WO2002003564A1 - Procede d'analyse de perte de ligne de transmission, station asservie utilisant ce procede, station principale, et systeme de communication - Google Patents

Procede d'analyse de perte de ligne de transmission, station asservie utilisant ce procede, station principale, et systeme de communication Download PDF

Info

Publication number
WO2002003564A1
WO2002003564A1 PCT/JP2000/004341 JP0004341W WO0203564A1 WO 2002003564 A1 WO2002003564 A1 WO 2002003564A1 JP 0004341 W JP0004341 W JP 0004341W WO 0203564 A1 WO0203564 A1 WO 0203564A1
Authority
WO
WIPO (PCT)
Prior art keywords
slave station
station
signal
transmission path
master station
Prior art date
Application number
PCT/JP2000/004341
Other languages
English (en)
French (fr)
Inventor
Akira Nagayama
Kazuyoshi Shimizu
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to JP2002507530A priority Critical patent/JP3851610B2/ja
Priority to EP00942416A priority patent/EP1309097A4/en
Priority to PCT/JP2000/004341 priority patent/WO2002003564A1/ja
Publication of WO2002003564A1 publication Critical patent/WO2002003564A1/ja
Priority to US10/289,305 priority patent/US7027730B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/272Star-type networks or tree-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/077Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using a supervisory or additional signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems
    • H04B10/075Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal
    • H04B10/079Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems using an in-service signal using measurements of the data signal
    • H04B10/0795Performance monitoring; Measurement of transmission parameters
    • H04B10/07955Monitoring or measuring power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2589Bidirectional transmission
    • H04B10/25891Transmission components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/44Star or tree networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/50Testing arrangements

Definitions

  • the present invention relates to an optical communication system, and more particularly, to a transmission line test method for testing a transmission line loss between a master station and a slave station when adding a slave station to a star-type network configuration.
  • the present invention relates to a slave station, a master station, and an optical communication system.
  • An optical communication system of the type 1 is composed of a master station, a plurality of slave stations, a power type optical switch and an optical transmission line.
  • the optical signal generated in the master station is incident on a star-type power blur via an optical transmission line, and is split into a plurality of optical signals by the star-type power blur.
  • Each split optical signal is transmitted to each slave station via each optical transmission line.
  • each optical signal generated by each slave station is transmitted to the master station by this reverse route.
  • information is transmitted and received between 1: n devices.
  • the worker measures the optical power of the optical signal (downstream optical signal) transmitted from the master station at the connector to which the slave station to be added is connected.
  • it is determined whether or not the measured value is within a range of a prescribed value of a reception level defined by the optical communication system. Then, as a result of the determination, the operator has determined that there is no problem with transmitting the optical signal if it is within the range.
  • a test apparatus injects test light into an optical transmission line to be tested, and then transmits scattered light. The reflected light is received from the optical transmission line under test, and the loss is analyzed by analyzing the received light. Testing.
  • the slave station transmits an optical signal (uplink optical signal) to the master station with an optical power within the specified range of the transmission level, the transmission loss exceeds the specified value of the transmission line. Since the reception level at the main station is lower than the specified value, the upstream optical signal may not be able to be received at the main station.
  • an optical signal can be transmitted from the master station to the slave station, there is a possibility that the optical signal cannot be transmitted from the slave station to the master station in the range of the specified transmission level of the master station. This is because the range of the prescribed value of the reception level and these ranges of the slave station are not necessarily the same due to the difference of each manufacturer.
  • an object of the present invention is to test the optical transmission line under test with a simple device configuration, which can reliably determine the transmission loss of the optical transmission line by a method different from the conventional method. And a slave station, a master station, and an optical communication system using the method.
  • the reason described above is mainly because the loss of the optical transmission line is replaced with the received optical power of the slave station, and the loss is indirectly determined.
  • a communication system in which a master station and a plurality of slave stations are connected in a star-type network via a repeater and a transmission path is connected to a slave station to be added on a transmission path under test.
  • the power of the signal is measured by the second measuring means and the first measuring means at the end and at the other first end, and the measurement result at the first end is stored in the storage means.
  • the measurement result at one end is transmitted to the storage means by the transfer means.
  • the measurement result of the first end is accommodated in the descending signal transmitted from the master station to the slave station by the accommodation means and transmitted to the slave station.
  • the slave station extracts the measurement result of the first end from the downlink signal by the information extraction means, and obtains the difference between the measurement result of the first end and the measurement result of the second end by the processing means In this way, the transmission loss of the transmission path under test between the first end and the second end is calculated.
  • the power values of the signals at both ends of the transmission path under test are totaled by the slave station, and the transmission loss of the transmission path under test is directly calculated from the totaled value. In this way, two-way communication can be reliably performed.
  • the transmission path under test can be tested with the simple configuration described above.
  • FIG. 1 is a diagram illustrating a configuration of the optical communication system according to the first embodiment.
  • FIG. 2 is a diagram illustrating a configuration of the optical communication system according to the second embodiment.
  • FIG. 3 is a diagram illustrating a configuration of a master station according to the optical communication system of the second embodiment.
  • FIG. 4 is a diagram illustrating a configuration of a slave station according to the optical communication system of the second embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of a peak detection circuit.
  • FIG. 6 is a diagram illustrating a frame format of a downstream optical signal.
  • FIG. 7 is a diagram illustrating a procedure of a transmission loss test according to the second embodiment.
  • FIG. 8 is a diagram illustrating a configuration of a master station according to the optical communication system of the third embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a slave station according to the optical communication system of the third embodiment.
  • FIG. 10 is a diagram illustrating a procedure of a transmission loss test according to the third embodiment.
  • FIG. 11 is a diagram illustrating the configuration of the optical communication system according to the fourth embodiment.
  • FIG. 12 is a diagram showing a configuration of a master station according to the optical communication system of the fourth embodiment.
  • FIG. 13 is a diagram illustrating a procedure of a transmission loss test according to the fourth embodiment.
  • the first embodiment is an embodiment in which a slave station, a communication system, and a transmission path loss test method according to the present invention are realized.
  • FIG. 1 is a diagram illustrating a configuration of a communication system according to the first embodiment.
  • a master station 11 and a plurality of slave stations 12 are connected via a repeater 13 and a transmission path 14 in a shunt-type network mode. That is, the downlink signal transmitted from the main station 11 is input to the repeater 13 via the transmission line 14-0.
  • the repeater 13 branches at least this downlink signal into a number corresponding to the number of slave stations 1 2-;! to 12 -k.
  • Each of the branched downlink signals is input to each of the slave stations 12-1-2-1-k via each of the transmission paths 14-1 to 14-k.
  • each uplink signal transmitted from the slave stations 12-1 to 12 -k to the master station 11 is transmitted on the reverse route to the above route.
  • the storage unit 21 is provided in the master station 11 and stores information on signal power at a predetermined location in the transmission path 14 excluding the end to which the predetermined slave station 12 -k is connected.
  • the accommodating unit 22 is provided in the master station 11 and accommodates the stored information in a downlink signal transmitted to a predetermined slave station 12-k.
  • the second measuring section 26 is provided for the predetermined slave station 12 -k and measures the signal power at the end of the transmission path 14 to which the predetermined slave station 12 -k connects. The measurement result is output to the processing unit 28.
  • the information extracting section 27 is provided in the predetermined slave station 12-k, and extracts information accommodated in the accommodating section 22 from the downlink signal.
  • the extracted information is output to the processing unit 28.
  • the processing unit 28 is provided in the predetermined slave station 12-k, finds the difference between the output of the second measurement unit 26 and the output of the information extraction unit 27, and outputs the transmission loss of the transmission path.
  • the predetermined slave station 12 -k used in such a communication system includes a second measuring unit that measures the power of the signal at the end of the transmission path 14 to be tested to which the predetermined slave station 12 -k connects.
  • the information extraction unit 27 extracts the power information of the signal accommodated in the main station 11 from the downlink signal to the downlink signal transmitted to -k, and the output of the second measurement unit 26 and the information extraction unit 27 Difference with output And a processing section 28 for outputting the transmission loss of the transmission path under test 14.
  • the transmission path under test 14 to be connected is a transmission path 14 to which a predetermined slave station 12 -k is connected and transmission loss is tested.
  • the communication system and the predetermined slave station 12-k can directly measure the transmission loss of the transmission path between the predetermined slave station 12-k and the predetermined location. Also, if the predetermined slave station 12 2 -k is an additional slave station, the additional slave station can determine the transmission loss of the transmission line to be connected. Two-way communication can be reliably performed between them.
  • the predetermined slave station 12 includes the second measuring unit 26, the information extracting unit 27, and the processing unit 28, but all the slave stations 12 include these. It is not necessary. It suffices that the slave station 12 connected to the transmission path 14 to measure the transmission loss has these.
  • a first measurement unit 23 and a transfer unit 24 may be provided instead of the storage unit 21, and the function of the storage unit 22 may be a function described later.
  • the first measuring unit 22 measures the power of the signal at a predetermined location in the transmission path except for the end to which the predetermined slave station 12-k is connected.
  • the measurement result is output to the transfer unit 23.
  • the transfer unit 23 transfers information on the power of the signal measured by the first measurement unit 22 to the accommodation unit 22. That is, the information of the signal power is notified to the accommodation unit 22.
  • accommodating section 21 is provided in master station 11 and accommodates information transmitted from transfer section 24 in a downlink signal transmitted to slave station 12.
  • the downlink signal is transmitted to the slave stations 12.
  • the first measuring unit 22 shown in FIG. 1 includes a first measuring unit 22 a and a first measuring unit 22 b shown by broken lines, but is provided in either one.
  • the transfer unit 23 includes a transfer unit 23a and a transfer unit 23b indicated by broken lines, and is provided in one of them. Furthermore, the first measurement unit 22 and the transfer unit 23 are not limited to the two locations shown in FIG.
  • the predetermined location is an end where the master station 11 is connected to the transmission line 14 under test, and a signal whose power is to be measured is transmitted to the predetermined slave station 12 -k It is preferable to configure by being a downlink signal transmitted to the device. That is, the first measuring section 22 a and the transfer section 23 a are provided in the main station 11 as shown in FIG.
  • the transmission loss of the transmission line 14-k, the repeater 13 and the transmission line 14-0 can be obtained.
  • the transmission loss can be determined in the direction from the master station 11 to the slave station 12.
  • the predetermined location is an end where the master station 11 is connected to the transmission line under test 14, and the signal whose power is to be measured is transmitted to the predetermined slave station 12 -k It is preferable that the signal be an uplink signal transmitted to the main station 11 from the base station.
  • the transmission loss of the transmission line 14-k, the repeater 13 and the transmission line 14-0 can be obtained.
  • the transmission loss can be obtained in a direction from a predetermined slave station 12-k to the master station 11.
  • the predetermined location is an end where the repeater 13 is connected in the transmission path under test 14, and the signal whose power is to be measured is transmitted to the predetermined slave station 12- It is preferable that the signal is an uplink signal transmitted from k to the main station 11.
  • the first measurement unit 22b and the transfer unit 23 are provided in the relay station 13 as shown in FIG.
  • the transmission loss of the transmission path 14 -k can be obtained.
  • the transmission loss can be obtained in a direction from a predetermined slave station 12 -k to the master station 11.
  • the second embodiment is an embodiment to which a slave station, a communication system, and a transmission path loss test method according to the present invention are applied.
  • FIG. 2 is a diagram illustrating a configuration of the optical communication system according to the second embodiment.
  • FIG. 3 is a diagram illustrating a configuration of a master station according to the optical communication system of the second embodiment.
  • FIG. 4 is a diagram illustrating a configuration of a slave station according to the optical communication system of the second embodiment.
  • FIG. 5 is a diagram illustrating a configuration example of a peak detection circuit.
  • FIG. 6 is a diagram illustrating a configuration example of a frame format of a downstream optical signal.
  • the optical communication system includes a master station 51, a plurality of slave stations 52, an optical repeater station 53, and an optical transmission line 54, which are connected in a star network.
  • the downstream optical signal generated by the main station 51 enters the optical repeater 53 via the optical transmission line 54-0.
  • the optical repeater 53 is configured to include a star-type optical power bra (hereinafter, abbreviated as “CPLj”) 61, and at least splits the downstream optical signal into a number corresponding to the number of the plurality of slave stations 52.
  • CPLj star-type optical power bra
  • Each of the branched downstream optical signals is incident on each of the slave stations 52-1 to 52 -k via each of the optical transmission lines 54-54 to 54 -k.
  • Each upstream optical signal transmitted from k to the main station 51 is transmitted on a route opposite to the above route.
  • the main station 51 includes a signal processing circuit 127, a digital / analog conversion circuit (hereinafter abbreviated as “D / A”) 121, a driving circuit 122, a light emitting element 123, a CPL 124 connector 125, a memory 126, an analog-to-digital converter (hereinafter abbreviated as “AZD”) 128, amplifiers 129 and 131, a peak detection circuit 130, and a light receiving element 132.
  • D / A digital / analog conversion circuit
  • the light emitting element 123 includes a light emitting diode, a semiconductor laser, and the like. A part of the emitted optical signal is branched by the CPL 124 and is emitted to the optical transmission path 54-0 via the connector 125. A part of the optical signal split by the CPL 124 enters a light receiving element 132 including a photodiode or the like.
  • the connector 125 optically connects the main station 51 and the optical transmission line 54-0 by a connector 125a provided in the main station 51 and a connector 125b provided in the optical transmission line 54-0.
  • the light receiving element 132 converts the optical signal into an electric signal and outputs the electric signal to the amplifier 131.
  • the amplifier 131 which is a preamplifier, amplifies this electric signal to a predetermined level.
  • the amplified electric signal is input to the peak detection circuit 130.
  • the light receiving section 102 includes the light receiving element 132 and the amplifier 131.
  • the peak detection circuit 130 detects the maximum value of the level of the input electric signal.
  • This peak detection circuit 130 includes, for example, a diode 135, a resistor 1336, and a capacitor 1337, as shown in FIG.
  • the anode terminal of the diode 13 5 is connected to the output terminal of the amplifier 13 1, and its power source terminal is grounded via the resistor 13 6 and the capacitor 13 7.
  • the output of the peak detection circuit 130 is taken out as the voltage between the terminals of the capacitor 1337.
  • the maximum value output from the peak detection circuit 130 is input to the amplifier 129.
  • the amplifier 129 is a post-amplifier and amplifies the maximum value to a predetermined level.
  • the amplified maximum value is converted from an analog signal to a digital signal by the A / D 128 and output to the signal processing circuit 127.
  • the peak detection section 103 is configured to include the peak detection circuit 130 and the amplifier 129.
  • the signal processing circuit 127 includes a microprocessor or the like, and stores the input maximum value in the memory 126. Thus, the signal processing circuit 127 records the maximum value of the transmission level.
  • the memory 126 stores a program for performing a transmission path loss test described later, various values during the execution of the program, and various information such as a current value for driving the light emitting element 123.
  • the signal processing circuit 127 captures the maximum value from the memory 126 and also determines the actual data to be transmitted from the master station 51 to the slave station 52.
  • a signal to be taken in from a circuit is output to the drive circuit 122 through the D / A 121, and a signal to make the downstream optical signal into the frame format shown in FIG.
  • the optical signal in the present embodiment is a synchronizing signal used for synchronizing with the transmitting side on the receiving side, a level information section containing information on the power of the signal, and an actual data to be transmitted. It is equipped with a de-night area to accommodate.
  • the level information section contains the maximum value, that is, the power of the downstream optical signal in the main station 51.
  • the data section is composed of a plurality of slots corresponding to the number of the slave stations 52.
  • the driving circuit 122 causes the light emitting element 123 to emit light by supplying a current to the light emitting element 123. The supplied current is modulated according to a signal from the signal processing circuit 127, and directly modulates light emission of the light emitting element 123.
  • the optical signal generator 101 includes an A / D 122, a drive circuit 122, and a light emitting element 123.
  • the main station 52 has a connector 141, a photodetector 144, an amplifier 144, a synchronization circuit 144, a separation circuit 144, a peak detection section 108, and a subtraction circuit 14 8
  • the downstream optical signal generated by the main station 51 enters the connector 1441 via the optical transmission line 54 relayed by the relay station 53 on the way.
  • the connector 14 1 optically connects the slave station 5 2 and the optical transmission path 54 with the connector 14 la provided in the slave station 52 and the connector 14 lb provided in the optical transmission path 54. .
  • the downstream optical signal incident on the connector 141 is photoelectrically converted by the light receiving element 142 and input to the amplifier 144 as an electrical signal.
  • This electric signal is amplified to a predetermined level by the amplifier 144 as a preamplifier.
  • the amplified electric signal is input to the synchronization circuit 144 and the beak detector 108.
  • the synchronization circuit 144 establishes synchronization with the electric signal (downlink optical signal) based on the synchronization signal of the electric signal.
  • the separation circuit 144 extracts the actual data and transmission level information from the electric signal input through the synchronization circuit 144 by the synchronization timing extracted by the synchronization circuit 144. Then, the separation circuit 145 outputs the actual data to an external circuit (not shown) that uses the actual data, and outputs transmission level information to the subtraction circuit 148.
  • the peak detector 108 detects the maximum value of the level of the input electric signal, amplifies the detection result to a predetermined level, and outputs the result to the subtraction circuit 148.
  • the configuration of the peak detection unit 108 is the same as that of the above-described peak detection unit 103 in the main station 51, and a description thereof will be omitted.
  • the subtraction circuit 148 subtracts the output of the peak detection unit 108 from the output of the separation circuit 145, and outputs the calculation result as the transmission loss of the transmission line under test.
  • FIG. 7 is a diagram illustrating a procedure of a transmission loss test according to the second embodiment.
  • the signal processing circuit 127 in the main station 51 reads and executes the transmission path loss test program stored in the memory 126 in an initial setting when the main station 51 is opened (S 1)
  • the signal processing circuit 127 causes the light emitting element 123 to emit light with the light emission amount corresponding to the transmission level of the downstream optical signal, and causes the peak detection unit 103 to measure the transmission level (S2).
  • the peak detector 1 ⁇ 3 outputs the measurement result to the signal processing circuit 127 (S3), and the signal processing circuit 127 stores this transmission level information in the memory 126 (S4).
  • the signal processing circuit 127 takes in the transmission level information from the memory 126 and, if there is actual data to be transmitted to each slave station 52, takes in the actual data. Then, the signal processing circuit 127 converts the signal into a signal suitable for transmission and causes the light emitting element 123 to emit light, thereby generating a downstream optical signal containing transmission level information (S5).
  • the generated downstream optical signal is output to the optical transmission line 54-0. Then, this downstream optical signal is branched to each of the slave stations 52-1 to 52-k by the SPL-type CPL 61 in the optical repeater 53, and one of them is transmitted to the slave station 52-k ( S 6).
  • the downstream optical signal is received by the light receiving element 142, and the peak detection unit 108 in the slave station 52-k detects the maximum value of the reception level (S7). Then, the detection result is output to the subtraction circuit 148.
  • the separation circuit 145 extracts information on the transmission level of the master station 51 from the electric signal based on the received downstream optical signal, and outputs the information to the subtraction circuit 148 (S8).
  • the subtraction circuit 148 subtracts the reception level detected by the slave station 52-k from the extracted transmission level of the master station 51, so that the optical transmission to which the added slave station 52-k is connected is performed.
  • the transmission loss of path 54 is measured. That is, the transmission loss of the optical transmission line 54-0, the optical repeater 53, and the optical transmission line 54-k is measured (S9).
  • the measurement result is output to the outside and displayed on, for example, a display device. Based on the display result, the operator determines whether the transmission loss is within the specified range of the optical transmission line (S10), and completes the extension if the transmission loss is within the specified range. (S11). The operation of the optical communication system will start as it is.
  • the worker checks the optical transmission line 54 from the master station 51 to the slave station 52-k, in particular, checks for splice loss and the like and checks the slave station 52-k. Necessary measures such as adjustment of the transmission level of the upstream optical signal are performed so that the upstream optical signal transmitted from the slave station 52-k can be received by the master station 51 (S12).
  • the transmission loss of the transmission path under test to which the slave station 52 is connected is calculated from the optical power at both ends of the transmission path under test. Since direct measurement can be performed, the upstream optical signal generated by the added slave station 52 can be reliably transmitted to the master station.
  • the slave station 52 since information on the transmission level of the master station 51 is contained in the downstream optical signal, the slave station 52 can be added simply by placing an operator at the slave station. Therefore, there is no need to assign workers to the master station 51.
  • the transmission level of the downstream optical signal is measured by the light receiving unit 102, the peak detecting unit 103, and the D / A 128, but the connector of the main station 51
  • the transmission level may be measured by connecting an optical power meter for measuring the light intensity to 125a, and the measurement result may be stored in the memory 126.
  • the main station 51 can omit the light receiving section 102, the peak detecting section 103, and the D / A 128.
  • the transmission level of the downstream optical signal is temporarily stored in the memory 126.
  • the transmission level of the downstream optical signal is stored in the downstream optical signal immediately after the measurement without being stored in the memory 126. May be transmitted to the slave station 52-k.
  • the third embodiment is an embodiment to which the slave station, the communication system, and the transmission path loss test method according to the present invention are applied.
  • the outline of the third embodiment is that the optical power of the upstream optical signal is measured at both ends of the transmission path under test, and the optical power of the upstream optical signal measured by the main station is collected into the downstream optical signal.
  • the slave station measures the transmission loss of the transmission path under test.
  • the configuration of the optical communication system according to the third embodiment is the same as that of FIG. 2 except that the master station 71 is used instead of the master station 51 and the slave station 72 is used instead of the slave station 52. The description is omitted because it is the same as that of the second embodiment.
  • FIG. 8 is a diagram illustrating a configuration of a master station according to the optical communication system of the third embodiment.
  • FIG. 9 is a diagram illustrating a configuration of a slave station according to the optical communication system of the third embodiment.
  • the main station 71 includes an optical signal generator 101, an optical transmitter (hereinafter abbreviated as “Cir”) 151, a connector 125, and a light-receiving unit 102. , A peak detector 103, an A / D 128, a signal processing circuit 153, and a memory 152.
  • the upstream optical signal input via the optical transmission line 54-0 is input to the Cir 15 1 via the connector 125.
  • the Cir 1551 emits light incident on the port P I to the port P 2 and emits light incident on the port P 3 to the port P 1.
  • the maximum value of the reception level in the upstream optical signal is detected by the Cir 151, the light receiving unit 102, and the peak detecting unit 103.
  • the detection result is output to the signal processing circuit 153 via the A / D 128.
  • the signal processing circuit 153 obtains the reception level for the added slave station 72 based on the maximum value of the reception level, and stores the obtained reception level in the memory 152.
  • the memory 152 stores a program for performing a transmission path loss test described later, various values during execution of the program, and various information such as a current value for driving a light emitting element in the optical signal generation unit 101.
  • the signal processing circuit 153 fetches the reception level for the added slave station 72 from the memory 152 and transmits the received level from the master station 71 to the slave station 72.
  • the actual data to be taken is fetched from a circuit (not shown), a downstream optical signal containing reception level information is generated by the optical signal generator 101, and is output to the port P3 of Cirl 51.
  • the incident downstream optical signal is emitted from port P 3 of Cir 15 51 to port P 3, and is emitted to optical transmission line 54 via connector 125.
  • slave station 72 has connectors 144, light-receiving element 144, amplifier 144, Includes synchronization circuit 144, separation circuit 145, subtraction circuit 148, Cir l 55, CPL 156, light receiver 107, peak detector 108, A / D 159, signal processing circuit 157, optical signal generator 106, and memory 158. It is composed.
  • the optical signal generator 106 is the same as the optical signal generator 101 in the main station 51 described above, and generates an upstream optical signal.
  • the upstream optical signal is emitted to the optical transmission line 54 via the port P3 of the CPL 156 and the Cir 155, the port PI of the Cir 155, and the connector 141.
  • a part of the upstream optical signal is branched by the CPL 156, and the light receiving unit 107 and the peak detecting unit 108 detect the maximum value of the transmission level.
  • the detection result is output to the signal processing circuit 157 via the A / D 159 and stored in the memory 158.
  • the light receiving unit 107 and the peak detecting unit 108 are the same as the light receiving unit 102 and the peak detecting unit 103 described above, respectively, and thus description thereof will be omitted.
  • the downstream optical signal incident from the optical transmission line 54 is transmitted through the connector 141, the port PI of the Cir 1 55, the port P 2 of the Cir 155, the light receiving element 142, the amplifier 143, and the synchronization circuit 144, and the separation circuit 145. Is input to
  • the separation circuit 145 extracts real data and information on the reception level of the main station 71 from the electric signal input through the synchronization circuit 144 at the synchronization timing extracted by the synchronization circuit 144. Then, the separation circuit 145 outputs the actual data to an external circuit (not shown) that uses the actual data, and outputs information on the reception level of the main station 71 to the subtraction circuit 148.
  • the subtraction circuit 148 subtracts the output of the peak detection unit 108 from the output of the separation circuit 145, and outputs the calculation result.
  • FIG. 10 is a diagram illustrating a procedure of a transmission loss test according to the third embodiment.
  • the signal processing circuit 157 in the slave station 72-k reads and executes the transmission path loss test program stored in the memory 158 according to an instruction of an operator or the like to add the slave station 72-k ( S 21).
  • the signal processing circuit 157 generates an optical signal with a light emission amount corresponding to the transmission level of the upstream optical signal.
  • the upstream optical signal is emitted by the component 106, and the transmission level of the upstream optical signal is measured by the peak detector 108 (S22).
  • the peak detection unit 108 outputs the measurement result to the signal processing circuit 157 (S23), and the signal processing circuit 157 stores the information on the transmission level of the upstream optical signal in the memory 158 (S24).
  • the upstream optical signal is output to the optical transmission line 54-0. Then, this upstream optical signal is transmitted to the master station 71 via the SPL-type CPL 61 in the repeater 53.
  • the upstream optical signal is received by the light receiving section 102, and the peak detection section 103 in the main station 71 detects the maximum value of the reception level of the upstream signal (S25). Then, the detection result is output to the signal processing circuit 153.
  • the signal processing circuit 153 compares the maximum values before and after the slave stations 72-k are added. Thus, the reception level corresponding to the slave station 72-k is obtained. The capacity of the slot allocated to the slave station 72-k is also taken into account.
  • the signal processing circuit 153 stores the information of the reception level corresponding to the slave stations 72-k, and the information of the reception level based on the data to be transmitted to each slave station 72, if any.
  • the generated downstream optical signal is generated (S26).
  • the generated downstream optical signal is transmitted to the slave station 7.2-k via the optical transmission line 54-0, the optical relay station 53, and the optical transmission line 54-k (S27).
  • the separation circuit 145 extracts information on the reception level of the master station 71 from the electric signal based on the received downstream optical signal, and outputs the information to the subtraction circuit 148 (S28).
  • the subtraction circuit 148 subtracts the reception level of the master station 71 extracted from the transmission level detected by the slave station 72-k, thereby connecting the added slave station 72-k.
  • the transmission loss of the optical transmission line 54 is measured. That is, the transmission loss of the optical transmission line 54-0, the optical repeater 53, and the optical transmission line 54-k is measured (S29).
  • the measurement result is output to the outside and displayed on, for example, a display device.
  • S30 to S32 which are the judgment of the operator and the processing based on the judgment result, are the same as S10 to S12 in the second embodiment, and therefore the description thereof is omitted. Abbreviate.
  • the transmission level of the upstream optical signal is measured by the light receiving unit 107, the peak detecting unit 108, and the D / A 159.
  • the transmission level may be measured by connecting an optical power meter for measuring the light intensity to la, and the measurement result may be stored in the memory 158.
  • the slave station 72 can omit the light receiving section 107, the peak detecting section 108, and the A / D 159.
  • the fourth embodiment is an embodiment to which the slave station, the communication system, and the transmission path loss test method according to the present invention are applied.
  • An outline of the fourth embodiment is that, at both ends of the transmission path under test, the optical power of the upstream optical signal is measured, and the optical power of the upstream optical signal measured by the optical relay station is transmitted to the master station.
  • the master station stores the information of the optical power of the received upstream optical signal in the downstream optical signal, and the slave station measures the transmission loss of the transmission path under test.
  • FIG. 11 is a diagram illustrating the configuration of the optical communication system according to the fourth embodiment.
  • FIG. 12 is a diagram illustrating a configuration of a master station according to the optical communication system of the fourth embodiment.
  • the optical communication system includes a master station 81, a plurality of slave stations 72, an optical relay station 83, and an optical transmission line 54, which are connected in a star network.
  • the downstream optical signal generated by the main station 81 enters the optical repeater 83 via the optical transmission line 54-0.
  • the optical repeater 83 includes a CPL 62 of a single type, an optical transmitter 171, and a transmission circuit 172.
  • the CPL 62 converts the downstream optical signal into a plurality of slave stations. 7 At least branch to the number corresponding to the number of 2.
  • Uplink optical signals transmitted from the slave stations 72 to k to the master station 81 are transmitted via the optical transmission lines 54 to k connected to the slave stations 72 to k.
  • the light enters the CPL 62 in the optical repeater 83.
  • This upstream optical signal is split into two by the CPL 62.
  • One branch is light transmission It is transmitted to the main station 81 via the transmission line 54-0.
  • the other side is incident on an optical power meter 171, and its optical power is measured.
  • the measurement result is output to the transmission circuit 172, converted into a signal suitable for transmission, and transmitted to the reception circuit 175 in the master station 81.
  • the CPL 62 branches at least the downstream optical signal to the number of slave stations 72 and branches the upstream optical signal to the master station 81 and the optical power meter at least.
  • the main station 81 includes an optical signal generation unit 101, a connector 125, a reception circuit 175, a signal processing circuit 176, and a memory 152.
  • the configuration for receiving and processing the upstream optical signal transmitted from the slave station 72 is omitted.
  • the reception circuit 175 receives and processes the signal transmitted from the transmission circuit 172 in the optical repeater 83, and determines the reception level of the upstream optical signal in the optical repeater 83 as a signal processing circuit 176.
  • the signal processing circuit 176 obtains the reception level for the added slave station 72 based on the output of the reception circuit 175, and stores it in the memory 152.
  • the reception level of the optical signal is measured by the light receiving section 102 and the peak output section 103, but in the fourth embodiment, the reception level is obtained from the receiving circuit 175.
  • the signal processing circuit 176 fetches the reception level for the added slave station 72 from the memory 152, and transmits the reception level from the master station 71 to the slave station 72.
  • the actual data to be taken is fetched from a circuit (not shown), a downstream optical signal containing the information of the reception level is generated by the optical signal generation unit 101, and the optical signal is transmitted to the optical transmission line 54 via the connector 125. Inject.
  • FIG. 13 is a diagram illustrating a procedure of a transmission loss test according to the fourth embodiment.
  • the processes from execution of the transmission path loss test program performed by the signal processing circuit 157 in the slave station 72 -k to measurement and storage of the transmission level of the downstream optical signal are performed in the third manner.
  • the description is omitted because it is the same as the embodiment. That is, S41 to S44 are the same as S21 to S24 in the third embodiment.
  • the upstream optical signal is emitted to the optical transmission line 54-k. Then, this upstream optical signal is branched into two by the PCL 62 of the type 1 in the optical repeater 83. One is transmitted to the main station 81 via the optical transmission line 54-0, and the other is output to the optical power meter 171.
  • the optical power meter 171 in the optical repeater 83 receives the upstream optical signal and measures the optical power of the upstream optical signal (S45).
  • the measurement result is output to the transmission circuit 172, and the transmission circuits 1 and 2 transmit the measurement result to the reception circuits 1 and 5 in the master station 81 (S46).
  • the signal processing circuit 176 obtains information on the reception level corresponding to the slave station 72-k in the optical repeater station 83 via the receiving circuit 175.
  • the optical repeater 83 receives all the upstream optical signals from the slave stations 72, so that the signal processing circuit 176 has a receiving circuit 175 before and after the slave station 72-k is added. Then, the reception level corresponding to the slave station 72-k is obtained by comparing the outputs of. The capacity of the slot allocated to the slave station 72-k is also taken into account.
  • the signal processing circuit 176 receives the information of the reception level corresponding to the slave station 72-k, and receives the data based on the data to be transmitted to each slave station 72, if any. A downstream optical signal containing the level information is generated (S47).
  • the generated downstream optical signal is transmitted to the slave station 72-k via the optical transmission line 54-0, the optical relay station 83, and the optical transmission line 54-k (S48).
  • the transmission level of the upstream optical signal is measured by the optical power meter 171.
  • the light receiving section 107 and the peak as described in the second and third embodiments are used.
  • the measurement may be performed by the detection unit 108 and the A / D 159.
  • the configuration example illustrated in FIG. 5 is illustrated as the configuration example of the peak detectors 103 and 108, but the configuration is not limited thereto.
  • the output is taken from the light receiving unit 102 at a fixed time interval, the output at a certain time is stored in a storage circuit, and the stored value is compared with the output at the next time, and the comparison result is obtained. If the stored value is larger than the stored value, a circuit configuration may be employed in which the stored content of the storage circuit is updated with the output of the next time. In such a configuration, the stored content of the storage circuit is the maximum value.
  • the optical signal generators 101 and 106 are configured to directly modulate, but the present invention is not limited to this.
  • a laser beam emitted from a laser diode or the like may be externally modulated by a Mach-Zehnder interferometer type optical modulator ( c).
  • the operator was required to determine whether the transmission loss of the transmission line was within the specified range and take measures (S10 to S12) to deal with it.
  • the processing circuit includes a memory for storing information indicating a range of a specified value and a program for performing the determination, and a microphone processor for executing the program. Is to compare the output of the subtraction circuit 148 with the specified value range stored in the memory, and based on the result, adjust the transmission level of the slave station using an optical amplifier or the like.
  • the power values of the signals at both ends of the transmission path under test are totaled by the slave station, and the transmission loss of the transmission path under test is directly calculated from the totaled value.
  • two-way communication can be ensured.
  • the slave station since the signal powers required for obtaining the transmission loss of the transmission path under test are tabulated in the slave station, the slave station can be added simply by placing the worker in the slave station. Therefore, there is no need to assign workers to the master station.
  • the transmission path under test can be tested with a simple configuration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)
  • Monitoring And Testing Of Transmission In General (AREA)

Description

明細書 伝送路損失試験方法、 並びに、 該方法を用いる従局、 主局及び通信システム 技術分野
本発明は、 光通信システムに関し、 特に、 スター型の網構成に従局を増設する 際に、 主局とこの従局との間における伝送路の損失を試験する伝送路試験方法、 並びに、 この方法を用いる従局、 主局及び光通信システムに関する。
背景技術
現在では、 将来のマルチメディアネットワークの構築を目指し、 超長距離でか っ大容量の光通信システムが要求されている。 この光通信システムの網形態の 1 つとして、 スター型 (星形) の網形態がある。 ス夕一型の光通信システムは、 主 局、 複数の従局、 ス夕一型力ブラ及び光伝送路を備えて構成される。 主局で生成 された光信号は、 光伝送路を介してスター型力ブラに入射され、 このス夕一型力 ブラで複数の光信号に分岐される。 そして、 分岐された各光信号は、 各光伝送路 を介してそれぞれ各従局に伝送される。 一方、 各従局で生成された各光信号は、 この逆ルートで主局にそれそれ伝送される。 こうして、 情報が 1対 n個の装置間 で送受信される。
このようなスター型の光通信システムに従局が増設される場合では、 伝送品質 を確保するため、 増設される従局と主局との間における光伝送路の伝送損失など が試験される。
従来、 この試験では、 まず、 増設される従局が接続されるコネクタにおいて、 作業者が主局から伝送された光信号(下り光信号)の光パワーを測定する。次に、 この測定値がこの光通信システムで定める受信レベルの規定値の範囲内にあるか 否かを判断する。 そして、 作業者は、 判断の結果、 範囲内である場合には光信号 を伝送することに関して問題がないと判断している。
また、 別の方法として、 特開平 0 7— 3 3 3 1 0 3号公報に記載されているよ うに、 試験装置が、 被試験光伝送路に試験光を入射して、 その後方散乱光 ·反射 光を被試験光伝送路から受光し、 その受光デ一夕を解析することによって損失を 試験している。
上述の前者の試験方法では、 伝送区間における光伝送路の損失が光伝送路の規 定値を超えている場合でも、 従局における下り光信号の光パワーが受信レベルの 規定値の範囲内である場合には、 伝送可能と判断されるため、 主局と増設された 従局との間で通信の運用 (サービス) が開始されてしまう。
しかし、 このような場合では、 従局が送信レベルの規定値の範囲内における光 パワーで主局に光信号 (上り光信号) を送信したとしても、 この伝送損失が伝送 路の規定値を超えているので主局における受信レベルがその規定値より低くなる ため、 この上り光信号が主局で受信できないことがある。 この主局から従局に光 信号を伝送することができるにも拘わらず、 従局から主局に光信号を伝送するこ とができない可能性があるのは、 主局の送信レベルの規定値の範囲及び受信レベ ルの規定値の範囲と従局のこれらの範囲とが各製造業者の違いによって必ずしも —致していないためである。
そして、 上述の後者の試験方法では、 試験装置が複雑になってしまう。さらに、 複雑化するために、 試験装置が高価になる。 試験装置が複雑になる原因は、 後方 散乱光 ·反射光の受光デ一夕を解析しなければならないこと及び受信局と試験装 置設置局との両方で試験光と光信号とを分離しなければならないことなどである そこで、 本発明の目的は、 従来とは異なる方法で光伝送路の伝送損失を確実に 判断することができ、 かつ、 簡単な装置構成で被試験光伝送路を試験することが できる伝送路損失試験方法、 並びに、 この方法を用いる従局、 主局及び光通信シ ステムを提供することである。
発明の開示
上述の原因は、 主に光伝送路の損失を従局の受信光パワーに置き換えて間接的 に判断しているからである。
そこで、 上述の目的は、 次のような通信システムによって達成される。 即ち、 主局及び複数の従局が中継器及び伝送路を介してスター型の網態様で接続される 通信システムは、 試験対象となる被試験伝送路において、 増設すべき従局が接続 される第 2端及びそれ以外の第 1端で信号のパワーを第 2測定手段及び第 1測定 手段でそれそれ測定し、 第 1端の測定結果を格納手段に格納する。 あるいは、 第 1端の測定結果を転送手段で収容手段に送信する。 主局から従局に伝送される下 り信号に収容手段で第 1端の測定結果を収容し、 従局に伝送する。 そして、 この 通信システムは、 従局で、 下り信号からこの第 1端の測定結果を情報抽出手段で 抽出し、 この第 1端の測定結果と第 2端の測定結果との差を処理手段で求めるこ とによって、第 1端と第 2端との間における被試験伝送路の伝送損失を計算する。 このような発明では、 従局に被試験伝送路の両端における信号のパワーの値を 集計し、 この集計した値から被試験伝送路の伝送損失を直接求めるので、 主局と 増設された従局との間において、 確実に双方向で通信することができる。
さらに、 このよう発明では、 上記記載の簡単な構成で、 被試験伝送路を試験す ることができる。
図面の簡単な説明
図 1は、 第 1の実施形態の光通信システムの構成を示す図である。
図 2は、 第 2の実施形態の光通信システムの構成を示す図である。
図 3は、第 2の実施形態の光通信システムにかかる主局の構成を示す図である。 図 4は、第 2の実施形態の光通信システムにかかる従局の構成を示す図である。 図 5は、 ピーク検出回路の一構成例を示す図である。
図 6は、 下り光信号のフレームフォーマツトを示す図である。
図 7は、 第 2の実施形態における伝送損失試験の手順を示す図である。
図 8は、第 3の実施形態の光通信システムにかかる主局の構成を示す図である。 図 9は、第 3の実施形態の光通信システムにかかる従局の構成を示す図である。 図 1 0は、 第 3の実施形態における伝送損失試験の手順を示す図である。
図 1 1は、 第 4の実施形態の光通信システムの構成を示す図である。
図 1 2は、 第 4の実施形態の光通信システムにかかる主局の構成を示す図であ ο
図 1 3は、 第 4の実施形態における伝送損失試験の手順を示す図である。
発明を実施するための最良の形態 '
以下、 本発明の実施形態について図面に基づいて説明する。 なお、 各図におい て、 同一の構成については、 同一の符号を付し、 その説明を省略する。
(第 1の実施形態) 第 1の実施形態は、 本発明にかかる従局及び通信システム、 並びに、 伝送路損 失試験方法が実現される実施形態である。
図 1は、 第 1の実施形態の通信システムの構成を示す図である。
図 1において、 通信システムは、 主局 1 1及び複数の従局 1 2が中継器 1 3及 び伝送路 1 4を介してス夕一型の網態様で接続される。 即ち、 主局 1 1から送出 された下り信号は、 伝送路 1 4 -0を介して中継器 1 3に入力される。 中継器 1 3 は、 この下り信号を複数の従局 1 2 -;!〜 1 2 -kの個数に対応する個数に少なくと も分岐する。 分岐された各下り信号は、 各伝送路 1 4 -1〜 1 4 -kを介して各従局 1 2 -1- 1 2 - kにそれそれ入力される。 一方、 従局 1 2 - 1〜 1 2 -kから主局 1 1 に伝送される各上り信号は、 上述のルートと逆のルートでそれそれ伝送される。 このような通信システムにおいて、 主局 1 1と所定の従局 1 2、 例えば、 従局 1 2 -kとの間の伝送路 1 4の伝送損失を計測する場合について以下に説明する。 格納部 2 1は、 主局 1 1に備えられ、 所定の従局 1 2 -kが接続する端を除く伝 送路 1 4中の所定の箇所における信号のパワーに関する情報を格納する。
収容部 2 2.は、 主局 1 1に備えられ、 この格納されている情報を所定の従局 1 2 -kに伝送される下り信号内に収容する。
第 2測定部 2 6は、 所定の従局 1 2 -kに備えられ、 伝送路 1 4の所定の従局 1 2 - kが接続する端で信号のパワーを測定する。 測定結果は、 処理部 2 8に出力さ れ 。
情報抽出部 2 7は、 所定の従局 1 2 -kに備えられ、 下り信号から収容部 2 2で 収容された情報を取り出す。 取り出された情報は、 処理部 2 8に出力される。 処理部 2 8は、 所定の従局 1 2 - kに備えられ、 第 2測定部 2 6の出力と情報抽 出部 2 7の出力との差を求め、 伝送路の伝送損失を出力する。
即ち、 このような通信システムに使用される所定の従局 1 2 -kは、 所定の従局 1 2 - kが接続する被試験伝送路 1 4の端で信号のパワーを測定する第 2測定部と、 所定の従局 1 2 - kが接続する被試験伝送路 1 4の端を除く被試験伝送路 1 4中の 所定の箇所で測定された信号のパワーの情報であって、 所定の従局 1 2 -kに伝送 される下り信号に主局 1 1で収容された信号のパワーの情報を下り信号から取り 出す情報抽出部 2 7と、 第 2測定部 2 6の出力と情報抽出部 2 7の出力との差を 求め、被試験伝送路 1 4の伝送損失を出力する処理部 2 8とを備えて構成される。 接続すべき被試験伝送路 1 4は、 所定の従局 1 2 -kが接続され、 伝送損失が試験 される伝送路 1 4である。
このようにして、 この通信システム及び所定の従局 1 2 -kは、 所定の従局 1 2 -kと所定の箇所との間における伝送路の伝送損失を直接的に測定することができ る。 また、 所定の従局 1 2 - kが増設される従局である場合には、 増設される従局 は、 接続すべき伝送路の伝送損失を求めることができるので、 主局と増設された 従局との間において確実に双方向で通信することができる。
なお、 本実施形態において、 所定の従局 1 2は、 第 2測定部 2 6、 情報抽出部 2 7及び処理部 2 8を備えて構成されるが、 すべての従局 1 2がこれらを備えて いる必要は必ずしもない。 伝送損失を測定すべき伝送路 1 4に接続する従局 1 2 にこれらが備えられていればよい。
(第 1の実施形態のより好ましい形態) .
第 1の実施形態において、 格納部 2 1の代わりに第 1測定部 2 3及び転送部 2 4を備え、 収容部 2 2の機能を後述するような機能にしてもよい。
即ち、 第 1測定部 2 2は、 所定の従局 1 2 - kが接続する端を除く伝送路中の所 定の箇所で信号のパワーを測定する。 測定結果は、 転送部 2 3に出力される。 転送部 2 3は、 第 1測定部 2 2で測定された信号のパワーの情報を収容部 2 2 に転送する。 すなわち、 信号のパワーの情報が収容部 2 2に通知される。
そして、 この場合において、 収容部 2 1は、 主局 1 1に備えられ、 転送部 2 4 から伝送された情報を従局 1 2に伝送される下り信号内に収容する。下り信号は、 従局 1 2に伝送される。
なお、 図 1では、 後述の説明上、 第 1測定部 2 2は、 破線で示す第 1測定部 2 2 a及び第 1測定部 2 2 b の 2個を示すが、 いずれか一方に備えられ、 そして、 転送部 2 3は、 破線で示す転送部 2 3 a及び転送部 2 3 b の 2個を示すが、 いず れか一方に備えられる。 さらに、 第 1測定部 2 2及び転送部 2 3は、 図 1に示さ れる 2箇所に限定されるものでもない。 測定すべき伝送路 1 4の 2地点間に合わ せて、 適宜、 主局 1 1と所定の従局 1 2 -kの間における伝送路 1 4中に設けられ る ο そして、 第 1の実施形態における通信システムにおいて、 所定の箇所は、 主局 1 1が被試験伝送路 1 4に接続する端であり、 パワーを測定される信号は、 所定 の従局 1 2 -kに伝送される下り信号であることで構成することがで好ましい。 即ち、 第 1測定部 2 2 a及び転送部 2 3 a は、 図 1に示すように主局 1 1内に 備えられる。
このような構成では、 伝送路 1 4 -k、 中継器 1 3及び伝送路 1 4 -0の伝送損失 を求めることができる。 また、 主局 1 1から従局 1 2に向かう方向について、 伝 送損失を求めることができる。
また、 第 1の実施形態における通信システムにおいて、 所定の箇所は、 主局 1 1が被試験伝送路 1 4に接続する端であり、 パワーを測定される信号は、 所定の 従局 1 2 -kから主局 1 1に伝送される上り信号であることで構成することが好ま しい。
このような構成では、 伝送路 1 4 -k、 中継器 1 3及び伝送路 1 4 -0の伝送損失 を求めることができる。 また、 所定の従局 1 2 - kから主局 1 1に向かう方向につ いて、 伝送損失を求めることができる。
さらに、 第 1の実施形態における通信システムにおいて、 所定の箇所は、 中継 器 1 3が被試験伝送路 1 4中で接続する端であり、 パワーを測定される信号は、 所定の従局 1 2 -kから主局 1 1に伝送される上り信号であることで構成すること が好ましい。
即ち、 第 1測定部 2 2 b及び転送部 2 3 は、 図 1に示すように中継局 1 3内 に備えられる。
このような構成では、 伝送路 1 4 -kの伝送損失を求めることができる。 また、 所定の従局 1 2 -kから主局 1 1に向かう方向について、 伝送損失を求めることが できる。
次に、 別の実施形態について説明する。
(第 2の実施形態の構成)
第 2の実施形態は、 本発明にかかる従局及び通信システム、 並びに、 伝送路損 失試験方法が適用される実施形態である。
第 2の実施形態の概要は、 試験対象である被試験伝送路の両端において、 下り 光信号の光パワーをそれそれ測定し、 主局で測定された下り光信号の光パワーを 下り光信号に収容して、 従局で被試験伝送路の伝送損失を測定するものである。 図 2は、 第 2の実施形態の光通信システムの構成を示す図である。
図 3は、第 2の実施形態の光通信システムにかかる主局の構成を示す図である。 図 4は、第 2の実施形態の光通信システムにかかる従局の構成を示す図である。 図 5は、 ピーク検出回路の一構成例を示す図である。
図 6は、 下り光信号のフレームフォ一マツトの一構成例を示す図である。
図 2において、 光通信システムは、 主局 51、 複数の従局 52、 光中継局 53 及び光伝送路 54を備えて構成され、 スター型の網態様でそれそれ接続される。 主局 51で生成された下り光信号は、 光伝送路 54-0を介して光中継器 53に 入射される。 光中継器 53は、 スター型の光力ブラ (以下、 「CPLj と略記す る。 ) 61を備えて構成され、 この下り光信号を複数の従局 52の個数に対応す る個数に少なくとも分岐する。 分岐された各下り光信号は、 各光伝送路 54-丄〜 54 -kを介して各従局 52 -1〜 52 -kにそれそれ入射される。 一方、 各従局 52 - 1〜52- kから主局 51に伝送される各上り光信号は、 上述のルートと逆のルー 卜でそれそれ伝送される。
次に、 主局 5 1の構成について説明する。
図 3において、 主局 51は、 信号処理回路 127、 ディジタル ·アナログ変換 回路 (以下、 「D/A」 と略記する。 ) 121、 駆動回路 122、 発光素子 12 3、 CP L 124 コネクタ 125、 メモリ 126、 アナログ ·ディジ夕ル変換 回路 (以下、 「AZD」 と略記する。 ) 128、 アンプ 129、 131、 ピーク 検出回路 130及び受光素子 132を備えて構成される。
発光素子 123は、 発光ダイオードや半導体レーザなどを備えて構成され、 発 光した光信号は、 CPL 124で一部が分岐され、 コネクタ 125を介して光伝 送路 54-0に射出される。 CPL 124で分岐された一部の光信号は、 ホトダイ オードなどを備えて構成される受光素子 132に入射する。 コネクタ 125は、 主局 51に設けられたコネクタ 125a及び光伝送路 54-0に設けられたコネク 夕 125b によって、 主局 51と光伝送路 54-0とを光学的に接続する。
受光素子 132は、 この光信号を電気信号に変換し、アンプ 131に出力する。 アンプ 1 3 1は、 プリアンプであり、 所定のレベルにこの電気信号を増幅する。 増幅された電気信号は、 ピーク検出回路 1 3 0に入力される。 受光部 1 0 2は、 これら受光素子 1 3 2及びアンプ 1 3 1を備えて構成される。
ピーク検出回路 1 3 0は、 入力される電気信号のレベルにおいて最大値を検出 する。 このピーク検出回路 1 3 0は、 例えば、 図 5に示すように、 ダイオード 1 3 5、 抵抗器 1 3 6及びコンデンサ 1 3 7を備えて構成される。 ダイオード 1 3 5のアノード端子は、アンプ 1 3 1の出力端子に接続され、その力ソード端子は、 抵抗器 1 3 6及びコンデンサ 1 3 7を介して接地される。 ピーク検出回路 1 3 0 の出力は、 コンデンサ 1 3 7の端子間電圧として取り出される。
ピーク検出回路 1 3 0から出力される最大値は、 アンプ 1 2 9に入力される。 アンプ 1 2 9は、 ボストアンプであり、 所定のレベルに最大値を増幅する。 増幅 された最大値は、 A/D 1 2 8でアナログ信号からディジタル信号に変換され、 信号処理回路 1 2 7に出力される。 ピーク検出部 1 0 3は、 これらピーク検出回 路 1 3 0及びアンプ 1 2 9を備えて構成される。
信号処理回路 1 2 7は、 マイクロプロセッサなどを備えて構成され、 入力され た最大値をメモリ 1 2 6に格納する。 このようにして、 信号処理回路 1 2 7は、 送信レベルの最大値を記録する。 また、 メモリ 1 2 6は、 後述する伝送路損失試 験を行うプログラム、 プログラム実行中の各値及び発光素子 1 2 3を駆動するた めの電流値などの各種情報が格納される。
また、 下り光信号を生成する際に、 信号処理回路 1 2 7は、 この最大値をメモ リ 1 2 6から取り込むとともに、 この主局 5 1から従局 5 2に伝送すべき実デ一 夕を不図示の回路から取り込み、 下り光信号を図 6に示すフレームフォーマツト にすべき信号を D/A 1 2 1を介して駆動回路 1 2 2に出力する。
図 6において、 本実施形態における光信号は、 受信側で送信側と同期を取るた めに使用される同期信号、 信号のパワーの情報を収容するレベル情報部及び伝送 すべき実デ一夕を収容するデ一夕部を備えて構成される。 本実施形態では、 レべ ル情報部には、 最大値、 即ち、 主局 5 1における下り光信号のパワーが収容され る。 また、 データ部は、 複数の従局 5 2の個数に合わせて複数のスロットで構成 される。 駆動回路 1 2 2は、 発光素子 1 2 3に電流を供給することによって発光素子 1 2 3を発光させる。 この供給される電流は、 信号処理回路 1 2 7からの信号に従 つて変調され、 発光素子 1 2 3の発光を直接変調する。 光信号生成部 1 0 1は、 A/D 1 2 1、 駆動回路 1 2 2及び発光素子 1 2 3を備えて構成される。
次に、 従局 5 2の構成について説明する。
図 4において、 主局 5 2は、 コネクタ 1 4 1、 受光素子 1 4 2、 アンプ 1 4 3、 同期回路 1 4 4、 分離回路 1 4 5、 ピーク検出部 1 0 8及び引算回路 1 4 8を備 えて構成される。
主局 5 1で生成された下り光信号は、 途中中継局 5 3で中継される光伝送路 5 4を介してコネクタ 1 4 1に入射される。 コネクタ 1 4 1は、 従局 5 2に設けら れたコネクタ 1 4 l a及び光伝送路 5 4に設けられたコネクタ 1 4 l bによって、 従局 5 2と光伝送路 5 4とを光学的に接続する。
コネクタ 1 4 1に入射した下り光信号は、 受光素子 1 4 2で光電変換され、 電 気信号としてアンプ 1 4 3に入力される。 この電気信号は、 プリアンプであるァ ンプ 1 4 3で所定のレベルに増幅される。 増幅された電気信号は、 同期回路 1 4 4及びビーク検出部 1 0 8に入力される。
同期回路 1 4 4は、 この電気信号の同期信号を基にこの電気信号(下り光信号) と同期を確立する。 分離回路 1 4 5は、 同期回路 1 4 4で抽出された同期タイミ ングで、 同期回路 1 4 4を介して入力される電気信号から実デ一夕及び送信レべ ルの情報を取り出す。 そして、 分離回路 1 4 5は、 実デ一夕をこの実データを使 用する外部回路 (不図示) に出力するとともに、 送信レベルの情報を引算回路 1 4 8に出力する。
一方、 ピーク検出部 1 0 8は、 入力される電気信号のレベルにおいて最大値を 検出し、 検出結果を所定のレベルに増幅した後に、 引算回路 1 4 8に出力する。 ピーク検出部 1 0 8の構成は、 上述の主局 5 1内のピーク検出部 1 0 3と同様で あるので、 その説明を省略する。
引算回路 1 4 8は、 分離回路 1 4 5の出力からピーク検出部 1 0 8の出力を引 き算し、 その算出結果を被試験伝送路の伝送損失として出力する。
(第 2の実施形態の作用効果) このようなス夕一型網態様の光通信システムにおいて、 従局 52 -kが増設され る場合についてその作用効果を説明する。
図 7は、 第 2の実施形態における伝送損失試験の手順を示す図である。
図 7において、 主局 51内の信号処理回路 127は、 主局 51が開設される際 の初期設定の場合などにおいて、 メモリ 126に格納されている伝送路損失試験 プログラムを読み込み、 実行する (S 1) 。
信号処理回路 127は、 下り光信号の送信レベルに相当する発光量で発光素子 123を発光させ、 ピーク検出部 103に送信レベルを測定させる (S 2) 。 ピーク検出部 1◦ 3は、 測定結果を信号処理回路 127に出力し (S 3) 、 信 号処理回路 127は、 この送信レベルの情報をメモリ 126に格納する (S 4)。 信号処理回路 127は、 メモリ 126から送信レベルの情報を取り込むととも に、 各従局 52に送信すべき実データがある場合にはその実デ一夕を取り込む。 そして、 信号処理回路 127は、 伝送に適した信号に変換し、 これに併せて発光 素子 123を発光させることによって、 送信レベルの情報を収容した下り光信号 を生成する (S 5) 。
生成された下り光信号は、 光伝送路 54-0に射出される。 そして、 この下り光 信号は、 光中継器 53内のス夕一型の CP L 61で各従局 52- 1〜52-kにそれ それ分岐され、 その 1つが従局 52-kに伝送される (S 6) 。
従局 52- kでは、 この下り光信号を受光素子 142で受光し、 従局 52- k内の ピーク検出部 108で受信レベルの最大値が検出される (S 7) 。 そして、 その 検出結果が引算回路 148に出力される。
また、 従局 52- kでは、 受光された下り光信号を基づく電気信号から、 分離回 路 145は、 主局 51の送信レベルの情報を抽出し、 引算回路 148に出力する (S 8) 。
そして、 従局 52- kでは、 引算回路 148は、 抽出した主局 51の送信レベル から従局 52- kで検出した受信レベルを引くことによって、 増設される従局 52 -kが接続される光伝送路 54の伝送損失が計測される。 即ち、 光伝送路 54-0、 光中継器 53及び光伝送路 54-kの伝送損失が計測される (S 9) 。
計測結果は、 外部に出力され、 例えば、 表示装置に表示される。 作業者は、 この表示結果に基づいて、 伝送損失が光伝送路の規定値の範囲内で あるか否か判断し (S 1 0 ) 、 規定値の範囲内である場合は、 増設工事を完了す る (S 1 1 ) 。 光通信システムは、 そのまま運用を開始する。
一方、 規定値の範囲外である場合は、 作業者は、 主局 5 1から従局 5 2 -kまで の光伝送路 5 4の点検、 特に、 スプライス損失などの点検や従局 5 2 -kの上り光 信号の送信レベルの調整など、 従局 5 2 - kから伝送される上り光信号が主局 5 1 で受信することができるように、 必要な措置を行う (S 1 2 ) 。
このため、 このような光通信システムでは、 従局 5 2を増設する場合に、 この 従局 5 2が接続される被試験伝送路の伝送損失をこの被試験伝送路の両端におけ る各光パワーから直接計測することができるので、 増設された従局 5 2で生成さ れる上り光信号を主局に確実に伝送することができる。
また、 この光通信システムは、 下り光信号に主局 5 1の送信レベルの情報を収 容しているので、 作業者を従局に配置するだけで従局 5 2を増設することができ る。 そのため、 主局 5 1に作業者を配置する必要がない。
なお、 第 2の実施形態では、 下り光信号の送信レベルは、 受光部 1 0 2.、 ピー ク検出部 1 0 3及び D/A 1 2 8によって測定されるが、 主局 5 1のコネクタ 1 2 5 a に光強度を計測する光パウーメータを接続することによって、 送信レベル を測定し、 その測定結果をメモリ 1 2 6に格納するようにしてもよい。 このよう な場合では.、 主局 5 1は、 受光部 1 0 2、 ピーク検出部 1 0 3及び D /A 1 2 8 を省略することができる。
また、 第 2の実施形態では、 下り光信号の送信レベルは、 一旦メモリ 1 2 6に 格納するようにしたが、 メモリ 1 2 6に格納すること無しに、 測定後直ちに下り 光信号に収容して従局 5 2 -kに送出するようにしてもよい。
次に、 別の実施形態について説明する。
(第 3の実施形態の構成)
第 3の実施形態は、 本発明にかかる従局及び通信システム、 並びに、 伝送路損 失試験方法が適用される実施形態である。
第 3の実施形態の概要は、 被試験伝送路の両端において、 上り光信号の光パヮ —をそれそれ測定し、 主局で測定された上り光信号の光パワーを下り光信号に収 容して、 従局で被試験伝送路の伝送損失を測定するものである。
第 3の実施形態における光通信システムの構成は、 図 2において、 主局 5 1の 代わりに主局 7 1が使用され、 従局 5 2の代わりに従局 7 2が使用されることを 除き、 第 2の実施形態と同様であるので、 その説明を省略する。
図 8は、第 3の実施形態の光通信システムにかかる主局の構成を示す図である。 図 9は、第 3の実施形態の光通信システムにかかる従局の構成を示す図である。 図 8において、 主局 7 1は、 光信号生成部 1 0 1、 光サ一キユレ一夕 (以下、 「C i r」 と略記する。 ) 1 5 1、 コネクタ 1 2 5、 受光部 1 0 2、 ピ一ク検出 部 1 0 3、 A/D 1 2 8、 信号処理回路 1 5 3及びメモリ 1 5 2を備えて構成さ れる。
光伝送路 5 4 -0を介して入射される上り光信号は、 コネクタ 1 2 5を介して、 C i r 1 5 1に入射される。 C i r 1 5 1は、 ポート P I に入射された光をポ一 ト P 2 に射出し、 ポート P 3 に入射された光をポート P 1 に射出する。
従って、 上り光信号は、 C i r 1 5 1、 受光部 1 0 2及びピーク検出部 1 0 3 で上り光信号における受信レベルの最大値が検出される。 その検出結果は、 A/ D 1 2 8を介して信号処理回路 1 5 3に出力される。
信号処理回路 1 5 3は、 この受信レベルの最大値を基に増設された従局 7 2に 対する受信レベルを求めて、 これをメモリ 1 5 2に格納する。 また、 メモリ 1 5 2は、 後述する伝送路損失試験を行うプログラム、 プログラム実行中の各値及び 光信号生成部 1 0 1内の発光素子を駆動するための電流値などの各種情報が格納
(^れる o
また、 下り光信号を生成する際に、 信号処理回路 1 5 3は、 この増設された従 局 7 2に対する受信レベルをメモリ 1 5 2から取り込むとともに、 この主局 7 1 から従局 7 2に伝送すべき実デ一夕を不図示の回路から取り込み、 受信レベルの 情報を収容した下り光信号を光信号生成部 1 0 1で生成させて、 C i r l 5 1の ポート P 3 に射出する。 入射された下り光信号は、 C i r 1 5 1のポート P 3 か らポート P 3 に射出され、 コネクタ 1 2 5を介して光伝送路 5 4に射出される。 次に、 従局 7 2の構成について説明する。
図 9において、 従局 7 2は、 コネクタ 1 4 1、 受光素子 1 4 2、 アンプ 1 4 3、 同期回路 144、 分離回路 145、 引算回路 148、 Cir l 55、 CPL 15 6、 受光部 107、 ピーク検出部 108、 A/D 159、 信号処理回路 157、 光信号生成部 106及びメモリ 158を備えて構成される。
光信号生成部 106は、 前述した主局 51内の光信号生成部 101と同様であ り、 上り光信号を生成する。 上り光信号は、 CPL 156、 C i r 155のポー ト P3、 C i r 155のポート PI及びコネクタ 141を介して光伝送路 54に 射出される。 そして、 上り光信号は、 CPL 156でその一部が分岐され、 受光 部 107及びピーク検出部 108でその送信レベルの最大値が検出される。 検出 結果は、 A/D 159を介して信号処理回路 157に出力され、 メモリ 158に 格納される。 これら受光部 107及びピーク検出部 108は、 上述の受光部 10 2及びピーク検出部 103とそれぞれ同様であるのでその説明を省略する。 一方、 光伝送路 54から入射される下り光信号は、 コネクタ 141、 C i r 1 55のポート PI 、 C i r 155のポート P2、 受光素子 142、 アンプ 143 及び同期回路 144を介して、 分離回路 145に入力される。
分離回路 145は、 同期回路 144で抽出された同期タイミングで、 同期回路 144を介して入力される電気信号から実データ及び主局 71の受信レベルの情 報を取り出す。 そして、 分離回路 145は、 実データをこの実データを使用する 外部回路 (不図示) に出力するとともに、 主局 71の受信レベルの情報を引算回 路 148に出力する。
引算回路 148は、 分離回路 145の出力からピーク検出部 108の出力を引 き算し、 その算出結果を出力する。
(第 3の実施形態の作用効果)
このようなスター型網態様の光通信システムにおいて、 従局 72- kが増設され る場合についてその作用効果を説明する。
図 10は、 第 3の実施形態における伝送損失試験の手順を示す図である。
図 10において、 従局 72 -k内の信号処理回路 157は、 従局 72 -kを増設す る作業者などの指示によって、 メモリ 158に格納されている伝送路損失試験プ ログラムを読み込み、 実行する (S 21) 。
信号処理回路 157は、 上り光信号の送信レベルに相当する発光量で光信号生 成部 106に上り光信号を射出させ、 ピーク検出部 108に上り光信号の送信レ ペルを測定させる (S 22) 。
ピーク検出部 108は、 測定結果を信号処理回路 157に出力し (S 23) 、 信号処理回路 157は、 この上り光信号の送信レベルの情報をメモリ 158に格 納する (S 24) 。
一方、 上り光信号は、 光伝送路 54-0に射出される。 そして、 この上り.光信号 は、 中継器 53内のス夕一型の CP L 61を介して主局 71に伝送される。
主局 71では、 この上り光信号を受光部 102で受光し、 主局 71内のピーク 検出部 103で上り信号の受信レベルの最大値が検出される (S 25)。そして、 その検出結果が信号処理回路 153に出力される。
この場合において、 主局 71には、 各従局 72からのすベての上り光信号が受 光されるので、 信号処理回路 153は、 従局 72- kが増設される前後における最 大値を較べることによって、 従局 72- kに対応する受信レベルを求める。 なお、 従局 72- kに割り当てられたスロットの容量も考慮される。
主局 71では、 信号処理回路 153は、 従局 72- kに対応する受信レベルの情 報、 及び、 各従局 72に送信すべきデータがある場合にはそのデータに基づいて 受信レベルの情報を収容した下り光信号を生成する (S 26) 。
生成されたこの下り光信号は、 光伝送路 54-0、 光中継局 53及び光伝送路 5 4- kを介して、 従局 7.2-kに伝送される (S 27) 。
また、 従局 72-kでは、 受光された下り光信号に基づく電気信号から、 分離回 路 145は、 主局 71の受信レベルの情報を抽出し、 引算回路 148に出力する (S 28) 。
そして、 従局 72-kでは、 引算回路 148は、 従局 72-kで検出した送信レべ ルから抽出した主局 71の受信レベルを引くことによって、 増設される従局 72 -kが接続される光伝送路 54の伝送損失が計測される。 即ち、 光伝送路 54-0、 光中継器 53及び光伝送路 54-kの伝送損失が計測される (S 29) 。
計測結果は、 外部に出力され、 例えば、 表示装置に表示される。
作業者の判断及びこの判断結果に基づく処理である S 30乃至 S 32は、 第 2 の実施形態における S 10乃至 S 12とそれそれ同様であるので、 その説明を省 略する。
なお、 第 3の実施形態では、 上り光信号の送信レベルは、 受光部 1 0 7、 ピー ク検出部 1 0 8及び D/A 1 5 9によって測定されるが、 従局 7 2のコネクタ 1 4 l a に光強度を計測する光パヮ一メ一夕を接続することによって、 送信レベル を測定し、 その測定結果をメモリ 1 5 8に格納するようにしてもよい。 このよう な場合では、 従局 7 2は、 受光部 1 0 7、 ピーク検出部 1 0 8及び A/D 1 5 9 を省略することができる。
次に、 別の実施形態について説明する。
(第 4の実施形態の構成)
第 4の実施形態は、 本発明にかかる従局及び通信システム、 並びに、 伝送路損 失試験方法が適用される実施形態である。
第 4の実施形態の概要は、 被試験伝送路の両端において、 上り光信号の光パヮ 一をそれそれ測定し、 光中継局で測定された上り光信号の光パワーを主局に送信 し、主局でこの受信された上り光信号の光パワーの情報を下り光信号に収容して、 従局で被試験伝送路の伝送損失を測定するものである。
図 1 1は、 第 4の実施形態の光通信システムの構成を示す図である。
図 1 2は、 第 4の実施形態の光通信システムにかかる主局の構成を示す図であ る o
図 1 1において、 光通信システムは、 主局 8 1、 複数の従局 7 2、 光中継局 8 3及び光伝送路 5 4を備えて構成され、スター型の網態様でそれそれ接続される。 主局 8 1で生成された下り光信号は、 光伝送路 5 4 -0を介して光中継器 8 3に 入射される。 光中継器 8 3は、 ス夕一型の C P L 6 2、 光パヮ一メ一夕 1 7 1及 び送信回路 1 7 2を備えて構成され、 C P L 6 2でこの下り光信号を複数の従局 7 2の個数に対応する個数に少なくとも分岐する。 分岐された各下り光信号は、 各光伝送路 5 4 -1〜5 4 -kを介して各従局 7 2 -1〜7 2 -kにそれそれ入射される c 一方、 従局 7 2 -1〜7 2 - kから主局 8 1に伝送される上り光信号、 例えば、 従 局 7 2 -kからの上り光信号は、 従局 7 2 - kが接続する光伝送路 5 4 -kを介して光 中継器 8 3内の C P L 6 2に入射される。
この上り光信号は、 C P L 6 2で 2つに分岐される。 分岐された一方は、 光伝 送路 5 4 -0を介して主局 8 1に伝送される。 分岐された他方は、 光パワーメータ 1 7 1に入射され、 その光パワーが測定される。 測定結果は、 送信回路 1 7 2に 出力され、 送信に適した信号に変換されて、 主局 8 1内の受信回路 1 7 5に送信 される。
即ち、 C P L 6 2は、 下り光信号を従局 7 2の個数に少なくとも分岐し、 上り 光信号を主局 8 1と光パワーメ一夕 1 Ί 1に少なくとも分岐する。
次に、 主局 8 1の構成について説明する。
図 1 2において、 主局 8 1は、 光信号生成部 1 0 1、 コネクタ 1 2 5、 受信回 路 1 7 5、 信号処理回路 1 7 6及びメモリ 1 5 2を備えて構成される。 なお、 従 局 7 2から伝送される上り光信号を受信処理する構成は、 省略されている。 受信回路 1 7 5は、 光中継器 8 3内の送信回路 1 7 2から送信された信号を受 信 ·処理し、 光中継器 8 3における上り光信号の受信レベルを信号処理回路 1 7 6に出力する。
信号処理回路 1 7 6は、 受信回路 1 7 5の出力を基に増設された従局 7 2に対 する受信レベルを求めて、 これをメモリ 1 5 2に格納する。
即ち、 第 3の実施形態では、 受光部 1 0 2及びピーク 出部 1 0 3によって上 り光信号の受信レベルを測定したが、 第 4の実施形態では、 受信回路 1 7 5から 得る。
一方、 下り光信号を生成する際に、 信号処理回路 1 7 6は、 この増設された従 局 7 2に対する受信レベルをメモリ 1 5 2から取り込むとともに、 この主局 7 1 から従局 7 2に伝送すべき実デ一夕を不図示の回路から取り込み、 受信レベルの 情報を収容した下り光信号を光信号生成部 1 0 1で生成させて、 コネクタ 1 2 5 を介して光伝送路 5 4に射出する。
(第 4の実施形態の作用効果)
このようなスター型網態様の光通信システムにおいて、 従局 7 2 -kが増設され る場合についてその作用効果を説明する。
図 1 3は、 第 4の実施形態における伝送損失試験の手順を示す図である。 図 1 3において、 従局 7 2 -k内の信号処理回路 1 5 7が行う伝送路損失試験プ ログラムの実行から下り光信号の送信レベルの測定 ·格納までの処理は、 第 3の 実施形態と同様であるので、 その説明を省略する。 即ち、 S 41乃至 S 44は、 第 3の実施形態における S 2 1乃至 S 24とそれそれ同様である。
一方、 上り光信号は、 光伝送路 54 -kに射出される。 そして、 この上り光信号 は、 光中継器 83内のス夕一型の P CL 62で 2つに分岐される。 一方は、 光伝 送路 54-0を介して主局 8 1に伝送され、 他方は、 光パワーメータ 17 1に射出 される。
光中継局 83内の光パワーメータ 17 1は、 この上り光信号を受光し、 上り光 信号の光パワーを測定する (S 45) 。 その測定結果は、 送信回路 172に出力 され、送信回路 1 Ί 2は、測定結果を主局 8 1内の受信回路 1 Ί 5に送信する(S 46) o
主局 81では、 信号処理回路 176は、 受信回路 175を介して光中継局 83 における従局 72- kに対応する受信レベルの情報を求める。
この場合において、 光中継器 83には、 各従局 72からのすベての上り光信号 が受光されるので、 信号処理回路 176は、 従局 72-kが増設される前後におけ る受信回路 175の出力を較べることによって、 従局 72- kに対応する受信レべ ルを求める。 なお、 従局 72-kに割り当てられたスロットの容量も考慮される。. 主局 81では、 信号処理回路 176は、 従局 72-kに対応する受信レベルの倩 報、 及び、 各従局 72に送信すぺきデ一夕がある場合にはそのデ一夕に基づいて 受信レベルの情報を収容した下り光信号を生成する (S 47) 。
生成されたこの下り光信号は、 光伝送路 54-0、 光中継局 83及び光伝送路 5 4- kを介して、 従局 72-kに伝送される (S 48) 。
そして、 従局 72-kにおける光中継局 83の受信レベルの情報を抽出、 被試験 光伝送路 54の伝送損失が計測、作業者の判断及びこの判断結果に基づく処理は、 第 3の実施形態と同様であるので、 その説明を省略する。 即ち、 349乃至35 3は、 第 3の実施形態における S 28乃至 S 32とそれそれ同様である。
こうして、 光伝送路 54-kの伝送損失が計測される。
なお、 第 4の実施形態では、 上り光信号の送信レベルは、 光パワーメ一夕 17 1によつて測定されるが、 第 2及び第 3の実施形態で説明したような受光部 10 7、 ピーク検出部 108及び A/D 159によって測定してもよい。 そして、 第 2乃至第 4の実施形態では、 ピーク検出部 1 0 3、 1 0 8の構成例 として図 5に示す構成例を示したが、 これに限定されるものではない。 例えば、 一定時間間隔で受光部 1 0 2からその出力を取り込み、 或る時間における出力を 記憶回路に蓄積して、 この蓄積された値と次の時間における出力とを比較し、 比 較の結果、 蓄積された値よりも大きい場合には、 この次の時間の出力で記憶回路 の蓄積内容を更新するような回路構成でもよい。 このような構成では、 記憶回路 の蓄積内容が最大値である。
さらに、 第 2乃至第 4の実施形態では、 光信号生成部 1 0 1、 1 0 6は、 直接 変調する構成を示したが、 これに限定されるものではない。 例えば、 レーザダイ オードなどから発光されるレーザ光をマツハツヱンダ干渉計型光変調器 (Mach- Zehnder interferometer type optical modulator; で外部変調する構成でもよい c また、 第 2乃至第 4の実施形態では、 被試験伝送路の伝送損失が規定値の範囲 内であるか否かの判断、 それに対する措置 (S 1 0乃至 S 1 2 ) を作業者に行わ せていたが、 これを処理する処理回路を従局内に設けてもよい。この処理回路は、 規定値の範囲を示す情報やこの判断を行うプログラムを格納するメモリと、 その プログラムを実行するマイク口プロセッサを備えて構成され—る。 このマイクロプ 口セッサは、 引算回路 1 4 8の出力とメモリに格納されている規定値の範囲と比 較し、 その結果に基づいて、 従局の送信レベルを光増幅器などで調整するように すればよい。 産業上の利用の可能性
本発明では、 従局に被試験伝送路の両端における信号のパワーの値を集計し、 この集計した値から被試験伝送路の伝送損失を直接求めるので、 主局と増設され た従局との間において、 確実に双方向で通信することができる。
そして、 本発明では、 被試験伝送路の伝送損失を求めるために必要な信号のパ ヮーを従局に集計しているので、 作業者を従局に配置するだけで従局を増設する ことができる。 そのため、 主局に作業者を配置する必要がない。
さらに、 本発明では、 簡単な構成で、 被試験伝送路を試験することができる。

Claims

請求の範囲
( 1 ) 主局及び複数の従局が中継器及び伝送路を介してスター型の網態様で接 続される通信システムにおける、 増設される従局に接続する被試験伝送路の伝送 損失を試験する伝送路損失試験方法において、
前記増設される従局に接続する前記被試験伝送路の端を除く前記被試験伝送路 中の所定の箇所で信号のパワーを測定するステップと、
測定された前記信号のパワーの情報を通知するステップと、
通知された前記情報を前記増設される従局に伝送される下り信号に前記主局で 収容するステップと、
前記増設される従局で前記被試験伝送路の該従局に接続する端で信号のパワー を測定するステップと、
前記増設される従局で前記下り信号から前記情報を取り出すステップと、 前記増設される従局で測定された前記信号のパワーの測定値と取り出された前 記情報とに基づいて、 前記増設される従局で前記伝送路の伝送損失を求めるステ ヅプとを備えること
を特徴とする伝送路損失試験方法。
( 2 ) 前記所定の箇所は、 前記主局が前記被試験伝送路に接続する端であり、 前記信号は、 前記主局から前記増設される従局に伝送される下り信号であるこ と
を特徴とする請求項 1に記載の伝送路損失試験方法。
( 3 ) 前記所定の箇所は、 前記主局が前記被試験伝送路に接続する端であり、 前記信号は、 前記増設される従局から前記主局に伝送される上り信号であるこ と .
を特徴とする請求項 1に記載の伝送路損失試験方法。
( 4 ) 前記所定の箇所は、 前記中継器が前記被試験伝送路中で接続する端であ り、
前記信号は、 前記増設される従局から前記主局に伝送される上り信号であるこ と を特徴とする請求項 1に記載の伝送路損失試験方法。
( 5 ) 主局及び複数の従局が中継器及び伝送路を介してスター型の網態様で接 続される通信システムで使用され、 接続すべき被試験伝送路の伝送損失を試験す る従局において、
該従局が接続する前記被試験伝送路の端で信号のパワーを測定する測定手段と、 該従局が接続する前記被試験伝送路の端を除く前記被試験伝送路中の所定の箇 所で測定されるともに該従局に伝送される下り信号に前記主局で収容される信号 のパワーの情報を、 該下り信号から取り出す情報抽出手段と、
前記測定手段の出力と前記情報抽出手段の出力との差を求め、 前記被試験伝送 路の伝送損失を出力する処理手段とを備えること
を特徴とする従局。
( 6 ) 前記所定の箇所は、 前記主局が前記被試験伝送路に接続する端であり、 前記信号は、 前記主局から前記増設される従局に伝送される下り信号であるこ と
を特徴とする請求項 5に記載の従局。
( 7 ) 前記所定の箇所は、 前記主局が前記被試験伝送路に接続する端であり、 前記信号は、 前記増設される従局から前記主局に伝送される上り信号であるこ と
を特徴とする請求項 5に記載の従局。
( 8 ) 前記所定の箇所は、 前記中継器が前記被試験伝送路中で接続する端であ り、
前記信号は、 前記増設される従局から前記主局に伝送される上り信号であるこ と
を特徴とする請求項 5に記載の従局。
( 9 ) 複数の従局と中継器及び伝送路を介してス夕一型の網態様で接続される 主局において、
前記伝送路中の所定の箇所における信号のパワーの情報を前記従局に伝送され る下り信号に収容する収容手段を備えること
を特徴とする主局。
( 1 0 ) 主局及び複数の従局が中継器及び伝送路を介してスター型の網態様で 接続され、 前記主局と所定の従局との間の伝送路の伝送損失を計測する通信シス テムにおいて、
前記主局に備えられ、 前記所定の従局が接続する端を除く前記伝送路中の所定 の箇所における信号のパワーに関する情報を格納する格納手段と、
前記主局に備えられ、 格納されている前記情報を前記所定の従局に伝送される 下り信号に収容する収容手段と、
前記所定の従局に備えられ、 前記伝送路の該所定の従局に接続される端で信号 のパヮ一を測定する測定手段と、
前記所定の従局に備えられ、 前記下り信号から前記情報を取り出す情報抽出手 段と、
前記所定の従局に備えられ、 前記測定手段の出力と前記情報抽出手段の出力と の差を求め、 前記伝送路の伝送損失を出力する処理手段とを備えること
を特徴とする通信システム。
( 1 1 ) 主局及び複数の従局が中継器及び伝^ ¾路を介してス夕一型の網態様で 接続され、 前記主局と所定の従局との間の伝送路の伝送損失を計測する通信シス テムにおいて、
前記所定の従局が接続する端を除く前記伝送路中の所定の箇所で信号のパワー を測定する第 1測定手段と、
前記第 1測定手段で測定された前記信号のパワーの情報を転送する転送手段と、 前記転送手段から前記信号のパワーの情報を受け、 前記信号のパワーの情報を 前記所定の従局に伝送される下り信号に収容する前記主局に備えられる収容手段 と、
前記所定の従局に備えられ、 前記伝送路における前記所定の従局に接続する端 で信号のパワーを測定する第 2測定手段と、
前記所定の従局に備えられ、 前記下り信号から前記情報を取り出す情報抽出手 段と、
前記所定の従局に備えられ、 前記第 2測定手段の出力と前記情報抽出手段の出 力との差を求め、 前記伝送路の伝送損失を出力する処理手段とを備えること を特徴とする通信システム。
(12) 前記所定の箇所は、前記主局が前記被試験伝送路に接続する端であり、 前記信号は、 前記主局から前記所定の従局に伝送される下り信号であること を特徴とする請求項 10又は請求項 11に記載の通信システム。
(13) 前記所定の箇所は、前記主局が前記被試験伝送路に接続する端であり、 前記信号は、 前記所定の従局から前記主局に伝送される上り信号であること を特徴とする請求項 10又は請求項 11に記載の通信システム。
(14) 前記所定の箇所は、 前記中継器が前記被試験伝送路中で接続する端で あり、
前記信号は、 前記所定の従局から前記主局に伝送される上り信号であること を特徴とする請求項 10又は請求項 11に記載の通信システム。
(15) 前記第 1測定手段及び前記転送手段は、 前記主局に備えられること を特徴とする請求項 11に記載の通信システム。
(16) 前記第 1測定手段及び前記転送手段は、 前記中継器に備えられること を特徴とする請求項 11に記載の通信システム。
PCT/JP2000/004341 2000-06-30 2000-06-30 Procede d'analyse de perte de ligne de transmission, station asservie utilisant ce procede, station principale, et systeme de communication WO2002003564A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2002507530A JP3851610B2 (ja) 2000-06-30 2000-06-30 伝送路損失試験方法、並びに、該方法を用いる従局、主局及び通信システム
EP00942416A EP1309097A4 (en) 2000-06-30 2000-06-30 TRANSMISSION LOSS TEST PROCEDURE, SLAVE STATION USING THE PROCESS, MASTER STATION AND COMMUNICATION SYSTEM
PCT/JP2000/004341 WO2002003564A1 (fr) 2000-06-30 2000-06-30 Procede d'analyse de perte de ligne de transmission, station asservie utilisant ce procede, station principale, et systeme de communication
US10/289,305 US7027730B2 (en) 2000-06-30 2002-11-07 Method for measuring transmission loss in optical transmission line for test, and slave station, master station, and optical communication system using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/004341 WO2002003564A1 (fr) 2000-06-30 2000-06-30 Procede d'analyse de perte de ligne de transmission, station asservie utilisant ce procede, station principale, et systeme de communication

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/289,305 Continuation US7027730B2 (en) 2000-06-30 2002-11-07 Method for measuring transmission loss in optical transmission line for test, and slave station, master station, and optical communication system using the method

Publications (1)

Publication Number Publication Date
WO2002003564A1 true WO2002003564A1 (fr) 2002-01-10

Family

ID=11736203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/004341 WO2002003564A1 (fr) 2000-06-30 2000-06-30 Procede d'analyse de perte de ligne de transmission, station asservie utilisant ce procede, station principale, et systeme de communication

Country Status (4)

Country Link
US (1) US7027730B2 (ja)
EP (1) EP1309097A4 (ja)
JP (1) JP3851610B2 (ja)
WO (1) WO2002003564A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008504765A (ja) * 2004-06-30 2008-02-14 シーメンス アクチエンゲゼルシヤフト Ponの光出力レベルを取得する方法および装置
US7580634B2 (en) 2003-10-28 2009-08-25 Nec Corporation Transmission method, transmitter-receiver, and transmitting-receiving system
JP2011091611A (ja) * 2009-10-22 2011-05-06 Mitsubishi Electric Corp 光ファイバ損失検出装置、ponシステム及び光ファイバ損失検出方法
JP2014175754A (ja) * 2013-03-07 2014-09-22 Fujitsu Telecom Networks Ltd Ponシステム
RU2575303C2 (ru) * 2012-08-06 2016-02-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ непрерывного контроля нарушений оптического волокна
JP2017184020A (ja) * 2016-03-30 2017-10-05 Dxアンテナ株式会社 検査システム
JP2020048171A (ja) * 2018-09-21 2020-03-26 エヌ・ティ・ティ・コミュニケーションズ株式会社 制御装置、切り替えシステム、切り替え制御方法、及びプログラム
CN113419189A (zh) * 2020-08-06 2021-09-21 为准(北京)电子科技有限公司 线损测试方法、综测仪和存储介质

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4407104B2 (ja) * 2002-08-30 2010-02-03 富士ゼロックス株式会社 信号伝送システム
WO2004079404A2 (en) * 2003-03-03 2004-09-16 UBI SYSTEMS, INC. (A Delaware Corporation) System and method for performing in-service fiber optic network certification
US9312953B2 (en) 2003-03-03 2016-04-12 Alexander Ivan Soto System and method for performing in-service optical network certification
US20090016714A1 (en) * 2003-03-03 2009-01-15 Alexander Soto System and method for performing in-service fiber optic network certification
US8655166B2 (en) * 2003-03-03 2014-02-18 Alexander I Soto System and method for performing in-service optical fiber network certification
WO2008092397A1 (fr) 2007-01-26 2008-08-07 Huawei Technologies Co., Ltd. Procédé de repérage de point d'événement de fibre, et réseau optique et équipement de réseau associés
US20080292312A1 (en) * 2007-05-21 2008-11-27 Tellabs Petaluma, Inc. Method and apparatus for determining optical path attenuation between passive optical network nodes
CN201118594Y (zh) * 2007-11-07 2008-09-17 华为技术有限公司 一种光网络终端和光线路终端
US8233215B2 (en) * 2009-08-18 2012-07-31 Ciena Corporation Optical module manufacturing and testing systems and methods
US8886474B2 (en) 2010-09-06 2014-11-11 Psiber Data Pte Ltd System and apparatus for testing cable
CN102129506A (zh) * 2011-01-07 2011-07-20 浙江省电力试验研究院 一种理论线损预测方法
JP5724431B2 (ja) * 2011-02-16 2015-05-27 日本電気株式会社 スパンロスモニタシステム及びスパンロスモニタ方法
CN102547778B (zh) * 2012-01-06 2014-12-10 京信通信系统(中国)有限公司 一种扁平化网络架构的无线通信系统、方法及扩展装置
US9369203B1 (en) * 2014-06-11 2016-06-14 Google Inc. Wirelessly powered passive optical power meter
CN110944248B (zh) * 2018-09-25 2022-06-21 中兴通讯股份有限公司 光网络的注册方法、olt、onu、光网络系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140624A (ja) * 1982-02-17 1983-08-20 Kokusai Denshin Denwa Co Ltd <Kdd> 光損失変動量測定方式
JPH08304230A (ja) * 1995-05-10 1996-11-22 Toshiba Corp 光伝送路診断方法
JPH10227722A (ja) * 1997-02-13 1998-08-25 Fujikura Ltd 光線路診断装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57196678A (en) * 1981-05-27 1982-12-02 Pioneer Electronic Corp Table network managing mechanism in catv system
DE3425671A1 (de) * 1984-07-12 1986-01-23 Philips Patentverwaltung Gmbh, 2000 Hamburg Verfahren und vorrichtung zum messen der daempfung an lichtwellenleitern
US4829596A (en) * 1987-02-09 1989-05-09 Allen-Bradley Company, Inc. Programmable controller with fiber optic input/output module
GB2228846B (en) * 1989-03-01 1993-08-18 Stc Plc Fibre optic transmission system
EP0412220B1 (en) * 1989-08-11 1994-03-23 Hewlett-Packard Company Network transceiver
JP2888272B2 (ja) * 1994-12-15 1999-05-10 日本電気株式会社 光ネットワークおよび中継ノード
US5861966A (en) * 1995-12-27 1999-01-19 Nynex Science & Technology, Inc. Broad band optical fiber telecommunications network
US5974237A (en) * 1996-12-18 1999-10-26 Northern Telecom Limited Communications network monitoring
DE19828971A1 (de) * 1998-06-29 2000-01-05 Siemens Ag Verfahren zur Überwachung der Signalqualität in optischen Netzen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140624A (ja) * 1982-02-17 1983-08-20 Kokusai Denshin Denwa Co Ltd <Kdd> 光損失変動量測定方式
JPH08304230A (ja) * 1995-05-10 1996-11-22 Toshiba Corp 光伝送路診断方法
JPH10227722A (ja) * 1997-02-13 1998-08-25 Fujikura Ltd 光線路診断装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1309097A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7580634B2 (en) 2003-10-28 2009-08-25 Nec Corporation Transmission method, transmitter-receiver, and transmitting-receiving system
JP2008504765A (ja) * 2004-06-30 2008-02-14 シーメンス アクチエンゲゼルシヤフト Ponの光出力レベルを取得する方法および装置
JP2011091611A (ja) * 2009-10-22 2011-05-06 Mitsubishi Electric Corp 光ファイバ損失検出装置、ponシステム及び光ファイバ損失検出方法
RU2575303C2 (ru) * 2012-08-06 2016-02-20 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" Способ непрерывного контроля нарушений оптического волокна
JP2014175754A (ja) * 2013-03-07 2014-09-22 Fujitsu Telecom Networks Ltd Ponシステム
JP2017184020A (ja) * 2016-03-30 2017-10-05 Dxアンテナ株式会社 検査システム
JP2020048171A (ja) * 2018-09-21 2020-03-26 エヌ・ティ・ティ・コミュニケーションズ株式会社 制御装置、切り替えシステム、切り替え制御方法、及びプログラム
CN113419189A (zh) * 2020-08-06 2021-09-21 为准(北京)电子科技有限公司 线损测试方法、综测仪和存储介质
CN113419189B (zh) * 2020-08-06 2022-02-22 为准(北京)电子科技有限公司 线损测试方法、综测仪和存储介质

Also Published As

Publication number Publication date
EP1309097A1 (en) 2003-05-07
EP1309097A4 (en) 2006-05-03
US20030053165A1 (en) 2003-03-20
JP3851610B2 (ja) 2006-11-29
US7027730B2 (en) 2006-04-11

Similar Documents

Publication Publication Date Title
WO2002003564A1 (fr) Procede d&#39;analyse de perte de ligne de transmission, station asservie utilisant ce procede, station principale, et systeme de communication
US10554297B2 (en) Fiber optic telecommunications card with security detection
US5923453A (en) Apparatus for measuring optical transmission line property and optical wavelength multiplexing transmission apparatus
EP0554126B1 (en) Optical amplification repeating system
EP3282242B1 (en) Optical time-domain reflectometer
CN109073359B (zh) 光纤传感器和光纤传感器系统
US8280253B2 (en) Optical telecommunications network terminal, an installation including the terminal, and a method of detecting a break in optical transmission means
US20120301137A1 (en) Erroneous optical fiber connection detecting method and node device
CN109792294B (zh) 监测系统和监测方法
US7496296B2 (en) Optical transmission path monitoring system, monitoring apparatus therefor and monitoring method therefor
EP1650541A1 (en) Test system of beam path for searching trouble in beam path from user optical terminal side
US20030117696A1 (en) Power stabilisation in an optical communication system
US20050207000A1 (en) Multipoint monitoring method, monitoring point apparatus, and monitoring station apparatus
US11057144B2 (en) Optical transmission apparatus, method for setting wavelength, and optical transceiver
US6549018B1 (en) Method for measuring the individual crosstalk in wavelength-division multiplex systems and wavelength division multiplex system
US7512336B1 (en) Optical failure detection using polarization
JP4402251B2 (ja) 光空間伝送装置
RU2483446C2 (ru) Мониторинг волокна в оптических сетях
KR200309696Y1 (ko) 광파워미터를 구비하는 광신호 송신장치
JPH05327622A (ja) 光送信器
KR19990084581A (ko) 클럭의 진폭을 이용한 광신호 성능 측정장치 및 방법
JPH02178605A (ja) 光ファイバ心線対照装置
JPH1174838A (ja) 光ファイバによるアナログ強度信号伝送方法及びその装置
JPH0787016A (ja) 光送受信回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 507530

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10289305

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000942416

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000942416

Country of ref document: EP