
次に、 ステップ S 9において解析時刻 tに Δ tを加算する。
これらのステップ S 6〜S 9の処理が、 解析時刻 tが終了時刻 t eに達したこ とがステップ S 5で判断されるまで繰返され、 終了時刻 t eに達すると、 解剖学 的画像に重ね合わされた心筋内興奮の伝播速度を表わすデータの表示を終了する。 以上のように、 この発明の実施の形態 1によれば、 S Q U I D磁束計を用いた 被験者の胸部上の非侵襲的な磁気計測によって得られた心筋内興奮の伝播速度を 示す画像を 3次元的解剖学的画像に重ねて表示することにより、 心室頻拍の原因 となる心筋内の心室遅延電位の発生部位、 すなわち心筋内興奮の不均一伝播部位 の解剖学的位置関係、 大きさ、 形状を医師が 3次元的に同定することが可能とな る。
特に、 高周波によるカテーテル焼灼法による治療を行なう場合には、 力テーテ ルを用いて行なう電気生理学的検査の対象領域を事前に著しく絞り込むことが可 能となり、 X線透視を実施しながら行なう検査時間を著しく短縮することができ る。 この結果、 医師および放射線技師の年間 X線被爆線量を著しく軽減すること ができる。
また、 この実施の形態 1による心筋内興奮の不均一伝播部位の同定方法を、 高 周波によるカテーテル焼灼法と併用することにより、 低侵襲性の内科的手術で心 室頻拍を治療することができ、 患者の負担をさらに軽減することができる。
[実施の形態 2 ]
上述の実施の形態 1では、 解剖学的画像を形成するために、 被験者の多数の断 層像を得る必要があり、 MR I法、 X線 C T法等による検査を事前に行なってい た。 このため、 検査回数が多くなり、 患者の負担となるとともに、 検査と直結し た治療を行なうことができなかった。
この発明の実施の形態 2は、 解剖学的画像の形成を不要とすることにより、 検 査回数を減らし、 診断と検査とを直結して実施することができる心室遅延電位の 心臓磁界診断装置および心筋内興奮の不均一伝播部位の同定方法を提供するもの である。
図 8は、 この発明の実施の形態 2による心室遅延電位の心臓磁界診断装置の構 成を概略的に示す機能プロック図である。
図 8を参照して、 磁界分布計測装置 1については、 実施の形態 1に関連して既 に説明したので、 ここでは繰返して説明しない。
磁界分布計測装置 1によつて生成された磁界分布時系列データは、 演算装置 5 に与えられる。 演算装置 5は、 与えられた磁界分布時系列データに基づいて、 先 に述べた電流ダイポールを用いる解析手法を用いて、 心筋内の 3次元電気的活動 状態、 たとえば心筋内の興奮電流に関するデータを生成する。 そして、 演算装置 5は、 生成された興奮電流に関するデータに基づいて、 心電図の P波から Q R S 群に相当する期間の心室の心筋内の興奮 (刺激) 伝播経路を示すデータと、 心筋 内興奮の伝播速度を示すデータとを、 重ね合わせて発生し、 表示装置 6に与える。 表示装置 6は、 演算装置 5によって生成されたデータが示す心筋内興奮の伝播 速度を示す画像を、 同じく演算装置 5によって求められた心電図の P波から Q R S群の期間に相当する興奮伝播経路の 3次元的画像に重ね合わせて表示する。 こ の結果、 実施の形態 1のような解剖学的画像を用いなくても、 心筋内興奮の不均 一伝播部位の位置関係を 3次元的に同定することが可能となる。
次に、 図 9は、 図 8に示したこの発明の実施の形態 2による心室遅延電位の心 臓磁界診断装置の構成をより具体化して示したブロック図である。
図 9を参照して、 磁界分布計測装置 1は、 図 2および図 3に関連して説明した 磁界分布計測装置 1と同じなので、 ここでは説明を省略する。
磁界分布計測装置 1から出力された磁界分布時系列データは、 図 9の演算装置 5に与えられ、 この演算装置 5は、 前述の電流ダイポールを用いた解析方法によ り、 磁界分布時系列データから、 心筋内の興奮電流に関するデータを生成する。 ここで、 被験者 1 2の心電図を記録する心電計 2 1が設けられており、 これに より測定された被験者 1 2の心電図波形データは演算装置 5に与えられる。
ここで、 心電図の波形と、 生成された心筋内興奮電流に関するデータとを対応 づければ、 心電図と、 心臓において発生している事象との対応づけも可能となる。 ここで、 図 1 0 Aは、 心臓における正常な刺激伝播経路を模式的に示す図であ り、 図 1 0 Bは 1心拍分の心電図波形を示している。
図 1 O Aおよび 1 0 Bを参照して、 心臓の洞房結節は心拍を決定するペースメ 一力としての機能を有し、 一定間隔 (心電図の P波のタイミング) で発火してパ ルスを発生する。 このパルスは、 決められた刺激伝播経路を介して房室結節に伝 わり、 ここで一定時間遅延後、 ヒス (H I S ) 束からプ^/キンェ繊維系を介して 下方の心室にパルスを伝達し、 一気に心筋の収縮が生じる。 このヒス束からプル キンェ繊維系の刺激の伝播は、 心電図の Q R S群の期間に相当する。
したがって、 この P波から Q R S群の期間に関連づけた心臓磁界、 すなわち心 筋内興奮電流の解析により、 演算装置 5は、 図 1 0 Aにおいて示すような正常ノレ ートとしての刺激伝播経路を示す画像データを生成する。
このような図 1 0 Aに示す刺激伝播経路の画像は、 実施の形態 1の解剖学的画 像の代わりにテンプレート表示として使用することができる。 すなわち、 実施の 形態 1のような 3次元の解剖学的画像がなくても、 この図 1 0 Aに示す正常ルー トの刺激伝播経路が表示されれば、 その周辺の心室に生じた、 心室遅延電位部位、 すなわち心筋内興奮の不均一伝播部位は、 医師であれば容易に解剖学的な対応づ けが可能であり、 その位置、 大きさ、 形状を同定することができる。
図 9の演算装置 5は、 このようなテンプレートとしての刺激伝播経路の表示に 重ね合わせて、 生成された心筋内興奮の伝播速度を示すデータを生成する。 前述 のように、 心筋内興奮の伝播速度を表わす画像に着目することによって、 心室に おける心筋內興奮の不均一伝播部位または心室遅延電位発生部位を見出すことが 可能である。 そのような画像データが上述のテンプレートの画像データに合成さ れて、 表示装置 6に与えられる。
図 9に示す表示装置 6は、 演算装置 5からのデータに基づいて、 テンプレート としての正常な刺激伝播経路に重ね合わせて、 心筋内興奮の伝播速度を示す画像 を表示する。 これにより、 医師は、 心室筋においてリエントリ回路が形成されや すい状態となっているか否かの判断を容易に行なうことができる。
図 1 1は、 表示装置 6によって実際に表示される画面の一例であり、 テンプレ ートとしての正常刺激伝播経路に重ね合わせて、 興奮伝播路ごとの心筋内興奮の 伝播速度を示す画像が表示されている。
図 1 1において、 2つの矢印はそれぞれ微小電流素片 (電流ダイポール) によ つて近似された興奮伝播路の位置を表わしており、 特に各矢印の長さは興奮伝播 速度の速さを表わしている。
医師であれば、 図 1 1に示すテンプレートとしての正常刺激伝播経路に対する それぞれの興奮伝播路の相対的位置関係に基づいて、 容易に解剖学的な対応づけ が可能である。 また、 それぞれの興奮伝播路間の伝播速度の差異に基づいて、 心 室における心室遅延電位発生部位、 すなわち心筋内興奮の不均一伝播部位の位置、 大きさ、 形状を同定することができる。
図 1 2および図 1 3は、 以上の実施の形態 2による心室遅延電位の診断装置に よって実行された心筋内興奮の不均一伝播部位の同定方法を示すフロー図である。 まず、 図 1 2を参照して、 ステップ S 1 1において、 磁界分布計測装置 1を用 いて人体胸部上の複数の座標において非接触磁気計測を行ない、 複数の磁界時系 列データを生成し記録する。
次に、 ステップ S 1 2において、 解析の初期時間を、 心電図の P波開始時刻 t と定め、 解析終了時刻を心電図の Q R S群終了時刻 t eQRSと定め、 解析の時間 間隔を Δ Τと定める。
次に、 ステップ S 1 3において、 解析時刻 tに、 P波の開始時刻である t sPを 代入する。
そして、 ステップ S 1 4において、 解析時間が終了時刻 t eQRSに到達するまで、 以下のステップ S 1 5〜1 7の処理が繰返される。
すなわち、 ステップ S 1 5において、 演算装置 5により、 指定解析時刻 tにお ける心臓磁界分布データを 1つまたは複数の微小電流素片で近似して心筋内の興 奮電流の位置、 方向、 大きさに関するデータを得る。
次に、 ステップ S 1 6において、 ステップ S 1 5で得た心筋内興奮電流のデー タに所定視点から 3次元透視変換を施した画像を表示する。
次に、 ステップ S 1 7において、 解析時刻 tに Δ tを加算し、 ステップ S 1 4 に戻って終了時刻 t eQRSに達したか否かを判定する。 ここで終了時刻 t eQRSに達し たことが判定されると、 心電図の波形のうち P波から Q R S群に相当する期間に 対応づけて図 1 O Aに示す正常ルートである刺激伝播経路を示す画像データが得 られたことになる。
次に、 図 1 3のステップ S 1 8に進み、 角科斤の初期時刻を t sと定め、 角军析の 終了時刻と t eと定め、 解析時間間隔を Δ tと定める。
次に、 ステップ S 1 9において、 解析時刻 tに初期時刻 t sを代入する。
次に、 ステップ S 2 0において、 解析時刻 tが終了時刻 t eに到達したことが 判断されるまで、 以下のステップ S 2 1〜S 2 4がループ状に実行される。 すなわち、 ステップ S 2 1において、 演算装置 5により、 指定解析時刻 tにお ける心臓磁界分布データを 1つまたは複数の微小電流素片で近似して心筋内の興 奮電流の位置、 方向、 大きさに関するデータを得る。
次に、 ステップ S 2 2において、 時間 Δ tだけ先行する前回のループのステツ プ S 2 1において得られた、 時刻 t - Δ tにおける心筋内興奮電流の位置、 方向 大きさに関するデータと、 今回ステップ S 2 1で得られた時刻 tにおけるデータ とを対比して、 心筋内興奮の伝播速度を算出する。
次に、 ステップ S 2 3において、 表示装置 6により、 心筋内興奮の伝播速度を 表わすデータを、 所定視点から 3次元透視変換を施した正常刺激伝播回路の画像 に重ね合わせて表示する。
さらにステップ S 2 4において、 解析時刻 tに Δ tを加算し、 ステップ S 2 0 に戻って終了時刻 t eに達したか否かを判定する。 これにより、 心筋内興奮の伝 播速度を示すデータが、 図 1 2のフロー図で得られた刺激伝播経路 (図 1 0 A) の画像に重ね合わせて表示されることになる。
以上のように、 この発明の実施の形態 2によれば、 S QU I D磁束計を用いた 被験者の胸部上の非侵襲的な磁気計測によって得られた心筋内興奮の伝播速度を 示す画像を、 テンプレートとしての正常刺激伝播経路に重ねて表示することによ り、 他の解剖学的画像と重ね合せることなく、 心室頻拍の原因となる心筋内の心 室遅延電位の発生部位、 すなわち心筋内興奮の不均一伝播部位の刺激伝播経路に 対する相対的な位置関係、 大きさ、 形状を医師が 3次元的に同定することが可能 となる。 したがって、 この実施の形態 2では、 解剖学的画像を得るための事前の 検査を省略することができる。
特に、 高周波によるカテーテル焼灼法による治療を行なう場合には、 力テーテ ルを用いて行なう電気生理学的検査の対象領域を事前に著しく絞り込むことが可 能となり、 X線透視を実施しながら行なう検査時間を著しく短縮することができ る。 この結果、 医師および放射線技師の年間 X線被爆線量を著しく軽減すること ができる。
さらに、 この実施の形態 2による心筋内興奮の不均一伝播部位の同定方法を、 高周波によるカテーテル焼灼法と併用することにより、 低侵襲性の内科的手術で 心室頻拍を治療することができ、 患者の負担をさらに軽減することができる。 なお、 この発明の実施の形態 2では、 テンプレート表示としての正常刺激伝播 経路の画像データを作成するために電流ダイポールを用いた興奮伝播路の近似を 行なっていたが、 このような正常刺激伝播経路の画像は、 磁界分布計測装置 1に よって生成された磁界分布時系列データから、 演算装置 5が心筋内の電流密度分 布を求めることによって得ることができる。 このような磁界分布時系列データか ら、 心筋内の電流密度分布を求める手法としては、 以下の手法が挙げられる。 す なわち、 S AM (Synthetic Aperture Magnetometry) あるいは MU S I C (Multiple Signal Classification) などの種々の手法を用いることができる。
S AMや MU S I Cは、 これまで、 レーダゃソナ一などの分野で研究開発が行な われてきたものであり、 それぞれの手法は周知であるが、 未だ心臓磁界の診断に 応用されたことはない。
S AMや MU S I Cの技術そのものは周知であり、 またこれらの手法を用いて 電流密度分布を求めるアルゴリズムは極めて複雑なため、 ここではその詳細な説 明を省略するが、 S AMについては、 1 9 9 9年発行の Proceedings of the 11th International Conference on Biomagnetism (D "Reent Advances in Biomagnetisra" (Tohoku University Press発行) の第 3 0 2頁力 ら第 3 0 5頁 の Robinson SEおよび Vrba J による "Functional Neuroimaging by
Synthetic Aperture Magnetometry (SAM) " に詳細に説明されている。 MU S I Cについては、 平成 9年 1月 2 5日発行の Μ宏および栗城真也による 「脳磁気 科学一 S Q U I D計測と医学応用一」 (オーム社) の第 1 1 7頁から第 1 1 9頁 に詳細に説明されている。
以上のように、 この発明によれば、 患者の胸部上における非侵襲磁気計測によ つて得られた心筋内興奮の伝播速度を、 3次元的な解剖学的画像上で可視表示す ることができるので、 心室遅延電位の発生部位、 すなわち心筋内興奮の不均一伝 播部位の位置、 大きさ、 形状を 3次元的に同定することができる。 したがって、 心室頻拍の原因となる心筋内興奮の不均一伝播部位または心室遅延電位発生部位 を非侵襲で診断できるので、 患者に負担を強いることなく、 迅速かつ安全な検査 を行なうことができる。 特に、 高周波によるカテーテル焼灼法による治療を行なう場合には、 電気生理 学的検査の対象領域を事前に著しく絞り込むことができ、 医師および放射線技師 の X線被爆量を著しく低減することができるという効果を奏する。
この発明のさらに他の局面によると、 同一被験者の洞房結節からヒス束一プノレ キンェ繊維系への正常刺激伝播経路に、 心筋内興奮の伝播速度を重ね合わせて 3 次元表示することにより、 解剖学的画像を得ることなく、 心筋內興奮の不均一伝 播部位の位置、 すなわち心室遅延電位の局在や広がりを 3次元的に同定すること ができる。 また、 解剖学的画像を得るための検査を省略でき、 より経済効率に優 れた診断を行なうことができるという効果を奏する。 産業上の利用可能性
以上のように、 この発明に係る心室遅延電位の心臓磁界診断装置および心筋內 興奮不均一伝播部位の同定方法によれば、 心筋内興奮の不均一伝播部位の位置、 大きさ、 形状を 3次元的に同定することができるので、 心室頻拍の原因となる心 筋内興奮の不均一伝播部位または心室遅延電位発生部位の非侵襲の診断に有用で ある。

Claims

請求の範囲
1 . 心室遅延電位の心臓磁界診断装置であって、
被験者の胸部上の複数の座標における非接触磁気計測により前記複数の座標に 対応する複数の磁界時系列データを取得し、 かつ前記複数の磁界時系列データに 基づいて前記胸部上の磁界分布時系列データを生成する磁界分布計測装置 ( 1 ) と、
' 前記生成された磁界分布時系列データに基づいて前記被験者の心筋内の 3次元 電気的活動状態を示すデータを生成する第 1の演算装置 (2 ) と、
別途供給された前記被験者の胸部断層画像データを加工して解剖学的画像を示 すデータを生成する第 2の演算装置 (3 ) と、
前記第 1の演算装置により生成されたデータが示す前記心筋内の 3次元電気的 活動状態の画像を、 前記第 2の演算装置により生成されたデータが示す前記解剖 学的画像に重ね合わせて表示する表示処理を行なう表示装置 (4 ) とを備え、 こ れにより、 心筋内興奮不均一伝播による心室遅延電位の局在を 3次元的に同定す ることができる、 心臓磁界診断装置。
2 . 前記第 1の演算装置によって生成される前記心筋内の 3次元電気的活動状態 を示すデータは、 心筋內興奮の伝播速度を示すデータである、 請求項 1に記載の 心臓磁界診断装置。
3 . 前記第 1の演算装置は、 心筋内の興奮伝播路部位を 1つまたは複数の微小電 流素片を用いて近似し、 前記微小電流素片の位置の時間的変化を算出することに より、 心筋内興奮の伝播速度を示すデータを生成する、 請求項 2に記載の心臓磁
4 . 前記第 1の演算装置は、 前記算出された微小電流素片の位置の時間的変化に 基づいて、 興奮伝播路ごとの心筋内興奮の伝播速度の差を示すデータを生成する. 請求項 3に記載の心臓磁界診断装置。
5 . 心室遅延電位の心臓磁界診断装置であって、
被験者の胸部上の複数の座標における非接触磁気計測により前記複数の座標に 対応する複数の磁界時系列データを取得し、 かつ前記複数の磁界時系列データに 基づいて前記胸部上の磁界分布時系列データを生成する磁界分布計測装置 ( 1 ) と、
前記生成された磁界分布時系列データに基づいて前記被験者の心筋内の 3次元 電気的活動状態を示すデータを生成する演算装置 (5 ) と、
前記演算装置により生成されたデータに基づいて、 前記被験者の心臓の洞房結 節からヒス束一プルキンェ繊維系への刺激伝播経路を示す画像と、 心筋内の 3次 元電気的活動状態を示す画像とを重ね合わせて表示する表示処理を行なう表示装 置 (6 ) とを備え、 これにより、 心筋内興奮不均一伝播による心室遅延電位の局 在を 3次元的に同定することができる、 心臓磁界診断装置。
6 . 前記演算装置によって生成される前記心筋内の 3次元電気的活動状態を示す データは、 心筋内興奮の伝播速度を示すデータである、 請求項 5に記載の心臓磁
7 . 前記演算装置は、 心筋内興奮伝播路部位を 1つまたは複数の微小電流素片を 用いて近似し、 前記微小電流素片の位置の時間的変化を算出することにより、 前 記心筋内興奮の伝播速度を示すデータを生成する、 請求項 6に記載の心臓磁界診
8 . 前記演算装置は、 前記算出された微小電流素片の位置の時間的変化に基づい て、 興奮伝播路ごとの前記心筋内興奮の伝播速度の差を示すデータを生成する、 請求項 7に記載の心臓磁界診断装置。
9 . 心筋内興奮不均一伝播部位の同定方法であって、
被験者の胸部上の複数の座標における非接触磁気計測により取得された前記複 数の座標に対応する複数の磁界時系列データに基づいて生成された前記胸部上の 磁界分布時系列データに基づいて、 前記被験者の心筋内の 3次元電気的活動状態 を示す第 1のデータを生成するステップと、
別途供給された前記被験者の胸部断層画像データを加工して解剖学的画像を示 す第 2のデータを生成するステップと、
前記第 1のデータが示す前記心筋内の 3次元電気的活動状態の画像を、 前記第 2のデータが示す前記解剖学的画像に重ね合わせて表示することにより、 心筋内 興奮不均一伝播部位による心室遅延電位の局在を 3次元的に同定することを可能 Γ備える、 心筋内興奮不均一伝播部位の同定方法。
1 0 . 前記第 1のデータが示す心筋内の 3次元電気活動状態は、 心筋内興奮の伝 播速度である、 請求項 9に記載の心筋内興奮不均一伝播部位の同定方法。
1 1 . 前記第 1のデータを生成するステップは、 心筋内興奮伝播路部位を 1つま たは複数の微小電流素片を用いて近似し、 前記微小電流素片の位置の時間的変化 を算出することにより、 前記心筋内興奮の伝播速度を示すデータを生成する、 請 求項 1 0に記載の心筋内興奮不均一伝播部位の同定方法。
1 2 . 前記第 1のデータを生成するステップは、 前記算出された微小電流素片の 位置の時間的変化に基づいて、 興奮伝播路ごとの伝播速度の差を示すデータを生 成する、 請求項 1 1に記載の心筋内興奮不均一伝播部位の同定方法。
1 3 . 心筋内興奮不均一伝播部位の同定方法であって、
被験者の胸部上の複数の座標における非接触磁気計測により取得された前記複 数の座標に対応する複数の磁界時系列データに基づいて生成された前記胸部上の 磁界分布時系列データに基づいて、 前記被験者の心筋内の 3次元電気的活動状態 を示すデータを生成するステップと、
前記生成されたデータに基づいて、 前記被験者の心臓の洞房結節からヒス束一 プルキンェ繊維系の刺激伝播経路を示す画像と、 心筋内の 3次元電気的活動状態 を示す画像とを重ね合わせて表示することにより、 心筋内興奮不均一伝播による 心室遅延電位の局在を 3次元的に同定することを可能にするステップとを備える、 心筋内興奮不均一伝播部位の同定方法。
1 4 . 前記データが示す心筋内の 3次元電気的活動状態は、 心筋内興奮の伝播速 度である、 請求項 1 3に記載の心筋内興奮不均一伝播部位の同定方法。
1 5 . 前記データを生成するステップは、 心筋内の興奮伝播路部位を 1つまたは 複数の微小電流素片を用いて近似し、 前記微小電流素片の位置の時間的変化を算 出することにより、 心筋内興奮の伝播速度を示すデータを生成する、 請求項 1 4 に記載の心筋内興奮不均一伝播部位の同定方法。
1 6 . 前記データを生成するステップは、 前記算出された微小電流素片の位置の 時間的変化に基づいて、 興奮伝播路ごとの前記心筋内興奮の伝播速度の差を示す データを生成する、 請求項 1 5に記載の心筋内興奪の不均一伝播部位の同定方法。
PCT/JP2001/006194 2000-07-18 2001-07-17 Appareil de diagnostic cardiaque a champ magnetique par potentiel ventriculaire tardif et procede de localisation d'une partie de propagation d'excitation intramyocardique inegale WO2002005715A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP01950019A EP1302161A4 (en) 2000-07-18 2001-07-17 MAGNETIC FIELD DIAGNOSTIC DIAGNOSIS DEVICE BY LATE-VENTRICULAR POTENTIAL AND METHOD OF LOCATING AN INEQUAL INTRAMYOCARDIAL EXCITATION PROPAGATION PART
AU2001271070A AU2001271070A1 (en) 2000-07-18 2001-07-17 Cardiac magnetic field diagnosing apparatus by late ventricular potential and method of locating intramyocardial excitement uneven propagation portion
US10/333,056 US6941165B2 (en) 2000-07-18 2001-07-17 Cardiac magnetic field diagnosing apparatus by late ventricular potential and method of locating intramyocardial excitement uneven propagation portion

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000217835A JP3712350B2 (ja) 2000-07-18 2000-07-18 心室遅延電位の心臓磁界診断装置およびその作動方法
JP2000-217835 2000-07-18

Publications (1)

Publication Number Publication Date
WO2002005715A1 true WO2002005715A1 (fr) 2002-01-24

Family

ID=18712890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006194 WO2002005715A1 (fr) 2000-07-18 2001-07-17 Appareil de diagnostic cardiaque a champ magnetique par potentiel ventriculaire tardif et procede de localisation d'une partie de propagation d'excitation intramyocardique inegale

Country Status (5)

Country Link
US (1) US6941165B2 (ja)
EP (1) EP1302161A4 (ja)
JP (1) JP3712350B2 (ja)
AU (1) AU2001271070A1 (ja)
WO (1) WO2002005715A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3712349B2 (ja) * 2000-07-18 2005-11-02 独立行政法人科学技術振興機構 生存心筋診断装置およびその作動方法
JP3712348B2 (ja) * 2000-07-18 2005-11-02 独立行政法人科学技術振興機構 心房粗動および心房細動の心臓磁界診断装置およびその作動方法
JP4027867B2 (ja) * 2003-09-10 2007-12-26 株式会社日立ハイテクノロジーズ 生体磁場計測装置
US9585600B2 (en) 2012-10-02 2017-03-07 Covidien Lp Magnetic field viewing film for tracking in-situ surgical applications
JP6399852B2 (ja) * 2014-08-07 2018-10-03 フクダ電子株式会社 脈波測定装置及び生体情報測定装置
WO2018168864A1 (en) * 2017-03-17 2018-09-20 Ricoh Company, Ltd. Information processing apparatus, information processing method, program, and biological signal measurement system
CN113317793B (zh) * 2021-06-11 2023-02-17 宁波大学 心磁高频信号分析方法、存储介质及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289877A (ja) * 1995-04-24 1996-11-05 Toshiba Corp 組織の興奮伝播過程のシミュレーション方法及びこの方法を使用した組織内電磁気現象診断装置
JPH10276998A (ja) * 1997-04-10 1998-10-20 Toshiba Corp 興奮伝播過程のシミュレーション装置
JPH10323335A (ja) * 1997-05-26 1998-12-08 Toshiba Corp 心臓内電気現象の診断装置およびその診断方法
JPH11128191A (ja) * 1997-10-30 1999-05-18 Toshiba Corp 心臓内電気現象の診断装置およびその現象の表示方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0443069A1 (de) * 1990-02-22 1991-08-28 Siemens Aktiengesellschaft Verfahren zur Messung des Feldmusters elektrischer oder magnetischer Felder mit Hilfe einer Sensoranordnung
US5341811A (en) * 1991-03-26 1994-08-30 Allegheny-Singer Research Institute Method and apparatus for observation of ventricular late potentials
JP2949983B2 (ja) 1991-12-10 1999-09-20 ダイキン工業株式会社 物理源解析方法およびその装置
JPH05220124A (ja) * 1992-02-13 1993-08-31 Fujitsu Ltd 生体磁気計測装置
US5228443A (en) * 1992-03-27 1993-07-20 General Electric Company Method for estimation and display of current source distribution from electric and magnetic measurements and 3D anatomical data
GB9310604D0 (en) * 1993-05-21 1993-07-07 British Tech Group Analysis of heart waveforms
AU7404994A (en) * 1993-07-30 1995-02-28 Regents Of The University Of California, The Endocardial infusion catheter
EP0968683B1 (en) 1996-10-08 2011-05-25 Hitachi Medical Corporation Method and apparatus for forming and displaying image from a plurality of sectional images
DE19808985B4 (de) * 1997-03-07 2012-06-14 Hitachi, Ltd. Verfahren und Vorrichtung zur Biomagnetfeld-Messung
US5827195A (en) * 1997-05-09 1998-10-27 Cambridge Heart, Inc. Electrocardiogram noise reduction using multi-dimensional filtering
US6473518B1 (en) * 1997-10-02 2002-10-29 Hitachi, Ltd. Method of measuring a biomagnetic field, method of analyzing a measured biomagnetic field, method of displaying biomagnetic field data, and apparatus therefor
JPH11128224A (ja) 1997-10-28 1999-05-18 Mitsubishi Heavy Ind Ltd 超音波3次元画像再構成装置
IT1302900B1 (it) * 1998-12-04 2000-10-10 Riccardo Fenici Catetere amagnetico per la registrazione monocatetere di potenzialid'azione monofasici multipli, localizzabile tridimensionalmente e
JP2001112732A (ja) * 1999-10-15 2001-04-24 Hitachi Ltd 核磁気共鳴を用いた検査装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08289877A (ja) * 1995-04-24 1996-11-05 Toshiba Corp 組織の興奮伝播過程のシミュレーション方法及びこの方法を使用した組織内電磁気現象診断装置
JPH10276998A (ja) * 1997-04-10 1998-10-20 Toshiba Corp 興奮伝播過程のシミュレーション装置
JPH10323335A (ja) * 1997-05-26 1998-12-08 Toshiba Corp 心臓内電気現象の診断装置およびその診断方法
JPH11128191A (ja) * 1997-10-30 1999-05-18 Toshiba Corp 心臓内電気現象の診断装置およびその現象の表示方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1302161A4 *

Also Published As

Publication number Publication date
EP1302161A4 (en) 2008-02-13
EP1302161A1 (en) 2003-04-16
AU2001271070A1 (en) 2002-01-30
US20040049119A1 (en) 2004-03-11
JP2002028145A (ja) 2002-01-29
US6941165B2 (en) 2005-09-06
JP3712350B2 (ja) 2005-11-02

Similar Documents

Publication Publication Date Title
US6681131B2 (en) Apparatus for measuring bio-magnetic fields
US9351657B2 (en) Cardiac activity visualization with frequency discrimination
Tavarozzi et al. Current perspective magnetocardiography: Current status and perspectives, Part II: Clinical applications
JP2018525041A (ja) 機能的な心臓電気生理の評価のための方法およびシステム
US7123952B2 (en) Cardiac magnetic field diagnozer for atrial flutter and atrial fibrillation and method for identifying electric turning path of atrial flutter and atrial fibrillation
JP3712349B2 (ja) 生存心筋診断装置およびその作動方法
JP2005080951A (ja) 生体磁場計測装置
RU2550660C2 (ru) Устройство и способ неинвазивной интракардиальной электрокардиографии с формированием изображения с использованием магнитных частиц
Fenici et al. Nonfluoroscopic localization of an amagnetic stimulation catheter by multichannel magnetocardiography
JP3712350B2 (ja) 心室遅延電位の心臓磁界診断装置およびその作動方法
Moshage et al. Progress in biomagnetic imaging of heart arrhythmias
Brisinda et al. First 36-channel magnetocardiographic study of CAD patients in an unshielded laboratory for interventional and intensive cardiac care
Gregory et al. Left-ventricular mechanical activation and aortic-arch orientation recovered from magneto-hydrodynamic voltages observed in 12-lead ECGs obtained inside MRIs: a feasibility study
US20180028078A1 (en) Continuous and rapid quantification of stroke volume from magnetohydrodynamic voltages in magnetic resonance imaging
Muller et al. Localization of a ventricular tachycardia-focus with multichannel magnetocardiography and three-dimensional current density reconstruction
JP2002355229A (ja) 磁界解析方法および電流分布可視化装置
Agren et al. Magnetocardiographic localization of arrhythmia substrates: a methodology study with accessory pathway ablation as reference
Iwai et al. Evaluation of sensor and analysis area in the signal source estimation by spatial filter for magnetocardiography
JP3809454B2 (ja) 心臓磁界診断装置およびその作動方法
Mäkijärvi et al. New trends in clinical magnetocardiography
JP4822399B2 (ja) 医用画像診断装置
Kandori et al. Two-dimensional mapping of impedance magnetocardiograms
JP4972443B2 (ja) 生体磁場計測装置
EP3666181A1 (en) Display of arrhythmia type
Boudlali Analysis of Electroanatomic Mapping System Accuracy Using X-ray Reconstruction of Electrode Locations in a Porcine Animal Model

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001950019

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001950019

Country of ref document: EP

ENP Entry into the national phase

Country of ref document: RU

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10333056

Country of ref document: US