WO2001092181A1 - Mortier phosphomagnesien et procede d'obtention de ce mortier - Google Patents

Mortier phosphomagnesien et procede d'obtention de ce mortier Download PDF

Info

Publication number
WO2001092181A1
WO2001092181A1 PCT/FR2001/001579 FR0101579W WO0192181A1 WO 2001092181 A1 WO2001092181 A1 WO 2001092181A1 FR 0101579 W FR0101579 W FR 0101579W WO 0192181 A1 WO0192181 A1 WO 0192181A1
Authority
WO
WIPO (PCT)
Prior art keywords
mortar
phosphomagnesium
water
granular elements
mixture
Prior art date
Application number
PCT/FR2001/001579
Other languages
English (en)
Inventor
Cyrille Canac
Nathalie Riche
Gilles Orange
Original Assignee
Rhodia Chimie
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhodia Chimie filed Critical Rhodia Chimie
Priority to US10/296,790 priority Critical patent/US6805740B2/en
Priority to MXPA02011713A priority patent/MXPA02011713A/es
Priority to CA002407711A priority patent/CA2407711A1/fr
Priority to AU2001264000A priority patent/AU2001264000A1/en
Priority to EP01938304A priority patent/EP1289906A1/fr
Publication of WO2001092181A1 publication Critical patent/WO2001092181A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/005High shear mixing; Obtaining macro-defect free materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00068Mortar or concrete mixtures with an unusual water/cement ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/60Flooring materials
    • C04B2111/62Self-levelling compositions

Definitions

  • the invention relates to a new phosphomagnesium mortar, a process for obtaining this mortar, as well as the hydraulic binder useful for obtaining the mortar.
  • Phosphomagnesium cements are hydraulic binders, that is to say binders which, in the presence of water, solidify. They are characterized by a binder based on phosphorus and magnesium derivatives.
  • Phosphomagnesium mortars obtained from these cements are particularly interesting for their speed of setting and their high mechanical properties. In addition, they can be used in contact with aggressive media. However, this very rapid setting, which is advantageous in certain applications such as the repair of an airport runway or a road, limits the use of these phosphomagnesium mortars. These mortars are in the form of a thick paste which makes them not very compatible with applications such as the manufacture of a floor slab or of pre-fabricated elements except when adding to them significant quantities of water or agents thinners. When adding thinning agents, the setting time is generally altered. When the amount of water is increased to make the mortar fluid, the mechanical properties are generally degraded.
  • the articles obtained from phosphomagnesium mortars have in particular a low flexural strength.
  • Phosphomagnesium mortars are generally brittle and lack flexibility. This is a drawback when, for example, the mortar is used to cover a support which, subject to various stresses, moves and undergoes deformations. If the coating based on phosphomagnesium mortar lacks flexibility, it will crack, crack.
  • the object of the present invention is to provide a new family of self-leveling, fluid phosphomagnesium mortars which exhibit short setting times and develop excellent mechanical properties over time. These objects are achieved with the present invention which relates to a self-leveling fluid phosphomagnesium mortar which comprises a phosphomagnesium binder containing a phosphorus compound and a magnesium compound, granular elements, and water, in which the ratio E / L is less than 0.38, E representing the amount of water and L the amount of phosphorus and magnesium compounds in the mortar, and the fluidity of the mortar is at least 150%.
  • the invention also relates to a process for the preparation of a fluid and self-leveling phosphomagnesium mortar which comprises the addition of water to a mixture comprising a phosphomagnesium binder containing a phosphorus compound and a composed of magnesium, and granular elements, the amount of water added being such that the W / L ratio is less than 0.38, the mixing of the mixture added with water under conditions that the energy supplied to the mixture is sufficient to allow the passage of the hard point of the dough to form a mortar which has a fluidity of at least 150%.
  • the invention relates to articles obtained from the mortar according to the invention which have a mechanical strength in compression at 24 hours of at least 30 MPa.
  • the fluidity is measured from a metal cylinder 3 cm in diameter (di) and 4.8 cm in height, placed on a plastic film.
  • the fluidity according to the invention is defined in% according to the formula (df / di) x100.
  • thorough kneading is understood to mean kneading which is carried out with sufficient energy to allow the passage of the hard point of the dough, that is to say the instantaneous passage from a pasty state to a fluid state.
  • the mortar of the present invention which has a fluidity of at least 150%, makes it possible for example to coat floors. Due to its fluidity, it also makes it possible to manufacture prefabricated elements, by using a suitable mold. It can also be pumped and sprayed without difficulty.
  • the fluid mortar of the present invention is obtained with small amounts of water, which makes it possible to obtain articles having good mechanical properties, in particular a high compressive strength at young ages.
  • this mortar when it does not contain a setting retarder, has a very fast setting time.
  • a phosphomagnesium binder comprises at least one phosphorus compound and at least one magnesium compound.
  • the phosphorus compound all the phosphorus-based compounds can be used insofar as they comprise phosphorus pentoxide, available directly or in the form of a precursor.
  • phosphorus pentoxide phosphoric acid or derivatives such as orthophosphoric acid, pyrophosphoric acid, polyphosphoric acid, or the salts such acids, such as phosphates, hydrogenophosphates, orthophosphates, pyrophosphates, polyphosphates, tripolyphosphates, tetrapolyphosphates, aluminum, calcium, potassium, magnesium, ammonium, or mixtures thereof.
  • the salts of the phosphorus-based acids mentioned above are used.
  • phosphates potassium phosphate, magnesium, ammonium, or mixtures thereof are used.
  • the phosphorus-based constituent is ammonium dihydrogen phosphate, optionally mixed with ammonium tripolyphosphate.
  • the phosphorus compound can be in a liquid or preferably solid form.
  • the phosphorus compound is in the form of particles whose particle size is more particularly at most 300 ⁇ m. It should be noted that this value is not critical and that, if it is possible to use constituents whose particle size is greater than 300 ⁇ m, grinding before incorporation into the composition according to the invention may be desirable . This grinding can improve the kinetics of dissolution of the phosphorus compound.
  • the compound is used in a form adsorbed on a porous support.
  • a porous support mention may be made, for example, of diatomaceous earth, clay, bentonite, silica, alumina. The adsorption is carried out in a manner known per se.
  • the phosphorus compound in solution or in suspension, is brought into contact with the support, with stirring, then the resulting suspension is heated so as to evaporate the excess liquid.
  • This operation can likewise be carried out by impregnating the support in a drum or on a rotating disc.
  • the phosphomagnesium binder also comprises at least one magnesium compound. Any magnesium-based compound is suitable for the present invention as long as it reacts with the phosphorus compound in the presence of water.
  • magnesium compounds magnesium oxide, magnesium hydroxide, magnesium carbonate.
  • a compound based on magnesium oxide is used.
  • magnesia usually obtained after calcination of magnesium carbonate, at temperatures above 1200 ° C.
  • said magnesium oxide can be used in a pure form or can optionally comprise at least one element of the calcium, silicon, aluminum or even iron type; these elements being generally in the form of oxide or hydroxide.
  • this type of compound mention may be made of dolomite, a mixture comprising in particular magnesium oxide and calcium oxide. If magnesium oxide is used in pure form, the purity of said oxide is at least 80%.
  • a magnesium compound is used whose specific surface is less than 10 m 2 / g. More specifically, the specific surface is less than 2 m z / g.
  • the particle size of said compound is usually between 10 and 500 ⁇ m. It would be conceivable to use compounds whose particle size is outside the aforementioned range, but without this bringing any particular advantages. Thus, if the particle size is greater than 500 ⁇ m, a grinding step prior to incorporation into the composition may be necessary. Furthermore, if the particle size of said compounds was less than 10 ⁇ m, one could note a modification of the properties of the composition brought into contact with water.
  • the mortar according to the invention could be less advantageous from the point of view of implementation or from an economic point of view.
  • the proportion of the magnesium compound in the phosphomagnesium binder, the proportion of the magnesium compound
  • the mortar comprises granular elements.
  • These granular elements can be chosen from sand, SiO, TiO 2 , AI 2 O 3 , ZrO 2 , Cr 2 O 3 , talc, mica, kaolin, bentonite, metakaolin, crude dolomite, ore of chromium, clinker, vermiculite, perlite, mica, cellulose, slag. They can be synthetic products. They can be crystallized or amorphous compounds obtained, for example, by grinding and sieving to the desired size. It is also possible to use ground silica, fumed silica, fly ash. According to one embodiment, the granular elements comprise fly ash in an amount between 1 and 20% relative to the weight of the granular elements. According to one embodiment, the granular elements consist mainly of silica sand.
  • the particle size distribution of the granular elements can vary widely depending on the intended application.
  • the size of the granular elements can vary for example between 1 and 500 ⁇ m.
  • the mortar of the invention comprises an amount of phosphomagnesium binder between 10 and 50% by weight relative to the total amount of mortar without water.
  • the granular stack is such that the granular elements comprise at least one mineral powder whose D50 is greater than 100 ⁇ m, preferably between 200 and 400 ⁇ m, and at least one mineral powder whose D50 is less than 50 ⁇ m, preferably between 1 and 10 ⁇ m.
  • the powder whose D50 is less than 50 ⁇ m, preferably between 1 and 10 ⁇ m represents at least 15% by weight of the granular elements and the mineral powder whose D50 is greater than 100 represents at most 75% of the elements granular, preferably at most 70%.
  • D50 means that 50% by weight of the granular elements have a grain size less than or equal to the given value, the grain size being measured by the sizes of the mesh of the sieves, the passing of which constitutes 50% of the total weight of the grains.
  • the amount of water in the mortar which is defined from the W / L ratio is preferably between 0.28 and 0.33.
  • the mortar according to the invention can comprise an agent delaying setting. More particularly, this agent is chosen from compounds capable of complexing magnesium.
  • the latter can in particular be carboxylic acids, such as citric, oxalic, tartaric acids, acids, esters or salts containing boron, acids, esters or salts containing phosphorus, such as sodium tripolyphosphate, ferrous sulfate, sodium sulfate and lignosulfonate, zinc chloride, copper acetate, sodium gluconate, sulfate sodium acetate cellulose, the product of the reaction of formaldehyde with aminolignosulfate, dialdehyde starch, N, N- dimethyloldihydroxyethylene urea, silicoflubrides, tall oil and sucrose, these compounds being taken alone or as a mixture.
  • carboxylic acids such as citric, oxalic, tartaric acids, acids, esters or salts containing boron
  • the carboxylic acids are used, alone or as a mixture, and preferably the acids, esters or salts containing boron.
  • boric acid and its salts such as the alkali metal salts, such as sodium (borax), the amine or ammonium.
  • the esters of boric acid are also suitable for implementing the invention, such as trialkyloxyborates, triaryloxyborates.
  • the agent delaying the setting is implemented in the form of a powder whose average diameter is from 10 to 200 ⁇ m.
  • the mortar can contain fibers.
  • fibers useful in the context of the invention, mention may be made of polypropylene, polyester, polyaramide fibers, such as, for example, KEVLAR®, carbon fibers, polyamide, polyvinyl alcohol, cellulose fibers or ribbons. amorphous fonts.
  • Glass fibers can also be used. All the glass fibers usually used in cements are suitable. It is therefore possible to use alkali-resistant fibers, such as special glass fibers obtained in particular by treatment with zirconium, as well as soda-lime glass fibers.
  • standard glass fibers are also suitable. This is the case of conventional glasses such as borosilicate glasses which are usually destroyed in an alkaline medium.
  • the fibers are organic fibers. Mention may be made, for example, of polypropylene or polyamide fibers.
  • These fibers have lengths varying from 0.6 mm to several tens of millimeters, preferably from 1 to 15 mm.
  • the fibers have a diameter between 1 and 50 ⁇ m, preferably between 5 and 25 ⁇ m.
  • the amount of fibers in the mortar of the invention is between 0.1 and 10% relative to the weight of binder, preferably between 0.1 and 2%.
  • the fluidity of the mortar of the invention allows the addition of fibers, preferably organic.
  • the mortar contains such fibers, the ductility of the articles produced from this binder is increased, without harming the rheological properties of the fresh mortar.
  • the mortar according to the invention can also comprise a water-repellent agent.
  • the mortar of the invention can comprise all the conventional additives, such as latex powders, anti-foaming agents, for example, anti-foaming agents based on polydimethyl-siloxanes and polypropylene glycol, texturing and viscosity agents, for example.
  • anti-foaming agents for example, anti-foaming agents based on polydimethyl-siloxanes and polypropylene glycol
  • texturing and viscosity agents for example.
  • cellulose fibers guar, starch, cellulose ether, starch ethers, polyvinyl alcohol.
  • the amount of these additives in the mortar is at most 10% by weight relative to the binder.
  • the amount of additives is at most 5%.
  • the fluid mortar is obtained by mixing the constituents of the mortar added with water with sufficient energy to allow the passage of the hard point. During mixing, we first form a very thick paste which, after a sufficient time of mixing, instantly fluidizes to form the fluid mortar (fluidity of at least 150%).
  • the mixing of the mixture and the water is carried out according to any suitable method, the main thing being to obtain the most homogeneous distribution possible of all the constituent elements of the mortar and the transformation of the thick paste into a fluid mortar by exceeding the hard point.
  • the kneading is carried out under shearing conditions, using a kneader capable of providing a power of at least 50 / kg of mortar for a time sufficient to allow the transformation of the thick paste into fluid mortar.
  • the kneading time is at most 15 minutes, preferably between 5 and 10 minutes.
  • the mixing time should be as short as possible, in particular because of the rapid setting of the mortar (short open time). If you wish to reduce the mixing time, you can also overcome the hard point by mixing the mixture with a higher energy, for example greater than 100 W / kg of mortar.
  • a composition is generally prepared comprising all the solid elements used in the composition of the mortar. Water is then added to this composition which may contain other liquid additives useful in the preparation of the mortar. However, it is preferable to have all the elements in solid form mixed in a single premix in order to be satisfied with having to add only water during mixing. In order to improve the homogeneity of the mixture, it is also possible to implement a step of preliminary mixing of the solid elements before adding water. The mixing operation is advantageously carried out at a temperature close to room temperature.
  • the fluid mortar thus obtained can be poured without any difficulty on the ground. Its self-leveling property makes it possible to obtain perfectly smooth and resistant coatings.
  • This fluid mortar can also be poured into a suitable mold, to give prefabricated articles, for example slabs, panels, stairs, etc. The molded products are then allowed to dry, advantageously at a temperature close to Room temperature. Taking into account the time of acquisition of mechanical properties at young ages, articles are obtained in a short time. mechanically very resistant, which greatly accelerates the production rates.
  • these mortars can be used as repair and sealing mortars, for example in the rapid repair of roads, bridges, and airport runways. Thus, they are used to seal cracks, holes or cover degraded areas as well as for the repair of reinforced concrete structures. Indeed, these mortars, in addition to good adhesion to so-called Portland cements, have significant mechanical properties of resistance to bending and compression, making them particularly suitable for this type of application. It is also possible to use these mortars as coatings, for pipes because they resist chemical attack and have excellent hardness and resistance to abrasion.
  • the mortar of the invention no longer exhibits any demixing phenomenon.
  • the following examples illustrate the invention without, however, limiting its scope.
  • Prismatic test pieces (4 ⁇ 4 ⁇ 16 cm) are produced by pouring the mortar into standard polystyrene molds. After removing the molds, the mechanical properties of the test pieces are measured under the following conditions.
  • the measurements are carried out in three-point bending (NFP 18407) on six test pieces and in compression (NFP 15451) on six test pieces using a hydraulic testing machine (200 kN).
  • a phosphomagnesium mortar is prepared from the following hydraulic binder (parts by weight):
  • the mortar is prepared by adding different amounts of water as specified in Table 1 below.
  • MaxLab ⁇ marketed by CESA which provides an energy of around 70 W / kg of mortar.
  • the kneading is carried out for 8 min at 180 rpm. These mixing conditions make it possible to exceed the hard point of the mixture and to obtain a fluid mortar. Test pieces are prepared from this paste according to the procedure described above. The setting time is around 35 min. The mechanical properties obtained are reported in Table 1.
  • Example 1.4 shows that when the W / L ratio is 0.38, a fluid mixture is obtained, however the compressive strength at 24 hours is less than 30 MPa.
  • Examples 1.1 to 1.3 show that it is possible to obtain a fluid mortar while reducing the amount of water present in the mortar by applying a mixture to the mixture which makes it possible to overcome the hard point. A fluid mortar is thus obtained for a W / L ratio as low as 0.29 while retaining good properties at young ages.
  • the mortars obtained are in the form of a non-fluid paste.
  • the fluidity can only be obtained by adding an additional quantity of water which considerably degrades the mechanical properties at young ages.
  • Example 1 is reproduced from a mixture comprising
  • the mortar is prepared by adding water in an amount such that W / L is 0.3.
  • the mixing of the mixture with added water is carried out with a MaxLab ⁇ type mixer marketed by CESA which provides an energy of approximately 70 W / kg of mortar under mixing conditions which allow the hard point of the mixture to be exceeded (8 min. at 185 rpm) and obtain a fluid mortar (fluidity of at least 150%).
  • the compressive strength obtained is 50 MPa at 48 hours and the flexural strength is 8 MPa at 48 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne un nouveau mortier phosphomagnésien ainsi que le procédé d'obtention de ce mortier. Le mortier est un mortier phosphomagnésien qui comprend un liant phosphomagnésien contenant un composé du phosphore et un composé de magnésium, des éléments granulaires, et de l'eau dans un rapport E/L inférieur à 0,38, E représentant la quantité d'eau et L la quantité de composé du magnésium, et dont la fluidité est d'au moins 150 %.

Description

MORTIER PHOSPHOMAGNESIEN ET PROCEDE D'OBTENTION DE CE MORTIER
L'invention concerne un nouveau mortier phosphomagnésien, un procédé d'obtention de ce mortier, ainsi que le liant hydraulique utile pour l'obtention du mortier.
Les ciments phosphomagnésiens sont des liants hydrauliques, c'est à dire des liants qui, en présence d'eau, se solidifient. Ils sont caractérisés par un liant à base de dérivés de phosphore et de magnésium.
Les mortiers phosphomagnésiens obtenus à partir de ces ciments sont particulièrement intéressants pour leur rapidité de prise et leurs propriétés mécaniques élevées. En outre, ils peuvent être utilisés au contact de milieux agressifs. Cependant, cette prise très rapide, avantageuse dans certaines applications comme la réparation d'une piste aéroport ou d'une route, limitent l'utilisation de ces mortiers phosphomagnésiens. Ces mortiers se présentent sous la forme d'une pâte épaisse ce qui les rend peu compatibles avec des applications telles que la fabrication d'une dalle de sol ou des éléments pré-fabriqués sauf à leur ajouter des quantités importantes d'eau ou des agents fluidifiants. Lorsque l'on ajoute des agents fluidifiants, le temps de prise est généralement altéré. Lorsqu'on augmente la quantité d'eau pour rendre le mortier fluide, les propriétés mécaniques sont généralement dégradées.
De plus, les articles obtenus à partir de mortiers phosphomagnésiens présentent en particulier une résistance en flexion faible. Les mortiers phosphomagnésiens sont en général cassants et manquent de souplesse. Ceci est un inconvénient lorsque, par exemple, le mortier est utilisé pour recouvrir un support qui, soumis à diverses contraintes, bouge et subit des déformations. Si le revêtement à base de mortier phosphomagnésien manque de souplesse, il se craquelé, se fissure.
Le but de la présente invention est de proposer une nouvelle famille de mortiers phosphomagnésiens fluides et auto-lissants qui présentent des temps de prise courts et développent d'excellentes propriétés mécaniques dans le temps. Ces buts sont atteints avec la présente invention qui concerne un mortier phosphomagnésien fluide et auto-lissant qui comprend un liant phosphomagnésien contenant un composé du phosphore et un composé de magnésium, des éléments granulaires, et de l'eau, dans lequel le rapport E/L est inférieur à 0,38, E représentant la quantité d'eau et L la quantité de composés du phosphore et de composé du magnésium dans le mortier, et la fluidité du mortier est d'au moins 150 %.
L'invention a aussi pour objet un procédé de préparation d'un mortier phosphomagnésien fluide et auto-lissant qui comprend l'addition d'eau dans un mélange comprenant un liant phosphomagnésien contenant un composé du phosphore et un composé du magnésien, et des éléments granulaires, la quantité d'eau additionnée étant telle que le rapport E/L est inférieur à 0,38, le malaxage du mélange additionné d'eau dans des conditions que l'énergie fournie au mélange est suffisante pour permettre le passage du point dur de la pâte pour former un mortier qui présente une fluidité d'au moins 150 %.
Enfin, l'invention a pour objet des articles obtenus à partir du mortier selon l'invention qui présentent une résistance mécanique en compression à 24 heures d'au moins 30 MPa.
Dans le cadre de l'invention, la fluidité est mesurée à partir d'un cylindre métallique de 3 cm de diamètre (di) et de 4,8 cm de hauteur, posé sur un film plastique. On remplit dans un premier temps le cylindre avec le mortier dont on désire mesurer la fluidité, on retire immédiatement le cylindre et on mesure le diamètre (df) de la galette obtenue 2 minutes après avoir retiré le cylindre. La fluidité selon l'invention est définie en % selon la formule (df/di)x100. Lors du mélange du liant phosphomagnésien, des éléments granulaires et de l'eau dans les conditions définies précédemment, il se forme dans un premier temps une pâte épaisse non fluide. Il a été trouvé de façon surprenante qu'en appliquant à cette pâte un malaxage poussé, la pâte se transforme en un mortier dont la fluidité est d'au moins 150 %. On entend par le malaxage poussé, un malaxage qui est mis en oeuvre avec une énergie suffisante pour permettre le passage du point dur de la pâte, c'est à dire le passage instantané d'un état pâteux à un état fluide. On observe dans un premier temps la formation d'une pâte épaisse qui se transforme instantanément en un mortier fluide après le passage du point dur. On obtient cette fluidité uniquement par la mise en œuvre de l'étape de malaxage sans addition supplémentaire d'eau ni d'agent fluidifiant. Le mortier de la présente invention qui présente une fluidité d'au moins 150 % permet de réaliser par exemple des enduits de sols. De part sa fluidité, il permet aussi de fabriquer des éléments préfabriqués, par l'utilisation de moule adapté. Il peut aussi être pompé et projeté sans difficulté.
Le mortier fluide de la présente invention est obtenu avec des quantités d'eau faibles ce qui permet d'obtenir des articles présentant de bonnes propriétés mécaniques, en particulier une résistance en compression élevée aux jeunes âges.
De plus, ce mortier, lorsqu'il ne contient pas de retardateur de prise, présente un temps de prise très rapide.
Classiquement, un liant phosphomagnésien comprend au moins un composé du phosphore et au moins un composé du magnésium. Pour ce qui est du composé du phosphore, tous les composés à base de phosphore sont utilisables dans la mesure où ils comprennent du pentoxyde de phosphore, disponible directement ou sous la forme d'un précurseur. Ainsi, à titre de composé du phosphore, on peut mentionner sans intention de se limiter, le pentoxyde de phosphore, l'acide phosphorique ou des dérivés comme l'acide orthophosphorique, l'acide pyrophosphorique, l'acide polyphosphorique, ou encore les sels de tels acides, comme les phosphates, les hydrogénophosphates, les orthophosphates, les pyrophosphates, les polyphosphates, les tripolyphosphates, les tétrapolyphosphates, d'aluminium, de calcium, de potassium, de magnésium, d'ammonium, ou leurs mélanges.
Il est à noter que les rejets contenant du phosphore des industries fabriquant des fertilisants, ou encore des aciéries (décapage de l'acier, traitement pour réduire la corrosion) peuvent être employés comme constituants à base de phosphore.
Selon un mode de réalisation particulier de l'invention, on utilise les sels des acides à base de phosphore mentionnés auparavant.
De préférence, on met en oeuvre des phosphates, des hydrogénophosphates de potassium, de magnésium, d'ammonium, ou leurs mélanges. D'une façon encore plus préférée, le constituant à base de phosphore est le dihydrogénophosphate d'ammonium, éventuellement mélangé à du tripolyphosphate d'ammonium.
Le composé du phosphore peut se présenter sous une forme liquide ou de préférence solide.
Selon une première variante, le composé du phosphore se trouve sous la forme de particules dont la granulometrie est plus particulièrement d'au plus 300 μm. Il est à noter que cette valeur n'est pas critique et que, s'il est possible d'utiliser des constituants dont la taille des particules est supérieure à 300 μm, un broyage avant incorporation dans la composition selon l'invention peut être souhaitable. Ce broyage peut améliorer la cinétique de dissolution du composé du phosphore. Selon une seconde variante, le composé est utilisé sous une forme adsorbée sur un support poreux. A titre de support, on peut mentionner par exemple les terres de diatomées, l'argile, la bentonite, la silice, l'alumine. L'adsorption est effectuée de manière connue en soi. Ainsi, d'une façon classique le composé du phosphore, en solution ou en suspension, est mis en contact avec le support, sous agitation, puis la suspension résultante est chauffée de façon à faire évaporer le liquide en excès. Cette opération peut de même être réalisée par imprégnation du support dans un tambour ou sur disque tournant.
Le liant phosphomagnésien comprend aussi au moins un composé du magnésium. Tout composé à base de magnésium convient à la présente invention dans la mesure où il réagit avec le composé du phosphore, en présence d'eau.
A titre d'exemple, on peut citer comme convenant à la mise en oeuvre de l'invention, les composés du magnésium suivants : l'oxyde de magnésium, l'hydroxyde de magnésium, le carbonate de magnésium. De préférence, on utilise un composé à base d'oxyde de magnésium. Convient notamment la magnésie dite "dead bumed" habituellement obtenue après calcination de carbonate de magnésium, à des températures supérieures à 1200 °C.
D'une façon avantageuse, ledit oxyde de magnésium peut être mis en oeuvre sous une forme pure ou peut éventuellement comprendre au moins un élément du type calcium, silicium, aluminium ou encore fer ; ces éléments se trouvant en général sous forme d'oxyde ou d'hydroxyde. A titre d'exemple de ce type de composé, on peut citer la dolomie, mélange comprenant notamment de l'oxyde de magnésium et de l'oxyde de calcium. Si l'oxyde de magnésium est utilisé sous forme pure, la pureté dudit oxyde est d'au moins 80 %.
On utilise de préférence un composé du magnésium dont la surface spécifique est inférieure à 10 m2/g. Plus particulièrement, la surface spécifique est inférieure à 2 mz/g. Par ailleurs, la granulometrie dudit composé est habituellement comprise entre 10 et 500 μm. Il serait envisageable d'utiliser des composés dont la granulometrie se trouve en dehors de la gamme précitée, mais sans que cela n'apporte d'avantages particuliers. Ainsi, si la granulometrie est supérieure à 500 μm, une étape de broyage préalable à l'incorporation dans la composition peut être nécessaire. Par ailleurs, si la granulometrie desdits composés était inférieure à 10 μm, on pourrait constater une modification des propriétés de la composition mise en contact avec l'eau. On peut notamment constater un accroissement de la vitesse de prise du ciment, sauf à augmenter la teneur en agent retardant la prise, dont il sera question dans la suite de la description. De ce fait, le mortier selon l'invention pourrait être moins intéressant sur le plan de la mise en oeuvre ou sur le plan économique. Dans le liant phosphomagnésien, la proportion du composé du magnésium
(exprimée en poids de MgO) rapportée à celle du composé du phosphore (exprimée en poids de P2O5) dans le liant phosphomagnésien est plus particulièrement comprise entre 1 et 4.
Selon l'invention, le mortier comprend des éléments granulaires. Ces éléments granulaires peuvent être choisis parmi le sable, SiO , TiO2, AI2O3, ZrO2, Cr2O3, le talc, le mica, le kaolin, la bentonite, le métakaolin, la dolomie brute, le minerai de chrome, le clinker, la vermiculite, la perlite, le mica, la cellulose, le laitier. Il peut s'agir de produits de synthèse. Ce peut être des composés cristallisés ou amorphes obtenus par exemple par broyage, et tamisage à la taille désirée. On peut utiliser également de la silice broyée, de la silice pyrogénée, des cendres volantes. Selon un mode de réalisation, les éléments granulaires comprennent des cendres volantes en quantité comprise entre 1 et 20 % par rapport au poids des éléments granulaires. Selon un mode de réalisation, les éléments granulaires sont constitués majoritairement de sable siliceux.
La répartition granulométrique des éléments granulaires peut varier largement en fonction de l'application envisagée. La taille des éléments granulaires peut varier par exemple entre 1 et 500 μm.
Le mortier de l'invention comprend une quantité de liant phosphomagnésien comprise entre 10 et 50 % en poids par rapport à la quantité totale de mortier hors eau.
Selon un mode de réalisation, l'empilement granulaire est tel que les éléments granulaires comprennent au moins une poudre minérale dont le D50 est supérieur à 100 μm, de préférence compris entre 200 et 400 μm, et au moins une poudre minérale dont le D50 est inférieur à 50 μm, de préférence compris entre 1 et 10 μm.
En particulier, la poudre dont le D50 est inférieur à 50 μm, de préférence compris entre 1 et 10 μm représente au moins 15% en poids des éléments granulaires et la poudre minérale dont le D50 est supérieur à 100 représente au plus 75 % des éléments granulaires, de préférence au plus 70 %.
D50 signifie que 50 % en poids des éléments granulaires ont une taille de grains inférieure ou égale à la valeur donnée, la taille de grains étant mesurée par les tailles des mailles des tamis dont le passant constitue 50 % du poids total des grains.
La quantité d'eau dans le mortier qui est définie à partir du rapport E/L est de préférence est compris entre 0,28 et 0,33.
Le mortier selon l'invention peut comprendre un agent retardant la prise. Plus particulièrement, cet agent est choisi parmi des composés susceptibles de complexer le magnésium. Ces derniers peuvent être notamment des acides carboxyliques, tels que les acides citrique, oxalique, tartrique, des acides, esters ou sels contenant du bore, des acides, esters ou sels contenant du phosphore, comme le tripolyphosphate de sodium, le sulfate ferreux, le sulfate et lignosulfonate de sodium, le chlorure de zinc, l'acétate de cuivre, le gluconate de sodium, le sulfate acétate de sodium cellulose, le produit de la réaction du formaldéhyde avec l'aminolignosulfate, le dialdéhyde amidon, la N,N- diméthyloldihydroxyéthylène urée, les silicoflubrures, le tall oil et le sucrose, ces composés étant pris seuls ou en mélange.
De préférence, on utilise, seuls ou en mélange, les acides carboxyliques, et de préférence, les acides, esters ou sels contenant du bore.
Ainsi, dans cette dernière catégorie de composés, on peut mentionner, sans intention de se limiter, l'acide borique et ses sels, tels que les sels de métaux alcalins, comme le sodium (borax), les sels d'aminé ou d'ammonium. Les esters de l'acide borique conviennent aussi à la mise en oeuvre de l'invention, comme les trialkyloxyborates, les triaryloxyborates. Selon un mode particulier, l'agent retardant la prise est mis en oeuvre sous la forme d'une poudre dont le diamètre moyen est de 10 à 200 μm.
La quantité d'agent retardant la prise est d'au plus 10 % poids par rapport au poids de liant. De préférence, cette quantité est d'au plus 5 %. Selon la présente invention, le mortier peut contenir des fibres. A titre d'exemple de fibres utiles dans le cadre de l'invention, on peut citer les fibres en polypropylène, en polyester, en polyaramide, comme par exemple le KEVLAR®, les fibres de carbone, le polyamide, l'alcool polyvinylique, les fibres de cellulose ou les rubans de. fontes amorphes. Des fibres de verre peuvent de même être utilisées. Toutes les fibres de verre employées habituellement dans les ciments conviennent. On peut donc employer des fibres alcali-résistantes, comme les fibres de verres spéciaux obtenus notamment par traitement avec du zirconium, de même que les fibres de verres sodo-calciques. Cependant, d'une façon avantageuse, les fibres de verre standards conviennent aussi. C'est le cas des verres classiques comme les verres borosilicatés qui sont habituellement détruits en milieu alcalin.
Selon un mode de réalisation préféré, les fibres sont des fibres organiques. On peut citer par exemple les fibres de polypropylène ou de polyamide.
Ces fibres ont des longueurs variant de 0,6 mm à plusieurs dizaines de millimètres, de préférence de 1 à 15 mm. Les fibres ont un diamètre compris entre 1 et 50 μm, de préférence compris entre 5 et 25 μm. La quantité de fibres dans le mortier de l'invention est comprise entre 0,1 et 10 % par rapport au poids de liant, de préférence entre 0,1 et 2 %.
La fluidité du mortier de l'invention permet l'addition de fibres, de préférence organiques. Lorsque le mortier contient de telles fibres, on augmente la ductilité des articles réalisés à partir de ce liant, sans nuire aux propriétés rhéologiques du mortier frais.
Le mortier selon l'invention peut comprendre par ailleurs un agent hydrofugeant.
Enfin, le mortier de l'invention peut comprendre tous les additifs classiques, comme des poudres de latex, des agents antimousses, par exemple, les antimousses à base de polydiméthyl-siloxanes et le polypropylène glycol, des agents de texture et de viscosité, par exemple des fibres de cellulose, guar, amidon, éther cellulosique, éthers d'amidon, alcool polyvinylique.
D'une façon générale, la quantité de ces additifs dans le mortier est d'au plus 10 % en poids par rapport au liant. De préférence, la quantité d'additifs est d'au plus 5 %.
Dans le procédé de la présente invention, le mortier fluide est obtenu par malaxage des constituants du mortier additionnés d'eau avec une énergie suffisante pour permettre le passage du point dur. Au cours du malaxage, on forme dans un premier temps une pâte très épaisse qui, après un temps suffisant de malaxage se fluidifie instantanément pour former le mortier fluide (fluidité d'au moins 150 %).
Le malaxage du mélange et de l'eau est effectué selon toute méthode appropriée, l'essentiel étant d'obtenir une répartition la plus homogène possible de tous les éléments constitutifs du mortier et la transformation de la pâte épaisse en un mortier fluide en dépassant le point dur.
Selon un mode de réalisation, le malaxage est mis en oeuvre dans des conditions cisaillantes, en utilisant un malaxeur pouvant fournir une puissance d'au moins 50 /kg de mortier pendant un temps suffisant pour permettre la transformation de la pâte épaisse en mortier fluide. Selon un mode de réalisation, le temps de malaxage est d'au plus 15 minutes, de préférence compris entre 5 et 10 minutes. Le temps de malaxage doit être aussi court que possible, notamment à cause de la prise rapide du mortier (faible temps ouvert). Si l'on souhaite diminuer le temps de malaxage, on peut aussi dépasser le point dur en malaxant le mélange avec une énergie supérieure, par exemple supérieure à 100 W/kg de mortier.
On peut procéder en apportant le liant, les éléments granulaires, les additifs éventuels et l'eau, simultanément ou séparément. Selon cette dernière possibilité, on prépare en général une composition comprenant tous les éléments solides entrant dans la composition du mortier. On ajoute ensuite à cette composition de l'eau qui peut contenir d'autres additifs liquides utiles dans la préparation du mortier. On préfère toutefois avoir tous les éléments sous forme solide mélangés en un seul prémix pour se contenter d'avoir à rajouter uniquement de l'eau lors du malaxage. Afin d'améliorer l'homogénéité du mélange, on peut aussi mettre en oeuvre une étape de mélange préliminaire des éléments solides avant ajout d'eau. L'opération de mélange est avantageusement effectuée à une température voisine de la température ambiante.
Avec le mortier fluide de la présente invention, on obtient de façon surprenante des articles à partir de liant phosphomagnésien ayant des propriétés mécaniques élevées. Des éprouvettes 4x4x16cm préparés à partir du mortier de la présente invention présentent une résistance en compression supérieure à 30 MPa en 24H.
Le mortier fluide ainsi obtenu peut être coulé sans aucune difficulté au sol. Sa propriété autolissante permet d'obtenir des revêtements parfaitement lisses et résistants. Ce mortier fluide peut aussi être coulé dans un moule approprié, pour donner des articles préfabriqués par exemple des dalles, des panneaux, des escaliers, etc.. Les produits moulés sont ensuite mis à sécher, d'une façon avantageuse à une température voisine de la température ambiante. Compte tenu du temps d'acquisition des propriétés mécaniques aux jeunes âges, on obtient dans un temps réduit des articles mécaniquement très résistants, ce qui permet d'accélérer fortement les cadences de fabrication.
Il est possible de les utiliser en tant que mortiers de réparation et de scellement, par exemple dans la réfection rapide de routes, ponts, et pistes d'aéroport. Ainsi, ils sont utilisés pour obturer des craquelures, des trous ou recouvrir des zones dégradées ainsi que pour la réparation d'ouvrages en béton armé. En effet, ces mortiers, outre une bonne adhérence aux ciments dits de Portland, présentent des propriétés mécaniques de résistance à la flexion et à la compression importantes, les rendant particulièrement appropriés pour ce type d'applications. II est aussi possible d'employer ces mortiers en tant que revêtements, de tuyauteries car ils résistent aux attaques chimiques et présentent une excellente dureté et tenue à l'abrasion.
Le mortier de l'invention ne présente de plus aucun phénomène de démixtion. Les exemples suivants illustrent l'invention sans toutefois en limiter la portée.
EXEMPLES Mesure des propriétés mécaniques
On réalise des éprouvettes prismatiques (4X4X16 cm) en coulant le mortier dans des moules standards en polystyrène. Après retrait des moules, les propriétés mécaniques des éprouvettes sont mesurées dans les conditions suivantes.
Les mesures sont réalisées en flexion en trois points (NFP 18407) sur six éprouvettes et en compression (NFP 15451) sur six éprouvettes à l'aide d'une machine d'essai hydraulique (200 kN).
Exemple 1
On prépare un mortier phosphomagnésien à partir du liant hydraulique suivant (parties en poids) :
• 589 parties en poids d'un mélange de phosphate monoammonique et d'oxyde de magnésium (50/50 en poids)
• 28 parties d'acide borique (agent retardateur de prise),
• 55 parties de silice commercialisée par Rhodia sous le nom Tixosil 43 (D50 = 10,5 μm),
• 1025 parties de sable de silice qualité CV 32 commercialisé par SIFRACO ayant un D50 = 246 μm,
• 170 parties de silice broyée qualité MILLISIL C10 commercialisée par SIFRACO ayant un D50 = 17,2 μm • 320 parties de silice broyée qualité SIKRON C600 commercialisée par SIFRACO ayant un D50 = 2,4 μm
• 0,7 partie de fibres en polyamide de 4 mm de longueur.
On prépare le mortier par addition de différentes quantités d'eau précisées dans le tableau 1 suivant.
Dans un premier temps, on mélange les constituants décrits ci dessus à l'état sec pour obtenir un mélange homogène puis on ajoute l'eau dans la proportion précisée dans le tableau 1 ci-dessous. Le malaxage du mélange additionné d'eau est réalisé avec un malaxeur de type
MaxLabδ commercialisé par CESA qui fourni une énergie d'environ 70 W/kg de mortier.
Dans tous les exemples suivants, le malaxage est mis en œuvre pendant 8 min à 180 tr/min. Ces conditions de malaxage permettent de dépasser le point dur du mélange et d'obtenir un mortier fluide. On prépare à partir de cette pâte des éprouvettes selon le mode opératoire décrit précédemment. Le temps de prise est de l'ordre de 35 min. Les propriétés mécaniques obtenues sont reportées dans le tableau 1.
TABLEAU 1
Figure imgf000010_0001
L'exemple 1.4 montre que lorsque le rapport E/L est de 0,38, on obtient bien un mélange fluide cependant la résistance en compression à 24 heures est inférieure à 30 MPa. Les exemples 1.1 à 1.3 montrent que l'on peut obtenir un mortier fluide tout en diminuant la quantité d'eau présente dans le mortier en appliquant au mélange un malaxage qui permet de dépasser le point dur. On obtient ainsi pour un rapport de E/L aussi faible que 0,29 un mortier fluide tout en conservant de bonnes propriétés aux jeunes âges.
Lorsque le malaxage des mortiers décrit ci-dessus est stoppé avant le passage du point dur, les mortiers obtenus se présentent sous la forme d'une pâte non fluide. La fluidité ne peut être obtenue que par addition d'une quantité supplémentaire d'eau ce qui dégrade considérablement les propriétés mécaniques aux jeunes âges.
Exemple 2
On reproduit l'exemple 1 à partir d'un mélange comprenant
• 589 parties en poids d'un mélange de phosphate monoammonique et d'oxyde de magnésium (50/50 en poids)
28 parties d'acide borique (agent retardateur de prise),
53 parties de silice commercialisée par Rhodia sous le nom Tixosil 43 (D50 = 10,5 μm),
1000 parties de sable de silice qualité CV 32 commercialisé par SIFRACO ayant un D50 = 246 μm,
180 parties de silice broyée qualité MILLISIL C10 commercialisée par
SIFRACO ayant un D50 = 17,2 μm « 180 parties de silice broyée qualité SIKRON C600 commercialisée par
SIFRACO ayant un D50 = 2,4 μm
160 parties de Silicoline (cendres volantes) commercialisée par Surschiste.
2 parties de Colorant jaune J920 (Bayer)
On prépare le mortier par addition d'eau en quantité telle que E/L est 0,3.
Le malaxage du mélange additionné d'eau est réalisé avec un malaxeur de type MaxLabδ commercialisé par CESA qui fourni une énergie d'environ 70 W/kg de mortier dans des conditions de malaxage qui permettent de dépasser le point dur du mélange (8 min. à 185 tr/min) et d'obtenir un mortier fluide (fluidité d'au moins 150 %). La résistance à la compression obtenue est de 50 MPa à 48 heures et la résistance en flexion est de 8 MPa à 48 heures.

Claims

REVENDICATIONS
1. Mortier phosphomagnésien qui comprend un liant phosphomagnésien contenant un composé du phosphore et un composé de magnésium, des éléments granulaires, et de l'eau caractérisé en ce que le rapport E/L est inférieur à 0,38, E représentant la quantité d'eau et L la quantité de composé du magnésium et composé du phosphore, et la fluidité du mortier est d'au moins 150 %.
2. Mortier phosphomagnésien selon la revendication 1 comprenant de plus un agent retardant la prise.
3. Mortier selon la revendication 1 comprenant de plus des fibres organiques dont le diamètre est compris entre 1 et 50 μm.
4. Mortier selon la revendication 1 dans lequel la quantité de liant phosphomagnésien est comprise entre 10 et 50 % en poids par rapport à la quantité totale de mortier hors eau.
5. Mortier selon la revendication 1 dans lequel les éléments granulaires sont en majorité des sables siliceux.
6. Mortier selon la revendication 1 dans lequel le rapport E/L est compris entre 0,28 et 0,33.
7. Mortier selon la revendication 1 dans lequel les éléments granulaires sont formés d'au moins une poudre minérale dont le D50 est supérieur à 100 μm, et au moins une poudre minérale dont le D50 est inférieur à 50 μm.
8. Mortier selon la revendication 8 dans lequel la poudre dont le D50 est inférieur à 50 μm représente au moins 15% en poids des éléments granulaires et la poudre minérale dont le D50 est supérieur à 100 représente au plus 75 % des éléments granulaires.
9. Procédé de préparation d'un mortier phosphomagnésien tel que défini aux revendications 1 à 8 qui comprend l'addition d'eau dans un mélange comprenant un composé du phosphore et un composé du magnésien et des éléments granulaires, la quantité d'eau additionnée étant telle que le rapport E/L est inférieur à 0,38, le malaxage du mélange additionné d'eau dans des conditions permettant le passage du point dur du mélange.
10. Procédé selon la revendication 9 dans lequel le malaxage est mis en oeuvre avec une puissance d'au moins 50 W/kg de mortier pendant un temps suffisant pour permettre le passage du point dur.
11. Articles obtenus à partir du mortier tel que défini selon l'une quelconque des revendications 1 à 8 qui présentent une résistance mécanique en compression à 24 heures d'au moins 30 MPa.
PCT/FR2001/001579 2000-05-29 2001-05-22 Mortier phosphomagnesien et procede d'obtention de ce mortier WO2001092181A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/296,790 US6805740B2 (en) 2000-05-29 2001-05-22 Phosphomagnesium mortar and method for obtaining same
MXPA02011713A MXPA02011713A (es) 2000-05-29 2001-05-22 Mortero de fosfomagnesio y metodo para la obtencion del mismo.
CA002407711A CA2407711A1 (fr) 2000-05-29 2001-05-22 Mortier phosphomagnesien et procede d'obtention de ce mortier
AU2001264000A AU2001264000A1 (en) 2000-05-29 2001-05-22 Phosphomagnesium mortar and method for obtaining same
EP01938304A EP1289906A1 (fr) 2000-05-29 2001-05-22 Mortier phosphomagnesien et procede d'obtention de ce mortier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0006836A FR2809391B1 (fr) 2000-05-29 2000-05-29 Nouveau mortier phosphomagnesien, procede d'obtention de ce mortier
FR00/06836 2000-05-29

Publications (1)

Publication Number Publication Date
WO2001092181A1 true WO2001092181A1 (fr) 2001-12-06

Family

ID=8850715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/001579 WO2001092181A1 (fr) 2000-05-29 2001-05-22 Mortier phosphomagnesien et procede d'obtention de ce mortier

Country Status (7)

Country Link
US (1) US6805740B2 (fr)
EP (1) EP1289906A1 (fr)
AU (1) AU2001264000A1 (fr)
CA (1) CA2407711A1 (fr)
FR (1) FR2809391B1 (fr)
MX (1) MXPA02011713A (fr)
WO (1) WO2001092181A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10112915B2 (en) 2015-02-02 2018-10-30 Forma Therapeutics, Inc. 3-aryl bicyclic [4,5,0] hydroxamic acids as HDAC inhibitors

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0130697D0 (en) * 2001-12-21 2002-02-06 Placoplatre S A Plasterboard
EP2763847A4 (fr) 2011-10-07 2015-08-19 Boral Ip Holdings Australia Pty Ltd Composites de polymère inorganique/polymère organique et procédés pour les préparer
US8864901B2 (en) 2011-11-30 2014-10-21 Boral Ip Holdings (Australia) Pty Limited Calcium sulfoaluminate cement-containing inorganic polymer compositions and methods of making same
FR3003252B1 (fr) * 2013-03-13 2015-04-17 Commissariat Energie Atomique Liant et son utilisation pour le conditionnement de dechets contenant de l'aluminium metallique

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262981A2 (fr) * 1986-10-03 1988-04-06 Redland Technologies Limited Procédé de fabrication des compositions cimenteuses
EP0275609A1 (fr) * 1987-01-23 1988-07-27 T&N Materials Research Limited Fabrication d'articles façonnés à partir de poudre réfractaire
US5322389A (en) * 1993-03-04 1994-06-21 Conversion Systems, Inc. Method for transporting a cementitious mixture to an underground space
EP0661242A1 (fr) * 1993-12-31 1995-07-05 Rhone-Poulenc Chimie Préparation de ciments phosphomagnésiens
DE19605701A1 (de) * 1996-02-16 1997-09-25 Strotmann Rochus Fließ-, streich- und spachtelfähige Kalkmassen und Verfahren zu deren Herstellung
FR2764285A1 (fr) * 1997-06-10 1998-12-11 Rhodia Chimie Sa Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisation pour la preparation de mortiers

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4394174A (en) * 1982-06-01 1983-07-19 E. I. Du Pont De Nemours & Co. Phosphate cement and mortar
FR2742142B1 (fr) * 1995-12-08 1998-01-16 Rhone Poulenc Chimie Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisation pour la preparation de mortiers
FR2749007B1 (fr) * 1996-05-24 1998-08-14 Rhone Poulenc Chimie Nouvelle composition de ciment phosphomagnesien comprenant un polymere sous forme de particules
FR2809724B1 (fr) * 2000-06-05 2003-05-09 Rhodia Chimie Sa Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0262981A2 (fr) * 1986-10-03 1988-04-06 Redland Technologies Limited Procédé de fabrication des compositions cimenteuses
EP0275609A1 (fr) * 1987-01-23 1988-07-27 T&N Materials Research Limited Fabrication d'articles façonnés à partir de poudre réfractaire
US5322389A (en) * 1993-03-04 1994-06-21 Conversion Systems, Inc. Method for transporting a cementitious mixture to an underground space
EP0661242A1 (fr) * 1993-12-31 1995-07-05 Rhone-Poulenc Chimie Préparation de ciments phosphomagnésiens
DE19605701A1 (de) * 1996-02-16 1997-09-25 Strotmann Rochus Fließ-, streich- und spachtelfähige Kalkmassen und Verfahren zu deren Herstellung
FR2764285A1 (fr) * 1997-06-10 1998-12-11 Rhodia Chimie Sa Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisation pour la preparation de mortiers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10112915B2 (en) 2015-02-02 2018-10-30 Forma Therapeutics, Inc. 3-aryl bicyclic [4,5,0] hydroxamic acids as HDAC inhibitors

Also Published As

Publication number Publication date
CA2407711A1 (fr) 2001-12-06
FR2809391B1 (fr) 2003-05-09
US20030140821A1 (en) 2003-07-31
EP1289906A1 (fr) 2003-03-12
MXPA02011713A (es) 2003-03-27
US6805740B2 (en) 2004-10-19
AU2001264000A1 (en) 2001-12-11
FR2809391A1 (fr) 2001-11-30

Similar Documents

Publication Publication Date Title
EP0865416B1 (fr) Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisaton pour la preparation de mortiers
BE1017180A3 (fr) Materiaux cimentaires comprenant un laitier d'acier inoxydable et un geopolymere.
EP0661242B1 (fr) Préparation de ciments phosphomagnésiens
EP1263690B1 (fr) Composition de beton ultra haute performance resistant au feu
EP3458426A1 (fr) Liant a base de derives d'aluminosilicate de calcium pour materiaux de construction.
WO2011020975A2 (fr) Ciment geopolymerique et son utilisation
EP0934915A1 (fr) Béton très haute performance, autonivelant, son procédé de preparation et son utilisation
EP3966179A1 (fr) Composition de liant pour materiau de construction
WO2012001292A1 (fr) Beton permeable
FR2809724A1 (fr) Nouveau liant hydraulique phosphomagnesien, et mortier obtenu a partir de ce liant
WO2001092181A1 (fr) Mortier phosphomagnesien et procede d'obtention de ce mortier
CN108290798A (zh) 疏水混凝土混合物
FR2764285A1 (fr) Nouvelle phase liante pour ciments phosphomagnesiens et leur utilisation pour la preparation de mortiers
EP1019333A1 (fr) Suspension aqueuse a base de polysulfate d'aluminium alcalin, son procede de preparation et son utilisation dans le domaine des materiaux de construction
CN107285776A (zh) 球墨铸铁扇形浇注包用耐火涂料及其制备方法
FR3096366A1 (fr) Composition pour la formation de composite a matrice geopolymere, procede de fabrication de ce composite et ses utilisations
EP0691314B1 (fr) Ciments phosphomagnesiens comprenant des polysaccharides, des protéines végétales et leur mode de préparation
FR2589854A1 (fr) Compositions pour refractaires monolithiques contenant un agregat refractaire basique et un phosphate peu soluble
CN114477864B (zh) 一种透水路面砖及其制备方法
CN117125955A (zh) 一种应用于乳化沥青稀浆封层的快硬早强材料及制备方法
CA3162831A1 (fr) Composition cimentaire pour la protection de surfaces contre la (bio)corrosion
JP2009107869A (ja) 軽量気泡コンクリートの製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001938304

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2407711

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 10296790

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: PA/a/2002/011713

Country of ref document: MX

WWP Wipo information: published in national office

Ref document number: 2001938304

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2001938304

Country of ref document: EP