WO2001099108A1 - Optical disk unit - Google Patents
Optical disk unit Download PDFInfo
- Publication number
- WO2001099108A1 WO2001099108A1 PCT/JP2001/005368 JP0105368W WO0199108A1 WO 2001099108 A1 WO2001099108 A1 WO 2001099108A1 JP 0105368 W JP0105368 W JP 0105368W WO 0199108 A1 WO0199108 A1 WO 0199108A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- equalization
- learning
- filter coefficient
- signal
- block
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/10009—Improvement or modification of read or write signals
- G11B20/10046—Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
- G11B20/10212—Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter compensation for data shift, e.g. pulse-crowding effects
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B20/00—Signal processing not specific to the method of recording or reproducing; Circuits therefor
- G11B20/10—Digital recording or reproducing
- G11B20/14—Digital recording or reproducing using self-clocking codes
Definitions
- the present invention relates to an optical disk apparatus for reproducing digital data recorded on an optical disk medium, and particularly to a PRML (Partial Response Maximum Likelihood) signal processing method which is effective for high-density recording and reproduction in the linear direction.
- PRML Partial Response Maximum Likelihood
- the present invention relates to a device capable of improving the quality of reproduced digital data and improving playability under adverse conditions such as the occurrence of frequent occurrences.
- a method of recording digital data on an optical disk medium there are many methods of making the recording density on an optical recording medium uniform by keeping the linear velocity constant as seen in a compact disc (Compact Disc) or a DVD (Digital Versatile Disc). Used.
- a waveform equalization means is applied to the reproduction waveform from the optical disk medium.
- FIG. 30 (a) there is a disk reproducing system as shown in FIG.
- a digital recording code as shown in FIG. 30 (a) is recorded on the optical disk 52 so that the linear recording density is constant. It is assumed that the recorded data is data regulated such that the number of continuous "0" or "1" is 3 or more and 14 or less, for example, in the 8--16 modulation method.
- the signal obtained by reproduction by the reproducing means 53 such as an optical pickup, as shown in FIG. Since the amplitude decreases as the frequency of the component increases, the signal is amplified by a preamplifier (not shown), and correction is performed by the waveform equalizing means 2 so as to emphasize high frequency components.
- the waveform equalization means 2 is realized by a high-order ripple filter having a boost characteristic.
- This is, for example, a 7th-order ripple filter having frequency characteristics as shown in Fig. 31 and having the function of arbitrarily setting the boost amount and high-frequency cutoff frequency according to the characteristics of the reproduced waveform. is there. .
- the reproduced waveform emphasized by the high-frequency band by the waveform equalizing means 2 is binarized at a predetermined slice level by the binarizing means 54, and ) Convert to a binary digital signal as shown in the figure.
- the cycle detecting means 55 the cycle of a specific pattern included in the digital signal which has been binarized by the binarizing means 54 is counted by the high-frequency clock generated by the oscillator 56.
- the count information of the specific pattern obtained by the cycle detection means 55 is inversely proportional to the linear velocity, and has the cycle information of the clock component of the playback signal. Control is performed so that the free-running frequency of the clock substantially matches the frequency of the click component of the reproduced signal.
- the phase locked loop circuit 57 includes a phase comparator 58, a charge pump 59, a loop filter 60, and a voltage controlled oscillator 61.
- This voltage-controlled oscillator 61 adaptively changes the center frequency based on the frequency information obtained by the period detecting means 55, and the oscillation frequency of the digital signal obtained from the binarizing means 54 is By performing control so that the frequency substantially coincides with the frequency, the phase synchronization after the seek of the reproducing means 53 and the position dependent on the reproducing radius position at the time of CAV reproduction are controlled. Phase synchronization control can be performed.
- a digital demodulation signal is generated by the demodulation circuit 62 using the binarized signal output from the binarization means 54 and the reproduced clock generated from the phase locked loop circuit 57.
- the disc reproduction system After phase synchronization, the disc reproduction system averages and detects the jitter, which is the phase difference between the binarized signal output from the binarization means 54 and the reproduction turlock controlled by the phase locked loop circuit 57.
- the waveform equalizer 2 has a function of learning the boost amount and the high-frequency cutoff frequency so that the output signal of the jitter detector 6 3 is minimized.
- the reproduction characteristics can be improved in response to changes in the data frequency and the high-frequency attenuation characteristic of the reproduction waveform.
- waveform equalization and phase-synchronous reproduction can be performed in accordance with the frequency and high-frequency attenuation characteristics of the clock component of the reproduced waveform, and digital data recorded on an optical disk medium can be stably and accurately reproduced. It becomes possible to reproduce.
- an address block and a random data which are embossed areas in which address information is recorded in advance, such as a DVD-RAM (DVD—random access memory) which is a writable disk
- DVD-RAM DVD—random access memory
- Differences in the reproduction characteristics of writable data blocks, writable optical disks on which digital data is recorded by multiple writing devices with different write characteristics, and the vertical axis and the entrance axis of the laser beam to the recording surface of the optical disk medium If there is deterioration in the reproduction characteristics due to the tilt defined by the angle, or local deterioration in the reproduction characteristics depending on the effects of scratches, dirt, fingerprints, etc. on the disk surface, the boost characteristics described above must be used. Waveform of optically regenerated waveform using only high-order ripple filter In the method of performing reduction, it is impossible to have an optimal high frequency emphasis characteristic for the high-frequency attenuation characteristic of the light reproduced waveform varies.
- the jitter detection means alone can simultaneously and continuously apply to both the boost amount and the high cutoff frequency. It is difficult to perform automatic control. Therefore, the above-mentioned method cannot sufficiently exhibit the equalization performance, and thus cannot be a useful means for improving the reproduction characteristics.
- the present invention has been made in view of such circumstances, and has been made in consideration of a writable disc or the like.
- a writable disc or the like In addition to the differences in playback characteristics due to playback position and playback block, local degradation in playback characteristics due to tilt and differential is absorbed, and leadership is improved for optical disc media with various recording and playback characteristics. It is an object of the present invention to provide a possible optical disk device. Disclosure of the invention
- An optical disc device includes: an equalization filter that performs partial response equalization on a signal reproduced from an optical recording medium in which a data block that is a recordable area and an address block in which the address information is recorded exist; A block for adaptively learning the filter coefficient of the equalization filter for each block based on the output signal of the partial response equalization so that the equalization error of the equalization filter is minimized. And a separate finoleta coefficient learning means.
- the block-by-block filter coefficient learning means has a gate signal generating means for generating a gate signal for separating the address block and the data block. Things.
- the division of the gate signal becomes clear, so that the initial value of the filter coefficient can be loaded for each block.
- the hold control that holds the filter coefficient learned for each block and takes over to the next control can be realized, so that the stability and continuity of the digital adaptive automatic equalization control are improved.
- an optical disc apparatus includes: a preamplifier for enhancing an output amplitude of a signal reproduced from the optical recording medium; a waveform equalizing unit for enhancing a predetermined frequency band of the enhanced signal; Analog-to-digital conversion means for sampling the sampled signal with a reproduction clock, and phase synchronization for controlling the oscillation frequency of the reproduction clock so as to synchronize with the phase of the clock component included in the sampled signal Loop and before Offset correction means for performing a correction to reduce an offset component from the sampled signal, and inputting the corrected signal to the equalization filter, and a type of a partial response equalized by the equalization filter. And a maximum likelihood decoder for performing data demodulation by performing maximum likelihood decoding.
- the block-by-block filter coefficient learning means includes an envelope detecting means for extracting an envelope of the reproduction signal, and a DC fluctuation of the envelope to detect the address block. And a gate signal generating means for generating a gate signal for identifying the data block.
- the optical disc device wherein the envelope detecting means has peak holding means for holding a peak value of the waveform of the reproduction signal, and smoothing means for smoothing the held output signal.
- the envelope of the reproduced waveform is detected. Thereby, the envelope detection from the reproduced waveform is stabilized, and the learning accuracy of the filter coefficient is improved.
- the block-by-block filter coefficient learning means includes: a tracking error signal generating means for generating a tracking error signal for a tracking servo; and detecting a DC variation of the tracking error signal.
- a gate signal generating means for generating a gate signal for identifying the address block and the data block.
- the block-specific filter coefficient learning means detects an address position of the address block, and reproduces in synchronization with a phase of a clock component included in a reproduction signal output from the phase locked loop.
- a counter for counting the number of recording data by a clock; and a gate for identifying the address block and the data block by estimating a position where an address block appears next based on the value of the counter.
- a gate signal generating means for generating a signal.
- the block-by-block filter coefficient learning means includes: a gut signal generating means for identifying the address block and the data block; and a single frequency pattern existing in a reproduction signal.
- a single pattern detecting means for detecting, and when learning the filter coefficients by classifying each block, in each block according to an output signal of the single pattern detecting means.
- the learning of the filter coefficients is performed at random pattern positions other than the single frequency pattern.
- the block-by-block filter coefficient learning means detects an address position of the address block, and detects a phase of a click component included in a reproduction signal output from the phase locked loop.
- the playback clock synchronized with A counter for counting the number of recording data, and a gate signal for identifying the address block and the data block is generated by estimating a position where the next address block appears based on the value of the counter.
- a pattern identification gate signal generating means for separating the positions of the single frequency pattern and the random pattern based on the value of the counter, and learning the filter coefficient by separating each block. At this time, the filter coefficients are learned at random pattern positions other than the single frequency pattern in each block according to the pattern identification gate signal.
- the block-by-block filter coefficient learning means may select a position where a random pattern including address information in the address block and a single frequency pattern are alternately present.
- a learning position control means for determining whether to perform the learning of the filter coefficient, and the learning of the filter coefficient is performed based on the output signal of the learning position control means.
- an optical disc device includes a maximum likelihood decoder that performs data demodulation by performing maximum likelihood decoding according to a type of a partial response on a signal obtained by equalization with the equalization filter; EDC determination means for detecting EDC (Error Detection Code) for determining correctness of address information from a demodulated signal demodulated into binary data by the maximum likelihood decoder, and a result of EDC determination obtained from the EDC determination means And a filter coefficient learning control means for controlling the block-specific filter coefficient learning means so that the learning of the finoleta coefficient for the address block corresponding to the address information is stabilized.
- EDC Error Detection Code
- the learning of the filter coefficient at that position in the address block is stopped, and only those at the position where the reproduction can be performed well are performed. Since the filter coefficient can be learned by using the filter coefficient, the learning of the filter coefficient in the address block is stable in the learning of the filter coefficient in the abnormal state, and the address information can be read stably.
- the block-by-block filter coefficient learning means when correct address information is obtained by the determination by the EDC determination means, adaptively learns filter coefficients in the address block. When the correct address information cannot be obtained, the learning of the filter coefficient is stopped and the filter coefficient is reset to the initial value.
- the block-by-block filter coefficient learning means when the block-by-block filter coefficient learning means performs initial learning for determining an initial value of a filter coefficient of the address block, the determination by the EDC determination means is continuously correct.
- An EDC counter that counts the number of address information that has been obtained, and a filter coefficient when the count value of the EDC counter indicates that the address information is correct for more than an arbitrary number is stored as the initial value of the filter coefficient.
- initial value storage means for loading the information of the initial value storage means at the start of the learning of the filter coefficients.
- the optical disc device includes an equalizing filter for performing partial response equalization when reproducing digital data from an optical recording medium, and an equalizing filter based on the equalized output signal. Set the equalization filter so that the equalization error is minimized.
- Filter coefficient learning means for adaptively learning the filter coefficient of the filter, and equalization error averaging means for averaging the absolute value of the equalization error amount at each level of the partial response equalization level in the equalized signal
- An equalization performance detecting means for detecting equalization performance based on an output of the equalization error averaging means; a self-determining filter coefficient learning control means for controlling a learning function of a filter coefficient of the equalization filter; It is intended to be equipped with.
- the current digital equalization state is self-analyzed, and adaptively digitally responds to the difference in playback characteristics depending on the playback position, which appears due to a writable disc or tilt, etc. Since the automatic equalization control can be performed, the readability of an optical disk medium having various recording / reproducing characteristics is improved.
- the optical disk device is a preamplifier for enhancing an output amplitude of a reproduction signal from the optical recording medium, and a waveform equalizing means for enhancing a predetermined frequency band of the signal in which the output screw width is enhanced.
- Analog-to-digital conversion means for sampling the waveform-equalized signal into digital data using a reproduced clock; and controlling the oscillation frequency of the reproduced clock so as to synchronize with the phase of the clock component of the sampled signal.
- Phase-locked loop, digital data correction means for correcting offset components and amplitude from the sampled signal, and inputting the corrected data to the equalization filter, and equalization obtained from the equalization filter
- Equalization error averaging means for averaging the absolute value of the equalization error amount at each level of the partial response equalization level in the output signal
- An equalization performance detection unit that detects equalization performance based on an output of the equalization error averaging unit; a self-determination filter coefficient learning control unit that controls a learning function of a filter coefficient of the equalization filter;
- a maximum likelihood decoder that performs data demodulation from the equalized output signal according to the type of the partial response applied in the equalizing filter is provided.
- the equalization error averaging means may include a predetermined chip.
- Channel bits minimum unit of recording data
- N is a positive integer
- X is a positive integer
- an equalization state is obtained. Is determined to be normal, and when the level is equal to or higher than the level X, a determination signal indicating that the equalization state is abnormal is generated. This improves the accuracy of detecting the digital equalization performance, stabilizes the automatic equalization performance, and easily realizes any reproduction performance without operating the circuit for learning the filter coefficients more than necessary. Power consumption can be reduced.
- the equalization error averaging means may include: a partial response in the equalization filter during a predetermined number of channel bits (minimum unit of recording data) (N is a positive integer); The absolute value of the equalization error amount is added for each level of the equalization level, and division is performed with N as a parameter.
- the equalization performance detection means performs the equalization of the specified partial response equalization level. If the equalized error output result averaged by the error averaging means is smaller than a predetermined level X (X is a positive integer), a judgment signal indicating that the equalization state is normal is generated, and the predetermined level X (X Is a positive integer). If the value is equal to or greater than the above, a determination signal that the equalization state is abnormal is generated.
- digital adaptive automatic emphasis with emphasis on reproduction performance, is achieved by detecting digital equalization performance only for the partial response equalization level that is significantly related to the performance of PRML signal processing, rather than the overall equalization performance. This makes it possible to improve leadership, especially when the reproduced waveform has asymmetry characteristics.
- the self-determination type filter coefficient learning control means performs an initial learning for determining an initial value of a filter coefficient of the equalization filter, the output signal of the equalization performance detection means.
- the self-determination type filter coefficient learning control means performs an initial learning for determining an initial value of a filter coefficient of the equalization filter, the output signal of the equalization performance detection means.
- Has initial value storage means for storing the result of the filter coefficient learning when the equalization state is normal as the initial value of the filter coefficient.
- the adaptive automatic control is performed by loading the value of the storage means and learning the continuous filter coefficient.
- the output signal of the equalization performance detecting means determines that the equalization state is abnormal.
- learning of the filter coefficient is stopped, the value of the initial value storage means is loaded, and then adaptive automatic control is performed again by continuous learning of the filter coefficient.
- the equalization state is judged to be abnormal by the equalization performance detection means. It has the self-healing ability from the abnormal state of resetting to the value and restoring to the normal control state.
- the self-determination type filter coefficient learning control means may include a plurality of optical discs as optical recording media in a radial direction when determining an initial value of a filter coefficient of the equalization filter. It has a zone-specific initial value storage means for performing initial learning by dividing the data into zones and storing each learning result as an initial value of the filter coefficient. It loads the value of the initial value storage means for each zone and performs adaptive automatic control.
- the setting resolution of the high-frequency cutoff frequency of analog waveform equalization for the change in the frequency of the clock component of the reproduced data that depends on the radial direction during CAV reproduction is coarse.
- the digital equalization filter coefficients divided into zones the read performance immediately after the seek is improved.
- the self-determination type filter coefficient learning control means determines an initial value of a filter coefficient of the equalization filter
- the self-determination type filter coefficient learning control means moves the optical disc as an optical recording medium in a radial direction and a circumferential direction. It has a zone-specific initial value storage means for performing initial learning by dividing it into a plurality of zones in the direction and storing each learning result as an initial value of a filter coefficient. The value of the initial value storage means for each zone is loaded, and adaptive automatic control is performed.
- the self-determination type filter coefficient learning control means may perform, during the initial learning of the filter coefficient, the equalization of the plurality of zones on the circular optical disc as an optical recording medium.
- the apparatus For a zone in which the output signal of the performance detection means indicates that the equalization state is particularly poor, the apparatus has a poor zone storage means for recording the zone, and stores the storage result of the bad zone storage means. Based on this, the control gain in filter coefficient learning of adaptive automatic control is adjusted for each zone to be reproduced. This enables stable control and improvement of leadership by switching the equalization control gain and the control method in advance in the zone where the local reproduction characteristic deterioration due to the effect is confirmed. S becomes possible. BRIEF DESCRIPTION OF THE FIGURES
- FIG. 1 is a block diagram showing a configuration of an optical disc device according to Embodiment 1 of the present invention.
- FIG. 2 is a block diagram showing a configuration of an offset correction unit according to the first embodiment.
- FIG. 3 is an explanatory diagram of a difference between a PR (a, b, b, a) equalization method realized by a transversal filter and a general binarization determination method according to the first embodiment. .
- FIG. 4 is a diagram showing frequency characteristics of various partial response systems realized by the transversal filter in the first embodiment.
- FIG. 5 is an explanatory diagram of a recording format of DVD-RAM in the first embodiment.
- FIG. 6 is a block diagram showing a configuration of the transversal filter according to the first embodiment.
- FIG. 7 is a block diagram showing a configuration of a block-by-block filter coefficient learning means according to the first embodiment.
- FIG. 8 is an explanatory diagram of the principle of a Viterbi decoder which is one of the maximum likelihood decoders according to the first embodiment.
- FIG. 9 is a block diagram showing a configuration of a gate signal generating means according to the first embodiment.
- FIG. 10 is an explanatory diagram for explaining a principle of generating a gate signal in the first embodiment.
- FIG. 11 is a block diagram illustrating a principle of generating a gate signal according to the first embodiment.
- FIG. 12 is a block diagram showing a configuration of a gate signal generating means according to the first embodiment.
- FIG. 13 is a block diagram showing a configuration of a gate signal generating means according to the first embodiment.
- FIG. 14 is a block diagram showing a configuration of an optical disk device according to Embodiment 2 of the present invention. '
- FIG. 15 is a diagram showing a configuration of an ID block in a recording format of DVD-RAM according to the second embodiment.
- FIG. 16 is a diagram showing a flowchart of a control method of a block-by-block filter coefficient learning means according to the second embodiment.
- FIG. 17 is a block diagram showing a configuration of a block-by-block filter coefficient learning means according to the second embodiment.
- FIG. 18 is a block diagram showing a configuration of an optical disc device according to Embodiment 3 of the present invention.
- FIG. 19 is a block diagram showing a configuration of a self-determination type filter coefficient learning control means according to the third embodiment.
- FIG. 20 is a block diagram showing the configuration of an equalization performance self-determination block in the self-determination filter coefficient learning control means according to the third embodiment.
- FIG. 21 is an explanatory diagram of the operation principle of the equalization performance self-determination block in the self-determination filter coefficient learning control means according to the third embodiment.
- FIG. 22 is a diagram showing a flowchart of a control method of the self-determination filter coefficient learning control means in the third embodiment.
- FIG. 23 is a diagram showing a flowchart of a control method of the self-determination filter coefficient learning control means in the third embodiment.
- FIG. 24 is a block diagram showing a configuration of an optical disc device according to Embodiment 4 of the present invention.
- FIG. 25 is an explanatory diagram of a zone division method in the zone-based filter coefficient learning means according to the fourth embodiment.
- FIG. 26 is a block diagram showing a configuration of zone-based filter coefficient learning means according to the fourth embodiment.
- FIG. 27 is an explanatory diagram of a zone division method in the zone-based filter coefficient learning means according to the fourth embodiment.
- FIG. 28 is a diagram showing a flowchart of a control method of the zone-based filter coefficient learning means in the fourth embodiment.
- FIG. 29 is a block diagram showing a configuration of a conventional optical disk device.
- FIG. 30 shows the recording data of the conventional optical disk device and the output signal waveforms in each functional block.
- FIG. 31 is an explanatory diagram of a frequency characteristic of a high-order ripple filter.
- the present invention applies a PRML signal processing method, which is advantageous for high-density recording in the linear direction, when reproducing digital data recorded on an optical disk medium, and realizes a response response suitable for reproduction characteristics.
- the combination of equalization and maximum likelihood decoding effective for white noise which estimates a likely sequence using the correlation of partial response intersymbol interference, aims to improve digital data reproduction characteristics,
- adaptive automatic type filter coefficient learning means that can always learn to minimize the equalization error due to partial response equalization as the shape equalization means and optimizing the initial filter coefficient learning and control means, Not only differences in playback characteristics depending on the playback position and playback block that appear on writable discs, etc., but also stations due to tilt and effect
- improved Ridapiriti becomes possible for the optical disc medium to have a variety of recording and reproducing characteristics, it is intended to'll provide an optical disc equipment.
- an optical disc having an embossed area called CAPA in which address information is written in advance, and an area having different characteristics, such as a data section in which actual data is written, is used in a DVD-RAM disc.
- the waveform equalizing means 2 is composed of a finoletor capable of arbitrarily setting a boost amount and a cutoff frequency. This is, for example, a higher-order equal ripple filter having a frequency characteristic as shown in FIG.
- the output signal of the waveform equalizing means 2 is sampled into a multi-bit digital signal by an analog-to-digital converter 3 which converts an analog signal into a digital signal using a reproduced clock generated by the oscillator 10. This sampled multi-bit digital signal is input to the offset correction means 4. Thus, the offset component included in the reproduced digital signal is corrected.
- the offset correction means 4 may have a configuration as shown in FIG. 2, for example. This includes an offset detecting means 13 for detecting an offset component of the reproduced digital signal, a smoothing means 14 for smoothing the offset signal detected thereby, and an output signal of the smoothing means 14 for converting the output signal of the reproduced digital signal to a reproduced digital signal. It comprises a subtraction means 15 for further subtracting.
- the output signal of the offset correction means 4 is input to the auto gain controller 5 to adjust the amplitude of the reproduced digital signal to an arbitrary value.
- the auto gain control 5 may be, for example, a type that detects an envelope of a signal waveform and controls the difference between an arbitrary set value and an envelope signal to be zero.
- the output signal of the auto gain control 5 is input to the transversal finole letter 6 to perform partial response equalization.
- the partial response equalization is performed, for example, in a DVD-RAM capable of digital recording of 4.7 Gbytes on one layer on one side, as shown in FIG. 3 (c), the waveform amplitude after the equalization is
- the PR (a, b, b, a) method is used so that it can be divided into five values.
- digital data demodulation is performed by binarization discrimination using a slice level (center level) from a waveform equalized output signal as shown in FIG. 3 (a).
- slice level center level
- FIG. 3 (b) discriminating the multi-bit digital signal based on the slice level.
- the PR (a, b, b, a) method is different from the PR (a, b, b, a) method in that four different sampled data are added at the ratio of a: b: b: a. b * D 2 + a * D 3 ), and adds the characteristics of a low-pass filter as shown in FIG. 4 to the reproduced signal.
- the MTF indicates the optical reproduction characteristics of DVD-RAM (4.7 Gbytes). The closer this frequency characteristic is, the more advantageous the partial response method is.
- PRML Partial Response Maximum Likelihood
- the PMLL signal processing method has various combinations depending on the characteristics of the reproduction waveform and the modulation code. Therefore, it is necessary to select an appropriate method for various recording and reproduction systems.
- the DVD-RAM recording format is such that an address block AB in which address information of a sector SC is recorded for each sector as an emboss area, and random data can be rewritten. It is divided into a possible data block DB.
- the VFO in FIG. 5 is an area in which 4 T patterns (T is the minimum recording unit time) are continuously recorded, and is used for phase synchronization pull-in and the like.
- AM is an address mark, and includes a synchronization pattern represented by 14 T + 4 T in DVD.
- the ID is an area where the address information of the sector is recorded. There are four locations in the address block (ID 1 to ID 4) and one location in the data block.
- the PS in the data block is called a pre-sink and contains a synchronization pattern.
- DATA is a data recording area that can be freely rewritten by the user.
- the characteristics of the reproduced waveform of the data block often vary depending on the characteristics of the device used for writing. Therefore, the reproduction characteristics of the address block and the data block often differ.
- the transversal filter 6 in FIG. 1 may use a FIR filter (Finite Impulse response Filter) composed of finite taps.
- the equalization characteristics of the FIR filter are realized by changing the filter coefficients.
- the FIR filter includes a delay element 16a or a delay element 16f connected in series for sequentially delaying an input signal as shown in FIG.
- the filter coefficients S 1 to S 7 of the FIR filter are set by the block-specific filter coefficient learning means 7.
- the block-specific filter coefficient learning means 7 uses an LMS (Least Mean Square) algorithm that adaptively controls the equalization error present in the partial response equalization output signal by the transversal filter 6 to be minimized.
- the block-specific filter coefficient learning means 7 may have a configuration as shown in FIG. 7, for example.
- the provisional decision circuit 19 detects an equalization target value corresponding to the partial response method from the equalization output signal of the transversal filter 6, and converts the output signal of the transversal filter 6 from the equalization target value.
- An equalization error detection means 20 for detecting an equalization error by subtraction, a correlator 21 for calculating a correlation between an output signal of the equalization error detection means 20 and an input signal of the transversal filter 6,
- a feedback gain adjuster 22 as gain adjusting means for adjusting the feedback gain by multiplying the output of the compensator 21 by a gain, and a means for adding the output to the filter coefficient of each tap and updating the filter coefficient Filter coefficient updating unit 23a to 23g, and a filter unit generated by switching between the initial value of the address block filter coefficient and the initial value of the data block filter coefficient.
- Generator 2 4 a through is formed using a 2 4 g.
- the filter coefficient generators 24a to 24g are address block filter coefficient initial value storage means 2411a to 2411 for holding address and data block learning results for each address block and data block. g, data block filter coefficient initial value storage means 24 2 a to 24 2 g, address block filter coefficient initial value storage means 24 1 a to 24 1 g output, and data block A selector block for selecting the output of the filter coefficient initial value storage means 242 a to 242 g, and an address block generated by the gate signal generation means 266. It has a function of selecting an initial value of an address block filter coefficient and an initial value of a data block filter coefficient in accordance with a signal for identifying the data block and the data block.
- the filter coefficient update units 23a to 23g are adders 2311a to 2311 that add the output of the feedback gain adjuster 22 and the output of the delay elements 2332a to 2332g. g and a selector 2 3 3 a to 2 3 3 g to select the output of the 2 3 3 a to 2 4 3 g and an output of the adder 2 3 1 a to 2 3 1 g according to the load signal, and a selector 2 3 It has a delay element 2 32 a to 23 2 g that delays the output of 3 a to 23 3 g by a unit time, and uses the initial value of the filter coefficient loaded for each block to automatically adjust the filter coefficient. It has a function of performing equalization control.
- the optical disc device has a phase comparator 8 for detecting a phase error from an output signal of the offset correction means 4, and a phase output from the phase comparator 8. It has a loop filter 9 for smoothing the error signal, and an oscillator 10 for oscillating the reproduction clock based on the output signal of the loop filter 9.
- the phase of the reproduction clock output from the oscillator 10 is A phase-locked loop 11 that controls the phase of the clock component of the reproduced signal so that it is synchronized with the phase of the reproduced signal is provided.
- the analog-to-digital converter 3 uses the reproduced clock output from the oscillator 10 to sample the reproduced waveform. By performing the conversion, a multi-bit sampled signal synchronized with the phase of the clock component of the reproduced signal is generated, so that it is possible to realize the PRML signal processing.
- the maximum likelihood decoder 12 may be, for example, a Viterbi decoder.
- the Viterbi decoder calculates probabilities in accordance with the law of correlation of intentionally added codes, which depends on the type of partial response, and reproduces a likely sequence. For example, when the applied partial response type is the PR (a, b, b, a) method, the state changes based on the state transition diagram as shown in FIG. 8 (a).
- X / Y indicates the transition of the recording code
- Y indicates the signal amplitude at that time.
- One state is represented by three different time codes. For example, in the state transition from S 4 “1 1 0” to S 3 “100”, the code “0” is added to “1 10” to the left. Means that the leftmost "1” disappears and the state S3 becomes "100".
- the change over time is represented by a trellis diagram as shown in Fig. 8 (b). Therefore, the probabilistic length of each path 1 k ab (hereinafter referred to as the branch metric) is calculated, and the branch metric is added when transitioning to each state.
- k represents a temporal transition
- ab represents a branch metric at the transition from the state Sa to Sb.
- the added value in each state of the branch metric is called a metric, and the path with the minimum metric is used as a surviving path and sequentially output to be demodulated into binary digital data. is there. That is, if demodulation is performed according to the recording code in FIG. 8 (b), the path indicated by the solid line is the surviving path.
- the gate signal generating means 26 (see FIG. 7) in the block-specific filter coefficient learning means 7 shown in FIG. 1 may have, for example, a configuration as shown in FIG.
- the address block and the data block force exist spirally as shown in FIG. 10 ( a ), and the address block A and the address block B force the data block.
- Address block and data block if they are shifted by half in the radial direction, respectively.
- the DC (DC component) level of the output waveforms corresponding to the address splock and the data block differs greatly, as shown in Fig. 10 (b). Utilizing this characteristic, as shown in FIG.
- a peak hold means 27 and a low-pass filter 28 for smoothing the output signal of this reproduced waveform are used to obtain the waveform shown in FIG. 10 (c).
- the envelope of such a reproduced waveform is extracted, an arbitrary level is set, and the obtained envelope signal is binarized by the binarizing means 29, as shown in FIG. 10 (d). This is to generate a gate signal for identifying a block and a data block.
- the gate signal generation means 26 in the block-by-block filter coefficient learning means 7 shown in FIG. 1 may be based on the principle shown in FIG. 11, for example.
- address blocks and data blocks exist spirally as shown in FIG. 10 (a), and address blocks A and address blocks B become data blocks.
- each shifts by half in the radial direction it is added to the four-segment photodetector 530, which separates into A, B, C, and D areas and detects reflected light as shown in Fig. 11 (a).
- the tracking error signal detects the difference between the sum signal (A + C) of the diagonal output of photodetectors 531, 533 and the sum signal (B + D) of the outputs of photodetectors 532, 534.
- the tracking error signal is detected by using the phase difference method, the tracking error signal at the position where the address block and the data block are switched becomes as shown in FIG. 11 (b).
- a and address block B it becomes opposite polarity, the further data block, in a state where the tiger Tsu King servo is operating normally, with a feature that the zero level near.
- two decision levels P and N are provided for the tracking error signal shown in Fig. 11 (b), and the two decision levels are binarized.
- a gate signal as shown in FIG. 11 (c) can be generated.
- two types of address block filter coefficient initial value storage means shown in FIG. 7 can be used (24 1 a to 24 1 g and 24 22 a to 24 2 g).
- g) It is possible to store and load the filter initial values of the first half address block A and the second half address block B respectively.
- the gate generation means capable of distinguishing the address block into the first half and the second half by using the polarity of the tracking error signal, the first half of the address block due to the servo state or the like is used. It is possible to control the digital adaptive automatic equalization in detail for the difference in amplitude and characteristics between the first half and the second half.
- the gut signal generation means 26 in the block-by-block filter coefficient learning means 7 shown in FIG. 1 may have, for example, the configuration shown in FIG. This is because the address position detecting means 30 for detecting the address position based on the demodulated signal of the maximum likelihood decoder 12 and the phase of the clock component of the reproduced signal are synchronized with the detected address position as a reference.
- a sector counter 31 that counts a section corresponding to one sector by using a playback clock, and a predicted gate generation means 32 that generates a gate at the position of the next end address information predicted by the sector counter.
- the gate signal generating means 26 in the block-specific filter coefficient learning means 7 shown in FIG. 1 may have, for example, a configuration as shown in FIG. This means that an address position detecting means 30 for detecting an address position based on the demodulated signal of the maximum likelihood decoder 12 and a phase of a clock component included in the reproduced signal with respect to the detected address position are used as a reference.
- a sector counter 31 that counts a section corresponding to one sector and a sector counter 31 that is predicted Predicted gate generating means 32 for generating a gate at the position of the next address information, and single pattern detecting means 33 for detecting a single frequency pattern included in the reproduced signal.
- learning stop signal generating means 34 for stopping the learning of the filter coefficient when the detected time is equal to or more than an arbitrary section N (N is a positive integer).
- the gate signal generation means 26 in the block-by-block finole coefficient coefficient learning means 7 may have the following configuration, for example. This is based on the demodulated signal of the maximum likelihood decoder 12, the address position detecting means 30 for detecting the address position shown in FIG. 12 and the reproduced signal based on the detected address position. Using a recovered clock synchronized with the phase of the clock component, a sector counter 31 that counts the interval corresponding to one sector, and a gate generated at the next address information position predicted by the sector counter 31 In accordance with the DVD-RAM recording format shown in FIG. 5, a random gate position other than a single frequency pattern, such as AM (address mark) and ID (key), is provided. Dress information) and the position of a random data area are estimated by the sector counter, and a learning permission signal for permitting learning of filter coefficients is generated.
- a 4T pattern (T is the minimum recording unit) is usually continuously written in VFO or the like in FIG.
- the random pattern position can be accurately determined based on the reproduction clock synchronized with the phase of the click component of the reproduction signal.
- the stability is improved in addition to the control speed and equalization accuracy of the digital adaptive automatic equalization control.
- the learning permission signal when there are a plurality of ID portions having address information as in the address block shown in FIG. 5, the learning of the filter coefficient is performed for the ID of any position.
- Learning position control means to determine It may have a function of generating a learning permission signal based on an output signal of the position control means and learning a filter coefficient. Thereby, for example, the learning position control means can learn the filter coefficient of the address block by giving a learning permission signal to ID3 and ID4 shown in FIG.
- the reproduction characteristics and the sampling phase can be adjusted according to the servo control conditions and the phase synchronization pull-in characteristics of the phase-locked loop. Even if the value fluctuates, the filter coefficient can be learned using only the address data that can be reproduced stably and satisfactorily from a plurality of address data existing in the address block, so it is suitable for the servo control state and phase synchronization performance.
- the learning of the filtered filter coefficients becomes possible, and there is an effect that the address information can be read stably.
- the optical disk device for reproducing the DVD-RAM disk is provided with the digital filter based on the PRML signal processing method, and the signal is equalized by the digital FIR filter at the subsequent stage.
- the emboss area (CAP A area) of the DVD-RAM disc and the data area are separately subjected to adaptive automatic learning of FIR filter coefficients, and optimal equalization is performed for each. Since the MS (least squares method) algorithm is used, it is possible to improve the error rate characteristics of the CAP A area and the data portion, and to improve the reproduction characteristics of digital data.
- the emboss area (CAPA area) and the data part are separated by the gate signal, and after the separation, the adaptive automatic learning of the FIR filter coefficients is performed in parallel. Learning can be speeded up.
- the filter coefficients in the CAP A region when learning the filter coefficients in the CAP A region, random data having a high learning efficiency is recorded by avoiding the VFO section which is constituted by a single frequency and hinders the learning effect. Since the learning is performed using the ID part, the learning efficiency can be improved and the learning period can be shortened.
- adaptive automatic learning of FIR filter coefficients is performed separately for the CAP A area and the data section, and
- VFO single frequency
- the waveform equalizing means 2 is composed of a filter capable of arbitrarily setting a boost amount and a cutoff frequency. For example, it is a high-order equiripple filter having frequency characteristics as shown in FIG.
- An output signal of the waveform equalizing means 2 is sampled into a multi-bit digital signal by an analog / digital converter 3 which converts an analog signal into a digital signal using a reproduced clock generated by the oscillator 10. By inputting the sampled multi-bit digital signal to the offset correcting means 4, the offset component included in the reproduced digital signal is corrected.
- the offset correction means 4 may have a configuration as shown in FIG. 2, for example. This is because the output signal of the offset detection means 13 for detecting the offset component of the reproduced digital signal, the smoothing means 14 for smoothing the offset signal detected thereby, and the output signal of the smoothing means 14 It comprises a subtraction means 15 for subtracting from a reproduced digital signal.
- the output signal of the offset correction means 4 is input to the auto gain control 5, whereby the amplitude of the reproduced digital signal is adjusted to an arbitrary value.
- the auto gain control 5 may be one that detects the envelope of the signal waveform and controls the difference between an arbitrary set value and the envelope signal to be zero.
- the output signal of the auto gain control 5 is input to the transversal filter 6, and partial response equalization is performed.
- partial response equalization is performed, for example, in a DVD-RAM (Random Access Memory) capable of digital recording of 4.7 Gbytes on one side, as shown in Fig. 3 (c).
- the PR (a, b, b, a) method is used so that the waveform amplitude after equalization is divided into five values.
- the DVD-RAM recording format consists of an address block AB in which the address information of the sector SC is recorded in advance as an emboss area for each sector, and data in which random data can be rewritten.
- Block DB And divided into
- the characteristics of the reproduced waveform of the random data block often vary depending on the characteristics of the device used for writing. Therefore, the reproduction characteristics of the address block and the data block are often different.
- the transversal filter 6 in FIG. 14 is composed of finite taps, for example, a FIR finoleta (Finite Impulse response Filter).
- the equalization characteristic of the FIR filter is realized by changing the filter coefficient.
- the FIR filter may be configured by delay elements 16a to 16f, multiplication elements 17a to 17g, and addition means 18 as shown in FIG.
- the filter coefficients S 1 to S 7 of the FIR filter are based on an LMS (Least Mean Square) algorithm that adaptively controls the Eigen error present in the partial response equalized output signal by the transversal filter 6 to be minimized. This is set by the block-by-block filter coefficient learning means 7 which has a used filter coefficient learning function and learns filter coefficients of the filters for each address block and data block block.
- the block-by-block filter coefficient learning means 7 may have, for example, a configuration as shown in FIG.
- the temporary decision circuit 19 detects an equalization target value corresponding to the partial response method from the equalization output signal of the transversal filter 6, and compares the equalization target value with the transformer. calculating the equalization error detector 2 0 for detecting the equalization error by subtracting the output signal of the transversal filter 6, the output signal of the equalization error detecting means 2 0, the correlation between the input signal of the transversal filter 6 Correlator 21 and feedback gain adjuster 22 as means for adjusting the feedback gain by multiplying the output of correlator 21 by gain, and adding the output to the filter coefficient of each tap to update the filter coefficient And a filter coefficient updating unit 23 a to 23 g as a means for performing the learning of the filter coefficients for the address block and the data block.
- the gate signal generation means 26 generates a signal for identifying the data block, selects the initial value of the filter coefficient for each block, and loads it to the filter coefficient update section 23 a to 23 g Thus, it has a function of performing adaptive automatic equalization control of filter coefficients.
- the optical disc device has a phase comparator 8 for detecting a phase error from an output signal of the offset correcting means 4, and an output from the phase comparator 8.
- a loop filter 9 for smoothing the phase error signal to be obtained, and an oscillator 10 for oscillating a reproduction clock based on the output signal of the nore-pass filter 9.
- the phase of the reproduction clock output from the oscillator 10 is And a phase locked loop 11 for controlling the phase of the clock component of the reproduced signal so as to be synchronized with the phase of the clock component.
- the analog / digital converter 3 uses the reproduced clock output from the oscillator 10 to By sampling the reproduced waveform, a multi-bit sampled signal synchronized with the phase of the peak component of the reproduced signal is generated, so that PMLL signal processing can be realized.
- the maximum likelihood decoder 12 may be, for example, a Viterbi decoder.
- the Viterbi decoder calculates probabilities in accordance with the law of correlation of intentionally added codes, which depends on the type of partial response, and reproduces a likely sequence.
- the optical disk device has an EDC (Electromagnetic Compatibility) added to address information included in a demodulated signal demodulated by the maximum likelihood decoder 12. Error detection code) to determine the correctness of the demodulated address information.
- EDC Electromagnetic Compatibility
- the address block in the filter coefficient learning means 7 for each block is determined. It has filter coefficient learning control means 36 for controlling the hold, reset, etc. of the learning of filter coefficients, so that learning in address blocks etc. containing many single frequency (VFO) parts becomes stable. It is provided with learning stabilization control means 37 for performing control as described above.
- EDC has 2 bytes for 4 bytes of ID, and by applying EDC, Whether the address information demodulated as ID is correct It may have a feature that makes it possible to determine whether or not.
- the address information C1 to C4 and the EDC, E1 and E2 shown in FIG. 15 are codes in byte units. Since it is an 8-16 modulation code, one byte may correspond to 16 bits.
- the filter coefficient learning means having a function of determining whether the demodulated address information is correct or incorrect by the EDC determination means 35, the reproduction characteristics are degraded due to a defect or the like in the reproduction of a writable disc or the like.
- the learning of the filter coefficient at that position of the address block is stopped, and the learning of the filter coefficient can be performed using only the position that can be satisfactorily reproduced.
- the learning of the filter coefficient in the block is stabilized, and the possibility of reading the address information stably is improved.
- the learning of the filter coefficients in the block-by-block filter coefficient learning means 7 using the EDC determination means 35 described in the second embodiment is controlled by, for example, a procedure shown in a flowchart of FIG. It can be something. This is because when address block filter coefficient learning is started (step 101), when correct address information is obtained by the EDC determination means (step 102) 35, the filter coefficient of the address block is obtained. The adaptive learning is continued (step 103). If correct address information cannot be obtained, the learning of the filter coefficients is stopped and the initial values are loaded from the initial value holding means (step 104). ), And is realized by filter coefficient learning control means 36 having a reset function.
- the learning of the filter coefficients in the block-by-block filter coefficient learning means 7 using the EDC determination means 35 described in the second embodiment may have, for example, a configuration as shown in FIG. This is because, in the initial learning of the filter coefficient, the EDC determination means 35 determines that the correct address information is continuously obtained by the determination.
- EDC determination initial value storage means 38 a to 38 g for storing filter coefficients as initial values when the address information indicates that the address information is correct for more than an arbitrary number. It has a function of loading information of judgment initial value storage means 38a to 38g.
- the EDC determination means 35 By providing such a function for performing initial learning of the filter coefficient by the EDC determination means 35, it is confirmed that the reproduction is normally performed in the reproduction of the writable disk or the like, and the filter coefficient is determined. Since the learning result is stored as the initial value, the reliability of the initial value of the filter coefficient in the address block is improved. As described above, the result of learning the filter coefficient by the EDC determination is more accurate and stable than the equalization performance obtained from the normal control state.
- the second embodiment measures are taken when learning the filter coefficient of the CAPA area of the DVD-RAM disk, or when control breaks down during adaptive control or an abnormal state occurs.
- the EDC Error Detection Code
- the control is stopped or reset again, so The return is quick, and the reliability of the filter coefficient can be improved.
- the waveform equalizing means 2 is constituted by a filter capable of arbitrarily setting a boost amount and a cutoff frequency. For example, it is a high-order equiripple filter having frequency characteristics as shown in FIG.
- the output signal of the waveform equalizing means 2 is sampled into a multi-bit digital signal by an analog-to-digital converter 3 which converts an analog signal into a digital signal using a reproduced clock generated by the oscillator 10. This sampled multi-bit digital signal is The offset component contained in the reproduced digital signal is corrected by inputting to the offset correction means 4.
- the offset correction means 4 may have a configuration as shown in FIG. 2, for example. This means that the output signal of the offset detection means 13 for detecting the offset component of the reproduced digital signal, the smoothing means 14 for smoothing the offset signal detected thereby, and the output signal of the smoothing means 14 And a subtraction means 15 for subtracting from the reproduced digital signal.
- the output signal of the offset correction means 4 is input to an auto gain control knob 5, whereby the amplitude of the reproduced digital signal is adjusted to an arbitrary value.
- the auto gain control 5 may be one that detects the envelope of the signal waveform and controls the difference between an arbitrary set value and the envelope signal to be zero.
- the output signal of the auto gain control 5 is input to the transversal filter 6, and partial response equalization is performed.
- partial response equalization is performed, for example, in a DVD-RAM (Random Access Memory) capable of digital recording of 4.7 Gbytes on one side, as shown in Fig. 3 (c).
- the PR (a, b, b, a) method is used so that the waveform amplitude after equalization is divided into five values.
- the DVD-RAM recording format is an address block in which sector address information is recorded in advance for each sector as an emboss area, and data in which random data can be rewritten. It is divided into blocks.
- the transversal filter 6 is composed of finite taps, for example, a FIR (Finite Impulse response Filter).
- the equalization characteristic of this FIR filter is realized by changing the filter coefficient.
- the FIR finoletor comprises a delay element 16a or 16f, multiplication elements 17a to 17g, and-. Addition means 18 as shown in FIG. You can.
- the filter coefficients S 1 to S 7 of the FIR filter are present in the partial response equalized output signal of the transversal filter 6.
- Equalization error averaging means 39 for averaging the absolute value of the equalization error amount at each level
- equalization performance detection means 4 for detecting equalization performance based on the output of the equalization error averaging means 39 0, and a self-determination type filter coefficient learning control means 4 for controlling a method of learning a filter coefficient of the transversal filter by a filter coefficient learning means 42 for learning a filter coefficient according to the detected equalization performance.
- the self-determination filter coefficient learning control means 41 may have, for example, a configuration as shown in FIG. This is because the provisional decision circuit 19 detects an equalization target value corresponding to the partial response method from the equalization output signal of the transversal filter 6, and subtracts the equalization target value from the output signal of the transversal filter 6 by subtracting it.
- An equalization error detector 20 for detecting an equalization error, a correlator 21 for calculating a correlation between an output signal of the equalization error detector 20 and an input signal of the transversal filter 6, and a correlator 21
- a feedback gain adjuster 22 as a means for adjusting the feedback gain by multiplying the output of 1 by a gain
- a filter coefficient updating unit as a means for adding the output to the filter coefficient of each tap and updating the filter coefficient
- Filter coefficient learning means comprising filter coefficient initial value storage means 4 2 a to 42 g for holding learning results of the filter coefficients.
- Block 43 absolute value conversion means 44 for converting the equalization error amount at each level of the partial response equalization level in the output signal of the transversal filter 6 to an absolute value, and equalization for averaging the output of each.
- an equalization performance self-judgment block 45 composed of equalization performance detection means 40 for detecting equalization performance is provided. Then, based on the self-judgment result of the equalization performance obtained from the equalization performance self-judgment block 45, it has a function of controlling the filter coefficient learning block 43 to perform adaptive automatic equalization control.
- the optical disc device includes a phase comparator 8 for detecting a phase error from an output signal of the offset correcting means 4 and a phase comparator 8 for detecting a phase error.
- a loop filter 9 for smoothing the output phase error signal;
- An oscillator 10 that oscillates a reproduction signal based on the output signal of 9 and a phase-locked loop that controls the phase of a reproduction clock output from the oscillator 10 to be synchronized with the phase of a clock component of the reproduction signal.
- the analog-to-digital converter 3 uses the recovered clock output from the oscillator 10 to sample the reproduced waveform to synchronize the phase of the reproduced signal with the phase component of the reproduced signal. Since a multi-bit sampled signal is generated, PRML signal processing can be realized.
- the maximum likelihood decoder 12 may be, for example, a Viterbi decoder.
- the Viterbi decoder calculates probabilities in accordance with the law of correlation of intentionally added codes, which depends on the type of partial response, and reproduces a likely sequence.
- Self-determining filter coefficient learning control that self-analyzes the current digital equalization state and equalization performance based on such equalization error information and self-adjusts adaptive control to satisfy the target performance.
- the provision of the means 41 makes it possible to adaptively perform digital automatic equalization control with respect to the difference in reproduction characteristics depending on the reproduction position, which appears due to a writable disk or the like or tilt. Leadership is improved for media having
- the equalization performance self-judgment block 45 in the self-judgment type filter coefficient learning control means 41 according to the third embodiment may have, for example, a configuration as shown in FIG. This is based on a playback clock that is synchronized with the phase of the clock component of the playback data. Error detection that counts N (N is a positive integer) arbitrary channel bits (the minimum unit of recording data) In reproducing a writable optical disc such as a DVD-ROM (DVD-Read Only Memory), a CD-ROM, and a DVD-RAM, for example, a PRML signal processing method PR (a, b, b, a) When ML is applied, the equalization level is as shown in Fig.
- the absolute value conversion means 47 a for converting the equalization error amount for each level into an absolute value and the absolute value in the N-bit period determined by the error detection period counter 46 are used.
- Equalization error for adding output signals of 47 a to 47 e respectively
- Addition means 48 a to 48 e and equalization error averaging means for dividing the output using N as a parameter 49 a to 49 e, and if the equalized error output result of the equalization error averaging means 49 a to 49 e is smaller than a predetermined level X (X is a positive integer)
- Equalization performance detection means for generating a judgment signal indicating that the equalization state is normal and generating a judgment signal indicating that the equalization state is abnormal when the level is equal to or higher than an arbitrary (predetermined) level X (X is a positive integer).
- the accuracy of detecting the digital equalization performance is improved, and not only is the automatic equalization performance stabilized, but also more than necessary. Since the circuit relating to the learning of the filter coefficients does not need to be operated at the same time, any reproduction performance can be easily realized, so that the power consumption can be reduced.
- the equalization performance self-determination block 45 when the equalization performance is determined by using the equalization performance detection means 40, for example, FIG. 21 (a) Among the partial response equalization levels shown in Fig. 21, the evaluation of the equalization performance is valid only for the three levels near the center, level b, level c, and revenor d, which are indicated by black circles in Fig. 21 (b). As an alternative, learning of the filter coefficient may be controlled.
- the self-determination filter coefficient learning control means 41 may perform control as shown in the flowchart of FIG. 22, for example.
- the initial values of the filter coefficients of the transversal filter 6 for absorbing variations in the reproduction characteristics depending on the disk medium immediately after the optical disk medium is inserted into the device.
- the output signal of the equalization performance detection means 40 indicates that the equalization state is normal when determining the initial value
- the initial value storage for storing the learning result of the filter coefficient as the initial value of the filter coefficient. It is stored in the means 42 a to 42 g (see step 201), and the equalization performance is determined (see step 202). If the equalization state is abnormal, continue learning the filter coefficient until it becomes normal.
- the filter coefficients are stored in the initial value storage means (see step 203).
- the values of the initial value storage means 42a to 42g are loaded (Control is performed with the filter coefficient fixed (see step 206), and the equalization performance is determined (see step 205). If the equalization state is abnormal, adaptive automatic equalization control is started (see step 208). Then, the equalization 4 ability is determined (see step 209).
- the learning of the filter coefficient is started, and the output signal of the equalization performance detection means 40 becomes Learning is continued until it shows that it is normal, and the filter coefficient at the time when it becomes normal is stored in the initial value storage means 42a to 42g, and that value is held and fixed control is performed. .
- the learning of the filter coefficients is performed until the target equalization performance is obtained, and during the period in which the equalization performance is obtained, the control based on the fixed control is performed.
- the reliability of the initial value is improved, and the learning of the filter coefficient is performed again only when the equalization state has deteriorated, so that it is possible to realize the minimum necessary power consumption.
- the self-determination filter coefficient learning control means 41 according to the third embodiment may be one that performs control like a flowchart shown in FIG. 23, for example.
- the learning result of the filter coefficient when the output signal of the equalization performance detection means 40 indicates that the equalization state is normal is set as the initial value of the filter coefficient.
- the value is stored in the value storage means 42a to 42g (see step 303). If the equalization state is abnormal, the learning of the filter coefficient is continued until the value becomes normal.
- Step 30 4 the values of the initial value storage means 4 2 a to 4 2 g are loaded (see step 3 05), and adaptive automatic control is performed by learning continuous filter coefficients (see step 3 0 6). If, during the adaptive automatic control, the output signal of the equalization performance detecting means 40 (see step 300) indicates that the equalization state is abnormal, the learning of the filter coefficient is stopped and the initialization is stopped. After the values of the value storage means 42 a to 42 g are loaded, adaptive automatic control is performed again by continuously learning the filter coefficients.
- the equalization performance detection is performed. Since the equalization state is determined to be abnormal by the means 40, the filter coefficient is reset to the initial value, and the normal control state can be quickly restored.
- the filter coefficient is returned to the initial value when an abnormal state is detected, and when control is performed with the learned coefficient fixed, the equalization performance is detected, and when the equalization error is large, Since the filter coefficient is learned and the initial value is rewritten, the stability of the filter coefficient and the control performance can be improved.
- control is started with the filter coefficient fixed, and when the equalization error is equal to or larger than a predetermined value, learning is started again. When the equalization error is equal to or smaller than the predetermined value, the coefficient is held.
- the reproduction characteristics of an optical disc may be degraded by a specific error due to not only the difference between the inner and outer circumferences but also the radius and tilt of the disc.
- Waveform equalization means 2 It is composed of a filter that can set the amount of cut and cut-off frequency arbitrarily. For example, it is a high-order equiripple filter having frequency characteristics as shown in FIG.
- the output signal of the waveform equalizing means 2 is sampled into a multi-bit digital signal by an analog / digital converter 3 as means for converting an analog signal into a digital signal using a reproduced clock generated by the oscillator 10. .
- the offset correcting means 4 By inputting the sampled multi-bit digital signal to the offset correcting means 4, the offset component included in the reproduced digital signal is corrected.
- the offset correction means 4 may have a configuration as shown in FIG. 2, for example. This is because the output signal of the offset detection means 13 for detecting the offset component of the reproduced digital signal, the smoothing means 14 for smoothing the offset signal detected thereby, and the output signal of the smoothing means 14 And a subtracting means 15 for subtracting from the reproduced digital signal.
- the output signal of the offset correction means 4 is input to the auto gain control 5, whereby the amplitude of the reproduced digital signal is adjusted to an arbitrary value.
- the auto gain control 5 may be one that detects an envelope of a signal waveform and controls the difference between an arbitrary set value and an envelope signal to be zero.
- the output signal of the auto gain control 5 is input to the transversal filter 6 to perform partial response equalization.
- the partial response equalization is performed, for example, as shown in Fig. 3 (c) for a DVD-RAM (Random Access Memory) that is capable of digital recording of 4.7 Gbytes with one layer on one side.
- the PR (a, b, b, a) method is used so that the waveform amplitude after equalization is divided into five values.
- the DVD-RAM recording format is an address block in which sector address information is recorded in advance for each sector as an emboss area, and a data block that can rewrite random data. It is divided into
- the characteristics of the reproduced waveform of the random data block often vary depending on the characteristics of the device used for writing. Therefore, the playback characteristics of the address block and the data block often differ.
- the transversal filter 6 is composed of finite taps, for example, an FIR filter. Filter (Finite Impulse response Filter).
- the equalization characteristic by the FIR finoleta is realized by changing the filter coefficient.
- the FIR finalizer is composed of delay elements 16a to 16f, multiplication elements 17a to 17g, and addition means 18.
- the filter coefficients S 1 to S 7 of the FIR filter are based on an LMS (Least Mean Square) algorithm that adaptively controls the equalization error existing in the partial response equalization output signal by the transversal filter 6 to be minimized. If the optical recording medium is a circular optical disk with the filter coefficient learning function used, as shown in Fig.
- the zone-specific filter coefficient learning means 50 having means for storing the result of learning for each zone as the initial value of the filter coefficient.
- the zone-specific filter coefficient learning means 50 may have a configuration as shown in FIG. 26, for example.
- the provisional decision circuit 19 detects the equalization target value corresponding to the partial response method from the equalization output signal of the transversal filter 6 and subtracts the equalization target value and the output signal of the transversal filter 6.
- Error detector 20 for detecting an equalization error by performing a correlation operation
- a correlator 21 for calculating a correlation between an output signal of the equalization error detector 20 and an input signal of the transversal filter 6, and a correlator 21
- a feedback gain adjuster 22 as a means for adjusting the feedback gain by multiplying the output of the filter by a gain
- a filter coefficient update unit 23 a to 23 f as a means for adding the output to the filter coefficient of each tap and updating the filter coefficient 2 3 g
- zone-based initial value storage means 5 1 (1,..., N ) a to 5 1 (1,..., N) g and at the start of data reproduction, initial value storage means for each zone corresponding to the zone to be reproduced 5 1 (1,..., N) a to 5 1
- the optical disc device comprises a phase comparator 8 for detecting a phase error from an output signal of the offset correcting means 4, and a phase ratio
- a loop filter 9 for smoothing the phase error signal output from the comparator 8
- an oscillator 10 for oscillating a reproduction clock based on the output signal of the noise filter 9.
- a phase-locked loop 11 that controls the phase of the recovered clock to be synchronized with the phase of the clock component of the recovered signal.
- the analog-to-digital converter uses the recovered clock output from the oscillator 10.
- step 3 by sampling the reproduced waveform, a multi-bit sampled signal that is synchronized with the phase of the peak component of the reproduced signal is generated, so that PRML signal processing can be realized. Become.
- the maximum likelihood decoder 12 may be, for example, a Viterbi decoder.
- the Viterbi decoder calculates probabilities in accordance with the law of correlation of intentionally added codes, which depends on the type of partial response, and reproduces a likely sequence.
- the frequency of the clock component of the reproduced data depending on the radial direction during the CAV reproduction can be reduced. Even if the setting resolution of the high-frequency cutoff frequency of analog waveform equalization for changes is coarse, the readout performance immediately after seek is improved by storing digital equalization filter coefficients in zones, and seek performance is improved. Can be improved.
- the zone-based filter coefficient learning means 50 is, for example, divided into a plurality of zones in a radial direction and a circumferential direction as shown in FIG.
- zone-based initial value storage means 5 1 (1,..., N) a to 51 (1,..., N) g for storing each learning result as an initial value of the filter coefficient.
- the zone-based filter coefficient learning means 50 may perform adaptive automatic equalization control according to a flowchart as shown in FIG. 28, for example.
- the output signal (Step 402) of the equalization performance detecting means 40 described in Embodiment 3 is equal to the power equalization state.
- a zone indicating bad is provided with a bad zone storage means for recording the zone (step 403), and at the start of data reproduction (step 404), the zone to be reproduced is stored.
- the inferior zone storage means determines the inferior zone (step 406), and if it indicates that the characteristics of the zone are inferior, the control gain in learning the filter coefficient is reduced to reduce the stability.
- S Tsu may be a flop 4 0 5).
- the optical recording medium is divided into a plurality of zones in the radial direction and the circumferential direction, and the learning of the filter coefficient is performed for each zone. And control is performed using the filter coefficient corresponding to each of these zones as the initial value, so that the error characteristics immediately after the start of reproduction are improved and the tilt due to the tilt on the disc varies depending on the area on the disc. Can be improved.
- the optical disk device according to the present invention is useful as an optical disk device for reading data from an optical disk medium. It is suitable as an optical disk device that reads data from a recordable optical disk medium such as a disc drive or a CD-R (compact disk-recordable) or CD-RW (co- rpact disk-rewritable) playback device.
- a recordable optical disk medium such as a disc drive or a CD-R (compact disk-recordable) or CD-RW (co- rpact disk-rewritable) playback device.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Optical Recording Or Reproduction (AREA)
- Signal Processing For Digital Recording And Reproducing (AREA)
- Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
Abstract
An optical disk unit used for reproducing digital data recorded on an optical disk, the unit comprising a transversal filter (6) for performing partial response equalization on a signal reproduced from an optical recording medium (52) where address information-recorded address blocks and data blocks as recordable regions exist, and a by-block filter coefficient learning means (7) for suitably learning a filter coefficient of a transversal filter (6) on a block basis so as to minimize its equalizing error on the basis of an output signal of partial response equalizing, thereby reducing difference in reproducing characteristics among reproduction blocks and improving readability with respect to an optical disk medium.
Description
明 細 書 光 技術分野 Description Optical technology
本発明は、 光ディスク媒体に記録されたデジタルデータを再生する光ディスク 装置に関するものであり、 特に、 線方向の高密度記録再生に有効である、 P RM L (Partial Response Maximum Likelihood)信号処理方式を用いたデジタル適応 自動等化手段の改良を図ることにより、 再生特性が異なる複数の記録領域を有す る媒体や、 チルトによる再生波形の品質劣化、 信号雑音比が悪い条件での再生、 及びディフヱクト等が頻繁に発生する等の悪条件下において、 再生デジタルデー タ品質を改善でき、 しかも、 プレイアビリティを向上できるようにしたものに関 する。 背景技術 The present invention relates to an optical disk apparatus for reproducing digital data recorded on an optical disk medium, and particularly to a PRML (Partial Response Maximum Likelihood) signal processing method which is effective for high-density recording and reproduction in the linear direction. By improving the digital adaptive automatic equalization means, media with multiple recording areas with different reproduction characteristics, reproduction waveform quality degradation due to tilt, reproduction under poor signal-to-noise ratio conditions, and effects, etc. The present invention relates to a device capable of improving the quality of reproduced digital data and improving playability under adverse conditions such as the occurrence of frequent occurrences. Background art
光ディスク媒体にデジタルデータを記録する方式として、 コンパクトディスク (Compact Disc) や D V D (Digital Versatile Disc) に見られるように線速度 を一定にして光記録媒体上の記録密度を一様にする方式が多く用いられている。 線記録密度が一定となるようにマーク幅変調してデジタル変調記録された光デ イスクの再生信号に対しデジタルデータを再生する場合、. まず、 光ディスク媒体 からの再生波形に対し、 波形等化手段により、 高密度記録の影響により減衰した 高域周波数成分を強調し、 この高域を強調した等化波形に対して、 再生波形のセ ンタレベルを基準に 2値化するとともに、 再生信号が有するクロック成分の位相 を検出し、 位相同期ループを構成することにより、 位相同期引き込みを行い、 デ ジタルデータを復調していた。 As a method of recording digital data on an optical disk medium, there are many methods of making the recording density on an optical recording medium uniform by keeping the linear velocity constant as seen in a compact disc (Compact Disc) or a DVD (Digital Versatile Disc). Used. When reproducing digital data from a reproduction signal of an optical disc recorded digitally by mark-width modulation so that the linear recording density is constant. First, a waveform equalization means is applied to the reproduction waveform from the optical disk medium. High-frequency components attenuated by the effect of high-density recording are emphasized, and the equalized waveform that emphasizes the high frequencies is binarized based on the center level of the reproduced waveform, and the clock that the reproduced signal has By detecting the phase of the component and forming a phase-locked loop, phase lock-in was performed and digital data was demodulated.
その際、 ディスク再生時にスピンドルモータの回転数を一定に保つ方式である C AV (Constant Angular Velocity)再生においては、再生データが有するクロッ ク成分の周波数が、 ディスクの半径方向に依存して変化し、 これにより、 波形等 化手段における最適な等化特性も変化してしまうため、 最適な等化を行なう手段
として、 等化波形が有するジッタ成分を検出し、 それが最小になるように、 波形 等化手段における等化特性を適応的に制御していた。 At this time, in CAV (Constant Angular Velocity) playback, which is a system that keeps the spindle motor rotation speed constant during disc playback, the frequency of the clock component of the playback data changes depending on the radial direction of the disc. As a result, the optimum equalization characteristic of the waveform equalization means also changes. As described above, the jitter component of the equalized waveform was detected, and the equalization characteristic of the waveform equalizing means was adaptively controlled so as to minimize the jitter component.
例えば、 第 2 9図に示すような、 ディスク再生系がある。 光ディスク 5 2には、 第 3 0 ( a ) 図に示すようなデジタル記録符号が、 線記録密度一定となるように 記録されている。 記録されたデータは、 例えば、 8— 1 6変調方式のように、 連 続する " 0 " あるいは " 1 " が 3個以上 1 4個以下となるように規制されたデー タであるとする。 光ピックアップ等の再生手段 5 3で再生して得られる信号は、 第 3 0 ( a ) 図に示すように、 記録データの線方向の高記録密度化に伴って、 干 渉により高域の周波数成分になるほど振幅が減衰するため、 図示しないプリアン プにより増幅した後、 波形等化手段 2により、 高域の周波数成分を強調するよう な補正を施す。 波形等化手段 2は、 ブースト特性を有する高次イクリップルフィ ルタにより実現される。 これは例えば、 第 3 1図に示すような周波数特性を有す る 7次イクリップルフィルタであり、 再生波形の特性に応じてブースト量と高域 遮断周波数を任意に設定する機能を有するものである。 . For example, there is a disk reproducing system as shown in FIG. A digital recording code as shown in FIG. 30 (a) is recorded on the optical disk 52 so that the linear recording density is constant. It is assumed that the recorded data is data regulated such that the number of continuous "0" or "1" is 3 or more and 14 or less, for example, in the 8--16 modulation method. As shown in Fig. 30 (a), the signal obtained by reproduction by the reproducing means 53 such as an optical pickup, as shown in FIG. Since the amplitude decreases as the frequency of the component increases, the signal is amplified by a preamplifier (not shown), and correction is performed by the waveform equalizing means 2 so as to emphasize high frequency components. The waveform equalization means 2 is realized by a high-order ripple filter having a boost characteristic. This is, for example, a 7th-order ripple filter having frequency characteristics as shown in Fig. 31 and having the function of arbitrarily setting the boost amount and high-frequency cutoff frequency according to the characteristics of the reproduced waveform. is there. .
そして、 第 3 0 ( b ) 図に示すように、 波形等化手段 2により高域強調された 再生波形を、 2値化手段 5 4により所定のスライスレベルで 2値化し、第 3 0 ( c ) 図に示すような 2値化デジタル信号に変換する。 Then, as shown in FIG. 30 (b), the reproduced waveform emphasized by the high-frequency band by the waveform equalizing means 2 is binarized at a predetermined slice level by the binarizing means 54, and ) Convert to a binary digital signal as shown in the figure.
次に、 周期検出手段 5 5において、 2値化手段 5 4で 2値化されたデジタノレ信 号に含まれる特定のパターンの周期を、 発振器 5 6により発生させた高周波クロ ックでカウントする。 周期検出手段 5 5により得られた特定パターンのカウント 情報は、 線速度に反比例するものであり、 再生信号が有するクロック成分の周期 情報を持っため、 これを基に位相同期ループ回路 5 7の再生クロックの自走周波 数が、 再生信号の有するク口ック成分の周波数にほぼ一致するように制御する。 ここで、 位相同期ループ回路 5 7は、 位相比較器 5 8、 チヤ一ジポンプ 5 9、 ル —プフィルタ 6 0、 電圧制御発振器 6 1で構成されている。 この電圧制御発振器 6 1は、 周期検出手段 5 5により得られる周波数情報により中心周波数を適応的 に変化させ、 発振周波数が 2値化手段 5 4から得られるデジタル信号が有するク 口ック成分の周波数にほぼ一致するように制御を行なうことにより、 再生手段 5 3のシーク後の位相同期引き込みや、 C A V再生時の再生半径位置に依存する位
相同期制御を行なうことが可能である。 これら、 2値化手段 5 4の出力信号であ る 2値化信号と、位相同期ループ回路 5 7から生成される再生クロックを用いて、 復調回路 6 2によりデジタル復調信号が生成される。 Next, in the cycle detecting means 55, the cycle of a specific pattern included in the digital signal which has been binarized by the binarizing means 54 is counted by the high-frequency clock generated by the oscillator 56. The count information of the specific pattern obtained by the cycle detection means 55 is inversely proportional to the linear velocity, and has the cycle information of the clock component of the playback signal. Control is performed so that the free-running frequency of the clock substantially matches the frequency of the click component of the reproduced signal. Here, the phase locked loop circuit 57 includes a phase comparator 58, a charge pump 59, a loop filter 60, and a voltage controlled oscillator 61. This voltage-controlled oscillator 61 adaptively changes the center frequency based on the frequency information obtained by the period detecting means 55, and the oscillation frequency of the digital signal obtained from the binarizing means 54 is By performing control so that the frequency substantially coincides with the frequency, the phase synchronization after the seek of the reproducing means 53 and the position dependent on the reproducing radius position at the time of CAV reproduction are controlled. Phase synchronization control can be performed. A digital demodulation signal is generated by the demodulation circuit 62 using the binarized signal output from the binarization means 54 and the reproduced clock generated from the phase locked loop circuit 57.
また、 このディスク再生系は、 位相同期後、 2値化手段 5 4の出力である 2値 化信号と位相同期ループ回路 5 7により制御される再生タロックの位相差である ジッタを平均化して検出するジッタ検出手段 6 3を有し、. ジッタ検出手段 6 3の 出力信号が最小になるように、 波形等化手段 2におけるブースト量と高域遮断周 波数を学習する機能を有することにより、 再生データ周波数と再生波形の高域減 衰特' 14の変化に対して、 再生特性を向上させることが可能となる。 After phase synchronization, the disc reproduction system averages and detects the jitter, which is the phase difference between the binarized signal output from the binarization means 54 and the reproduction turlock controlled by the phase locked loop circuit 57. The waveform equalizer 2 has a function of learning the boost amount and the high-frequency cutoff frequency so that the output signal of the jitter detector 6 3 is minimized. The reproduction characteristics can be improved in response to changes in the data frequency and the high-frequency attenuation characteristic of the reproduction waveform.
このような一連の動作により、 再生波形の有するクロック成分の周波数と高域 減衰特性に対応して、 波形等化と位相同期再生が可能となり、 光ディスク媒体に 記録されたデジタルデータを安定かつ精度良く再生することが可能となる。 Through such a series of operations, waveform equalization and phase-synchronous reproduction can be performed in accordance with the frequency and high-frequency attenuation characteristics of the clock component of the reproduced waveform, and digital data recorded on an optical disk medium can be stably and accurately reproduced. It becomes possible to reproduce.
しかしながら、 '上記従来の光ディスク装置では、 書き込み可能ディスクである D VD - RAM (D VD—ランダムアクセスメモリ) 等における、 アドレス情報 があらかじめ記録されているエンボス領域であるァドレスブロックとランダムデ ータが書き込み可能であるデータブロックにおける再生特性の違いや、 書き込み 特性が異なる複数の書き込み装置によりデジタルデータが記録された書き込み可 能型光ディスクや、 光ディスク媒体の記録面に対する垂直軸とレーザー光の進入 軸の角度で定義されるチルトによる再生特性の劣化や、ディスク表面の傷、 汚れ、 指紋等のディフエクトに依存する局所的な再生特性の劣化が存在する場合に関し ては、 上述したような、 ブースト特性を有する高次イクリップルフィルタのみで 光再生波形の波形等化を行なう方法では、 変動する光再生波形の高域減衰特性に 対して最適な高域強調特性を持たせることは不可能である。 However, according to the conventional optical disk apparatus described above, an address block and a random data, which are embossed areas in which address information is recorded in advance, such as a DVD-RAM (DVD—random access memory) which is a writable disk, are used. Differences in the reproduction characteristics of writable data blocks, writable optical disks on which digital data is recorded by multiple writing devices with different write characteristics, and the vertical axis and the entrance axis of the laser beam to the recording surface of the optical disk medium If there is deterioration in the reproduction characteristics due to the tilt defined by the angle, or local deterioration in the reproduction characteristics depending on the effects of scratches, dirt, fingerprints, etc. on the disk surface, the boost characteristics described above must be used. Waveform of optically regenerated waveform using only high-order ripple filter In the method of performing reduction, it is impossible to have an optimal high frequency emphasis characteristic for the high-frequency attenuation characteristic of the light reproduced waveform varies.
また、 ジッタ検出手段により波形等化手段のブースト量と高域遮断周波数の最 適化を行なう場合も、 ジッタ検出手段のみでは、 ブースト量と高域遮断周波数の 双方に対し、 同時に連続的な適応自動制御を行なうことは困難である。 したがつ て、 上述の方式では、 等化性能を十分に発揮することはできないため、 再生特性 を向上するうえでの有 ¾!な手段にはなり得ない。 Also, when the boost amount of the waveform equalization means and the high cutoff frequency are optimized by the jitter detection means, the jitter detection means alone can simultaneously and continuously apply to both the boost amount and the high cutoff frequency. It is difficult to perform automatic control. Therefore, the above-mentioned method cannot sufficiently exhibit the equalization performance, and thus cannot be a useful means for improving the reproduction characteristics.
本発明は、 このような事情に鑑みてなされたもので、 書き込み可能ディスク等
に現れる、 再生位置や再生ブロックによる再生特性の違いのみならず、 チルトや ディフユク トによる局部的な再生特性の劣化を吸収し、 様々な記録再生特性を有 する光ディスク媒体に対してリーダピリティの向上が可能な、 光ディスク装置を 提供することを目的とする。 発明の開示 The present invention has been made in view of such circumstances, and has been made in consideration of a writable disc or the like. In addition to the differences in playback characteristics due to playback position and playback block, local degradation in playback characteristics due to tilt and differential is absorbed, and leadership is improved for optical disc media with various recording and playback characteristics. It is an object of the present invention to provide a possible optical disk device. Disclosure of the invention
この発明に係る光ディスク装置は、 記録可能領域であるデータブロックとその ァドレス情報が記録されているァドレスプロックとが存在する光記録媒体から再 生した信号にパーシャルレスポンス等化を行なう等化フィルタと、 前記パーシャ ルレスポンス等化の出力信号を基にして、 前記等化フィルタのフィルタ係数を、 それぞれのブロック別に、 前記等化フィルタの等化誤差が最小となるように、 適 応的に学習するブロック別フイノレタ係数学習手段とを備えるようにしたものであ る。 これにより、 アドレス情報が記録されているエンボス領域としてのアドレス ブロックとランダムデータが書き込み可能なデータプロックとで記録再生特 14が 異なる書き込み可能ディスク等において、 各ブロックに最適な再生特性が得られ るため、 リーダビリティが向上する。 An optical disc device according to the present invention includes: an equalization filter that performs partial response equalization on a signal reproduced from an optical recording medium in which a data block that is a recordable area and an address block in which the address information is recorded exist; A block for adaptively learning the filter coefficient of the equalization filter for each block based on the output signal of the partial response equalization so that the equalization error of the equalization filter is minimized. And a separate finoleta coefficient learning means. As a result, in a writable disc or the like having different recording / reproducing characteristics between an address block in which address information is recorded as an embossed area and a data block in which random data can be written, optimal reproduction characteristics can be obtained for each block. Therefore, readability is improved.
また、 この発明に係る光ディスク装置は、 前記ブロック別フィルタ係数学習手 段が、 前記ァドレスプロックと前記データプロックとを分別するためのゲート信 号を生成するゲ一ト信号生成手段を有するようにしたものである。 これにより、 ァドレスプロックとデータプロックとで記録再生特性が異なる書き込み可能ディ スク等のデータ再生において、 ゲート信号の切り分けが明確になるため、 各プロ ック別にフィルタ係数の初期値のロードが可能となるだけでなく、 プロック別に 学習されたフィルタ係数を保持して次回の制御に引き継ぐホールド制御が実現可 能となるため、デジタル適応自動等化制御における安定性及び連続性が向上する。 また、 この発明に係る光ディスク装置は、 前記光記録媒体から再生した信号の 出力振幅を強調するプリアンプと、 該強調された信号の所定の周波数帯域を強調 する波形等化手段と、 該波形等化された信号を再生ク口ックにより標本化するァ ナログ ·デジタル変換手段と、 該標本化された信号に含まれるクロック成分の位 相と同期するように再生クロックの発振周波数を制御する位相同期ループと、 前
記標本化された信号からオフセット成分を低減する補正を行い、 この捕正した信 号を前記等化フィルタに入力させるオフセット補正手段と、 前記等化フィルタで 等化したパーシャルレスポンスの型に応じて最尤復号を行なうことによりデータ 復調を行なう最尤復号器とを備えるようにしたものである。 これにより、 ァドレ ス情報が記録されているエンボス領域としてのァドレスブロックとランダムデー タが書き込み可能なデータプロックとで記録再生特性が異なる書き込み可能ディ スク等において、 各ブロックに最適な再生特性が得られるだけでなく、 一連の信 号処理の動作により、 リーダピリティが向上する。 Further, in the optical disc apparatus according to the present invention, the block-by-block filter coefficient learning means has a gate signal generating means for generating a gate signal for separating the address block and the data block. Things. As a result, in the data reproduction of a writable disk or the like having different recording / reproduction characteristics between the address block and the data block, the division of the gate signal becomes clear, so that the initial value of the filter coefficient can be loaded for each block. In addition, the hold control that holds the filter coefficient learned for each block and takes over to the next control can be realized, so that the stability and continuity of the digital adaptive automatic equalization control are improved. Also, an optical disc apparatus according to the present invention includes: a preamplifier for enhancing an output amplitude of a signal reproduced from the optical recording medium; a waveform equalizing unit for enhancing a predetermined frequency band of the enhanced signal; Analog-to-digital conversion means for sampling the sampled signal with a reproduction clock, and phase synchronization for controlling the oscillation frequency of the reproduction clock so as to synchronize with the phase of the clock component included in the sampled signal Loop and before Offset correction means for performing a correction to reduce an offset component from the sampled signal, and inputting the corrected signal to the equalization filter, and a type of a partial response equalized by the equalization filter. And a maximum likelihood decoder for performing data demodulation by performing maximum likelihood decoding. This makes it possible to obtain optimum reproduction characteristics for each block in a writable disk or the like having different recording / reproduction characteristics between an address block in which address information is recorded and a data block in which random data can be written. Not only that, a series of signal processing operations improve leadership.
また、 この発明に係る光ディスク装置は、 前記ブロック別フィルタ係数学習手 段が、 再生信号のエンベロープを抽出するエンベロープ検出手段と、 該ェンベロ ープの直流変動分を検出することにより、 前記ァドレスプロックと前記データブ 口ックとを識別するためのゲ一ト信号を生成するゲート信号生成手段とを有する ようにしたものである。 これにより、 書き込み可能ディスク等におけるア ドレス ブロックとデータブロックとを識別するためのゲート信号を生成する際、 再生信 号から直接読み取ることが可能であるため、 ゲート信号の生成が安定する。 Further, in the optical disc device according to the present invention, the block-by-block filter coefficient learning means includes an envelope detecting means for extracting an envelope of the reproduction signal, and a DC fluctuation of the envelope to detect the address block. And a gate signal generating means for generating a gate signal for identifying the data block. Thus, when a gate signal for identifying an address block and a data block in a writable disk or the like is generated, the gate signal can be read directly from the reproduced signal, so that the generation of the gate signal is stabilized.
また、 この発明に係る光ディスク装置は、 前記エンベロープ検出手段が、 前記 再生信号の波形のピーク値をホールドするピークホールド手段と、 該ホールドが なされた出力信号を平滑化する平滑化手段とを有し、 前記再生波形のェンベロー プを検出するようにしたものである。 これにより、 再生波形からのエンベロープ 検出が安定するため、 フィルタ係数の学習精度が向上する。 Also, the optical disc device according to the present invention, wherein the envelope detecting means has peak holding means for holding a peak value of the waveform of the reproduction signal, and smoothing means for smoothing the held output signal. In this embodiment, the envelope of the reproduced waveform is detected. Thereby, the envelope detection from the reproduced waveform is stabilized, and the learning accuracy of the filter coefficient is improved.
また、 この発明に係る光ディスク装置は、 前記ブロック別フィルタ係数学習手 段は、 トラッキングサ一ボ用のトラッキング誤差信号を生成するトラッキング誤 差信号生成手段と、該トラッキング誤差信号の直流変動分を検出することにより、 前記ァドレスプロックと前記データプロックとを識別するためのゲート信号を生 成するゲート信号生成手段とを有するようにしたものである。 これにより、 書き 込み可能ディスク等におけるァドレスプロックとデータプロックとを識別するた めのゲート信号を生成する際、 トラッキング誤差信号の極性より、 ァドレスプロ ックをさらに前半部と後半部に識別することが可能であるため、 ァドレスプロッ クにおけるデジタル適応自動等化を繊細に制御することが可能となる。その結果、
前半部と後半部ともにアドレス情報の読み取り精度が向上するため、 シーク直後 にァドレス情報を安定して読み取ることが可能となるため、 シーク性能の向上に もつながる。 Also, in the optical disc apparatus according to the present invention, the block-by-block filter coefficient learning means includes: a tracking error signal generating means for generating a tracking error signal for a tracking servo; and detecting a DC variation of the tracking error signal. Thus, there is provided a gate signal generating means for generating a gate signal for identifying the address block and the data block. Thus, when generating a gate signal for distinguishing between an address block and a data block in a writable disc or the like, the address block can be further distinguished into the first half and the second half based on the polarity of the tracking error signal. Since it is possible, it is possible to delicately control the digital adaptive automatic equalization in the address block. as a result, Since the reading accuracy of the address information is improved in both the first half and the second half, the address information can be read stably immediately after the seek, which leads to an improvement in seek performance.
また、 この発明に係る光ディスク装置は、 前記プロック別フィルタ係数学習手 段が、 前記ァドレスプロックのァドレス位置を検出し、 前記位相同期ループより 出力される再生信号が有するクロック成分の位相に同期した再生クロックによ り、 記録データ数をカウントするカウンタと、 該カウンタの値に基づいて、 次に ァドレスプロックが出現する位置を推定することにより、 該ァドレスブロックと 該データプロックとを識別するためのゲート信号を生成するゲート信号生成手段 とを有するようにしたものである。 これにより、 書き込み可能ディスク等におけ るァドレスプロックとデータブロックとを識別するためのゲート信号を生成する 際、 再生ク口ックにより次のァドレスプロックの正確な位置を推定できるため、 ディフエク トゃトラッキングサーボの乱れに影響されることなく、 ゲート信号の タイミングを正確に制御可能となり、 プロック別のデジタル適応自動等化制御の 等化精度と安定性が向上する。 Further, in the optical disc apparatus according to the present invention, the block-specific filter coefficient learning means detects an address position of the address block, and reproduces in synchronization with a phase of a clock component included in a reproduction signal output from the phase locked loop. A counter for counting the number of recording data by a clock; and a gate for identifying the address block and the data block by estimating a position where an address block appears next based on the value of the counter. And a gate signal generating means for generating a signal. Thus, when a gate signal for identifying an address block and a data block in a writable disk or the like is generated, an accurate position of the next address block can be estimated by a playback clock, so that the diff. The timing of the gate signal can be accurately controlled without being affected by the disturbance of the tracking servo, and the equalization accuracy and stability of digital adaptive automatic equalization control for each block are improved.
また、 この発明に係る光ディスク装置は、 前記ブロック別フィルタ係数学習手 段は、 前記ァドレスブロックと前記データプロックとを識別するためのグート信 号生成手段と、 再生信号に存在する単一周波数パターンを検出するための単一パ ターン検出手段とを有し、 それぞれのプロックを分別してフィルタ係数を学習さ せる際に、 前記単一バタ一ン検出手段の出力信号にしたがって、 それぞれのプロ ックにおいて単一周波数パターン以外のランダムパターン位置でフィルタ係数の 学習を行なうようにしたものである。 これにより、 書き込み可能ディスク等にお けるァドレスプロックとデータプロックとを識別するためのゲート信号を生成す る際、 フイノレタ係数の学習にとつて不利となる単一周波数パターンでの学習を回 避することが可能となるため、 デジタル適応自動等化制御の制御速度と等化精度 が向上する。 Also, in the optical disc device according to the present invention, the block-by-block filter coefficient learning means includes: a gut signal generating means for identifying the address block and the data block; and a single frequency pattern existing in a reproduction signal. A single pattern detecting means for detecting, and when learning the filter coefficients by classifying each block, in each block according to an output signal of the single pattern detecting means. The learning of the filter coefficients is performed at random pattern positions other than the single frequency pattern. Thus, when generating a gate signal for distinguishing an address block from a data block in a writable disc or the like, it avoids learning in a single frequency pattern which is disadvantageous for learning a finoleta coefficient. Therefore, the control speed and equalization accuracy of digital adaptive automatic equalization control are improved.
また、 この発明に係る光ディスク装置は、 前記ブロック別フィルタ係数学習手 段は、 前記ァドレスプロックのァドレス位置を検出し、 該位相同期ループより出 力される再生信号が有するク口ック成分の位相に同期した再生クロックにより、
記録データ数をカウントするカウンタと、 該カウンタの値に基づいて、 次にアド レスブロックが出現する位置を推定することにより、 前記アドレスブロックと前 記データプロックとを識別するためのゲート信号を生成するゲート信号生成手段 と、 前記カウンタの値に基づいて、 単一周波数パターンとランダムパターンの位 置を分別するパターン識別ゲート信号発生手段とを有し、 それぞれのブロックを 分別してフィルタ係数を学習させる際に、 前記パターン識別ゲート信号にしたが つて、 それぞれのプロックにおいて単一周波数パターン以外のランダムパターン 位置でフィルタ係数の学習を行なうようにしたものである。 これにより、 書き込 み可能ディスク等におけるアドレスプロックとデータプロックとを識別するため のゲート信号を生成する際、 フィルタ係数の学習にとって不利となる単一周波数 パターンの正確な位置を、 再生クロックにより推定できるため、 ランダムパター ンのみでフィルタ係数を学習する確率が高くなるため、 デジタル適応自動等化制 御の制御速度と等化精度をさらに向上させることが可能である。 Further, in the optical disc apparatus according to the present invention, the block-by-block filter coefficient learning means detects an address position of the address block, and detects a phase of a click component included in a reproduction signal output from the phase locked loop. The playback clock synchronized with A counter for counting the number of recording data, and a gate signal for identifying the address block and the data block is generated by estimating a position where the next address block appears based on the value of the counter. And a pattern identification gate signal generating means for separating the positions of the single frequency pattern and the random pattern based on the value of the counter, and learning the filter coefficient by separating each block. At this time, the filter coefficients are learned at random pattern positions other than the single frequency pattern in each block according to the pattern identification gate signal. As a result, when generating a gate signal for discriminating between an address block and a data block in a writable disk or the like, an accurate position of a single frequency pattern that is disadvantageous for learning of a filter coefficient is estimated by a reproduction clock. As a result, the probability of learning the filter coefficients using only random patterns increases, so that the control speed and equalization accuracy of digital adaptive automatic equalization control can be further improved.
また、 この発明に係る光ディスク装置は、 前記ブロック別フィルタ係数学習手 段は、.前記アドレスブロックにおけるアドレス情報を含むランダムパターンと単 一周波数パターンとが交互に複数存在する場合に、 どの位置を対象としてフィル タ係数の学習を行なうかを決定する学習位置制御手段を有し、 該学習位置制御手 段の出力信号に基づいて、 フィルタ係数の学習を行なうようにしたものである。 これにより、 書き込み可能ディスク等の再生において、 サーボの制御条件、 及び 位相同期ループの位相同期引きこみ特性等により再生特 ' 及び、 標本化位相が変 動した場合でも、 アドレスブロックに複数存在するアドレスデータの、 安定して 良好に再生できる位置のものだけを用いてフィルタ係数の学習が可能になるた め、 サ一ボ制御状態、 及び位相同期性能に適したフィルタ係数の学習が可能とな り、 アドレス情報を安定して読み取れる。 Also, in the optical disc device according to the present invention, the block-by-block filter coefficient learning means may select a position where a random pattern including address information in the address block and a single frequency pattern are alternately present. There is provided a learning position control means for determining whether to perform the learning of the filter coefficient, and the learning of the filter coefficient is performed based on the output signal of the learning position control means. As a result, when reproducing a writable disk or the like, even if the reproduction characteristics and the sampling phase change due to the servo control conditions and the phase synchronization pull-in characteristic of the phase locked loop, etc. Since filter coefficients can be learned using only data that can be reproduced stably and satisfactorily, it is possible to learn filter coefficients that are suitable for the servo control state and phase synchronization performance. Address information can be read stably.
また、 この発明に係る光ディスク装置は、 前記等化フィルタで等化して得られ る信号に対し、 パーシャルレスポンスの型に応じた最尤復号を行なうことにより データ復調を行なう最尤復号器と、 該最尤復号器により 2値化データに復調され た復調信号から、ァドレス情報の正誤を判断する E D C (Error Detection Code) を検出する E D C判定手段と、 該 E D C判定手段から得られる E D C判定の結果
にしたがって、 前記ァドレス情報に対応するァドレスプロックに対するフィノレタ 係数の学習が安定化するよう前記プロック別フィルタ係数学習手段を制御するフ ィルタ係数学習制御手段とを備えるようにしたものである。 これにより、 書き込 み可能ディスク等の再生において、 ディフエクト等により再生特性が劣化した場 合には、 アドレスブロックのその位置におけるフィルタ係数の学習を停止し、 良 好に再生できる位置のものだけを用いてフィルタ係数の学習が可能になるため、 異常状態におけるフィルタ係数の学習において、 ァドレスプロックにおけるフィ ルタ係数の学習が安定し、 ァドレス情報を安定して読み取れる。 Also, an optical disc device according to the present invention includes a maximum likelihood decoder that performs data demodulation by performing maximum likelihood decoding according to a type of a partial response on a signal obtained by equalization with the equalization filter; EDC determination means for detecting EDC (Error Detection Code) for determining correctness of address information from a demodulated signal demodulated into binary data by the maximum likelihood decoder, and a result of EDC determination obtained from the EDC determination means And a filter coefficient learning control means for controlling the block-specific filter coefficient learning means so that the learning of the finoleta coefficient for the address block corresponding to the address information is stabilized. As a result, in the case of reproduction of a writable disc or the like, if the reproduction characteristics are degraded due to a defect or the like, the learning of the filter coefficient at that position in the address block is stopped, and only those at the position where the reproduction can be performed well are performed. Since the filter coefficient can be learned by using the filter coefficient, the learning of the filter coefficient in the address block is stable in the learning of the filter coefficient in the abnormal state, and the address information can be read stably.
また、 この発明に係る光ディスク装置は、 前記ブロック別フィルタ係数学習手 段が、 前記 E D C判定手段における判定で、 正しいアドレス情報が得られている 場合は、 該アドレスブロックにおけるフィルタ係数の適応的な学習を継続し、 正 しいアドレス情報が得られなくなった場合は、 フィルタ係数の学習を止めて、 フ ィルタ係数を初期値にリセットするようにしたものである。 これにより、 書き込 み可能ディスク等の再生において、 ディフエクト等により再生異常が生じた場合 に、 早期の復旧が可能となるため、 異常制御からの復旧時間の短縮を図ることが 可能となる。 Further, in the optical disc device according to the present invention, the block-by-block filter coefficient learning means, when correct address information is obtained by the determination by the EDC determination means, adaptively learns filter coefficients in the address block. When the correct address information cannot be obtained, the learning of the filter coefficient is stopped and the filter coefficient is reset to the initial value. As a result, in the case of reproduction of a writable disc or the like, if a reproduction abnormality occurs due to a defect or the like, it is possible to recover quickly, and thus it is possible to shorten a recovery time from the abnormality control.
また、 この発明に係る光ディスク装置は、 前記ブロック別フィルタ係数学習手 段が、前記ァドレスブロックのフィルタ係数の初期値を決定する初期学習の際に、 前記 E D C判定手段における判定で、 連続して正しいァドレス情報が得られてい る個数をカウントする E D Cカウンタと、 該 E D Cカウンタのカウント値が、 任 意の個数以上ァドレス情報が正しい場合を示している際のフィルタ係数をフィル タ係数の初期値として記憶する初期値記憶手段とを有し、 フィルタ係数の学習開 始時に、 該初期値記憶手段の情報をロードするようにしたものである。 これによ り、 書き込み可能ディスク等の再生において、 正常に再生が行われていることを 確認して、 フィルタ係数の学習結果を初期値として記憶するため、 アドレスプロ ックにおけるフィルタ係数の初期値の信頼性が向上する。 Further, in the optical disc device according to the present invention, when the block-by-block filter coefficient learning means performs initial learning for determining an initial value of a filter coefficient of the address block, the determination by the EDC determination means is continuously correct. An EDC counter that counts the number of address information that has been obtained, and a filter coefficient when the count value of the EDC counter indicates that the address information is correct for more than an arbitrary number is stored as the initial value of the filter coefficient. And initial value storage means for loading the information of the initial value storage means at the start of the learning of the filter coefficients. As a result, in the reproduction of a writable disc, etc., it is confirmed that the reproduction is normally performed, and the learning result of the filter coefficient is stored as the initial value. Reliability is improved.
また、 この発明に係る光ディスク装置は、 光記録媒体からデジタルデータを再 生する際に、 パーシャルレスポンス等化を行なう等化フィルタと、 該等化出力信 号を基にして、 前記等化フィルタの等化誤差が最小になるように、 前記等化フィ
ルタのフィルタ係数を適応的に学習するフィルタ係数学習手段と、 該等化がなさ れた信号におけるパーシャルレスポンス等化レベルの各レベルにおける等化誤差 量の絶対値をそれぞれ平均する等化誤差平均手段と、 該等化誤差平均手段の出力 を基にして等化性能を検出する等化性能検出手段と、 前記等化フィルタのフィル タ係数の学習機能を制御する自己判定型フィルタ係数学習制御手段とを備えるよ うにしたものである。 これにより、 等化誤差情報を基に、 現在のデジタル等化状 態を自己分析し、 書き込み可能ディスク等やチルトにより現れる、 再生位置によ る再生特性の違いに対応して、 適応的にデジタル自動等化制御を行うことが可能 となるため、 様々な記録再生特性を有する光ディスク媒体に対してリーダビリテ ィが向上する。 Further, the optical disc device according to the present invention includes an equalizing filter for performing partial response equalization when reproducing digital data from an optical recording medium, and an equalizing filter based on the equalized output signal. Set the equalization filter so that the equalization error is minimized. Filter coefficient learning means for adaptively learning the filter coefficient of the filter, and equalization error averaging means for averaging the absolute value of the equalization error amount at each level of the partial response equalization level in the equalized signal An equalization performance detecting means for detecting equalization performance based on an output of the equalization error averaging means; a self-determining filter coefficient learning control means for controlling a learning function of a filter coefficient of the equalization filter; It is intended to be equipped with. As a result, based on the equalization error information, the current digital equalization state is self-analyzed, and adaptively digitally responds to the difference in playback characteristics depending on the playback position, which appears due to a writable disc or tilt, etc. Since the automatic equalization control can be performed, the readability of an optical disk medium having various recording / reproducing characteristics is improved.
また、 この発明に係る光ディスク装置は、 前記光記録媒体からの再生信号の出 力振幅を強調するプリアンプと、 該出力捩幅が強調された信号の所定の周波数帯 域を強調する波形等化手段と、 該波形等化された信号を再生クロックによりデジ タルデータに標本化するアナログ ·デジタル変換手段と、 該標本化信号が有する クロック成分の位相と同期するように再生クロックの発振周波数を制御する位相 同期ループと、 該標本ィヒされた信号からオフセッ ト成分および振幅を補正し、 こ の補正したデータを前記等化フィルタに入力させるデジタルデータ補正手段と、 前記等化フィルタから得られる等化出力信号におけるパーシャルレスポンス等化 レベルの各レベルにおける等化誤差量の絶対値をそれぞれ平均する等化誤差平均 手段と、 該等化誤差平均手段の出力を基にして等化性能を検出する等化性能検出 手段と、 前記等化フィルタのフィルタ係数の学習機能を制御する自己判定型フィ ルタ係数学習制御手段と、 前記等化フィルタにおいて適用したパーシャルレスポ ンスの型に応じて、 前記等化出力信号からデータ復調を行なう最尤復号器とを備 えるようにしたものである。 これにより、 等化誤差情報を基に、 現在のデジタル 等化状態を自己分析し、 書き込み可能ディスク等やチルトにより現れる、 再生位 置による再生特性の違いに対応して、 適応的にデジタル自動等化制御を行うこと が可能となるだけでなく、 一連の信号処理の動作により、 様々な記録再生特性を 有する光ディスク媒体に対してリーダピリティが向上する。 Also, the optical disk device according to the present invention is a preamplifier for enhancing an output amplitude of a reproduction signal from the optical recording medium, and a waveform equalizing means for enhancing a predetermined frequency band of the signal in which the output screw width is enhanced. Analog-to-digital conversion means for sampling the waveform-equalized signal into digital data using a reproduced clock; and controlling the oscillation frequency of the reproduced clock so as to synchronize with the phase of the clock component of the sampled signal. Phase-locked loop, digital data correction means for correcting offset components and amplitude from the sampled signal, and inputting the corrected data to the equalization filter, and equalization obtained from the equalization filter Equalization error averaging means for averaging the absolute value of the equalization error amount at each level of the partial response equalization level in the output signal; and An equalization performance detection unit that detects equalization performance based on an output of the equalization error averaging unit; a self-determination filter coefficient learning control unit that controls a learning function of a filter coefficient of the equalization filter; A maximum likelihood decoder that performs data demodulation from the equalized output signal according to the type of the partial response applied in the equalizing filter is provided. This enables the current digital equalization state to be self-analyzed based on the equalization error information, and adaptively adjusts the digital automatic response in response to the difference in playback characteristics depending on the playback position, which appears due to a writable disc or tilt. Not only is it possible to perform read / write control, but also by a series of signal processing operations, the leadership of optical disc media having various recording and reproduction characteristics is improved.
また、 この発明に係る光ディスク装置は、 前記等化誤差平均手段が、 所定のチ
ャネルビット (記録データの最小単位) N個 (Nは正の整数) の期間における、 前記等化フィルタでのパーシャルレスポンス等化レベルの各レベルにおける等化 誤差量の絶対値を加算し、 Nを母数として除算を行ない、 前記等化性能検出手段 は、 前記等化誤差平均手段により平均化された等化誤差出力結果が所定のレベル X (Xは正の整数) より小さい場合は、 等化状態が正常である判定信号を生成し、 前記レベル X以上である場合は、 等化状態が異常である判定信号を生成するよう にしたものである。 これにより、 デジタル等化性能を検出する精度が向上し、 自 動等化性能が安定するだけでなく、 必要以上にフィルタ係数の学習に関する回路 を動作させず、 任意の再生性能を容易に実現することが可能となるため、 消費電 力の削減が可能である。 Also, in the optical disc device according to the present invention, the equalization error averaging means may include a predetermined chip. Channel bits (minimum unit of recording data) During the N (N is a positive integer) period, add the absolute value of the equalization error amount at each level of the partial response equalization level in the equalization filter, and set N as the mother If the equalization error output result averaged by the equalization error averaging means is smaller than a predetermined level X (X is a positive integer), an equalization state is obtained. Is determined to be normal, and when the level is equal to or higher than the level X, a determination signal indicating that the equalization state is abnormal is generated. This improves the accuracy of detecting the digital equalization performance, stabilizes the automatic equalization performance, and easily realizes any reproduction performance without operating the circuit for learning the filter coefficients more than necessary. Power consumption can be reduced.
また、 この発明に係る光ディスク装置は、 前記等化誤差平均手段は、 所定のチ ャネルビット (記録データの最小単位) N個 (Nは正の整数) の期間における、 前記等化フィルタでのパーシャルレスポンス等化レベルの各レベル別に、 等化誤 差量の絶対値を加算し、 Nを母数として除算を行い、 前記等化性能検出手段は、 指定された前記パーシャルレスポンス等化レベルの前記等化誤差平均手段により 平均化された等化誤差出力結果が所定のレベル X (Xは正の整数) より小さい場 合は、 等化状態が正常である判定信号を生成し、 所定のレベル X (Xは正の整数) 以上である場合は、 等化状態が異常である判定信号を生成するようにしたもので ある。 Also, in the optical disc device according to the present invention, the equalization error averaging means may include: a partial response in the equalization filter during a predetermined number of channel bits (minimum unit of recording data) (N is a positive integer); The absolute value of the equalization error amount is added for each level of the equalization level, and division is performed with N as a parameter.The equalization performance detection means performs the equalization of the specified partial response equalization level. If the equalized error output result averaged by the error averaging means is smaller than a predetermined level X (X is a positive integer), a judgment signal indicating that the equalization state is normal is generated, and the predetermined level X (X Is a positive integer). If the value is equal to or greater than the above, a determination signal that the equalization state is abnormal is generated.
これにより、 全体的な等化性能ではなく、 P RML信号処理の性能に大きく関 係するパーシャルレスポンス等化レベルに関してのみ、 デジタル等化性能を検出 することにより、 再生性能を重視したデジタル適応自動等化が可能となるため、 特に、 再生波形にァシンメ トリ特性が存在する場合のリーダピリティの向上が可 能である。 As a result, digital adaptive automatic emphasis, with emphasis on reproduction performance, is achieved by detecting digital equalization performance only for the partial response equalization level that is significantly related to the performance of PRML signal processing, rather than the overall equalization performance. This makes it possible to improve leadership, especially when the reproduced waveform has asymmetry characteristics.
また、 この発明に係る光ディスク装置は、 前記自己判定型フィルタ係数学習制 御手段が、前記等化フィルタのフィルタ係数の初期値を決定する初期学習の際に、 前記等化性能検出手段の出力信号が、 等化状態が正常であることを示している場 合のフィルタ係数学習の結果を、 フィルタ係数の初期値として記憶する初期値記 憶手段を有し、 データの再生開始時には、 該初期値記憶手段の値をロードし、 フ
ィルタ係数を固定して制御を行い、 その固定制御中に、 前記等化性能検出手段の 出力信号が、 等化状態が異常であることを示している場合は、 該フィルタ係数の 学習を開始し、 該等化性能検出手段の出力信号が、 等化状態が正常であることを 示すまで学習を継続し、 正常となった時点でのフィルタ係数を該初期値記憶手段 に記憶し、 その値により固定制御を行なうようにしたものである。 これにより、 フィルタ係数の初期値学習において、 初期値の信頼性が向上するとともに、 通常 は固定制御によりデジタル等化を行い、 等化状態が劣化してきた場合のみフィル タ係数の学習をし直すため、必要最小限の消費電力を実現することが可能である。 また、 この発明に係る光ディスク装置は、 前記自己判定型フィルタ係数学習制 御手段が、前記等化フィルタのフィルタ係数の初期値を決定する初期学習の際に、 前記等化性能検出手段の出力信号が、 等化状態が正常であることを示している場 合の該フィルタ係数学習の結果を、 フィルタ係数の初期値として記憶する初期値 記憶手段を有し、 データの再生開始時に、 該初期値記憶手段の値をロードし、 連 続的なフィルタ係数の学習により適応自動制御を行ない、その適応自動制御中に、 該等化性能検出手段の出力信号が、 等化状態が異常であることを示した場合は、 該フィルタ係数の学習を停止し、 該初期値記憶手段の値をロードした後、 再度、 連続的なフィルタ係数の学習により適応自動制御を行なうようにしたものであ る。 これにより、 デジタル適応自動等化時に、 ディフエクト等により、 制御が乱 れ、 自己修復不能に陥った場合、 等化性能検出手段により等化状態が異常だと判 断されるため、 フィルタ係数が初期値にリセットされ、 正常な制御状態に復旧す るという異常状態からの自己修復能力を有する。 Also, in the optical disc device according to the present invention, the self-determination type filter coefficient learning control means performs an initial learning for determining an initial value of a filter coefficient of the equalization filter, the output signal of the equalization performance detection means. Has an initial value storage means for storing the result of the filter coefficient learning when the equalization state is normal as the initial value of the filter coefficient. Load the value of the storage means and Control is performed with the filter coefficient fixed. If the output signal of the equalization performance detection means indicates that the equalization state is abnormal during the fixed control, learning of the filter coefficient is started. Learning is continued until the output signal of the equalization performance detection means indicates that the equalization state is normal, and the filter coefficient at the time when the equalization state becomes normal is stored in the initial value storage means. The fixed control is performed. As a result, the reliability of the initial value is improved in the initial value learning of the filter coefficient, and digital equalization is usually performed by fixed control, and the filter coefficient is relearned only when the equalization state deteriorates. , It is possible to realize the required minimum power consumption. Also, in the optical disc device according to the present invention, the self-determination type filter coefficient learning control means performs an initial learning for determining an initial value of a filter coefficient of the equalization filter, the output signal of the equalization performance detection means. Has initial value storage means for storing the result of the filter coefficient learning when the equalization state is normal as the initial value of the filter coefficient. The adaptive automatic control is performed by loading the value of the storage means and learning the continuous filter coefficient. During the adaptive automatic control, the output signal of the equalization performance detecting means determines that the equalization state is abnormal. In the case shown, learning of the filter coefficient is stopped, the value of the initial value storage means is loaded, and then adaptive automatic control is performed again by continuous learning of the filter coefficient. As a result, when the control is disturbed by self-healing due to, for example, digital adaptive automatic equalization, the equalization state is judged to be abnormal by the equalization performance detection means. It has the self-healing ability from the abnormal state of resetting to the value and restoring to the normal control state.
また、 この発明に係る光ディスク装置は、 前記自己判定型フィルタ係数学習制 御手段が、 前記等化フィルタのフィルタ係数の初期値を決定する際に、 光記録媒 体としての光ディスクを半径方向に複数のゾーンに分割して初期学習を行い、 そ れぞれの学習結果をフィルタ係数の初期値として記憶するゾーン別初期値記憶手 段を有し、 データ再生開始時に、 再生するゾーンに対応した該ゾーン別初期値記 憶手段の値をロードし、 適応自動制御を行なうようにしたものである。 これによ り、 C A V再生時の半径方向に依存する再生データの有するクロック成分の周波 数の変化に対する、 アナログ波形等化の高域遮断周波数の設定分解能が粗い場合
でも、 デジタル等化フィルタ係数をゾーンに分けて保持しておくことにより、 シ ーク直後の読み出し性能が向上する。 Also, in the optical disc device according to the present invention, the self-determination type filter coefficient learning control means may include a plurality of optical discs as optical recording media in a radial direction when determining an initial value of a filter coefficient of the equalization filter. It has a zone-specific initial value storage means for performing initial learning by dividing the data into zones and storing each learning result as an initial value of the filter coefficient. It loads the value of the initial value storage means for each zone and performs adaptive automatic control. As a result, when the setting resolution of the high-frequency cutoff frequency of analog waveform equalization for the change in the frequency of the clock component of the reproduced data that depends on the radial direction during CAV reproduction is coarse. However, by keeping the digital equalization filter coefficients divided into zones, the read performance immediately after the seek is improved.
また、 この発明に係る光ディスク装置は、 前記自己判定型フィルタ係数学習制 御手段が、 前記等化フィルタのフィルタ係数の初期値を決定する際に、 光記録媒 体としての光ディスクを半径方向と周方向に複数のゾーンに分割して初期学習を 行い、 それぞれの学習結果をフィルタ係数の初期値として記憶するゾーン別初期 値記憶手段を有し、 データの再生開始時に、 再生するゾーンに対応した該ゾーン 別初期値記憶手段の値をロードし、適応自動制御を行なうようにしたものである。 これにより、 書き込み特性が異なる複数の書き込み装置によりデジタルデータが 記録された書き込み可能ディスク等に現れる、 再生位置や再生ブロックによる再 生特性の違いのみならず、 チルトやディフヱクトによる局部的な再生特性の劣化 を吸収することにより、 様々な記録再生特性を有する光ディスク媒体に対してリ 一ダビリティの向上が可能になる。 Further, in the optical disc apparatus according to the present invention, when the self-determination type filter coefficient learning control means determines an initial value of a filter coefficient of the equalization filter, the self-determination type filter coefficient learning control means moves the optical disc as an optical recording medium in a radial direction and a circumferential direction. It has a zone-specific initial value storage means for performing initial learning by dividing it into a plurality of zones in the direction and storing each learning result as an initial value of a filter coefficient. The value of the initial value storage means for each zone is loaded, and adaptive automatic control is performed. As a result, not only the difference in the reproduction characteristics depending on the reproduction position and the reproduction block but also the local reproduction characteristics due to the tilt and the difference appear on a writable disk or the like on which digital data is recorded by a plurality of writing devices having different write characteristics. By absorbing the deterioration, it is possible to improve the reproducibility of an optical disk medium having various recording / reproducing characteristics.
また、 この発明に係る光ディスク装置は、 前記自己判定型フィルタ係数学習制 御手段が、 フィルタ係数の初期学習時に、 光記録媒体としての円形の光ディスク 上の前記複数のゾーンのうちの、 前記等化性能検出手段の出力信号がその等化状 態が特に劣悪であることを示しているゾーンに関して、 そのゾーンを記録してお く劣悪ゾーン記憶手段を有し、 該劣悪ゾーン記憶手段の記憶結果を基に、 再生す るゾーン別に、 適応自動制御のフィルタ係数学習における制御ゲインを調整する ようにしたものである。 これにより、 ディフエクトによる局部的な再生特性の劣 化が確認されるゾーンに関して、 あらかじめ、 等化制御ゲインの切り替えや、 制 御方式を切り替えることにより、 安定した制御とリーダピリティの向上を行うこ と力 S可能となる。 図面の簡単な説明 Further, in the optical disc device according to the present invention, the self-determination type filter coefficient learning control means may perform, during the initial learning of the filter coefficient, the equalization of the plurality of zones on the circular optical disc as an optical recording medium. For a zone in which the output signal of the performance detection means indicates that the equalization state is particularly poor, the apparatus has a poor zone storage means for recording the zone, and stores the storage result of the bad zone storage means. Based on this, the control gain in filter coefficient learning of adaptive automatic control is adjusted for each zone to be reproduced. This enables stable control and improvement of leadership by switching the equalization control gain and the control method in advance in the zone where the local reproduction characteristic deterioration due to the effect is confirmed. S becomes possible. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態 1による光ディスク装置の構成を示すプロック 図である。 FIG. 1 is a block diagram showing a configuration of an optical disc device according to Embodiment 1 of the present invention.
第 2図は、 実施の形態 1におけるオフセット補正手段の構成を示すブロック図 である。
第 3図は、 実施の形態 1においてトランスバーサルフィルタで実現する、 P R ( a , b , b , a ) 等化方式と、 一般的な、 2値化判別方式の違いについての説 明図である。 FIG. 2 is a block diagram showing a configuration of an offset correction unit according to the first embodiment. FIG. 3 is an explanatory diagram of a difference between a PR (a, b, b, a) equalization method realized by a transversal filter and a general binarization determination method according to the first embodiment. .
第 4図は、 実施の形態 1においてトランスバーサルフィルタで実現する、 各種 パーシャルレスポンス方式の周波数特性を示す図である。 FIG. 4 is a diagram showing frequency characteristics of various partial response systems realized by the transversal filter in the first embodiment.
第 5図は、 実施の形態 1において D V D— R AMの記録フォーマツトの説明図 である。 FIG. 5 is an explanatory diagram of a recording format of DVD-RAM in the first embodiment.
第 6図は、 実施の形態 1におけるトランスバーサルフィルタの構成を示すブロ ック図である。 FIG. 6 is a block diagram showing a configuration of the transversal filter according to the first embodiment.
第 7図は、 実施の形態 1におけるブロック別フィルタ係数学習手段の構成を示 すプロック図である。 FIG. 7 is a block diagram showing a configuration of a block-by-block filter coefficient learning means according to the first embodiment.
第 8図は、 実施の形態 1における最尤復号器の一つであるビタビ復号器の原理 の説明図である。 FIG. 8 is an explanatory diagram of the principle of a Viterbi decoder which is one of the maximum likelihood decoders according to the first embodiment.
第 9図は、 実施の形態 1におけるゲート信号生成手段の構成を示すプロック図 である。 FIG. 9 is a block diagram showing a configuration of a gate signal generating means according to the first embodiment.
第 1 0図は、 実施の形態 1におけるゲート信号の生成原理を説明する説明図で ある。 FIG. 10 is an explanatory diagram for explaining a principle of generating a gate signal in the first embodiment.
第 1 1図は、 実施の形態 1におけるゲート信号の生成原理を説明するブロック 図である。 FIG. 11 is a block diagram illustrating a principle of generating a gate signal according to the first embodiment.
第 1 2図は、 実施の形態 1におけるゲート信号生成手段の構成を示すブロック 図である。 FIG. 12 is a block diagram showing a configuration of a gate signal generating means according to the first embodiment.
第 1 3図は、 実施の形態 1におけるゲート信号生成手段の構成を示すプロック 図である。 FIG. 13 is a block diagram showing a configuration of a gate signal generating means according to the first embodiment.
第 1 4図は、 本発明の実施の形態 2による光ディスク装置の構成を示すプロッ ク図である。 ' FIG. 14 is a block diagram showing a configuration of an optical disk device according to Embodiment 2 of the present invention. '
第 1 5図は、 実施の形態 2による D V D— R AMの記録フォーマツトにおける I Dプロックの構成を示す図である。 FIG. 15 is a diagram showing a configuration of an ID block in a recording format of DVD-RAM according to the second embodiment.
第 1 6図は、 実施の形態 2におけるブロック別フィルタ係数学習手段の制御方 法のフローチャートを示す図である。
第 1 7図は、 実施の形態 2におけるブロック別フィルタ係数学習手段の構成を 示すプロック図である。 FIG. 16 is a diagram showing a flowchart of a control method of a block-by-block filter coefficient learning means according to the second embodiment. FIG. 17 is a block diagram showing a configuration of a block-by-block filter coefficient learning means according to the second embodiment.
第 1 8図は、 本発明の実施の形態 3による光ディスク装置の構成を示すブロッ ク図である。 FIG. 18 is a block diagram showing a configuration of an optical disc device according to Embodiment 3 of the present invention.
第 1 9図は、 実施の形態 3における自己判定型フィルタ係数学習制御手段の構 成を示すプロック図である。 FIG. 19 is a block diagram showing a configuration of a self-determination type filter coefficient learning control means according to the third embodiment.
第 2 0図は、 実施の形態 3における自己判定型フィルタ係数学習制御手段にお ける等化性能自己判定プロックの構成を示すプロック図である。 FIG. 20 is a block diagram showing the configuration of an equalization performance self-determination block in the self-determination filter coefficient learning control means according to the third embodiment.
. 第 2 1図は、 実施の形態 3における自己判定型フィルタ係数学習制御手段にお ける等化性能自己判定プロックの動作原理の説明図である。 FIG. 21 is an explanatory diagram of the operation principle of the equalization performance self-determination block in the self-determination filter coefficient learning control means according to the third embodiment.
第 2 2図は、 実施の形態 3における自己判定型フィルタ係数学習制御手段の制 御方法のフローチャートを示す図である。 FIG. 22 is a diagram showing a flowchart of a control method of the self-determination filter coefficient learning control means in the third embodiment.
第 2 3図は、 実施の形態 3における自己判定型フィルタ係数学習制御手段の制 御方法のフローチャートを示す図である。 FIG. 23 is a diagram showing a flowchart of a control method of the self-determination filter coefficient learning control means in the third embodiment.
第 2 4図は、 本発明の実施の形態 4による光ディスク装置の構成を示すブロッ ク図である。 FIG. 24 is a block diagram showing a configuration of an optical disc device according to Embodiment 4 of the present invention.
第 2 5図は、 実施の形態 4におけるゾーン別フィルタ係数学習手段におけるゾ ーン分割方法の説明図である。 FIG. 25 is an explanatory diagram of a zone division method in the zone-based filter coefficient learning means according to the fourth embodiment.
第 2 6図は、 実施の形態 4におけるゾーン別フィルタ係数学習手段の構成を示 すブロック図である。 FIG. 26 is a block diagram showing a configuration of zone-based filter coefficient learning means according to the fourth embodiment.
第 2 7図は、 実施の形態 4におけるゾーン別フィルタ係数学習手段におけるゾ 一ン分割方法の説明図である。 FIG. 27 is an explanatory diagram of a zone division method in the zone-based filter coefficient learning means according to the fourth embodiment.
第 2 8図は、 実施の形態 4におけるゾーン別フィルタ係数学習手段の制御方法 のフローチヤ一トを示す図である。 FIG. 28 is a diagram showing a flowchart of a control method of the zone-based filter coefficient learning means in the fourth embodiment.
第 2 9図は、 従来の光ディスク装置の構成を示すブロック図である。 FIG. 29 is a block diagram showing a configuration of a conventional optical disk device.
第 3 0図は、 従来の光ディスク装置の記録データ及び各機能ブロックでの出力 信号波形である。 FIG. 30 shows the recording data of the conventional optical disk device and the output signal waveforms in each functional block.
第 3 1図は、 高次イクリップルフィルタの周波数特性の説明図である。
発明を実施するための最良の形態 FIG. 31 is an explanatory diagram of a frequency characteristic of a high-order ripple filter. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について説明する前に、 まず、 本発明の概要につい て説明する。 Hereinafter, before describing the embodiments of the present invention, the outline of the present invention will be described first.
本発明は、 光ディスク媒体に記録されたデジタルデータを再生する際に、 線方 向の高記録密度再生に有利とされる P RM L信号処理方式を適用し、 再生特性に 適したパーシヤノレレスポンス等化と、 パーシャルレスポンスの符号間干渉の相関 性を利用して尤も確からしい系列を推定する白色雑音に対して有効な最尤復号の 組み合わせにより、 デジタルデータ再生特性の向上を図るとともに、 デジタル波 形等化手段として、 パーシャルレスポンス等化による等化誤差を最小にする常時 学習可能な適応自動型のフィルタ係数学習手段を適用し、 初期のフィルタ係数の 学習と制御手段を最適化することにより、 書き込み可能ディスク等に現れる、 再 生位置や再生ブロックによる再生特性の違いのみならず、 チルトやディフエクト による局部的な再生特性の劣化を吸収することにより、 様々な記録再生特性を有 する光ディスク媒体に対してリーダピリティの向上が可能となる、 光ディスク装 置を提供しょうとするものである。 The present invention applies a PRML signal processing method, which is advantageous for high-density recording in the linear direction, when reproducing digital data recorded on an optical disk medium, and realizes a response response suitable for reproduction characteristics. The combination of equalization and maximum likelihood decoding effective for white noise, which estimates a likely sequence using the correlation of partial response intersymbol interference, aims to improve digital data reproduction characteristics, By applying adaptive automatic type filter coefficient learning means that can always learn to minimize the equalization error due to partial response equalization as the shape equalization means and optimizing the initial filter coefficient learning and control means, Not only differences in playback characteristics depending on the playback position and playback block that appear on writable discs, etc., but also stations due to tilt and effect By absorbing the deterioration of the regeneration characteristics, improved Ridapiriti becomes possible for the optical disc medium to have a variety of recording and reproducing characteristics, it is intended to'll provide an optical disc equipment.
(実施の形態 1 ) (Embodiment 1)
この実施の形態 1は、 例えば D V D— RAMディスクにおける、 アドレス情報 が予め書き込まれている C A P Aと呼ばれるエンボス領域と、 実際のデータを書 き込むデータ部のように、 特性が異なる領域を有する光ディスクを同一の波形等 化手段により等化し再生する場合は十分な再生性能を発揮できない、 という問題 を解決できるようにしたものである。 In the first embodiment, for example, an optical disc having an embossed area called CAPA in which address information is written in advance, and an area having different characteristics, such as a data section in which actual data is written, is used in a DVD-RAM disc. This makes it possible to solve the problem that sufficient reproduction performance cannot be exhibited when equalization and reproduction are performed by the same waveform equalization means.
第 1図において、 再生手段 5 3により再生された光ディスク再生信号をブリア ンプ 1で出力振幅を強調した後、 波形等化手段 2で高域を強調するような補正を 施す。 波形等化手段 2は、 ブースト量とカットオフ周波数を任意に設定できるフ イノレタで構成される。 これは、 例えば、 第 3 1図のような周波数特性を有する高 次等リップルフィルタ等である。 波形等化手段 2の出力信号を、 発振器 1 0によ り生成される再生クロックを用いてアナログ信号をデジタル信号に変換するアナ ログ ·デジタルコンバータ 3により多ビットのデジタル信号に標本化する。 この 標本化された多ビットのデジタル信号をオフセット補正手段 4に入力することに
より、 再生デジタル信号に含まれるオフセット成分を補正する。 In FIG. 1, after the output amplitude of the optical disk reproduction signal reproduced by the reproduction means 53 is emphasized by the bias 1, correction is made by the waveform equalization means 2 to emphasize the high frequency range. The waveform equalizing means 2 is composed of a finoletor capable of arbitrarily setting a boost amount and a cutoff frequency. This is, for example, a higher-order equal ripple filter having a frequency characteristic as shown in FIG. The output signal of the waveform equalizing means 2 is sampled into a multi-bit digital signal by an analog-to-digital converter 3 which converts an analog signal into a digital signal using a reproduced clock generated by the oscillator 10. This sampled multi-bit digital signal is input to the offset correction means 4. Thus, the offset component included in the reproduced digital signal is corrected.
このオフセット補正手段 4は、 例えば、 第 2図に示すような構成のものでもよ い。 これは、 再生デジタル信号が有するオフセット成分を検出するオフセット検 出手段 13と、 それにより検出されたオフセット信号を平滑化するための平滑化 手段 14と、 平滑化手段 14の出力信号を再生デジタル信号より減算する減算手 段 15により構成されるものである。 The offset correction means 4 may have a configuration as shown in FIG. 2, for example. This includes an offset detecting means 13 for detecting an offset component of the reproduced digital signal, a smoothing means 14 for smoothing the offset signal detected thereby, and an output signal of the smoothing means 14 for converting the output signal of the reproduced digital signal to a reproduced digital signal. It comprises a subtraction means 15 for further subtracting.
そして、 オフセット補正手段 4の出力信号は、 オートゲインコントロー^^ 5に 入力されることにより、 再生デジタル信号の振幅を任意の値に調整される。 ォー トゲインコントロール 5は、 例えば、 信号波形のエンベロープを検出し、 任意の 設定値とェンベロープ信号の差が零になるように制御するものであっても良い。 次に、 ォートゲインコントロール 5の出力信号をトランスバーサルフィノレタ 6 に入力して、 パーシャルレスポンス等化を行なう。 ここで、 パーシャルレスポン ス等化は、 例えば、 片面 1層で 4. 7 Gバイトのデジタル記録が可能な DVD— RAMでは、 第 3 (c) 図に示すように、 等化後の波形振幅が、 5値に別れるよ うな PR (a , b, b, a) 方式を用いるものとする。 Then, the output signal of the offset correction means 4 is input to the auto gain controller 5 to adjust the amplitude of the reproduced digital signal to an arbitrary value. The auto gain control 5 may be, for example, a type that detects an envelope of a signal waveform and controls the difference between an arbitrary set value and an envelope signal to be zero. Next, the output signal of the auto gain control 5 is input to the transversal finole letter 6 to perform partial response equalization. Here, the partial response equalization is performed, for example, in a DVD-RAM capable of digital recording of 4.7 Gbytes on one layer on one side, as shown in FIG. 3 (c), the waveform amplitude after the equalization is The PR (a, b, b, a) method is used so that it can be divided into five values.
そして、 従来、 光ディスク再生系のリードチャネルにおいては、 第 3 (a) 図 に示すような波形等化出力信号から、 スライスレベル (センタレベル) を用いた 2値化判別により、 デジタルデータ復調を行なっていた。 標本化する場合も、 第 3 (b) 図に示すように標本化し、 その多ビットデジタル信号をスライスレベル により判別することで、 2値化判別を行なっていた。 Conventionally, in a read channel of an optical disc reproducing system, digital data demodulation is performed by binarization discrimination using a slice level (center level) from a waveform equalized output signal as shown in FIG. 3 (a). I was Also in the case of sampling, binarization was performed by sampling as shown in FIG. 3 (b) and discriminating the multi-bit digital signal based on the slice level.
これに対して、 PR (a, b, b, a) 方式とは、 異なる 4つの時間の標本化 データを、 a : b : b : aの比率で足しあわせた特徴 (a + b *D + b *D2+a *D3) を有しており、 再生信号に対して、 第 4図に示すような、 低域通過型フィ ルタの特性を付加するものである。 On the other hand, the PR (a, b, b, a) method is different from the PR (a, b, b, a) method in that four different sampled data are added at the ratio of a: b: b: a. b * D 2 + a * D 3 ), and adds the characteristics of a low-pass filter as shown in FIG. 4 to the reproduced signal.
第 4図において、 MTFとは DVD— RAM (4. 7Gバイト) における光再 生特性を示すものであり、 この周波数特性に近いほど、 有利なパーシャルレスポ ンス方式ということが可能である。 第 4図に示す方式だけでなく、 PR (a, b, b, a) 方式以外にも、 多種多様なパーシャルレスポンスの型は存在するが、 特 定の方式に限定するだけでなく、 性能に見合うものが可能であれば、 他の方式を
用いても問題はない。 これら再生データの時間方向に相関性を付加するパーシャ ルレスポンス方式と、 後述する最尤復号法 (マキシマムライクリフッド) の一つ であり、 付加したデータの相関性を利用して尤も確からしい系列を復調するビタ ビ復号器を合わせて、 線記録方向の高記録密度再生に有利とされる P RM L (Pa rtial Response Maximum Likelihood)信号処理を実現することになる。 In Fig. 4, the MTF indicates the optical reproduction characteristics of DVD-RAM (4.7 Gbytes). The closer this frequency characteristic is, the more advantageous the partial response method is. In addition to the method shown in Fig. 4, there are various types of partial response other than the PR (a, b, b, a) method, but not only for a specific method, but also for performance. If something is possible, use another method There is no problem with using it. This is one of the partial response method that adds a correlation in the time direction of these reproduced data and one of the maximum likelihood decoding methods (maximum likelihood decoding) described later. By combining a Viterbi decoder that demodulates the data, a PRML (Partial Response Maximum Likelihood) signal processing that is advantageous for high recording density reproduction in the linear recording direction is realized.
上述したように、 P RM L信号処理方式は、再生波形の特性や変調符号により、 様々な組み合わせが存在するため、 各種記録再生系に対して、 適切な方式を選択 することが必要である。 As described above, the PMLL signal processing method has various combinations depending on the characteristics of the reproduction waveform and the modulation code. Therefore, it is necessary to select an appropriate method for various recording and reproduction systems.
また、 D V D— R AMの記録フォーマットは、 第 5図に示すように、 あらかじ めエンボス領域として 1セクタ毎にセクタ S Cのァドレス情報が記録されている ァドレスブロック A Bと、 ランダムデータを書き換えることが可能なデータブロ ック D Bに分かれている。 第 5図における V F Oは、 4 Tパターン (Tは最小記 録単位時間) が連続して記録されている領域であり、 位相同期引きこみ等に用い られるものである。 AMは、 アドレスマークであり、 D V Dでは 1 4 T + 4 Tで 表される同期パターンが含まれている。 I Dは、 そのセクタのアドレス情報が記 録されている領域であり、 アドレスブロックには 4箇所 (I D 1ないし I D 4 )、 データブロックには、 1個所存在する。 データブロックにおける P Sは、 プリシ ンクと呼ばれるもので、 同期パターンが含まれている。 D A T Aは、 ユーザが自 由に書き換え可能なデータ記録領域である。 ここで、 データブロックの再生波形 の特性は、書き込みに使用した装置の特性により、バラツキを生じることが多い。 そのため、 ァドレスプロックとデータプロックの再生特性も異なることが多い。 第 1図におけるトランスバーサルフィルタ 6は、 例えば、 有限のタップで構成 される、 F I Rフィルタ (Finite Impulse response Filter) を使用してもよレヽ。 この F I Rフィルタによる等化特性は、 フィルタ係数を可変させることで実現さ れるものである。 F I Rフィルタは、 第 6図に示すような、 入力信号を順次遅延 する直列接続された遅延素子 1 6 aないし遅延素子 1 6 f と、 入力信号とフィル タ係数 S 1を乗算する乗算素子 1 7 aおよび遅延素子 1 6 aないし遅延素子 1 6 f の出力とフィルタ係数 S 2ないし S 7を乗算する乗算素子 1 7 bないし 1 7 g と、 乗算素子 1 7 aないし 1 7 gの出力を加算する加算手段 1 8により構成され
るものであってもよレ、。 F I Rフィルタのフィルタ係数 S 1ないし S 7は、 ブロ ック別フィルタ係数学習手段 7により設定される。 このプロック別フィルタ係数 学習手段 7は、 トランスバーサルフィルタ 6によるパーシャルレスポンス等化出 力信号に存在する等化誤差が最小になるように適応的に制御する、 L M S (Leas t Mean Square) アルゴリズムを利用したフィルタ係数学習機能を有し、 アドレス プロックとデータプロックをゲート信号により分別し、 分別後はプロック別にフ ィルタのフィルタ係数を並行して学習する。 プロック別フィルタ係数学習手段 7 は、 例えば、 第 7図に示すような構成のものでも良い。 In addition, as shown in Fig. 5, the DVD-RAM recording format is such that an address block AB in which address information of a sector SC is recorded for each sector as an emboss area, and random data can be rewritten. It is divided into a possible data block DB. The VFO in FIG. 5 is an area in which 4 T patterns (T is the minimum recording unit time) are continuously recorded, and is used for phase synchronization pull-in and the like. AM is an address mark, and includes a synchronization pattern represented by 14 T + 4 T in DVD. The ID is an area where the address information of the sector is recorded. There are four locations in the address block (ID 1 to ID 4) and one location in the data block. The PS in the data block is called a pre-sink and contains a synchronization pattern. DATA is a data recording area that can be freely rewritten by the user. Here, the characteristics of the reproduced waveform of the data block often vary depending on the characteristics of the device used for writing. Therefore, the reproduction characteristics of the address block and the data block often differ. For example, the transversal filter 6 in FIG. 1 may use a FIR filter (Finite Impulse response Filter) composed of finite taps. The equalization characteristics of the FIR filter are realized by changing the filter coefficients. The FIR filter includes a delay element 16a or a delay element 16f connected in series for sequentially delaying an input signal as shown in FIG. 6, and a multiplication element 17 for multiplying the input signal by a filter coefficient S1. a and the outputs of delay elements 16 a to 16 f and the multiplication elements 17 b to 17 g for multiplying the filter coefficients S 2 to S 7 with the outputs of multiplication elements 17 a to 17 g And the addition means 18 It may be something. The filter coefficients S 1 to S 7 of the FIR filter are set by the block-specific filter coefficient learning means 7. The block-specific filter coefficient learning means 7 uses an LMS (Least Mean Square) algorithm that adaptively controls the equalization error present in the partial response equalization output signal by the transversal filter 6 to be minimized. It has a function to learn the filter coefficient, and separates the address block and the data block by the gate signal, and after the separation, learns the filter coefficient of the filter for each block in parallel. The block-specific filter coefficient learning means 7 may have a configuration as shown in FIG. 7, for example.
これは、 トランスバーサルフィルタ 6の等化出力信号から仮判定回路 1 9によ りパーシャルレスポンス方式に対応した等化目標値を検出し、 その等化目標値か らトランスバーサルフィルタ 6の出力信号を減算して等化誤差を検出する等化誤 差検出手段 2 0と、 等化誤差検出手段 2 0の出力信号と トランスバーサルフィル タ 6の入力信号との相関を演算する相関器 2 1と、 相闋器 2 1の出力をゲイン倍 してフィードバックゲインを調整するゲイン調整手段としてのフィードバックゲ イン調整器 2 2と、 その出力を各タップのフィルタ係数に加算し、 フィルタ係数 を更新する手段としてのフィルタ係数更新部 2 3 aないし 2 3 gと、 ァドレスブ ロック用フィルタ係数初期値とデータブロック用フィルタ係数初期値とを切り替 えて発生するフィルタ係数発生部 2 4 aないし 2 4 gとにより構成されるもので ある。 This is because the provisional decision circuit 19 detects an equalization target value corresponding to the partial response method from the equalization output signal of the transversal filter 6, and converts the output signal of the transversal filter 6 from the equalization target value. An equalization error detection means 20 for detecting an equalization error by subtraction, a correlator 21 for calculating a correlation between an output signal of the equalization error detection means 20 and an input signal of the transversal filter 6, A feedback gain adjuster 22 as gain adjusting means for adjusting the feedback gain by multiplying the output of the compensator 21 by a gain, and a means for adding the output to the filter coefficient of each tap and updating the filter coefficient Filter coefficient updating unit 23a to 23g, and a filter unit generated by switching between the initial value of the address block filter coefficient and the initial value of the data block filter coefficient. Generator 2 4 a through is formed using a 2 4 g.
フィルタ係数発生部 2 4 aないし 2 4 gは、 アドレスブロックとデータブロッ クに対して、 それぞれのフィルタ係数の学習結果を保持するァドレスブロック用 フィルタ係数初期値記憶手段 2 4 1 aないし 2 4 1 gと、 データプロック用フィ ルタ係数初期値記憶手段 2 4 2 aないし 2 4 2 gと、 ァドレスブロック用フィル タ係数初期値記憶手段 2 4 1 aないし 2 4 1 gの出力と、 データプロック用フィ ルタ係数初期値記憶手段 2 4 2 aないし 2 4 2 gの出力とを選択するセレクタ 2 4 3 aないし 2 4 3 gとを備え、 ゲート信号生成手段 2 6により生成された、 ァ ドレスプロックとデータプロックとを識別する信号に応じてァドレスプロック用 フィルタ係数初期値とデータブロック用フィルタ係数初期値とを選択する機能を 有するものである。
また、 フィルタ係数更新部 2 3 aないし 2 3 gはフィードバックゲイン調整器 2 2の出力と遅延素子 2 3 2 aないし 2 3 2 gの出力とを加算する加算器 2 3 1 aないし 2 3 1 gと、 ロード信号によりセレクタ 2 4 3 aないし 2 4 3 gの出力 と加算器 2 3 1 aないし 2 3 1 gの出力を選択するセレクタ 2 3 3 aないし 2 3 3 gと、 セレクタ 2 3 3 aないし 2 3 3 gの出力を単位時間分遅延する遅延素子 2 3 2 aないし 2 3 2 gとを備え、 プロック別にロードされるフィルタ係数の初 期値を用いて、 フィルタ係数の適応自動等化制御を行なう機能を有するものであ る。 The filter coefficient generators 24a to 24g are address block filter coefficient initial value storage means 2411a to 2411 for holding address and data block learning results for each address block and data block. g, data block filter coefficient initial value storage means 24 2 a to 24 2 g, address block filter coefficient initial value storage means 24 1 a to 24 1 g output, and data block A selector block for selecting the output of the filter coefficient initial value storage means 242 a to 242 g, and an address block generated by the gate signal generation means 266. It has a function of selecting an initial value of an address block filter coefficient and an initial value of a data block filter coefficient in accordance with a signal for identifying the data block and the data block. Also, the filter coefficient update units 23a to 23g are adders 2311a to 2311 that add the output of the feedback gain adjuster 22 and the output of the delay elements 2332a to 2332g. g and a selector 2 3 3 a to 2 3 3 g to select the output of the 2 3 3 a to 2 4 3 g and an output of the adder 2 3 1 a to 2 3 1 g according to the load signal, and a selector 2 3 It has a delay element 2 32 a to 23 2 g that delays the output of 3 a to 23 3 g by a unit time, and uses the initial value of the filter coefficient loaded for each block to automatically adjust the filter coefficient. It has a function of performing equalization control.
一方、 本実施の形態 1の光ディスク装置は、 第 1図に示すように、 オフセット 補正手段 4の出力信号から位相誤差を検出するための位相比較器 8と、 位相比較 器 8から出力される位相誤差信号を平滑化するためのループフィルタ 9と、 ルー プフィルタ 9の出力信号を基に再生クロックを発振する発振器 1 0とを有し、 発 振器 1 0から出力される再生クロックの位相を、 再生信号が有するクロック成分 の位相と同期するように制御する位相同期ループ 1 1を備えており、 発振器 1 0 から出力される再生クロックを用いて、 アナログ 'デジタルコンバータ 3で、 再 生波形の標本化を行なうことにより、 再生信号が有するクロック成分の位相と同 期した多ビットの標本化信号が生成されるため、 P RM L信号処理を実現するこ とが可能となる。 On the other hand, as shown in FIG. 1, the optical disc device according to the first embodiment has a phase comparator 8 for detecting a phase error from an output signal of the offset correction means 4, and a phase output from the phase comparator 8. It has a loop filter 9 for smoothing the error signal, and an oscillator 10 for oscillating the reproduction clock based on the output signal of the loop filter 9. The phase of the reproduction clock output from the oscillator 10 is A phase-locked loop 11 that controls the phase of the clock component of the reproduced signal so that it is synchronized with the phase of the reproduced signal is provided.The analog-to-digital converter 3 uses the reproduced clock output from the oscillator 10 to sample the reproduced waveform. By performing the conversion, a multi-bit sampled signal synchronized with the phase of the clock component of the reproduced signal is generated, so that it is possible to realize the PRML signal processing.
以上、一連の動作により出力された、パーシャルレスポンス等化信号を用いて、 パーシャルレスポンスの型に応じて復号を行なう最尤復号器 1 2を通してデータ 復調を行なう。 ここで、 最尤復号器 1 2は、 例えば、 ビタビ復号器であってもよ レ、。 ビタビ復号器は、 パーシャルレスポンスの型に依存する、 意図的に付加され た符号の相関の法則にしたがって、 確率計算を行ない、 尤も確からしい系列を再 現するものである。 例えば、 適用したパーシャルレスポンスの型が P R ( a , b , b , a ) 方式の場合、 第 8 ( a ) 図に示すような、 状態遷移図に基づいて状態が 変化する。 これは、 特に、 D V Dで用いられている 8— 1 6変調符号を考慮した ものとなっており、 ランレングス長を " 2 " に制限していることも関係しており、 S 0ないし S 5までの 6状態の状態遷移で表現可能となっている。 第 8 ( a ) 図 において、 X/Yは、 Xが記録符号の遷移を、 Yがその時の信号振幅を示してい
る。 また、 1状態は、 異なる 3つの時間の符号で表わされ、 例えば、 S 4 「1 1 0」 から S 3 「100」 への状態遷移では、 「1 10」 に符号 " 0" が加わり左に シフトされることにより、 左端の "1" が消え、 状態 S 3 「100」 となること を意味している。 As described above, data demodulation is performed through the maximum likelihood decoder 12 that performs decoding according to the type of the partial response using the partial response equalized signal output by a series of operations. Here, the maximum likelihood decoder 12 may be, for example, a Viterbi decoder. The Viterbi decoder calculates probabilities in accordance with the law of correlation of intentionally added codes, which depends on the type of partial response, and reproduces a likely sequence. For example, when the applied partial response type is the PR (a, b, b, a) method, the state changes based on the state transition diagram as shown in FIG. 8 (a). This takes into account, in particular, the 8-16 modulation code used in DVDs, and is related to the fact that the run length is limited to "2". It can be expressed by the six state transitions. In Fig. 8 (a), X / Y indicates the transition of the recording code, and Y indicates the signal amplitude at that time. You. One state is represented by three different time codes. For example, in the state transition from S 4 “1 1 0” to S 3 “100”, the code “0” is added to “1 10” to the left. Means that the leftmost "1" disappears and the state S3 becomes "100".
その時間的変化は、 第 8 (b) 図に示すように、 トレリス線図で表わされる。 そこで、 この各パスの確率的な長さ 1 k ab (以下、 ブランチメ トリックと称す) を計算し、 それぞれの状態に推移する場合に、 ブランチメ トリックを加算してい く。 ここで、 kは時間的な推移を、 a bは、 状態 S aから S bへの遷移でのブラ ンチメ トリックを表わすこととする。 そのブランチメ トリックの各状態における 加算値は、 メ トリックと呼ばれ、 このメ トリックが最小となるパスを生き残りパ スとして、 順次出力していくことにより、 2値デジタルデータに復調していくも のである。 つまり、 第 8 (b) 図の記録符号にしたがって復調されるとすれば、 実線で示したパスが生き残りパスということになる。 The change over time is represented by a trellis diagram as shown in Fig. 8 (b). Therefore, the probabilistic length of each path 1 k ab (hereinafter referred to as the branch metric) is calculated, and the branch metric is added when transitioning to each state. Here, k represents a temporal transition, and ab represents a branch metric at the transition from the state Sa to Sb. The added value in each state of the branch metric is called a metric, and the path with the minimum metric is used as a surviving path and sequentially output to be demodulated into binary digital data. is there. That is, if demodulation is performed according to the recording code in FIG. 8 (b), the path indicated by the solid line is the surviving path.
このような、 ァドレス情報が記録されているエンボス領域としてのァドレスブ ロックとランダムデータが書き込み可能なデータプロックとで記録再生特性が異 なる書き込み可能ディスク等に見られるように、 再生特性が異なるプロック別に パーシャルレスポンス等化におけるフィルタ係数を学習する手段を有する光ディ スク装置を用いることにより、各プロックに最適な再生特 1"生が得られるとともに、 ゲ一ト信号により双方の位置的な切り分けが明確になるため、 各プロック別にフ ィルタ係数の初期値のロードが可能となるだけでなく、 ブロック別に学習された フィルタ係数を保持して次回の制御に引き継ぐホールド制御が実現可能となるた め、 デジタル適応自動等化制御における安定性及び連続性が向上し、 リ一ダビリ ティの向上が可能となる。 As can be seen on a writable disc or the like having different recording and reproduction characteristics between an address block as an embossed area in which address information is recorded and a data block to which random data can be written, blocks having different reproduction characteristics are used. By using an optical disc device that has a means for learning the filter coefficient in partial response equalization, it is possible to obtain the most appropriate playback characteristics for each block, and to clarify the positional separation between the two by the gate signal. Therefore, not only can the initial value of the filter coefficient be loaded for each block, but also the hold control that retains the filter coefficient learned for each block and takes over to the next control can be realized. Improves stability and continuity of adaptive automatic equalization control, Above is possible.
なお、 第 1図に記載のプロック別フィルタ係数学習手段 7におけるゲート信号 生成手段 26 (第 7図参照) は、 例えば、 第 9図に示すような構成のものでも良 い。 例えば、 書き換え可能な光ディスクの記録面において、 アドレスブロックと データブロック力 第 1 0 (a) 図に示すように、 スパイラル状に存在しており、 アドレスプロック Aとアドレスブロック B力 データブロックに対して、 それぞ れ半径方向に半分づっシフトしていた場合、 ァドレスブロックとデータプロック
の切り替わり位置においては、 再生波形は、 第 10 (b) 図に示すように、 アド レスプロックとデータプロックに、それぞれ対応する出力波形において、 DC (直 流成分) レベルが大きく異なる現象が生じる。 この特性を利用し、 第 9図に示す ように、 この再生波形から、 ピークホールド手段 27と、 その出力信号を平滑化 するための低域通過型フィルタ 28により、 第 10 (c) 図に示すような再生波 形のエンベロープを抽出し、 任意のレベルを設定し、 得られたエンベロープ信号 を 2値化する 2値化手段 29により、 第 10 (d) 図に示すような、 アドレスブ 口ックとデータブロックを識別するゲート信号を生成するものである。 The gate signal generating means 26 (see FIG. 7) in the block-specific filter coefficient learning means 7 shown in FIG. 1 may have, for example, a configuration as shown in FIG. For example, on the recording surface of a rewritable optical disk, the address block and the data block force exist spirally as shown in FIG. 10 ( a ), and the address block A and the address block B force the data block. Address block and data block if they are shifted by half in the radial direction, respectively. As shown in Fig. 10 (b), at the switching position of, the DC (DC component) level of the output waveforms corresponding to the address splock and the data block differs greatly, as shown in Fig. 10 (b). Utilizing this characteristic, as shown in FIG. 9, a peak hold means 27 and a low-pass filter 28 for smoothing the output signal of this reproduced waveform are used to obtain the waveform shown in FIG. 10 (c). The envelope of such a reproduced waveform is extracted, an arbitrary level is set, and the obtained envelope signal is binarized by the binarizing means 29, as shown in FIG. 10 (d). This is to generate a gate signal for identifying a block and a data block.
このような、 ゲート生成手段を用いることにより、 再生波形からアドレスプロ ックとデータプロックの位置関係を直接読み取ることが可能であるため、 ゲート 信号の生成を安定させることにつながり、 プロック別のフィルタ係数の学習精度 が向上する。 By using such gate generation means, it is possible to directly read the positional relationship between the address block and the data block from the reproduced waveform, leading to stabilization of the generation of the gate signal. The accuracy of coefficient learning is improved.
なお、 第 1図に記載のブロック別フィルタ係数学習手段 7におけるゲート信号 生成手段 26 (第 7図参照) は、 例えば、 第 1 1図に示すような原理に基づくも のでも良い。 例えば、 書き換え可能な光ディスクの記録面において、 アドレスブ ロックとデータプロックが、 第 10 (a) 図に示すようにスパイラル状に存在し ており、 了ドレスブロック Aとアドレスプロック Bが、データプロックに対して、 それぞれ半径方向に半分づっシフトしていた場合、 第 11 (a) 図に示すような、 A, B, C, Dのエリアに分かれて反射光を検出する 4分割フォトディテクタ 5 30と加算器 535, 536、 減算器 537により、 対角線上のフォトディテク タ 531, 533の出力の和信号 (A+C) とフォトディテクタ 532, 534 の出力の和信号 (B+D) との差を検出する位相差法を用いてトラッキング誤差 信号を検出すると、 ァドレスブロックとデータプロックの切り替わり位置におい て、 トラッキング誤差信号は、 第 1 1 (b) 図に示すように、 アドレスプロック Aとアドレスブロック Bでは、 逆極性となり、 さらにデータブロックでは、 トラ ッキングサーボが正常に動作している状態においては、 ゼロレベル付近となる特 徴を持つ。 この特性を利用し、 第 1 1 (b) 図に示すトラッキング誤差信号に対 し、 上下に 2つ判定レベル P、 Nを設け、 それぞれの判定レベルに対して 2値化 を行なうことにより、 アドレスブロック A及びァドレスブロック Bに相当する位
置に、 第 1 1 ( c ) 図に示すようなゲート信号を生成することが可能となる。 こ れらのゲート信号を用いることにより、 第 7図に示す、 アドレスブロック用フィ ルタ係数初期値記憶手段を二種類づっ (2 4 1 aないし 2 4 1 gおよび 2 4 2 a ないし 2 4 2 g ) 設けて、 それぞれに前半部のアドレスブロック Aと後半部のァ ドレスブロック Bのフィルタ初期値を記憶したり、 ロードすることが可能となる。 このような、 トラッキング誤差信号の極性を用いて、 アドレスブロックを前半 部と後半部に識別することが可能であるゲート生成手段を用いることにより、 サ ーボ状態等に起因するァドレスプロックの前半部と後半部の振幅や特性の違いに 対して、 デジタル適応自動等化を詳細に制御することが可能となるため、 前半部 と後半部ともにアドレス情報の読み取り精度が向上するため、 シーク直後にアド レス情報を安定して読み取ることが可能となり、シーク性能の向上にもつながる。 また、 第 1図に記載のブロック別フィルタ係数学習手段 7におけるグート信号 生成手段 2 6 (第 7図参照) は、 例えば、 第 1 2図に示すような構成のものでも 良い。 これは、 最尤復号器 1 2の復調信号を基に、 アドレス位置を検出するアド レス位置検出手段 3 0と、 検出されたアドレス位置を基準に、 再生信号が有する クロック成分の位相と同期した再生ク口ックを用いて、 1セクタに相当する区間 をカウントするセクタカウンタ 3 1と、 セクタカウンタにより予測される次回の 了ドレス情報の位置でゲートを発生させる予測ゲート生成手段 3 2とにより、 よ り正確なアドレスブロックとデータブロックの識別を行なうものである。 The gate signal generation means 26 (see FIG. 7) in the block-by-block filter coefficient learning means 7 shown in FIG. 1 may be based on the principle shown in FIG. 11, for example. For example, on the recording surface of a rewritable optical disk, address blocks and data blocks exist spirally as shown in FIG. 10 (a), and address blocks A and address blocks B become data blocks. On the other hand, if each shifts by half in the radial direction, it is added to the four-segment photodetector 530, which separates into A, B, C, and D areas and detects reflected light as shown in Fig. 11 (a). 535, 536 and subtracter 537 detect the difference between the sum signal (A + C) of the diagonal output of photodetectors 531, 533 and the sum signal (B + D) of the outputs of photodetectors 532, 534. When the tracking error signal is detected by using the phase difference method, the tracking error signal at the position where the address block and the data block are switched becomes as shown in FIG. 11 (b). In A and address block B, it becomes opposite polarity, the further data block, in a state where the tiger Tsu King servo is operating normally, with a feature that the zero level near. By using this characteristic, two decision levels P and N are provided for the tracking error signal shown in Fig. 11 (b), and the two decision levels are binarized. Equivalent to block A and address block B In addition, a gate signal as shown in FIG. 11 (c) can be generated. By using these gate signals, two types of address block filter coefficient initial value storage means shown in FIG. 7 can be used (24 1 a to 24 1 g and 24 22 a to 24 2 g). g) It is possible to store and load the filter initial values of the first half address block A and the second half address block B respectively. By using the gate generation means capable of distinguishing the address block into the first half and the second half by using the polarity of the tracking error signal, the first half of the address block due to the servo state or the like is used. It is possible to control the digital adaptive automatic equalization in detail for the difference in amplitude and characteristics between the first half and the second half. Address information can be read stably, leading to an improvement in seek performance. The gut signal generation means 26 (see FIG. 7) in the block-by-block filter coefficient learning means 7 shown in FIG. 1 may have, for example, the configuration shown in FIG. This is because the address position detecting means 30 for detecting the address position based on the demodulated signal of the maximum likelihood decoder 12 and the phase of the clock component of the reproduced signal are synchronized with the detected address position as a reference. A sector counter 31 that counts a section corresponding to one sector by using a playback clock, and a predicted gate generation means 32 that generates a gate at the position of the next end address information predicted by the sector counter. , For more accurate identification of address blocks and data blocks.
このような、 ゲート生成手段を用いることにより、 ディフエタトやトラツキン ダサーボの乱れに影響されることなく、 再生クロックにより次のァドレスプロッ クの正確な位置を推定できるため、 ゲート信号のタイミングを正確に制御可能と なり、 ブロック別のデジタル適応自動等化制御の等化精度と安定性が向上する。 さらに、 第 1図に記載のプロック別フィルタ係数学習手段 7におけるゲート信 号生成手段 2 6 (第 7図参照) は、 例えば、 第 1 3図に示すような構成のもので も良い。 これは、 最尤復号器 1 2の復調信号を基に、 アドレス位置を検出するァ ドレス位置検出手段 3 0と、 検出されたアドレス位置を基準に、 再生信号が有す るクロック成分の位相と同期した再生ク口ックを用いて、 1セクタに相当する区 間をカウントするセクタカウンタ 3 1と、 セクタカウンタ 3 1により予測される
次回のァドレス情報の位置でゲートを発生させる予測ゲート生成手段 3 2と、 再 生信号に含まれる単一周波数パターンを検出する単一パターン検出手段 3 3と、 これにより単一周波数パターンが連続して任意の区間 N (Nは正の整数) 以上検 出された場合には、 フィルタ係数の学習を停止する学習停止信号発生手段 3 4と を有するものである。 By using such a gate generation means, the accurate position of the next address block can be estimated from the reproduced clock without being affected by the disturbance of the differential or the track servo, so the timing of the gate signal can be accurately controlled. Therefore, the equalization accuracy and stability of digital adaptive automatic equalization control for each block are improved. Further, the gate signal generating means 26 (see FIG. 7) in the block-specific filter coefficient learning means 7 shown in FIG. 1 may have, for example, a configuration as shown in FIG. This means that an address position detecting means 30 for detecting an address position based on the demodulated signal of the maximum likelihood decoder 12 and a phase of a clock component included in the reproduced signal with respect to the detected address position are used as a reference. Using a synchronized playback clock, a sector counter 31 that counts a section corresponding to one sector and a sector counter 31 that is predicted Predicted gate generating means 32 for generating a gate at the position of the next address information, and single pattern detecting means 33 for detecting a single frequency pattern included in the reproduced signal. And learning stop signal generating means 34 for stopping the learning of the filter coefficient when the detected time is equal to or more than an arbitrary section N (N is a positive integer).
このような、 フィルタ係数の学習にとって不利となる単一周波数パターンでの 学習を回避する機能を持たせることにより、 フィルタ係数の学習効率が向上する ため、 デジタル適応自動等化制御の制御速度と等化精度が向上する。 By providing such a function that avoids learning in a single frequency pattern that is disadvantageous for learning filter coefficients, the efficiency of learning filter coefficients is improved, and the control speed of digital adaptive automatic equalization control is improved. Accuracy is improved.
また、 実施の形態 1に記載のブロック別フイノレタ係数学習手段 7におけるゲー ト信号生成手段 2 6は、 例えば、 次に示すような構成のものでも良い。 これは、 最尤復号器 1 2の復調信号を基に、 第 1 2図に示す、 アドレス位置を検出するァ ドレス位置検出手段 3 0と、 検出されたアドレス位置を基準に、 再生信号が有す るクロック成分の位相と同期した再生クロックを用いて、 1セクタに相当する区 間をカウントするセクタカウンタ 3 1と、 セクタカウンタ 3 1により予測される 次回のァ ドレス情報の位置でゲートを発生させる予測ゲート生成手段 3 2とを有 し、 かつ第 5図に示す、 D VD— R AMの記録フォーマットに従って、 単一周波 数パターン以外のランダムパターン位置である AM (アドレスマーク)、 I D (ァ ドレス情報)、 やランダムデータ領域の位置を前記セクタカウンタにより推測し、 フィルタ係数の学習を許可するための学習許可信号を発生するものである。 ここ で、 第 5図における V F O等には、 通常、 4 Tパターン (Tは最小記録単位) が 連続して書き込まれている。 Further, the gate signal generation means 26 in the block-by-block finole coefficient coefficient learning means 7 according to the first embodiment may have the following configuration, for example. This is based on the demodulated signal of the maximum likelihood decoder 12, the address position detecting means 30 for detecting the address position shown in FIG. 12 and the reproduced signal based on the detected address position. Using a recovered clock synchronized with the phase of the clock component, a sector counter 31 that counts the interval corresponding to one sector, and a gate generated at the next address information position predicted by the sector counter 31 In accordance with the DVD-RAM recording format shown in FIG. 5, a random gate position other than a single frequency pattern, such as AM (address mark) and ID (key), is provided. Dress information) and the position of a random data area are estimated by the sector counter, and a learning permission signal for permitting learning of filter coefficients is generated. Here, a 4T pattern (T is the minimum recording unit) is usually continuously written in VFO or the like in FIG.
このような、 フィルタ係数の学習にとって不利となる単一周波数パターンでの 学習を回避し、 再生信号が有するク口ック成分の位相と同期した再生クロックを 基に、 正確にランダムパタ一ン位置でのフィルタ係数の学習を行なう機能を持た せることにより、 デジタル適応自動等化制御の制御速度と等化精度に加え、 安定 性も向上する。 By avoiding such a learning with a single frequency pattern that is disadvantageous for the learning of filter coefficients, the random pattern position can be accurately determined based on the reproduction clock synchronized with the phase of the click component of the reproduction signal. By providing a function to learn the filter coefficients in the filter, the stability is improved in addition to the control speed and equalization accuracy of the digital adaptive automatic equalization control.
なお、 前記学習許可信号に関しては、 第 5図に示すアドレスブロックのように、 ァドレス情報を有する I D部が複数個存在する場合は、 どの位置の I Dを対象と して、 フィルタ係数の学習を行なうかを決定する学習位置制御手段を設け、 学習
位置制御手段の出力信号に基づいて、 学習許可信号を生成し、 フィルタ係数の学 習を行なう機能を有するものであってもよい。 これにより、 例えば、 学習位置制 御手段が、 第 5図に示す I D3と I D 4に対して学習許可信号を与えることによ り、 ァドレスブロックのフィルタ係数の学習を行なうことができる。 As for the learning permission signal, when there are a plurality of ID portions having address information as in the address block shown in FIG. 5, the learning of the filter coefficient is performed for the ID of any position. Learning position control means to determine It may have a function of generating a learning permission signal based on an output signal of the position control means and learning a filter coefficient. Thereby, for example, the learning position control means can learn the filter coefficient of the address block by giving a learning permission signal to ID3 and ID4 shown in FIG.
このような、 位置を限定してフィルタ係数の学習を行なう機能を備えているこ とにより、 サーボの制御条件、 及び位相同期ループの位相同期引きこみ特性等に より、 再生特性及び、 標本化位相が変動した場合でも、 アドレスブロックに複数 存在するァドレスデータの、 安定して良好に再生できる位置のものだけを用いて フィルタ係数の学習が可能になるため、 サーボ制御状態、 及び位相同期性能に適 したフィルタ係数の学習が可能となり、 アドレス情報を安定して読み取ることが できる効果がある。 By providing such a function of learning the filter coefficient by limiting the position, the reproduction characteristics and the sampling phase can be adjusted according to the servo control conditions and the phase synchronization pull-in characteristics of the phase-locked loop. Even if the value fluctuates, the filter coefficient can be learned using only the address data that can be reproduced stably and satisfactorily from a plurality of address data existing in the address block, so it is suitable for the servo control state and phase synchronization performance. The learning of the filtered filter coefficients becomes possible, and there is an effect that the address information can be read stably.
このように、 本実施の形態 1によれば、 DVD— RAMディスクを再生する光 ディスク装置に、 PRML信号処理方式を前提としたデジタルフィルタを設け、 その後段のデジタル F I Rフィルタにより信号の等化を行う際に、 DVD— RA Mディスクのエンボス領域 (CAP A領域) とデータ部とを別々に、 F I Rフィ ルタ係数の適応自動学習を行い、 それぞれに最適な等化を行い、 かつその際に L MS (最小二乗法) アルゴリズムを用いるようにしたので、 CAP A領域とデー タ部それぞれのエラーレート特性を向上させることが可能となり、 デジタルデー タの再生特性の向上を図ることができる。 As described above, according to the first embodiment, the optical disk device for reproducing the DVD-RAM disk is provided with the digital filter based on the PRML signal processing method, and the signal is equalized by the digital FIR filter at the subsequent stage. In this process, the emboss area (CAP A area) of the DVD-RAM disc and the data area are separately subjected to adaptive automatic learning of FIR filter coefficients, and optimal equalization is performed for each. Since the MS (least squares method) algorithm is used, it is possible to improve the error rate characteristics of the CAP A area and the data portion, and to improve the reproduction characteristics of digital data.
また、 本実施の形態 1によれば、 エンボス領域 (CAPA領域) とデータ部を ゲート信号により分別し、 分別後は F I Rフィルタ係数の適応自動学習をそれぞ れ並行して行うようにしたので、 学習の高速化を図ることができる。 Also, according to the first embodiment, the emboss area (CAPA area) and the data part are separated by the gate signal, and after the separation, the adaptive automatic learning of the FIR filter coefficients is performed in parallel. Learning can be speeded up.
さらに、 本実施の形態 1によれば、 CAP A領域のフィルタ係数を学習する際 に、 単一周波数で構成されるため学習効果を妨げる VFO部を避け、 学習効率が 良いランダムデータが記録されている I D部を用いて学習を行うようにしたの で、 学習効率の向上と学習期間の短縮を図ることができる。 Furthermore, according to the first embodiment, when learning the filter coefficients in the CAP A region, random data having a high learning efficiency is recorded by avoiding the VFO section which is constituted by a single frequency and hinders the learning effect. Since the learning is performed using the ID part, the learning efficiency can be improved and the learning period can be shortened.
(実施の形態 2) (Embodiment 2)
この実施の形態 2は、 例えば DVD— RAMディスクにおいて、 CAP A領域 とデータ部とを別々に、 F I Rフィルタ係数の適応自動学習を行い、 それぞれに
最適な等化を行う際、 C A P A領域に V F O (単一周波数) の占める割合が大き く、 最適な等化特性を導くのが困難なこと等により生じる問題を解決できるよう にしたものである。 In the second embodiment, for example, in a DVD-RAM disk, adaptive automatic learning of FIR filter coefficients is performed separately for the CAP A area and the data section, and When performing the optimal equalization, it is possible to solve the problems caused by the fact that the VFO (single frequency) occupies a large proportion in the CAPA region and it is difficult to derive the optimal equalization characteristics.
第 1 4図において、 光ディスク再生信号をプリアンプ 1で出力振幅を強調した 後、 波形等化手段 2で高域を強調するような補正を施す。 波形等化手段 2は、 ブ —スト量とカツトオフ周波数を任意に設定できるフィルタで構成される。例えば、 第 3 1図のような周波数特性を有する高次等リップルフィルタ等である。 波形等 化手段 2の出力信号を発振器 1 0により生成される再生クロックを用いてアナ口 グ信号をデジタル信号に変換するアナログ ·デジタルコンバータ 3により多ビッ トのデジタル信号に標本化する。 この標本化された多ビットのデジタル信号をォ フセット補正手段 4に入力することにより、 再生デジタル信号に含まれるオフセ ット成分を補正する。 In FIG. 14, after the output amplitude of the optical disc reproduction signal is emphasized by the preamplifier 1, correction is made by the waveform equalizing means 2 to emphasize the high frequency range. The waveform equalizing means 2 is composed of a filter capable of arbitrarily setting a boost amount and a cutoff frequency. For example, it is a high-order equiripple filter having frequency characteristics as shown in FIG. An output signal of the waveform equalizing means 2 is sampled into a multi-bit digital signal by an analog / digital converter 3 which converts an analog signal into a digital signal using a reproduced clock generated by the oscillator 10. By inputting the sampled multi-bit digital signal to the offset correcting means 4, the offset component included in the reproduced digital signal is corrected.
オフセット補正手段 4は、 例えば、 第 2図に示すような構成のものでもよレ、。 これは、 再生デジタル信号の有するオフセット成分を検出するオフセット検出手 段 1 3と、 それにより検出されたオフセット信号を平滑化するための平滑化手段 1 4と、 平滑化手段 1 4の出力信号を再生デジタル信号より減算する減算手段 1 5により構成されるものである。 The offset correction means 4 may have a configuration as shown in FIG. 2, for example. This is because the output signal of the offset detection means 13 for detecting the offset component of the reproduced digital signal, the smoothing means 14 for smoothing the offset signal detected thereby, and the output signal of the smoothing means 14 It comprises a subtraction means 15 for subtracting from a reproduced digital signal.
オフセット捕正手段 4の出力信号は、 ォートゲインコントロール 5に入力され ることにより、 再生デジタル信号の振幅が任意の値に調整される。 オートゲイン コントロール 5は、 例えば、 信号波形のエンベロープを検出し、 任意の設定値と エンベロープ信号の差が零になるように制御するものであっても良い。 The output signal of the offset correction means 4 is input to the auto gain control 5, whereby the amplitude of the reproduced digital signal is adjusted to an arbitrary value. For example, the auto gain control 5 may be one that detects the envelope of the signal waveform and controls the difference between an arbitrary set value and the envelope signal to be zero.
次に、 ォートゲインコントロール 5の出力信号をトランスバ一サルフィルタ 6 に入力して、 パーシャルレスポンス等化を行なう。 ここで、 パーシャルレスポン ス等化は、 例えば、 片面 1層で 4 . 7 Gバイ トのデジタル記録が可能な D V D— R AM (Random Access Memory) では、 第 3 ( c ) 図に示すように、 等化後の波 形振幅が、 5値に別れるような P R ( a , b , b , a ) 方式を用いるものとする。 D V D— R AMの記録フォーマットは、 第 5図に示すように、 あらかじめェンボ ス領域として 1セクタ毎にセクタ S Cのァドレス情報が記録されているァドレス ブロック A Bと、 ランダムデータを書き換えることが可能なデータプロック D B
とに分かれている。 ここで、 ランダムデータブロックの再生波形の特性は、 書き 込みに使用した装置の特性により、 バラツキを生じることが多い。 そのため、 ァ ドレスブロックとデータプロックの再生特性も異なることが多い。 Next, the output signal of the auto gain control 5 is input to the transversal filter 6, and partial response equalization is performed. Here, partial response equalization is performed, for example, in a DVD-RAM (Random Access Memory) capable of digital recording of 4.7 Gbytes on one side, as shown in Fig. 3 (c). The PR (a, b, b, a) method is used so that the waveform amplitude after equalization is divided into five values. As shown in Fig. 5, the DVD-RAM recording format consists of an address block AB in which the address information of the sector SC is recorded in advance as an emboss area for each sector, and data in which random data can be rewritten. Block DB And divided into Here, the characteristics of the reproduced waveform of the random data block often vary depending on the characteristics of the device used for writing. Therefore, the reproduction characteristics of the address block and the data block are often different.
第 1 4図におけるトランスバーサルフィルタ 6は、 有限タップで構成される、 例えば、 F I Rフィノレタ (Finite Impulse response Fi lter) である。 この F I Rフィルタによる等化特性は、 フィルタ係数を可変させることで実現されるもの である。 F I Rフィルタは、 第 6図に示すような、 遅延素子 1 6 aないし 1 6 f と、 乗算素子 1 7 aないし 1 7 gと、 加算手段 1 8により構成されるものであつ てもよい。 F I Rフィルタのフィルタ係数 S 1ないし S 7は、 トランスバーサル フィルタ 6によるパーシャルレスポンス等化出力信号に存在する等ィヒ誤差が最小 になるように適応的に制御する、 L M S (Least Mean Square) アルゴリズムを利 用したフィルタ係数学習機能を有し、 ァドレスプロックとデータプロックのプロ ック別にフィルタのフィルタ係数を学習するブロック別フィルタ係数学習手段 7 により設定される。 ブロック別フィルタ係数学習手段 7は、 例えば、 第 7図に示 すような構成のものでも良い。 The transversal filter 6 in FIG. 14 is composed of finite taps, for example, a FIR finoleta (Finite Impulse response Filter). The equalization characteristic of the FIR filter is realized by changing the filter coefficient. The FIR filter may be configured by delay elements 16a to 16f, multiplication elements 17a to 17g, and addition means 18 as shown in FIG. The filter coefficients S 1 to S 7 of the FIR filter are based on an LMS (Least Mean Square) algorithm that adaptively controls the Eigen error present in the partial response equalized output signal by the transversal filter 6 to be minimized. This is set by the block-by-block filter coefficient learning means 7 which has a used filter coefficient learning function and learns filter coefficients of the filters for each address block and data block block. The block-by-block filter coefficient learning means 7 may have, for example, a configuration as shown in FIG.
これは実施の形態 1で説明したように、 トランスバーサルフィルタ 6の等化出 力信号から仮判定回路 1 9によりパーシャルレスポンス方式に対応した等化目標 値を検出し、 その等化目標値とトランスバーサルフィルタ 6の出力信号を減算し て等化誤差を検出する等化誤差検出手段 2 0と、 等化誤差検出手段 2 0の出力信 号と、 トランスバーサルフィルタ 6の入力信号との相関を演算する相関器 2 1と、 相関器 2 1の出力をゲイン倍してフィードバックゲインを調整する手段としての フィードバックゲイン調整器 2 2と、 その出力を各タップのフィルタ係数に加算 し、 フィルタ係数を更新する手段としてのフィルタ係数更新部 2 3 aないし 2 3 gとを有するものであり、 アドレスブロックとデータブロックに対して、 それぞ れのフィルタ係数の学習結果を保持するァドレスプロック用フィルタ係数初期値 記憶手段 2 4 1 aないし 2 4 1 gと、 データブロック用フィルタ係数初期値記憶 手段 2 4 2 aないし 2 4 2 gとを有し、 ァドレスブロックとデータブロックを識 別する信号を発生するゲート信号生成手段 2 6により、 それぞれのブロック別に フィルタ係数の初期値を選択しフィルタ係数更新部 2 3 aないし 2 3 gにロード
して、 フィルタ係数の適応自動等化制御を行なう機能を有するものである。 As described in the first embodiment, the temporary decision circuit 19 detects an equalization target value corresponding to the partial response method from the equalization output signal of the transversal filter 6, and compares the equalization target value with the transformer. calculating the equalization error detector 2 0 for detecting the equalization error by subtracting the output signal of the transversal filter 6, the output signal of the equalization error detecting means 2 0, the correlation between the input signal of the transversal filter 6 Correlator 21 and feedback gain adjuster 22 as means for adjusting the feedback gain by multiplying the output of correlator 21 by gain, and adding the output to the filter coefficient of each tap to update the filter coefficient And a filter coefficient updating unit 23 a to 23 g as a means for performing the learning of the filter coefficients for the address block and the data block. Address block filter coefficient initial value storage means 2411 a to 241 g for storing the result, and data block filter coefficient initial value storage means 2424 a to 24 2 g for the address block. The gate signal generation means 26 generates a signal for identifying the data block, selects the initial value of the filter coefficient for each block, and loads it to the filter coefficient update section 23 a to 23 g Thus, it has a function of performing adaptive automatic equalization control of filter coefficients.
一方、 本実施の形態 2の光ディスク装置は、 第 1 4図に示すように、 オフセッ ト補正手段 4の出力信号から位相誤差を検出するための位相比較器 8と、 位相比 較器 8から出力される位相誤差信号を平滑化するためのループフィルタ 9と、 ノレ ープフィルタ 9の出力信号を基に再生クロックを発振する発振器 1 0とを有し、 発振器 1 0から出力される再生クロックの位相を、 再生信号が有するクロック成 分の位相と同期するように制御する位相同期ループ 1 1を備えており、 発振器 1 0から出力される再生ク口ックを用いて、 アナログ ·デジタルコンバータ 3で、 再生波形の標本化を行なうことにより、 再生信号が有するク口ック成分の位相と 同期した多ビットの標本化信号が生成されるため、 P RM L信号処理を実現する ことができる。 On the other hand, as shown in FIG. 14, the optical disc device according to the second embodiment has a phase comparator 8 for detecting a phase error from an output signal of the offset correcting means 4, and an output from the phase comparator 8. A loop filter 9 for smoothing the phase error signal to be obtained, and an oscillator 10 for oscillating a reproduction clock based on the output signal of the nore-pass filter 9. The phase of the reproduction clock output from the oscillator 10 is And a phase locked loop 11 for controlling the phase of the clock component of the reproduced signal so as to be synchronized with the phase of the clock component. The analog / digital converter 3 uses the reproduced clock output from the oscillator 10 to By sampling the reproduced waveform, a multi-bit sampled signal synchronized with the phase of the peak component of the reproduced signal is generated, so that PMLL signal processing can be realized.
以上、一連の動作により出力された、 パーシャルレスポンス等化信号を用いて、 パーシャルレスポンスの型に応じて復号を行なう最尤復号器 1 2を通してデータ 復調を行なう。 ここで、 最尤復号器 1 2は、 例えば、 ビタビ復号器であってもよ い。 ビタビ復号器は、 パーシャルレスポンスの型に依存する、 意図的に付加され た符号の相関の法則にしたがって、 確率計算を行ない、 尤も確からしい系列を再 現するものである。 As described above, data demodulation is performed through the maximum likelihood decoder 12 that performs decoding according to the type of the partial response using the partial response equalized signal output by a series of operations. Here, the maximum likelihood decoder 12 may be, for example, a Viterbi decoder. The Viterbi decoder calculates probabilities in accordance with the law of correlation of intentionally added codes, which depends on the type of partial response, and reproduces a likely sequence.
さらに、 本実施の形態 2の光ディスク装置は、 第 1 4図に示すように、 最尤復 号器 1 2により復調される復調信号に含まれるァドレス情報に対して付カ卩されて いる E D C (Error Detection Code) を利用して復調されたアドレス情報の正確 さを判断する E D C判定手段 3 5と、 E D C判定手段 3 5の出力結果を基に、 ブ ロック別フィルタ係数学習手段 7におけるァドレスブロックを対象とした、 フィ ルタ係数の学習のホールド、 リセット等をコントロールするフィルタ係数学習制 御手段 3 6とを有し、 単一周波数 (V F O) の部分を多く含むアドレスブロック 等における学習が安定となるように制御する学習安定化制御手段 3 7を備えたも のである。 Further, as shown in FIG. 14, the optical disk device according to the second embodiment has an EDC (Electromagnetic Compatibility) added to address information included in a demodulated signal demodulated by the maximum likelihood decoder 12. Error detection code) to determine the correctness of the demodulated address information.Based on the output results of the EDC determination means 35 and the EDC determination means 35, the address block in the filter coefficient learning means 7 for each block is determined. It has filter coefficient learning control means 36 for controlling the hold, reset, etc. of the learning of filter coefficients, so that learning in address blocks etc. containing many single frequency (VFO) parts becomes stable. It is provided with learning stabilization control means 37 for performing control as described above.
ここで、 E D Cは、 例えば、 D V D— RAMのア ドレスプロックにおいては、 第 1 5図に示すように、 I Dの 4バイ トに対して、 E D Cは、 2バイト存在し、 E D Cを適用することにより、 I Dとして復調されたァドレス情報が正しいか否
かを判断することが可能となる特徴を有するものであってもよレ、。 ここで、 第 1 5図に示す、 アドレス情報である C 1ないし C 4、 及び、 E D Cである、 E l、 E 2は、 バイ ト単位のコードであり、 D VD等では、 記憶符号が、 8—1 6変調 符号であるため、 1バイトは 1 6ビットに相当するものであってもよい。 Here, for example, in the DVD-RAM address block, as shown in FIG. 15, EDC has 2 bytes for 4 bytes of ID, and by applying EDC, Whether the address information demodulated as ID is correct It may have a feature that makes it possible to determine whether or not. Here, the address information C1 to C4 and the EDC, E1 and E2 shown in FIG. 15 are codes in byte units. Since it is an 8-16 modulation code, one byte may correspond to 16 bits.
このような、 E D C判定手段 3 5により、 復調されたアドレス情報の正誤を判 定する機能を有するフィルタ係数の学習手段を有することにより、 書き込み可能 ディスク等の再生において、ディフエクト等により再生特性が劣化した場合には、 ァドレスプロックのその位置におけるフィルタ係数の学習を停止し、 良好に再生 できる位置のものだけを用いてフィルタ係数の学習が可能になるため、 異常状態 におけるフィルタ係数の学習において、 アドレスブロックにおけるフィルタ係数 の学習が安定し、 ァドレス情報を安定して読み取れる可能性が向上する。 By providing such a filter coefficient learning means having a function of determining whether the demodulated address information is correct or incorrect by the EDC determination means 35, the reproduction characteristics are degraded due to a defect or the like in the reproduction of a writable disc or the like. In this case, the learning of the filter coefficient at that position of the address block is stopped, and the learning of the filter coefficient can be performed using only the position that can be satisfactorily reproduced. The learning of the filter coefficient in the block is stabilized, and the possibility of reading the address information stably is improved.
なお、 本実施の形態 2に記載した、 E D C判定手段 3 5を用いたブロック別フ ィルタ係数学習手段 7におけるフィルタ係数の学習は、 例えば、 第 1 6図のフロ 一チャートに示す手順で制御されるものでもよレ、。 これは、 アドレスプロックフ ィルタ係数学習を開始すると (ステップ 1 0 1 )、 E D C判定手段 (ステップ 1 0 2 ) 3 5により、 正しいアドレス情報が得られている際は、 アドレスブロックに おけるフィルタ係数の適応的な学習を継続し (ステップ 1 0 3 )、正しいァドレス 情報が得られなくなった場合は、 フィルタ係数の学習を停止して、 初期値保持手 段より初期値をロードする (ステップ 1 0 4 )、 リセット機能を有するフィルタ係 数学習制御手段 3 6により実現される。 The learning of the filter coefficients in the block-by-block filter coefficient learning means 7 using the EDC determination means 35 described in the second embodiment is controlled by, for example, a procedure shown in a flowchart of FIG. It can be something. This is because when address block filter coefficient learning is started (step 101), when correct address information is obtained by the EDC determination means (step 102) 35, the filter coefficient of the address block is obtained. The adaptive learning is continued (step 103). If correct address information cannot be obtained, the learning of the filter coefficients is stopped and the initial values are loaded from the initial value holding means (step 104). ), And is realized by filter coefficient learning control means 36 having a reset function.
このような、 E D C判定手段 3 5を用いて、 フィルタ係数の学習制御を行なう ことにより、 書き込み可能ディスク等の再生において、 ディフエクト等により再 生異常が生じた場合に、 早期の復旧が可能となるため、 異常制御からの復旧時間 を短縮することができる。 By performing the learning control of the filter coefficient using the EDC determination means 35 as described above, in the case of reproducing a writable disc or the like, if a reproduction abnormality occurs due to a defect or the like, an early recovery can be performed. Therefore, it is possible to shorten the recovery time from abnormal control.
なお、 実施の形態 2に記載した、 E D C判定手段 3 5を用いたブロック別フィ ルタ係数学習手段 7におけるフィルタ係数の学習は、 例えば、 第 1 7図に示すよ うな構成を有するものでもよい。 これは、 フィルタ係数の初期学習の際に、 E D C判定手段 3 5における判定で、 連続して正しいァドレス情報が得られている個 The learning of the filter coefficients in the block-by-block filter coefficient learning means 7 using the EDC determination means 35 described in the second embodiment may have, for example, a configuration as shown in FIG. This is because, in the initial learning of the filter coefficient, the EDC determination means 35 determines that the correct address information is continuously obtained by the determination.
3 8と、 E D Cカウンタ 3 8のカウント値が、
任意の個数以上ァドレス情報が正しい場合を示している際のフィルタ係数を初期 値として記憶する E D C判定初期値記憶手段 3 8 aないし 3 8 gとを有し、 フィ ルタ係数の学習開始時に、 E D C判定初期値記憶手段 3 8 aないし 3 8 gの情報 をロードする機能を有するものである。 3 8 and the count value of the EDC counter 38 EDC determination initial value storage means 38 a to 38 g for storing filter coefficients as initial values when the address information indicates that the address information is correct for more than an arbitrary number. It has a function of loading information of judgment initial value storage means 38a to 38g.
このような、 E D C判定手段 3 5により、 フィルタ係数の初期学習を行なう機 能を設けることにより、 書き込み可能ディスク等の再生において、 正常に再生が 行われていることを確認して、 フィルタ係数の学習結果を初期値として記憶する ため、 ァドレスブロックにおけるフィルタ係数の初期値の信頼性が向上する。 以上のように、 E D C判定により、 フィルタ係数の学習を行った結果は、 通常 の制御状態から得られる等化性能よりも、 正確さと安定性において、 優れたもの になる。 By providing such a function for performing initial learning of the filter coefficient by the EDC determination means 35, it is confirmed that the reproduction is normally performed in the reproduction of the writable disk or the like, and the filter coefficient is determined. Since the learning result is stored as the initial value, the reliability of the initial value of the filter coefficient in the address block is improved. As described above, the result of learning the filter coefficient by the EDC determination is more accurate and stable than the equalization performance obtained from the normal control state.
このように、 本実施の形態 2によれば、 D V D— RAMディスクの C A P A領 域のフィルタ係数を学習させる際、 あるいは適応制御中に制御が破綻したり、 異 常状態に陥ったりした場合の対策として、 常時、 復調信号における C A P A領域 のアドレスの E D C (Error Detection Code)結果をモニタし、 正常にアドレスが 検出できない場合は制御を中止したりリセットし直したりするようにしたので、 異常状態からの復帰が早くなり、 フィルタ係数の信頼性の向上を図ることができ る。 As described above, according to the second embodiment, measures are taken when learning the filter coefficient of the CAPA area of the DVD-RAM disk, or when control breaks down during adaptive control or an abnormal state occurs. As a result, the EDC (Error Detection Code) result of the address in the CAPA area in the demodulated signal is constantly monitored, and if the address cannot be detected normally, the control is stopped or reset again, so The return is quick, and the reliability of the filter coefficient can be improved.
(実施の形態 3 ) (Embodiment 3)
この実施の形態 3は、 例えば D V D— RAMディスクにおいて、 C A P A領域 とデータ部とを別々に、 F I Rフィルタ係数の適応自動学習を行う際に、 フィル タ係数の安定†生や制御性能の向上を図ったものである。 In the third embodiment, for example, in a DVD-RAM disk, when performing adaptive automatic learning of FIR filter coefficients separately for a CAPA area and a data section, stable reproduction of filter coefficients and improvement of control performance are aimed at. It is a thing.
第 1 8図において、 光ディスク 生信号をプリアンプ 1で出力振幅を強調した 後、 波形等化手段 2で高域を強調するような補正を施す。'波形等化手段 2は、 ブ ースト量とカツトオフ周波数を任意に設定できるフィルタで構成される。例えば、 第 3 1図のような周波数特性を有する高次等リップルフィルタ等である。 波形等 化手段 2の出力信号を発振器 1 0により生成される再生クロックを用いてアナ口 グ信号をデジタル信号に変換するアナログ ·デジタルコンバータ 3により多ビッ 卜のデジタル信号に標本化する。 この標本化された多ビッ卜のデジタル信号をォ
フセット捕正手段 4に入力することにより、 再生デジタル信号に含まれるオフセ ット成分を補正する。 In FIG. 18, after the output amplitude of the raw optical disk signal is enhanced by the preamplifier 1, correction is made by the waveform equalizing means 2 to enhance the high frequency range. 'The waveform equalizing means 2 is constituted by a filter capable of arbitrarily setting a boost amount and a cutoff frequency. For example, it is a high-order equiripple filter having frequency characteristics as shown in FIG. The output signal of the waveform equalizing means 2 is sampled into a multi-bit digital signal by an analog-to-digital converter 3 which converts an analog signal into a digital signal using a reproduced clock generated by the oscillator 10. This sampled multi-bit digital signal is The offset component contained in the reproduced digital signal is corrected by inputting to the offset correction means 4.
このオフセット補正手段 4は、 例えば、 第 2図に示すような構成のものでもよ い。 これは、 再生デジタル信号の有するオフセット成分を検出するオフセット検 出手段 1 3と、 それにより検出されたオフセット信号を平滑化するための平滑化 手段 1 4と、 平滑化手段 1 4の出力信号を再生デジタル信号より減算する減算手 段 1 5とにより構成されるものである。 The offset correction means 4 may have a configuration as shown in FIG. 2, for example. This means that the output signal of the offset detection means 13 for detecting the offset component of the reproduced digital signal, the smoothing means 14 for smoothing the offset signal detected thereby, and the output signal of the smoothing means 14 And a subtraction means 15 for subtracting from the reproduced digital signal.
オフセット補正手段 4の出力信号は、 ォートゲインコントローノレ 5に入力され ることにより、 再生デジタル信号の振幅を任意の値に調整される。 オートゲイン コントロール 5は、 例えば、 信号波形のエンベロープを検出し、 任意の設定値と ェンベロープ信号の差が零になるように制御するものであっても良い。 The output signal of the offset correction means 4 is input to an auto gain control knob 5, whereby the amplitude of the reproduced digital signal is adjusted to an arbitrary value. For example, the auto gain control 5 may be one that detects the envelope of the signal waveform and controls the difference between an arbitrary set value and the envelope signal to be zero.
次に、 ォートゲインコントロール 5の出力信号をトランスバ一サルフィルタ 6 に入力して、 パーシャルレスポンス等化を行なう。 ここで、 パーシャルレスポン ス等化は、 例えば、 片面 1層で 4 . 7 Gバイ トのデジタル記録が可能な D V D— R AM (Random Access Memory) では、 第 3 ( c ) 図に示すように、 等化後の波 形振幅が、 5値に別れるような P R ( a , b , b , a ) 方式を用いるものとする。 D VD— R AMの記録フォーマットは、 第 5図に示すように、 あらかじめェンボ ス領域として 1セクタ毎にセクタのァドレス情報が記録されているァドレスブロ ックと、 ランダムデータを書き換えることが可能なデータプロックに分かれてい る。 ここで、 ランダムデータプロックの再生波形の特性は、 書き込みに使用した 装置の特性により、 バラツキを生じることが多い。 そのため、 アドレスブロック とデータブロックの再生特性も異なることが多い。 トランスバーサルフィルタ 6 は、 有限タップで構成される、 例えば、 F I R (Finite Impulse response Filt er) である。 Next, the output signal of the auto gain control 5 is input to the transversal filter 6, and partial response equalization is performed. Here, partial response equalization is performed, for example, in a DVD-RAM (Random Access Memory) capable of digital recording of 4.7 Gbytes on one side, as shown in Fig. 3 (c). The PR (a, b, b, a) method is used so that the waveform amplitude after equalization is divided into five values. As shown in Fig. 5, the DVD-RAM recording format is an address block in which sector address information is recorded in advance for each sector as an emboss area, and data in which random data can be rewritten. It is divided into blocks. Here, the characteristics of the reproduced waveform of the random data block often vary depending on the characteristics of the device used for writing. Therefore, the reproduction characteristics of the address block and the data block often differ. The transversal filter 6 is composed of finite taps, for example, a FIR (Finite Impulse response Filter).
この F I Rフィルタによる等化特性は、 フィルタ係数を可変させることで実現 されるものである。 F I Rフィノレタは、 第 6図に示すような、 遅延素子 1 6 aな いし遅延素子 1 6 f と、 乗算素子 1 7 aないし 1 7 gと-. 加算手段 1 8により構 成されるものであってもよレ、。 F I Rフィルタのフィルタ係数 S 1ないし S 7は、 トランスバーサルフィルタ 6によるパーシャルレスポンス等化出力信号に存在す
る等化誤差が最小になるように適応的に制御する、 L M S (Least Mean Square) ァルゴリズムを利用したフィルタ係数学習機能を有し、 トランスバーサルフィル タ 6の出力信号におけるパーシャルレスポンス等化レベルの各レベルにおける等 ィ匕誤差量の絶対値をそれぞれ平均する等化誤差平均手段 3 9と、 その等化誤差平 均手段 3 9の出力を基に、 等化性能を検出する等化性能検出手段 4 0と、 検出し た等化性能に応じてフィルタ係数を学習するフィルタ係数学習手段 4 2とによ り、 該トランスバーサルフィルタのフィルタ係数の学習方法を制御する自己判定 型フィルタ係数学習制御手段 4 1により設定される。 The equalization characteristic of this FIR filter is realized by changing the filter coefficient. The FIR finoletor comprises a delay element 16a or 16f, multiplication elements 17a to 17g, and-. Addition means 18 as shown in FIG. You can. The filter coefficients S 1 to S 7 of the FIR filter are present in the partial response equalized output signal of the transversal filter 6. Has a filter coefficient learning function using an LMS (Least Mean Square) algorithm that adaptively controls so that the equalization error to be minimized.Each of the partial response equalization levels in the output signal of the transversal filter 6 is provided. Equalization error averaging means 39 for averaging the absolute value of the equalization error amount at each level, and equalization performance detection means 4 for detecting equalization performance based on the output of the equalization error averaging means 39 0, and a self-determination type filter coefficient learning control means 4 for controlling a method of learning a filter coefficient of the transversal filter by a filter coefficient learning means 42 for learning a filter coefficient according to the detected equalization performance. Set by 1.
自己判定型フィルタ係数学習制御手段 4 1は、 例えば、 第 1 9図に示すような 構成のものでも良い。 これは、 トランスバーサルフィルタ 6の等化出力信号から 仮判定回路 1 9によりパーシャルレスポンス方式に対応した等化目標値を検出 し、 その等化目標値とトランスバーサルフィルタ 6の出力信号を減算して等化誤 差を検出する等化誤差検出器 2 0と、 等化誤差検出器 2 0の出力信号と、 トラン スバーサルフィルタ 6の入力信号との相関を演算する相関器 2 1と、 相関器 2 1 の出力をゲイン倍してフィードバックゲインを調整する手段としてのフィードパ ックゲイン調整器 2 2と、 その出力を各タップのフィルタ係数に加算し、 フィル タ係数を更新する手段としてのフィルタ係数更新部 2 3 aないし 2 3 gにより構 成されるものであり、 フィルタ係数の学習結果を保持するフィルタ係数初期値記 憶手段 4 2 aないし 4 2 gを有するフィルタ係数学習ブロック 4 3と、 トランス バーサノレフィルタ 6の出力信号におけるパーシャルレスポンス等化レベルの各レ ベルにおける等化誤差量を絶対値に変換する絶対値変換手段 4 4と、 その出力を それぞれ平均する等化誤差平均手段 3 9と、 その等化誤差平均手段 3 9の出力結 果を基に、 等化性能を検出する等化性能検出手段 4 0により構成される等化性能 自己判定ブロック 4 5を有し、 等化性能自己判定ブロック 4 5から得られる等化 性能の自己判定結果に基づいて、 フィルタ係数学習プロック 4 3を制御して適応 自動等化制御を行なう機能を有するものである。 The self-determination filter coefficient learning control means 41 may have, for example, a configuration as shown in FIG. This is because the provisional decision circuit 19 detects an equalization target value corresponding to the partial response method from the equalization output signal of the transversal filter 6, and subtracts the equalization target value from the output signal of the transversal filter 6 by subtracting it. An equalization error detector 20 for detecting an equalization error, a correlator 21 for calculating a correlation between an output signal of the equalization error detector 20 and an input signal of the transversal filter 6, and a correlator 21 A feedback gain adjuster 22 as a means for adjusting the feedback gain by multiplying the output of 1 by a gain, and a filter coefficient updating unit as a means for adding the output to the filter coefficient of each tap and updating the filter coefficient Filter coefficient learning means comprising filter coefficient initial value storage means 4 2 a to 42 g for holding learning results of the filter coefficients. Block 43, absolute value conversion means 44 for converting the equalization error amount at each level of the partial response equalization level in the output signal of the transversal filter 6 to an absolute value, and equalization for averaging the output of each. Based on the output result of the error averaging means 39 and the equalization error averaging means 39, an equalization performance self-judgment block 45 composed of equalization performance detection means 40 for detecting equalization performance is provided. Then, based on the self-judgment result of the equalization performance obtained from the equalization performance self-judgment block 45, it has a function of controlling the filter coefficient learning block 43 to perform adaptive automatic equalization control.
—方、 本実施の形態 3の光ディスク装置は、 第 1 8図に示すように、 オフセッ ト補正手段 4の出力信号から位相誤差を検出するための位相比較器 8と、 位相比 較器 8から出力される位相誤差信号を平滑化するためのループフィルタ 9と、 ル
9の出力信号を基に再生信号を発振する発振器 10とを有し、 発振 器 10から出力される再生クロックの位相を、 再生信号が有するクロック成分の 位相と同期するように制御する位相同期ループ 1 1を備えており、 発振器 10か ら出力される再生クロックを用いて、 アナログ ·デジタルコンバータ 3で、 再生 波形の標本化を行なうことにより、 再生信号が有するク口ック成分の位相と同期 した多ビットの標本化信号が生成されるため、 PRML信号処理を実現すること が可能となる。 On the other hand, as shown in FIG. 18, the optical disc device according to the third embodiment includes a phase comparator 8 for detecting a phase error from an output signal of the offset correcting means 4 and a phase comparator 8 for detecting a phase error. A loop filter 9 for smoothing the output phase error signal; An oscillator 10 that oscillates a reproduction signal based on the output signal of 9 and a phase-locked loop that controls the phase of a reproduction clock output from the oscillator 10 to be synchronized with the phase of a clock component of the reproduction signal. 11 The analog-to-digital converter 3 uses the recovered clock output from the oscillator 10 to sample the reproduced waveform to synchronize the phase of the reproduced signal with the phase component of the reproduced signal. Since a multi-bit sampled signal is generated, PRML signal processing can be realized.
以上、一連の動作により出力された、パーシャルレスポンス等化信号を用いて、 パーシャルレスポンスの型に応じて復号を行なう最尤復号器 12を通してデータ 復調を行なう。 ここで、 最尤復号器 12は、 例えば、 ビタビ復号器であってもよ い。 ビタビ復号器は、 パーシャルレスポンスの型に依存する、 意図的に付加され た符号の相関の法則にしたがって、 確率計算を行ない、 尤も確からしい系列を再 現するものである。 As described above, data demodulation is performed through the maximum likelihood decoder 12 that performs decoding according to the type of the partial response using the partial response equalized signal output by a series of operations. Here, the maximum likelihood decoder 12 may be, for example, a Viterbi decoder. The Viterbi decoder calculates probabilities in accordance with the law of correlation of intentionally added codes, which depends on the type of partial response, and reproduces a likely sequence.
このような、 等化誤差情報を基に、 現在のデジタル等化状態、 及び等化性能を 自己分析し、 目標とする性能を満足するように適応制御を自己調整する自己判定 型フィルタ係数学習制御手段 41を有することにより、 書き込み可能ディスク等 やチルトにより現れる、 再生位置による再生特性の違いに対して、 適応的にデジ タル自動等化制御を行なうことが可能となるため、 様々な記録再生特性を有する 媒体に対してリーダピリティが向上する。 Self-determining filter coefficient learning control that self-analyzes the current digital equalization state and equalization performance based on such equalization error information and self-adjusts adaptive control to satisfy the target performance. The provision of the means 41 makes it possible to adaptively perform digital automatic equalization control with respect to the difference in reproduction characteristics depending on the reproduction position, which appears due to a writable disk or the like or tilt. Leadership is improved for media having
なお、 本実施の形態 3に記載の自己判定型フィルタ係数学習制御手段 41にお ける等化性能自己判定ブロック 45は、 例えば、 第 20図に示すような構成を有 するものでもよレ、。 これは、 再生データが有するクロック成分の位相に同期して いる再生クロックを基にして、 任意のチャネルビット (記録データの最小単位) N (Nは正の整数) 個の期間をカウントする誤差検出期間カウンタ 46と、 例え ば、 DVD— ROM (DVD— Read Only Memory)、 CD-ROM, 及び、 DVD 一 RAM等の書き込み可能型光ディスクの再生において、 PRML信号処理方式 として、 PR (a, b, b, a) M Lを適用している場合は、 同じ記録コードが 必ず 3個以上連続する、 ランレングス長が "2" で制限されていることにより、 等化レベルが第 21 (a) 図に示すようにレベル aないしレベル eの 5値に分か
れるため、 各レベル別の等化誤差量を絶対値に変換する絶対値変換手段 4 7 aな レヽし 4 7 eと、 誤差検出期間カウンタ 4 6により定められた Nビット期間におけ る、 絶対値変換手段 4 7 aないし 4 7 eの出力信号をそれぞれ加算する等化誤差 加算手段 4 8 aないし 4 8 eと、 その出力を Nを母数として除算を行なう等化誤 差平均手段 4 9 aないし 4 9 eを有し、 等化誤差平均手段 4 9 aないし 4 9 eの 平均化された等化誤差出力結果が所定のレベル X (Xは正の整数) より小さい場 合は、 等化状態が正常である判定信号を生成し、 任意の (所定の) レベル X (X は正の整数) 以上である場合は、 等化状態が異常である判定信号を生成する等化 性能検出手段 4 0を有するものである。 The equalization performance self-judgment block 45 in the self-judgment type filter coefficient learning control means 41 according to the third embodiment may have, for example, a configuration as shown in FIG. This is based on a playback clock that is synchronized with the phase of the clock component of the playback data. Error detection that counts N (N is a positive integer) arbitrary channel bits (the minimum unit of recording data) In reproducing a writable optical disc such as a DVD-ROM (DVD-Read Only Memory), a CD-ROM, and a DVD-RAM, for example, a PRML signal processing method PR (a, b, b, a) When ML is applied, the equalization level is as shown in Fig. 21 (a) due to the fact that the same record code is always repeated three or more times and the run length is limited by "2". As shown, it can be divided into 5 values of level a to level e. Therefore, the absolute value conversion means 47 a for converting the equalization error amount for each level into an absolute value and the absolute value in the N-bit period determined by the error detection period counter 46 are used. Value conversion means 47 Equalization error for adding output signals of 47 a to 47 e respectively Addition means 48 a to 48 e and equalization error averaging means for dividing the output using N as a parameter 49 a to 49 e, and if the equalized error output result of the equalization error averaging means 49 a to 49 e is smaller than a predetermined level X (X is a positive integer), Equalization performance detection means for generating a judgment signal indicating that the equalization state is normal and generating a judgment signal indicating that the equalization state is abnormal when the level is equal to or higher than an arbitrary (predetermined) level X (X is a positive integer). 40.
このような、 パーシャルレスポンス等化レベル別に等化性能を自己判定する機 能を有することにより、 デジタル等化性能を検出する精度が向上し、 自動等化性 能が安定するだけでなく、 必要以上にフィルタ係数の学習に関する回路を動作さ せず、 任意の再生性能を容易に実現することが可能となるため、 消費電力の削減 が可能となる。 By having the function of self-determining the equalization performance for each partial response equalization level, the accuracy of detecting the digital equalization performance is improved, and not only is the automatic equalization performance stabilized, but also more than necessary. Since the circuit relating to the learning of the filter coefficients does not need to be operated at the same time, any reproduction performance can be easily realized, so that the power consumption can be reduced.
なお、 第 2 0図に示すような等化性能自己判定プロック 4 5において、 等化性 能検出手段 4 0を用いて、 等化性能を判定する際に、 例えば、 第 2 1 ( a ) 図に 示すパーシャルレスポンス等化レベルの中で、 第 2 1 ( b ) 図に黒丸で示す、 セ ンタ近傍のレベル b、 レベル c、 及びレべノレ dの 3レベルに関してのみ等化性能 の判定を有効として、 フィルタ係数の学習を制御してもよい。 In the equalization performance self-determination block 45 as shown in FIG. 20, when the equalization performance is determined by using the equalization performance detection means 40, for example, FIG. 21 (a) Among the partial response equalization levels shown in Fig. 21, the evaluation of the equalization performance is valid only for the three levels near the center, level b, level c, and revenor d, which are indicated by black circles in Fig. 21 (b). As an alternative, learning of the filter coefficient may be controlled.
このような、 任意の選択されたパーシャルレスポンスレベルに対してのみ、 等 化性能を自己判定する機能を有することにより、 全体的な等化性能ではなく、 P RM L信号処理の性能に大きく関係するパーシャルレスポンス等化レベルに関し てのみ、 デジタル等化性能を検出することにより、 再生性能を重視したデジタル 適応自動等化が可能となるため、 特に、 再生波形にァシンメ トリ特性が存在する 場合のリーダビリティの向上が可能となる。 ' By having the function of self-determining the equalization performance only for an arbitrary selected partial response level, it is significantly related to the performance of the PMLL signal processing, not the overall equalization performance. Detecting digital equalization performance only for the partial response equalization level enables digital adaptive automatic equalization with emphasis on playback performance, and especially readability when the playback waveform has asymmetry characteristics Can be improved. '
なお、 本実施の形態 3に記載の自己判定型フィルタ係数学習制御手段 4 1は、 例えば、第 2 2図に示すフローチャートのように制御を行うものでもよい。 まず、 装置に光ディスク媒体が揷入された直後のディスク媒体に依存する再生特性のば らっきを吸収するための、 トランスバーサルフィルタ 6のフィルタ係数の初期値
を決定する際に、 等化性能検出手段 4 0の出力信号が、 等化状態が正常であるこ とを示している場合、 フィルタ係数の学習結果をフィルタ係数の初期値として記 憶する初期値記憶手段 4 2 aないし 4 2 gに記憶し (ステップ 2 0 1参照)、等化 性能を判定する (ステップ 2 0 2参照)。 等化状態が異常である場合は、 正常とな るまでフィルタ係数の学習を継続する。 そして初期値記憶手段にフィルタ係数を 記憶し (ステップ 2 0 3参照)、 データ再生開始時 (ステップ 2 0 4参照) には、 初期値記憶手段 4 2 aないし 4 2 gの値をロードし (ステップ 2 0 5参照)、 フィ ルタ係数を固定して制御を行い (ステップ 2 0 6参照)、 等化性能を判定する (ス テツプ 2 0 7参照)。等化状態が異常である場合は、適応自動等化制御を開始する (ステップ 2 0 8参照)。 そして等化4能を判定する (ステップ 2 0 9参照)。 等 化性能検出手段 4 0の出力信号が、 等化状態が異常であることを示した場合は、 フィルタ係数の学習を開始し、 等化性能検出手段 4 0の出力信号が、 等化状態が 正常であることを示すまで学習を継続し、 正常となつた時点でのフィルタ係数を 初期値記憶手段 4 2 aないし 4 2 gに記憶し、 その値をホールドして固定制御を 行なうものである。 The self-determination filter coefficient learning control means 41 according to the third embodiment may perform control as shown in the flowchart of FIG. 22, for example. First, the initial values of the filter coefficients of the transversal filter 6 for absorbing variations in the reproduction characteristics depending on the disk medium immediately after the optical disk medium is inserted into the device. When the output signal of the equalization performance detection means 40 indicates that the equalization state is normal when determining the initial value, the initial value storage for storing the learning result of the filter coefficient as the initial value of the filter coefficient. It is stored in the means 42 a to 42 g (see step 201), and the equalization performance is determined (see step 202). If the equalization state is abnormal, continue learning the filter coefficient until it becomes normal. Then, the filter coefficients are stored in the initial value storage means (see step 203). At the start of data reproduction (see step 204), the values of the initial value storage means 42a to 42g are loaded ( Control is performed with the filter coefficient fixed (see step 206), and the equalization performance is determined (see step 205). If the equalization state is abnormal, adaptive automatic equalization control is started (see step 208). Then, the equalization 4 ability is determined (see step 209). If the output signal of the equalization performance detection means 40 indicates that the equalization state is abnormal, the learning of the filter coefficient is started, and the output signal of the equalization performance detection means 40 becomes Learning is continued until it shows that it is normal, and the filter coefficient at the time when it becomes normal is stored in the initial value storage means 42a to 42g, and that value is held and fixed control is performed. .
このような、 目標とする等化性能が得られるまでフィルタ係数の学習を行い、 等化性能が得られている期間内は、 固定制御を基本とする制御を行なうことによ り、 フィルタ係数の初期値学習において、 初期値の信頼性が向上するとともに、 等化状態が劣化してきた場合のみフィルタ係数の学習をし直すため、 必要最小限 の消費電力を実現することが可能となる。 The learning of the filter coefficients is performed until the target equalization performance is obtained, and during the period in which the equalization performance is obtained, the control based on the fixed control is performed. In the initial value learning, the reliability of the initial value is improved, and the learning of the filter coefficient is performed again only when the equalization state has deteriorated, so that it is possible to realize the minimum necessary power consumption.
なお、 本実施の形態 3に記載の自己判定型フィルタ係数学習制御手段 4 1は、 例えば、 第 2 3図に示すフローチヤ一トのように制御を行うものでもよレ、。 The self-determination filter coefficient learning control means 41 according to the third embodiment may be one that performs control like a flowchart shown in FIG. 23, for example.
まず、 装置に光ディスク媒体が挿入された直後のディスク媒体に依存する再生 特性のバラツキを吸収するための、 トランスバ一サルフィルタ 6のフィルタ係数 の初期値を決定する際 (ステップ 3 0 1参照) に、 等化性能検出手段 4 0 (ステ ップ 3 0 2参照) の出力信号が、 等化状態が正常であることを示している場合の フィルタ係数の学習結果を、 フィルタ係数の初期値として初期値記憶手段 4 2 a ないし 4 2 gに記憶し (ステップ 3 0 3参照)、 等化状態が異常である場合は、 正 常となるまでフィルタ係数の学習を継続する。 データ界生開始時 (ステップ 3 0
4参照) には、 初期値記憶手段 4 2 aないし 4 2 gの値をロードし (ステップ3 0 5参照)、連続的なフィルタ係数の学習により適応自動制御を行い(ステップ 3 0 6参照)、その適応自動制御中に、等化性能検出手段 4 0 (ステップ 3 0 7参照) の出力信号が、 等化状態が異常であることを示した場合は、 フィルタ係数の学習 を停止し、 初期値記憶手段 4 2 aないし 4 2 gの値をロードした後、 再度、 連続 的なフィルタ係数の学習により適応自動制御を行なうものである。 First, when determining the initial value of the filter coefficient of the transversal filter 6 to absorb the variation of the reproduction characteristics depending on the disk medium immediately after the optical disk medium is inserted into the apparatus (see step 301). The learning result of the filter coefficient when the output signal of the equalization performance detection means 40 (see step 302) indicates that the equalization state is normal is set as the initial value of the filter coefficient. The value is stored in the value storage means 42a to 42g (see step 303). If the equalization state is abnormal, the learning of the filter coefficient is continued until the value becomes normal. At the beginning of the data world (Step 30 4), the values of the initial value storage means 4 2 a to 4 2 g are loaded (see step 3 05), and adaptive automatic control is performed by learning continuous filter coefficients (see step 3 0 6). If, during the adaptive automatic control, the output signal of the equalization performance detecting means 40 (see step 300) indicates that the equalization state is abnormal, the learning of the filter coefficient is stopped and the initialization is stopped. After the values of the value storage means 42 a to 42 g are loaded, adaptive automatic control is performed again by continuously learning the filter coefficients.
このような、 自己復旧機能を有することにより、 デジタル適応自動等化制御中 に、 ディフ クト等により、 制御が乱れ、 適応等化機能のみでは自己修復が不可 能になった場合、 等化性能検出手段 4 0により等化状態が異常だと判断されるた め、 フィルタ係数が初期値にリセットされ、 早期に正常な制御状態に復旧するこ とが可能となる。 By having such a self-recovery function, if the control is disturbed due to a difference during digital adaptive automatic equalization control and self-healing becomes impossible with the adaptive equalization function alone, the equalization performance detection is performed. Since the equalization state is determined to be abnormal by the means 40, the filter coefficient is reset to the initial value, and the normal control state can be quickly restored.
このように、 本実施の形態 3によれば、 D V D— R AMディスクの C A P A領 域とデータ部のそれぞれに最適なフィルタ係数を学習させ、 それぞれに最適な等 化を行わせるようにした際、 常時制御を行う場合は、 異常状態を検出した時点で フィルタ係数を初期値に戻し、 学習した係数を固定して制御する場合は、 等化性 能を検出して、 等化誤差が大きい場合はフィルタ係数を学習して初期値を書き直 すようにしたので、フィルタ係数の安定性や制御性能の向上を図ることができる。 また、 フィルタ係数を固定して制御を開始し、 等化誤差が所定値以上になった 場合は再度学習を開始し、 等化誤差が所定値以下になった時点でその係数をホー ルドし、 フィルタ係数を固定した固定制御に移行する、 という処理を繰り返すこ とにより、 必要な範囲内のみを適応的に制御し、 所要の特性が得られている領域 では固定制御を行うために、 安定した再生を行うことが可能となる。 As described above, according to the third embodiment, when the optimum filter coefficient is learned for each of the CAPA area and the data part of the DVD-RAM disc, and the optimum equalization is performed for each of them. When constant control is performed, the filter coefficient is returned to the initial value when an abnormal state is detected, and when control is performed with the learned coefficient fixed, the equalization performance is detected, and when the equalization error is large, Since the filter coefficient is learned and the initial value is rewritten, the stability of the filter coefficient and the control performance can be improved. In addition, control is started with the filter coefficient fixed, and when the equalization error is equal to or larger than a predetermined value, learning is started again. When the equalization error is equal to or smaller than the predetermined value, the coefficient is held. By repeating the process of shifting to fixed control with fixed filter coefficients, adaptive control is performed only in the required range, and fixed control is performed in the area where the required characteristics are obtained. Reproduction can be performed.
(実施の形態 4 ) (Embodiment 4)
光ディスクは内外周差だけではなく、 ディスクの橈みやチルトなどにより、 或 る特定のェリァだけ再生特性が劣化することがある。 The reproduction characteristics of an optical disc may be degraded by a specific error due to not only the difference between the inner and outer circumferences but also the radius and tilt of the disc.
この実施の形態 4は、 ディスクの撓みやチルトなどによる悪影響を改善できる ようにしたものである。 In the fourth embodiment, it is possible to improve an adverse effect due to bending or tilting of a disk.
第 2 4図において、 光ディスク再生信号をプリアンプ 1で出力振幅を強調した 後、 波形等化手段 2で高域を強調するような補正を施す。 波形等化手段 2は、 プ
ースト量とカツトオフ周波数を任意に設定できるフィルタで構成される。例えば、 第 3 1図のような周波数特性を有する高次等リップルフィルタ等である。 波形等 化手段 2の出力信号を発振器 1 0により生成される再生クロックを用いてアナ口 グ信号をデジタノレ信号に変換する手段としてのアナログ ·デジタルコンバータ 3 により多ビッ トのデジタル信号に標本化する。 この標本化された多ビットのデジ タル信号をオフセット補正手段 4に入力することにより、 再生デジタル信号に含 まれるオフセット成分を補正する。 In FIG. 24, after the output amplitude of the optical disk reproduction signal is emphasized by the preamplifier 1, correction is made by the waveform equalizing means 2 to emphasize the high frequency range. Waveform equalization means 2 It is composed of a filter that can set the amount of cut and cut-off frequency arbitrarily. For example, it is a high-order equiripple filter having frequency characteristics as shown in FIG. The output signal of the waveform equalizing means 2 is sampled into a multi-bit digital signal by an analog / digital converter 3 as means for converting an analog signal into a digital signal using a reproduced clock generated by the oscillator 10. . By inputting the sampled multi-bit digital signal to the offset correcting means 4, the offset component included in the reproduced digital signal is corrected.
オフセット補正手段 4は、 例えば、 第 2図に示すような構成のものでもよレ、。 これは、 再生デジタル信号の有するオフセット成分を検出するオフセット検出手 段 1 3と、 それにより検出されたオフセット信号を平滑化するための平滑化手段 1 4と、 平滑化手段 1 4の出力信号を再生デジタル信号より減算する減算手段 1 5とにより構成されるものである。 オフセット補正手段 4の出力信号は、 オート ゲインコントロール 5に入力されることにより、 再生デジタル信号の振幅を任意 の値に調整される。 オートゲインコントロール 5は、 例えば、 信号波形のェンべ ロープを検出し、 任意の設定値とエンベロープ信号の差が零になるように制御す るものであっても良い。 The offset correction means 4 may have a configuration as shown in FIG. 2, for example. This is because the output signal of the offset detection means 13 for detecting the offset component of the reproduced digital signal, the smoothing means 14 for smoothing the offset signal detected thereby, and the output signal of the smoothing means 14 And a subtracting means 15 for subtracting from the reproduced digital signal. The output signal of the offset correction means 4 is input to the auto gain control 5, whereby the amplitude of the reproduced digital signal is adjusted to an arbitrary value. For example, the auto gain control 5 may be one that detects an envelope of a signal waveform and controls the difference between an arbitrary set value and an envelope signal to be zero.
次に、 ォートゲインコントロール 5の出力信号をトランスバーサルフィルタ 6 に入力して、 パーシャルレスポンス等化を行なう。 ここで、 パーシャルレスポン ス等化は、 例えば、 片面 1層で 4. 7 Gバイ トのデジタル記録が可能な D VD— R AM (Random Access Memory) では、 第 3 ( c ) 図に示すように、 等化後の波 形振幅が、 5値に別れるような P R ( a , b , b , a ) 方式を用いるものとする。 D V D— R AMの記録フォーマットは、 第 5図に示すように、 あらかじめェンボ ス領域として 1セクタ毎にセクタのァドレス情報が記録されているァドレスプロ ックと、 ランダムデータを書き換えることが可能なデータプロックに分かれてい る。 Next, the output signal of the auto gain control 5 is input to the transversal filter 6 to perform partial response equalization. Here, the partial response equalization is performed, for example, as shown in Fig. 3 (c) for a DVD-RAM (Random Access Memory) that is capable of digital recording of 4.7 Gbytes with one layer on one side. The PR (a, b, b, a) method is used so that the waveform amplitude after equalization is divided into five values. As shown in Fig. 5, the DVD-RAM recording format is an address block in which sector address information is recorded in advance for each sector as an emboss area, and a data block that can rewrite random data. It is divided into
ここで、 ランダムデータブロックの再生波形の特性は、 書き込みに使用した装 置の特 14により、 バラツキを生じることが多い。 そのため、 ァドレスブロックと データプロックの再生特性も異なることが多い。 Here, the characteristics of the reproduced waveform of the random data block often vary depending on the characteristics of the device used for writing. Therefore, the playback characteristics of the address block and the data block often differ.
トランスバーサルフィルタ 6は、 有限タップで構成される、 例えば、 F I Rフ
ィルタ (Finite Impulse response Filter) である。 この F I Rフィノレタによる 等化特性は、 フィルタ係数を可変させることで実現されるものである。 F I Rフ イノレタは、 第 6図に示すような、 遅延素子 1 6 aないし遅延素子 1 6 f と、 乗算 素子 1 7 aないし 1 7 gと、 加算手段 1 8とにより構成されるものであってもよ レ、。 F I Rフィルタのフィルタ係数 S 1ないし S 7は、 トランスバーサルフィル タ 6によるパーシャルレスポンス等化出力信号に存在する等化誤差が最小になる ように適応的に制御する、 LMS (Least Mean Square) アルゴリズムを利用し たフィルタ係数学習機能を有し、 光記録媒体が円形の光ディスクである場合、 第 25図に示すように、 半径方向に複数のゾーンに分割して、 フィルタ係数の初期 学習を行い、 それぞれのゾーン別に学習した結果をフィルタ係数の初期値として 記憶する手段を有するゾーン別フィルタ係数学習手段 50により設定される。 ゾ ーン別フィルタ係数学習手段 50は、 例え 、 第 2 6図に示すような構成のもの でも良い。 The transversal filter 6 is composed of finite taps, for example, an FIR filter. Filter (Finite Impulse response Filter). The equalization characteristic by the FIR finoleta is realized by changing the filter coefficient. As shown in FIG. 6, the FIR finalizer is composed of delay elements 16a to 16f, multiplication elements 17a to 17g, and addition means 18. Well. The filter coefficients S 1 to S 7 of the FIR filter are based on an LMS (Least Mean Square) algorithm that adaptively controls the equalization error existing in the partial response equalization output signal by the transversal filter 6 to be minimized. If the optical recording medium is a circular optical disk with the filter coefficient learning function used, as shown in Fig. 25, it is divided into a plurality of zones in the radial direction and the initial learning of the filter coefficient is performed. This is set by the zone-specific filter coefficient learning means 50 having means for storing the result of learning for each zone as the initial value of the filter coefficient. The zone-specific filter coefficient learning means 50 may have a configuration as shown in FIG. 26, for example.
これは、 トランスバーサルフィルタ 6の等化出力信号から仮判定回路 1 9によ りパーシャルレスポンス方式に対応した等化目標値を検出し、 その等化目標値と トランスバーサルフィルタ 6の出力信号を減算して等化誤差を検出する等化誤差 検出器 20と、 等化誤差検出器 20の出力信号と、 トランスバーサルフィルタ 6 の入力信号との相関を演算する相関器 2 1と、 相関器 2 1の出力をゲイン倍して フィードバックゲインを調整する手段としてのフィードバックゲイン調整器 2 2 と、 その出力を各タップのフィルタ係数に加算し、 フィルタ係数を更新する手段 としてのフィルタ係数更新部 23 aないし 2 3 gにより構成されるものであり、 N分割された各ゾーンに対して、 それぞれのフィルタ係数を記憶するゾーン別初 期値記憶手段 5 1 (1, ···, N) aないし 5 1 (1 , ···, N) gを有し、 データ 再生開始時に、 再生するゾーンに対応したゾーン別初期値記憶手段 5 1 (1 , ···, N) aないし 5 1 (1, ···, N) gの値を、 フィルタ係数の初期値としてフィル タ係数更新部 2 3 aないし 23 gにロードして、 フィルタ係数の適応自動等化制 御を行なう機能を有するものである。 This is because the provisional decision circuit 19 detects the equalization target value corresponding to the partial response method from the equalization output signal of the transversal filter 6 and subtracts the equalization target value and the output signal of the transversal filter 6. Error detector 20 for detecting an equalization error by performing a correlation operation, a correlator 21 for calculating a correlation between an output signal of the equalization error detector 20 and an input signal of the transversal filter 6, and a correlator 21 A feedback gain adjuster 22 as a means for adjusting the feedback gain by multiplying the output of the filter by a gain, and a filter coefficient update unit 23 a to 23 f as a means for adding the output to the filter coefficient of each tap and updating the filter coefficient 2 3 g, and zone-based initial value storage means 5 1 (1,..., N ) a to 5 1 (1,..., N) g, and at the start of data reproduction, initial value storage means for each zone corresponding to the zone to be reproduced 5 1 (1,..., N) a to 5 1 Loads the value of (1,..., N) g into the filter coefficient update unit 23 a to 23 g as the initial value of the filter coefficient, and performs a function to perform adaptive automatic equalization control of the filter coefficient. Have
—方、 本実施の形態 4の光ディスク装置は、 第 24図に示すように、 オフセッ ト捕正手段 4の出力信号から位相誤差を検出するための位相比較器 8と、 位相比
較器 8から出力される位相誤差信号を平滑化するためのループフィルタ 9と、 ノレ ープフィルタ 9の出力信号を基に、再生クロックを発振する発振器 1 0とを有し、 発振器 1 0から出力される再生クロックの位相を、 再生信号が有するクロック成 分の位相と同期するように制御する位相同期ループ 1 1を備えており、 発振器 1 0から出力される再生クロックを用いて、 アナログ 'デジタルコンバータ 3で、 再生波形の標本化を行なうことにより、 再生信号が有するク口ック成分の位相と 同期した多ビットの標本化信号が生成されるため、 P RML信号処理を実現する ことが可能となる。 On the other hand, as shown in FIG. 24, the optical disc device according to the fourth embodiment comprises a phase comparator 8 for detecting a phase error from an output signal of the offset correcting means 4, and a phase ratio A loop filter 9 for smoothing the phase error signal output from the comparator 8, and an oscillator 10 for oscillating a reproduction clock based on the output signal of the noise filter 9. A phase-locked loop 11 that controls the phase of the recovered clock to be synchronized with the phase of the clock component of the recovered signal.The analog-to-digital converter uses the recovered clock output from the oscillator 10. In step 3, by sampling the reproduced waveform, a multi-bit sampled signal that is synchronized with the phase of the peak component of the reproduced signal is generated, so that PRML signal processing can be realized. Become.
以上、一連の動作により出力された、パーシャルレスポンス等化信号を用いて、 パーシャルレスポンスの型に応じて復号を行なう最尤復号器 1 2を通してデータ 復調を行なう。 ここで、 最尤復号器 1 2は、 例えば、 ビタビ復号器であってもよ い。 ビタビ復号器は、 パーシャルレスポンスの型に依存する、 意図的に付加され た符号の相関の法則にしたがって、 確率計算を行ない、 尤も確からしい系列を再 現するものである。 As described above, data demodulation is performed through the maximum likelihood decoder 12 that performs decoding according to the type of the partial response using the partial response equalized signal output by a series of operations. Here, the maximum likelihood decoder 12 may be, for example, a Viterbi decoder. The Viterbi decoder calculates probabilities in accordance with the law of correlation of intentionally added codes, which depends on the type of partial response, and reproduces a likely sequence.
このような、 光ディスク媒体を半径方向に複数のゾーンに分割して、 それぞれ のゾーン別にフィルタ係数の学習を行なうことにより、 C AV再生時の半径方向 に依存する再生データの有するクロック成分の周波数の変化に対する、 アナログ 波形等化の高域遮断周波数の設定分解能が粗い場合でも、 デジタル等化フィルタ 係数をゾーンに分けて保持しておくことにより、 シーク直後の読み出し性能が向 上するため、 シーク性能を向上させることが可能となる。 By dividing the optical disc medium into a plurality of zones in the radial direction and learning the filter coefficients for each zone, the frequency of the clock component of the reproduced data depending on the radial direction during the CAV reproduction can be reduced. Even if the setting resolution of the high-frequency cutoff frequency of analog waveform equalization for changes is coarse, the readout performance immediately after seek is improved by storing digital equalization filter coefficients in zones, and seek performance is improved. Can be improved.
なお、本実施の形態 4に記載のゾーン別フィルタ係数学習手段 5 0は、例えば、 第 2 7図に示すような、 半径方向と周方向に複数のゾーンに分割して、 フィルタ 係数の初期学習を行い、 それぞれの学習結果をフィルタ係数の初期値として記憶 するゾーン別初期値記憶手段 5 1 ( 1 , ···, N) aないし 5 1 ( 1 , …, N) g を有し、 データ再生開始時に、 再生するゾーンに対応したゾーン別初期値記憶手 段 5 1 ( 1 , ■··, N) aないし 5 1 ( 1 , ··· , N) gの値をロードし、 適応自動 等化制御を行なうものであってもよい。 The zone-based filter coefficient learning means 50 according to the fourth embodiment is, for example, divided into a plurality of zones in a radial direction and a circumferential direction as shown in FIG. And zone-based initial value storage means 5 1 (1,..., N) a to 51 (1,..., N) g for storing each learning result as an initial value of the filter coefficient. At the start of playback, means to store the initial value for each zone corresponding to the zone to be played 5 1 (1, ..., N) a to 51 (1, ..., N) It may perform equalization control.
このような、光ディスク媒体を半径方向及び周方向に複数のゾーンに分割して、 それぞれのゾーン別にフィルタ係数の学習を行なうことにより、 書き込み特性が
異なる複数の書き込み装置によりデジタルデータが記録された書き込み可能ディ スク等に現れる、 再生位置や再生ブロックによる再生特性の違いのみならず、 チ ルトゃディフエクトによる局部的な再生特性の劣化を吸収することにより、 様々 な記録再生特 I1生を有する光記録媒体に対してリ一ダビリティの向上ができる。 なお、 実施の形態 4に記載のゾーン別フィルタ係数学習手段 5 0は、 例えば、 第 2 8図に示すような、 フローチャートに従って適応自動等化制御を行なうもの であってもよい。 By dividing the optical disk medium into a plurality of zones in the radial direction and the circumferential direction and learning the filter coefficient for each zone, the write characteristics can be improved. Absorb not only differences in playback characteristics due to playback position and playback block, but also local degradation in playback characteristics due to tilt effects, which appear on writable discs or the like on which digital data has been recorded by different writing devices. allows improvement in Li one Dabiriti an optical recording medium having various recording reproducing JP I 1 production. The zone-based filter coefficient learning means 50 according to the fourth embodiment may perform adaptive automatic equalization control according to a flowchart as shown in FIG. 28, for example.
まず、 ゾーン毎にフィルタ係数の初期学習を行なう際 (ステップ 4 0 1 ) に、 上記実施の形態 3に記載の等化性能検出手段 4 0の出力信号 (ステップ 4 0 2 ) 力 等化状態が特に劣悪であることを示しているゾーンに関して、 そのゾーンを 記録しておく劣悪ゾーン記憶手段を有し(ステップ 4 0 3 )、データ再生開始時(ス テツプ 4 0 4 ) には、 再生するゾーンに関して、 劣悪ゾーン記憶手段が、 劣悪ゾ ーンを判定し (ステップ 4 0 6 )、 そのゾーンの特性が劣悪であることを示してい る場合は、 フィルタ係数の学習における制御ゲインを小さくし安定性を向上し、 劣悪ゾーン記憶手段が、そのゾーンの特性が良好であることを示している場合は、 フィルタ係数の学習における制御ゲインを大きくして等化性能を優先する適応自 動等化制御 (ステップ 4 0 5 ) であってもよい。 First, when the initial learning of the filter coefficient is performed for each zone (Step 401), the output signal (Step 402) of the equalization performance detecting means 40 described in Embodiment 3 is equal to the power equalization state. In particular, a zone indicating bad is provided with a bad zone storage means for recording the zone (step 403), and at the start of data reproduction (step 404), the zone to be reproduced is stored. In step 4, the inferior zone storage means determines the inferior zone (step 406), and if it indicates that the characteristics of the zone are inferior, the control gain in learning the filter coefficient is reduced to reduce the stability. And if the poor zone storage means indicates that the characteristics of the zone are good, the adaptive automatic equalization control () in which the control gain in the learning of the filter coefficient is increased and the equalization performance is prioritized. S Tsu may be a flop 4 0 5).
このような、 ディフエクトによる局部的な再生特性の劣化が確認されるゾーン に関して、 あらかじめ、 等化制御ゲインの切り替えや、 制御方式を切り替えるこ とにより、 安定した制御とリーダピリティの向上を行なうことができる。 By switching the equalization control gain or switching the control method in advance in such zones where local degradation of the reproduction characteristics due to the effects is confirmed, stable control and improvement in leadership can be performed. .
このように、 本実施の形態 4によれば、 フィルタ係数を学習する際に、 光記録 媒体を半径方向と周方向に複数のゾーンに分け、 各ゾーン毎にフィルタ係数の学 習を行ってそれを保持しておき、 これら各ゾーン毎に対応するフィルタ係数を初 期値として制御を行うようにしたので、 再生開始直後のエラ一特性の改善とディ スク上の領域により異なるチルトゃ撓みによる悪影響を改善することができる。 産業上の利用可能性 As described above, according to the fourth embodiment, when learning the filter coefficient, the optical recording medium is divided into a plurality of zones in the radial direction and the circumferential direction, and the learning of the filter coefficient is performed for each zone. And control is performed using the filter coefficient corresponding to each of these zones as the initial value, so that the error characteristics immediately after the start of reproduction are improved and the tilt due to the tilt on the disc varies depending on the area on the disc. Can be improved. Industrial applicability
以上のように、 本発明に係る光ディスク装置は、 光ディスク媒体からデータの 読み出しを行う光ディスク装置として有用であり、 特に、 D VD— R AM再生装
置や C D— R (compact disk - recordable) , C D— RW (corapact disk- rewritabl e)再生装置などの、 記録可能な光ディスク媒体からデータの読み出しを行う光デ イスク装置として適している。
As described above, the optical disk device according to the present invention is useful as an optical disk device for reading data from an optical disk medium. It is suitable as an optical disk device that reads data from a recordable optical disk medium such as a disc drive or a CD-R (compact disk-recordable) or CD-RW (co- rpact disk-rewritable) playback device.
Claims
1 . 記録可能領域であるデータブロックとそのァドレス情報が記録されているァ ドレスプロックとが存在する光記録媒体から再生した信号にパーシャルレスボン ス等化を行なう等化フィルタと、 1. an equalizing filter that performs partial response equalization on a signal reproduced from an optical recording medium having a data block that is a recordable area and an address block in which the address information is recorded;
前記パーシャルレスポンス等化の出力信号を基にして、 前記等化フィルタのフ ィルタ係数を、 それぞれのブロック別に、 前記等化フィルタの等化誤差が最小と なるように、 適応的に学習するブロック別フィルタ係数学習手段とを備えたこと を特徴とする光ディスク装置。 Based on the output signal of the partial response equalization, the filter coefficient of the equalization filter is divided into blocks for each block to be adaptively learned so that the equalization error of the equalization filter is minimized for each block. An optical disc device comprising: a filter coefficient learning unit.
2 . 請求の範囲第 1項記載の光ディスク装置において、 2. In the optical disk device according to claim 1,
前記プロック別フィルタ係数学習手段は、 The block-specific filter coefficient learning means,
前記ァドレスブロックと前記データブロックとを分別するためのゲート信号を 生成するゲ一ト信号生成手段を有することを特徴とする光ディスク装置。 An optical disk device comprising a gate signal generating means for generating a gate signal for separating the address block and the data block.
3 . 請求の範囲第 1項記載の光ディスク装置において、 3. The optical disk device according to claim 1,
前記光記録媒体から再生した信号の出力振幅を強調するプリアンプと、 該強調された信号の所定の周波数帯域を強調する波形等化手段と、 A preamplifier that emphasizes an output amplitude of a signal reproduced from the optical recording medium; a waveform equalizer that emphasizes a predetermined frequency band of the emphasized signal;
該波形等化された信号を再生ク口ックにより標本化するアナ口グ ·デジタル変 換手段と、 Analog-to-digital conversion means for sampling the waveform-equalized signal using a reproduction clock;
該標本化された信号に含まれるクロック成分の位相と同期するように再生ク口 ックの発振周波数を制御する位相同期ループと、 A phase locked loop for controlling the oscillation frequency of the reproduction clock so as to synchronize with the phase of the clock component included in the sampled signal;
前記標本化された信号からオフセット成分を低減する補正を行い、 この補正し た信号を前記等化フィルタに入力させるオフセット捕正手段と、 Offset correction means for performing a correction to reduce an offset component from the sampled signal, and inputting the corrected signal to the equalization filter;
前記等化フィルタで等化したパーシャルレスポンスの型に応じて最尤復号を行 なうことによりデータ復調を行なう最尤復号器とを備えたことを特徴とする光デ イスク装置。 An optical disc device comprising: a maximum likelihood decoder that performs data demodulation by performing maximum likelihood decoding according to a type of a partial response equalized by the equalization filter.
4. 請求の範囲第 1項記載の光ディスク装置において、 4. In the optical disk device according to claim 1,
前記プロック別フィルタ係数学習手段は、 The block-specific filter coefficient learning means,
再生信号のエンベロープを抽出するエンベロープ検出手段と、 Envelope detection means for extracting an envelope of the reproduction signal;
該エンベロープの直流変動分を検出することにより、 前記ァドレスブロックと
前記データプロックとを識別するためのゲート信号を生成するゲート信号生成手 段とを有することを特徴とする光ディスク装置。 By detecting the DC fluctuation of the envelope, An optical disk device comprising: a gate signal generating means for generating a gate signal for identifying the data block.
5 . 請求の範囲第 4項記載の光ディスク装置において、 5. The optical disk device according to claim 4, wherein
前記エンベロープ検出手段は、 The envelope detection means,
前記再生信号の波形のピーク値をホールドするピークホールド手段と、 該ホールドがなされた出力信号を平滑化する平滑化手段とを有し、 A peak holding means for holding a peak value of the waveform of the reproduction signal; and a smoothing means for smoothing the held output signal,
前記再生波形のエンベロープを検出することを特徴と十る光ディスク装置。 An optical disk device, wherein an envelope of the reproduced waveform is detected.
6 . 請求の範囲第 1項記載の光ディスク装置において、 6. The optical disk device according to claim 1,
前記ブロック別フィルタ係数学習手段は、 The block-by-block filter coefficient learning means,
トラッキングサーボ用のトラツキング誤差信号を生成するトラツキング誤差信 号生成手段と、 Tracking error signal generating means for generating a tracking error signal for tracking servo;
該トラッキング誤差信号の直流変動分を検出することにより、 前記ァドレスブ ロックと前記データプロックとを識別するためのゲート信号を生成するゲ一ト信 号生成手段とを有することを特徴とする光ディスク装置。 An optical disk apparatus comprising: a gate signal generating unit configured to generate a gate signal for identifying the address block and the data block by detecting a DC variation of the tracking error signal.
7 . 請求の範囲第 1項に記載の光ディスク装置において、 7. The optical disk device according to claim 1,
前記プロック別フィルタ係数学習手段は、 The block-specific filter coefficient learning means,
前記ァドレスプロックのァドレス位置を検出し、 前記位相同期ループより出力 される再生信号が有するク口ック成分の位相に同期した再生クロックにより、 記 録データ数をカウントするカウンタと、 A counter that detects an address position of the address block and counts the number of recording data by a reproduction clock synchronized with a phase of a click component included in a reproduction signal output from the phase locked loop;
該カウンタの値に基づいて、 次にァドレスブロックが出現する位置を推定する ことにより、 該ァドレスプロックと該データブロックとを識別するためのゲート 信号を生成するグート信号生成手段とを有することを特徴とする光 A gut signal generating means for generating a gate signal for identifying the address block and the data block by estimating a position where the next address block appears based on the value of the counter. Light
8 . 請求の範囲第 1項記載の光ディスク装置において、 8. The optical disk device according to claim 1,
前記プロック別フィルタ係数学習手段は、 The block-specific filter coefficient learning means,
前記ァドレスプロックと前記データプロックとを識別するためのゲート信号生 成手段と、 Gate signal generating means for distinguishing the address block from the data block;
再生信号に存在する単一周波数パターンを検出するための単一パターン検出手 段とを有し、
それぞれのブロックを分別してフィルタ係数を学習させる際に、 前記単一パタ ーン検出手段の出力信号にしたがって、 それぞれのプロックにおいて単一周波数 パターン以外のランダムパターン位置でフィルタ係数の学習を行なうことを特徴 とする光ディスク装置。 A single-pattern detection means for detecting a single-frequency pattern present in the reproduced signal, When classifying each block and learning the filter coefficient, the learning of the filter coefficient is performed at a random pattern position other than the single frequency pattern in each block according to the output signal of the single pattern detection means. An optical disc device characterized by the following.
9 . 請求の範囲第 1項に記載の光ディスク装置において、 9. In the optical disk device according to claim 1,
前記プロック別フィルタ係数学習手段は、 The block-specific filter coefficient learning means,
前記ァドレスブロックのアドレス位置を検出し、 該位相同期ループより出力さ れる再生信号が有するク口ック成分の位相に同期した再生クロックにより、 記録 データ数をカウントするカウンタと、 A counter that detects an address position of the address block, counts the number of recording data by a reproduction clock synchronized with a phase of a click component included in a reproduction signal output from the phase locked loop,
該カウンタの値に基づいて、 次にアドレスブロックが出現する位置を推定する ことにより、 前記ァドレスブロックと前記デ一タブロックとを識別するためのゲ 一ト信号を生成するゲート信号生成手段と、 Gate signal generation means for generating a gate signal for identifying the address block and the data block by estimating a position where the next address block appears based on the value of the counter;
前記カウンタの値に基づいて、 単一周波数パターンとランダムパターンの位置 とを分別するパターン識別ゲート信号楽生手段とを有し、 Pattern discriminating gate signal comfort means for discriminating between a single frequency pattern and a random pattern position based on the value of the counter,
それぞれのブロックを分別してフィルタ係数を学習させる際に、 前記パターン 識別グート信号にしたがって、 それぞれのプロックにおいて単一周波数パターン 以外のランダムパターン位置でフィルタ係数の学習を行なうことを特徴とする光 ディスク装置。 When discriminating each block and learning a filter coefficient, an optical disk device is characterized in that the filter coefficient is learned at a random pattern position other than a single frequency pattern in each block according to the pattern identification good signal. .
1 0 . 請求の範囲第 9項記載の光ディスク装置において、 10. The optical disk device according to claim 9, wherein:
前記ブロック別フィルタ係数学習手段は、 The block-by-block filter coefficient learning means,
前記ァドレスブロックにおけるァドレス情報を含むランダムパターンと単一周 波数パターンとが交互に複数存在する場合に、 どの位置を対象としてフィルタ係 数の学習を行なうかを決定する学習位置制御手段を有し、 When a plurality of random patterns including the address information in the address block and a single frequency pattern are alternately present, a learning position control means for determining which position is to be used for learning the filter coefficient,
該学習位置制御手段の出力信号に基づいて、 フィルタ係数の学習を行なうこと を特徴とする光ディスク装置。 An optical disk device, wherein learning of a filter coefficient is performed based on an output signal of the learning position control means.
1 1 . 請求の範囲第 1項に記載の光ディスク装置において、 11. The optical disc device according to claim 1, wherein:
前記等化フィルタで等化して得られる信号に対し、 パーシャルレスポンスの型 に応じた最尤復号を行なうことによりデータ復調を行なう最尤復号器と、 該最尤復号器により 2値化データに復調された復調信号から、 アドレス情報の
正誤を判断する E D C (Error Detection Code) を検出する E D C判定手段と、 該 E D C判定手段から得られる E D C判定の結果にしたがって、 前記ァドレス 情報に対応するァドレスブロックに対するフィルタ係数の学習が安定化するよう 前記プロック別フィルタ係数学習手段を制御するフィルタ係数学習制御手段とを 備えたことを特徴とする光ディスク装置。 A maximum likelihood decoder that performs data demodulation by performing maximum likelihood decoding in accordance with a partial response type on a signal obtained by equalization with the equalization filter, and demodulates into binary data by the maximum likelihood decoder Of the address information from the demodulated signal EDC determination means for detecting an EDC (Error Detection Code) for determining correctness and error, and learning of a filter coefficient for an address block corresponding to the address information is stabilized in accordance with an EDC determination result obtained from the EDC determination means. An optical disc device comprising: a filter coefficient learning control means for controlling the block-specific filter coefficient learning means.
1 2. 請求の範囲第 1 1項記載の光ディスク装置において、 1 2. In the optical disk device according to claim 11,
前記プロック別フィルタ係数学習手段は、 The block-specific filter coefficient learning means,
前記 E D C判定手段における判定で、 正しいァドレス情報が得られている場合 は、 該ァドレスブロックにおけるフィルタ係数の適応的な学習を継続し、 If the correct address information is obtained in the determination by the EDC determination means, adaptive learning of the filter coefficient in the address block is continued,
正しいァドレス情報が得られなくなった場合は、フィルタ係数の学習を止めて、 フィルタ係数を初期値にリセットすることを特徴とする光ディスク装置。 An optical disc device characterized in that when correct address information cannot be obtained, learning of the filter coefficient is stopped and the filter coefficient is reset to an initial value.
1 3 . 請求の範囲第 1 1項記載の光ディスク装置において、 1 3. The optical disk device according to claim 11,
前記プロック別フィルタ係数学習手段は、 The block-specific filter coefficient learning means,
前記ァドレスブロックのフィルタ係数の初期値を決定する初期学習の際に、 前 記 E D C判定手段における判定で、 連続して正しいアドレス情報が得られている 個数をカウントする E D Cカウンタと、 At the time of initial learning for determining the initial value of the filter coefficient of the address block, an EDC counter that counts the number of continuous correct address information obtained by the EDC determination means,
該 E D Cカウンタのカウント値が、 任意の個数以上ァドレス情報が正しい場合 を示している際のフィルタ係数をフィルタ係数の初期値として記憶する初期値記 憶手段とを有し、 Initial value storing means for storing a filter coefficient as an initial value of the filter coefficient when the count value of the EDC counter indicates that the address information is correct for an arbitrary number or more,
フィルタ係数の学習開始時に、 該初期値記憶手段の情報をロードすることを特 徴とする光ディスク装置。 An optical disc device characterized by loading information of said initial value storage means at the start of learning of filter coefficients.
1 4. 光記録媒体からデジタルデータを再生する際に、 パーシャルレスポンス等 化を行なう等化フィルタと、 1 4. When reproducing digital data from an optical recording medium, an equalizing filter that performs partial response equalization,
該等化出力信号を基にして、前記等化フィルタの等化誤差が最小になるように、 前記等化フィルタのフィルタ係数を適応的に学習するフィルタ係数学習手段と、 該等化がなされた信号におけるパーシャルレスポンス等化レベルの各レベルに おける等化誤差量の絶対値をそれぞれ平均する等化誤差平均手段と、 Filter coefficient learning means for adaptively learning filter coefficients of the equalization filter so that an equalization error of the equalization filter is minimized based on the equalization output signal; and the equalization is performed. Equalization error averaging means for averaging the absolute value of the equalization error amount at each level of the partial response equalization level in the signal,
該等化誤差平均手段の出力を基にして等化性能を検出する等化性能検出手段 と、
前記等化フィルタのフィルタ係数の学習機能を制御する自己判定型フィルタ係 数学習制御手段とを備えたことを特徴とする光ディスク装置。 Equalization performance detection means for detecting equalization performance based on the output of the equalization error averaging means, An optical disc apparatus comprising: a self-determining filter coefficient learning control unit that controls a learning function of a filter coefficient of the equalization filter.
1 5 . 請求の範囲第 1 4項に記載の光ディスク装置において、 15. The optical disk device according to claim 14, wherein:
前記光記録媒体からの再生信号の出力振幅を強調するプリアンプと、 該出力振幅が強調された信号の所定の周波数帯域を強調する波形等化手段と、 該波形等化された信号を再生クロックによりデジタルデータに標本化するアナ ログ ·デジタル変換手段と、 - 該標本化信号が有するクロック成分の位相と同期するように再生クロックの発 振周波数を制御する位相同期ループと、 A preamplifier for emphasizing the output amplitude of the reproduction signal from the optical recording medium; a waveform equalizing means for emphasizing a predetermined frequency band of the signal whose output amplitude is emphasized; and a reproduction clock for the waveform-equalized signal. Analog-to-digital conversion means for sampling into digital data;-a phase locked loop for controlling the oscillation frequency of the recovered clock so as to synchronize with the phase of the clock component of the sampled signal;
該標本化された信号からオフセット成分および振幅を補正し、 この補正したデ ータを前記等化フィルタに入力させるデジタルデ一タ補正手段と、 Digital data correction means for correcting an offset component and an amplitude from the sampled signal and inputting the corrected data to the equalization filter;
前記等化フィルタから得られる等化出力信号におけるパーシャルレスポンス等 化レベルの各レベルにおける等化誤差量の絶対値をそれぞれ平均する等化誤差平 均手段と、 Equalization error averaging means for averaging the absolute value of the equalization error amount at each level of the partial response equalization level in the equalization output signal obtained from the equalization filter,
該等化誤差平均手段の出力を基にして等化性能を検出する等化性能検出手段 と、 Equalization performance detection means for detecting equalization performance based on the output of the equalization error averaging means,
前記等化フィルタのフィルタ係数の学習機能を制御する自己判定型フィルタ係 数学習制御手段と、 Self-determining filter coefficient learning control means for controlling a learning function of a filter coefficient of the equalization filter;
前記等化フィルタにおいて適用したパーシャルレスポンスの型に応じて、 前記 等化出力信号からデータ復調を行なう最尤復号器とを備えたことを特徴とする光 ディスク装置。 An optical disc device comprising: a maximum likelihood decoder that demodulates data from the equalized output signal in accordance with a type of a partial response applied in the equalizing filter.
1 6 . 請求の範囲第 1 4項に記載の光ディスク装置において、 16. The optical disk device according to claim 14, wherein:
前記等化誤差平均手段は、 The equalization error averaging means,
所定のチャネルビット (記録データの最小単位) N個 (Nは正の整数) の期間 における、 前記等化フィルタでのパーシャルレスポンス等化レベルの各レベルに おける等化誤差量の絶対値を加算し、 Nを母数として除算を行ない、 Adds the absolute value of the equalization error amount in each of the partial response equalization levels in the equalization filter during a predetermined channel bit (minimum unit of recording data) N (N is a positive integer) period , N as a parameter and perform division.
前記等化性能検出手段は、 The equalization performance detection means,
前記等化誤差平均手段により平均化された等化誤差出力結果が所定のレベル X (Xは正の整数) より小さい場合は、 等化状態が正常である判定信号を生成し、
前記レベル X以上である場合は、 等化状態が異常である判定信号を生成する、 こ とを特徴とする光ディスク装置。 If the equalization error output result averaged by the equalization error averaging means is smaller than a predetermined level X (X is a positive integer), a determination signal indicating that the equalization state is normal is generated, An optical disc device, wherein when the level is equal to or higher than the level X, a determination signal indicating that the equalization state is abnormal is generated.
1 7 . 請求の範囲第 1 4項に記載の光ディスク装置において、 17. The optical disk device according to claim 14, wherein:
前記等化誤差平均手段は、 The equalization error averaging means,
所定のチャネルビット (記録データの最小単位) N個 (Nは正の整数) の期間 における、 前記等化フィルタでのパーシャルレスポンス等ィヒレベルの各レベル別 に、 等化誤差量の絶対値を加算し、 Nを母数として除算を行ない、 The absolute value of the equalization error amount is added for each of the partial response levels in the equalization filter during a predetermined channel bit (the minimum unit of recording data) N (N is a positive integer). , N as a parameter and perform division.
前記等化性能検出手段は、 指定された前記パーシャルレスポンス等化レベルの 前記等化誤差平均手段により平均化された等化誤差出力結果が所定のレベル X (Xは正の整数) より小さい場合は、 等化状態が正常である判定信号を生成し、 所定のレベル X (Xは正の整数) 以上である場合は、 等化状態が異常である判定 信号を生成する、 ことを特徴とする光ディスク装置。 The equalization performance detection means is configured to determine whether the equalization error output result of the specified partial response equalization level averaged by the equalization error averaging means is smaller than a predetermined level X (X is a positive integer). An optical disc characterized by generating a determination signal indicating that the equalization state is normal, and generating a determination signal indicating that the equalization state is abnormal when the equalization state is equal to or higher than a predetermined level X (X is a positive integer). apparatus.
1 8 . 請求の範囲第 1 4項に記載の光ディスク装置において、 18. The optical disk device according to claim 14, wherein:
前記自己判定型フィルタ係数学習制御手段は、 The self-determination filter coefficient learning control means,
前記等化フィルタのフ,ィルタ係数の初期値を決定する初期学習の際に、 前記等 化性能検出手段の出力信号が、 等化状態が正常であることを示している場合のフ ィルタ係数学習の結果を、 フィルタ係数の初期値として記憶する初期値記憶手段 を有し、 In the initial learning for determining the initial values of the filter coefficients of the equalization filter, the filter coefficient learning is performed when the output signal of the equalization performance detection means indicates that the equalization state is normal. Initial value storage means for storing the result of
データの再生開始時には、 該初期値記憶手段の値をロードし、 フィルタ係数を 固定して制御を行ない、その固定制御中に、前記等化性熊検出手段の出力信号が、 等化状態が異常であることを示している場合は、該フィルタ係数の学習を開始し、 該等化性能検出手段の出力信号が、 等化状態が正常であることを示すまで学習を 継続し、 正常となった時点でのフィルタ係数を該初期値記憶手段に記憶し、 その 値により固定制御を行なうものであることを特徴とする光ディスク装置。 At the start of data reproduction, the value of the initial value storage means is loaded, the filter coefficient is fixed, and control is performed. During the fixed control, the output signal of the equalization bear detection means indicates that the equalization state is abnormal. , The learning of the filter coefficient is started, and the learning is continued until the output signal of the equalization performance detecting means indicates that the equalization state is normal. An optical disk device, wherein a filter coefficient at a point in time is stored in said initial value storage means, and fixed control is performed based on the value.
1 9 . 請求の範囲第 1 4項記載の光ディスク装置において、 1 9. The optical disk device according to claim 14, wherein:
前記自己判定型フィルタ係数学習制御手段は、 The self-determination filter coefficient learning control means,
前記等化フィルタのフィルタ係数の初期値を決定する初期学習の際に、 前記等 化性能検出手段の出力信号が、 等化状態が正常であることを示している場合の該 係数学習の結果を、 フィルタ係数の初期値として記憶する初期値記憶手
段を有し、 At the time of initial learning for determining the initial value of the filter coefficient of the equalization filter, the result of the coefficient learning when the output signal of the equalization performance detection means indicates that the equalization state is normal. , Initial value storage means for storing as initial values of filter coefficients Having a step,
データの再生開始時に、 該初期値記憶手段の値をロードし、 連続的なフィルタ 係数の学習により適応自動制御を行ない、 その適応自動制御中に、 該等化性能検 出手段の出力信号が、 等化状態が異常であることを示した場合は、 該フィルタ係 数の学習を停止し、 該初期値記憶手段の値をロードした後、 再度、 連続的なフィ ルタ係数の学習により適応自動制御を行なうことを特徴とする光ディスク装置。 At the start of data reproduction, the value of the initial value storage means is loaded, and adaptive automatic control is performed by continuous learning of filter coefficients. During the adaptive automatic control, the output signal of the equalization performance detection means becomes: If it is indicated that the equalization state is abnormal, the learning of the filter coefficient is stopped, the value of the initial value storage unit is loaded, and the adaptive automatic control is performed again by continuously learning the filter coefficient. An optical disk device characterized by performing:
2 0 . 請求の範囲第 1 4項記載の光ディスク装置において、 20. The optical disk device according to claim 14, wherein
前記自己判定型フィルタ係数学習制御手段は、 The self-determination filter coefficient learning control means,
前記等化フィルタのフィルタ係数の初期値を決定する際に、 光記録媒体として の光ディスクを半径方向に複数のゾーンに分割して初期学習を行ない、 それぞれ の学習結果をフィルタ係数の初期値として記憶するゾーン別初期値記憶手段を有 し、 When determining the initial value of the filter coefficient of the equalization filter, the optical disk as an optical recording medium is divided into a plurality of zones in the radial direction and the initial learning is performed, and each learning result is stored as the initial value of the filter coefficient. Zone-based initial value storage means
データの再生開始時に、 再生するゾーンに対応した該ゾーン別初期値記憶手段 の値をロードし、 適応自動制御を行なうことを特徴とする光デイスク.装置。 An optical disc apparatus characterized in that at the start of data reproduction, the value of said zone-specific initial value storage means corresponding to the zone to be reproduced is loaded and adaptive automatic control is performed.
2 1 . 請求の範囲第 1 4項記載の光ディスク装置において、 21. The optical disk device according to claim 14, wherein:
前記自己判定型フィルタ係数学習制御手段は、 The self-determination filter coefficient learning control means,
前記等化フィルタのフィルタ係数の初期値を決定する際に、 光記録媒体として の光ディスクを半径方向と周方向に複数のゾーンに分割して初期学習を行ない、 それぞれの学習結果をフィルタ係数の初期値として記憶するゾーン別初期値記憶 手段を有し、 When determining the initial value of the filter coefficient of the equalization filter, the optical disc as an optical recording medium is divided into a plurality of zones in a radial direction and a circumferential direction, and initial learning is performed. A zone-based initial value storage means for storing as a value,
データの再生開始時に、 再生するゾーンに対応した該ゾーン別初期値記憶手段 の値をロードし、 適応自動制御を行なうことを特徴とする光ディスク装置。 An optical disk device, wherein at the start of data reproduction, a value of said zone-specific initial value storage means corresponding to a zone to be reproduced is loaded and adaptive automatic control is performed.
2 2 . 請求の範囲第 2 1項に記載の光ディスク装置において、 22. In the optical disk device according to claim 21,
前記自己判定型フィルタ係数学習制御手段は、 The self-determination filter coefficient learning control means,
フィルタ係数の初期学習時に、 光記録媒体としての円形の光ディスク上の前記 複数のゾーンのうちの、 前記等化性能検出手段の出力信号がその等化状態が特に 劣悪であることを示しているゾーンを記録しておく劣悪ゾーン記憶手段を有し、 該劣悪ゾーン記憶手段の記憶結果を基に、 再生するゾーン別に、 適応自動制御 のフィルタ係数学習における制御ゲインを調整することを特徴とする光ディスク
At the time of the initial learning of the filter coefficient, of the plurality of zones on the circular optical disc as the optical recording medium, the zone where the output signal of the equalization performance detecting means indicates that the equalization state is particularly poor. An optical disk characterized in that it has a poor zone storage means for recording the control gain in the adaptive automatic control filter coefficient learning for each zone to be reproduced based on the storage result of the bad zone storage means.
88
CS0/T0df/X3d 80166/10 OAV
CS0 / T0df / X3d 80166/10 OAV
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000187653A JP2002008315A (en) | 2000-06-22 | 2000-06-22 | Optical disk device |
JP2000-187653 | 2000-06-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2001099108A1 true WO2001099108A1 (en) | 2001-12-27 |
Family
ID=18687597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2001/005368 WO2001099108A1 (en) | 2000-06-22 | 2001-06-22 | Optical disk unit |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2002008315A (en) |
WO (1) | WO2001099108A1 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003030848A (en) * | 2001-07-18 | 2003-01-31 | Matsushita Electric Ind Co Ltd | Optical disk player |
JP3816050B2 (en) | 2002-04-23 | 2006-08-30 | 松下電器産業株式会社 | Signal processing device |
JP4142537B2 (en) | 2003-09-19 | 2008-09-03 | 松下電器産業株式会社 | Optical disk device |
JP4630334B2 (en) | 2005-07-07 | 2011-02-09 | パナソニック株式会社 | Timing extraction device and video display device |
JP4945955B2 (en) * | 2005-08-19 | 2012-06-06 | ソニー株式会社 | Tap coefficient design method and tap coefficient design apparatus |
WO2007060765A1 (en) * | 2005-11-28 | 2007-05-31 | Matsushita Electric Industrial Co., Ltd. | Timing extraction device, and information reproduction apparatus and dvd device using the same |
US7688687B2 (en) | 2005-11-28 | 2010-03-30 | Panasonic Corporation | Timing extractor, and information playback apparatus and DVD device using the timing extractor |
JP4837778B2 (en) | 2007-04-05 | 2011-12-14 | パナソニック株式会社 | Reproduction signal processing device and video display device |
JP4944943B2 (en) | 2007-09-03 | 2012-06-06 | パナソニック株式会社 | Phase comparator, clock generation circuit using the same, video display device and reproduction signal processing device |
JP5137953B2 (en) | 2008-06-24 | 2013-02-06 | パナソニック株式会社 | Analog / digital conversion circuit, optical disk reproducing device, receiving device |
JP4926157B2 (en) * | 2008-11-18 | 2012-05-09 | 株式会社Jvcケンウッド | Demodulator |
JP5213799B2 (en) * | 2009-06-05 | 2013-06-19 | 日本電信電話株式会社 | Reception device and received signal equalization method |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0785601A (en) * | 1993-09-20 | 1995-03-31 | Toshiba Corp | Magnetic storage device |
JPH0799426A (en) * | 1993-09-28 | 1995-04-11 | Sony Corp | Adaptive waveform equalizer and adaptive waveform equalization method |
JPH0817138A (en) * | 1994-06-30 | 1996-01-19 | Fujitsu Ltd | Signal equalizing method and signal processing method of memory apparatus using the equalizing method |
JPH09293344A (en) * | 1996-04-30 | 1997-11-11 | Hitachi Ltd | Disk device |
JPH10199147A (en) * | 1996-12-30 | 1998-07-31 | Daewoo Electron Co Ltd | Waveform equalizer provided with transversal filter |
JPH1186443A (en) * | 1997-09-12 | 1999-03-30 | Sony Corp | Device and method for information reproduction |
JPH11176098A (en) * | 1997-12-12 | 1999-07-02 | Hitachi Ltd | Adaptively equalizing circuit for analog filter, and disk device using it |
JPH11232800A (en) * | 1998-02-13 | 1999-08-27 | Sanyo Electric Co Ltd | Information processor |
JP2000067436A (en) * | 1996-04-15 | 2000-03-03 | Matsushita Electric Ind Co Ltd | Optical disk and recording and reproducing device thereof |
JP2000105901A (en) * | 1998-09-28 | 2000-04-11 | Hitachi Ltd | Magnetic disk device with high environmental variation yield strength |
-
2000
- 2000-06-22 JP JP2000187653A patent/JP2002008315A/en active Pending
-
2001
- 2001-06-22 WO PCT/JP2001/005368 patent/WO2001099108A1/en unknown
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0785601A (en) * | 1993-09-20 | 1995-03-31 | Toshiba Corp | Magnetic storage device |
JPH0799426A (en) * | 1993-09-28 | 1995-04-11 | Sony Corp | Adaptive waveform equalizer and adaptive waveform equalization method |
JPH0817138A (en) * | 1994-06-30 | 1996-01-19 | Fujitsu Ltd | Signal equalizing method and signal processing method of memory apparatus using the equalizing method |
JP2000067436A (en) * | 1996-04-15 | 2000-03-03 | Matsushita Electric Ind Co Ltd | Optical disk and recording and reproducing device thereof |
JPH09293344A (en) * | 1996-04-30 | 1997-11-11 | Hitachi Ltd | Disk device |
JPH10199147A (en) * | 1996-12-30 | 1998-07-31 | Daewoo Electron Co Ltd | Waveform equalizer provided with transversal filter |
JPH1186443A (en) * | 1997-09-12 | 1999-03-30 | Sony Corp | Device and method for information reproduction |
JPH11176098A (en) * | 1997-12-12 | 1999-07-02 | Hitachi Ltd | Adaptively equalizing circuit for analog filter, and disk device using it |
JPH11232800A (en) * | 1998-02-13 | 1999-08-27 | Sanyo Electric Co Ltd | Information processor |
JP2000105901A (en) * | 1998-09-28 | 2000-04-11 | Hitachi Ltd | Magnetic disk device with high environmental variation yield strength |
Also Published As
Publication number | Publication date |
---|---|
JP2002008315A (en) | 2002-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7339872B2 (en) | Optical disc device | |
US7852729B2 (en) | Optical disc apparatus with adjustable constraint length PRML | |
WO2002073615A1 (en) | Optical disc reproduction apparatus | |
JP2002032919A (en) | Optical disk reproducing device | |
US20060092803A1 (en) | Optical disk apparatus and optical disk reproduction method | |
JP2004327013A (en) | Optical disc medium and optical disk drive | |
US7826323B2 (en) | Reproducing apparatus and method with reduced bit error rate | |
JP2009004090A (en) | High-density recording medium, and method and apparatus for controlling data reproduction of high-density recording medium | |
WO2001099108A1 (en) | Optical disk unit | |
US7321531B2 (en) | Apparatus for reproducing data from optical storage medium using multiple detector | |
JP2006252681A (en) | Optical disk drive and pll circuit | |
US20080152318A1 (en) | Optical-disc recording/playback apparatus and optical-disc recording/playback method | |
JPH11259986A (en) | Waveform equalizer and data reproducing device using the equalizer | |
US20090052294A1 (en) | Information recording medium, information reproducing apparatus and information reproducing method | |
MX2010007257A (en) | Read-back signal evaluation method, read-back signal evaluation device, and optical disc device provided with same. | |
US7656760B2 (en) | Playback apparatus and sync signal detecting method | |
JP5816828B1 (en) | Optical disc apparatus and optical disc reproducing method | |
JP4501960B2 (en) | Viterbi detector and information reproducing apparatus | |
JP4625623B2 (en) | Optical disk playback device | |
US8004945B2 (en) | Recording medium access device | |
JP2001283537A (en) | Information recording and reproducing device | |
JP4823184B2 (en) | Optical disc apparatus and optical disc reproducing method | |
JP4289308B2 (en) | Spindle motor control device, spindle motor control method, program thereof, and disk device | |
JP2007042181A (en) | Automatic equalizer and automatic equalizing method, and reproducing apparatus | |
JP2002150690A (en) | Optical disk device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): CN ID KR SG US |