WO2012001292A1 - Beton permeable - Google Patents

Beton permeable Download PDF

Info

Publication number
WO2012001292A1
WO2012001292A1 PCT/FR2011/051499 FR2011051499W WO2012001292A1 WO 2012001292 A1 WO2012001292 A1 WO 2012001292A1 FR 2011051499 W FR2011051499 W FR 2011051499W WO 2012001292 A1 WO2012001292 A1 WO 2012001292A1
Authority
WO
WIPO (PCT)
Prior art keywords
permeable concrete
concrete
liters
water
permeable
Prior art date
Application number
PCT/FR2011/051499
Other languages
English (en)
Inventor
Bruno Thibaut
Fabien Perez
Christian Blachier
Original Assignee
Lafarge
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lafarge filed Critical Lafarge
Publication of WO2012001292A1 publication Critical patent/WO2012001292A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00068Mortar or concrete mixtures with an unusual water/cement ratio
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00284Materials permeable to liquids
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0075Uses not provided for elsewhere in C04B2111/00 for road construction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Definitions

  • the invention relates to a permeable concrete and a method of manufacturing such a permeable concrete.
  • a permeable or draining concrete is a concrete whose porosity, or volume of voids, is high enough for water to flow through the voids.
  • a permeable concrete usually has few fine aggregates and a significant interconnection between the concrete voids.
  • permeable concrete examples include the manufacture of slabs for parking areas, for low traffic areas, the construction of residential streets, pedestrian crossing areas, etc.
  • a permeable concrete element is generally made by mixing the aggregates with the cement paste, filling a form with the mixture and applying pressure on the upper surface of the concrete element to obtain a suitable filling of the formwork and a flat upper surface.
  • the application of a pressure on the permeable concrete is generally called compaction of the concrete and can be carried out manually or mechanically, for example by means of a shovel, a roller, a paver, etc.
  • a disadvantage is that compaction can lead to settling of the permeable concrete and thus to a reduction in the porosity of the permeable concrete which depends on the applied pressure.
  • One difficulty is that it can be difficult to control the energy with which compaction is achieved and that it may therefore be difficult to predict in advance the porosity that will be obtained after compaction for the hardened permeable concrete. In particular, it may be difficult to make permeable concretes having a porosity greater than 25%.
  • the permeable concrete is generally firm, that is to say that the slump of the concrete measured according to the EN 12350-2 standard is generally less than a few millimeters. It can then be difficult to pour the permeable concrete on the site of use of the concrete. In addition, it may be difficult to drain the permeable concrete from the tipper truck body carrying the permeable concrete and to distribute the permeable concrete in a formwork or slab.
  • the present invention relates to a permeable concrete comprising per cubic meter of fresh permeable concrete:
  • the invention offers one of the following advantages:
  • the rheological behavior of the permeable concrete according to the invention is close to that of a composition comprising only aggregates from which it follows that the concrete obtained is not very compressible, can be set up easily and flows easily from the bucket of a truck-top;
  • the porosity of the permeable concrete obtained is substantially independent of the energy used during compacting of the fresh permeable concrete and depends only on the concrete formulation;
  • the compacting of the permeable concrete can be carried out with a reduced energy
  • a concrete element having a porosity greater than 25% can be produced in a simple manner, in particular without taking particular care with regard to the pressure used during compaction.
  • the invention has the advantage of being able to be used in the construction industry, the chemical industry (adjuvants), the construction markets (building, civil engineering or prefabrication plant), the construction industry or the construction industry. cement industry.
  • hydroaulic binder a powdery material which, mixed with water, forms a paste which makes hardens as a result of hydration reactions, and after curing, retains its strength and stability even under water.
  • fly ash as defined in the "Cement” standard
  • D90 also D v 90, is the 90 th percentile of the grain size volume distribution, ie 90% of the grains are smaller than D90 and 10% are larger than D90.
  • the porosity of a concrete is expressed as a percentage of the volume of the final hardened concrete.
  • the porosity of the permeable concrete in the cured state is 28% to 35%, preferably 30% to 35%, more preferably strictly greater than 30%.
  • said mixture (the hydraulic binder paste) has a yield point of 50 to 100 Pa, preferably
  • the slump of the permeable concrete measured according to the EN 12350-2 standard is greater than 170 mm.
  • the granulate is usually a granulate of silica or limestone or a mixture of different types of aggregates. It can be rolled or crushed aggregates.
  • the diameter of the aggregates is 4 mm to 14 mm, preferably 6 mm to 10 mm.
  • the concrete may preferably comprise less than 10% of aggregates whose diameter is between 2 mm and 6.3 mm.
  • the hydraulic binder may comprise cement, especially Portland cement, and particulate material (or mineral addition) having a D90 of less than 200 ⁇ , or a mixture of particulate materials.
  • the mineral additions may include pozzolanic materials or non-pozzolanic materials or a mixture thereof.
  • Suitable pozzolanic materials include fumed silica, also known as micro-silica, which is a by-product of the production of silicon or ferrosilicon alloys. It is known as a pozzolanic reactive material. Its main constituent is amorphous silicon dioxide.
  • the individual particles generally have a diameter of about 5 to 10 nm. The individual particles agglomerate to form agglomerates of 0.1 to 1 ⁇ , and then can agglomerate together in agglomerates of 20 to 30 ⁇ .
  • the silica fumes generally have a BET surface area of 10 - 30 m 2 / g.
  • pozzolanic materials include materials rich in aluminosilicate such as metakaolin and natural pozzolans with volcanic, sedimentary, or diagenic origins.
  • Suitable non-pozzolanic materials include materials comprising calcium carbonate (eg ground or precipitated calcium carbonate), preferably ground calcium carbonate.
  • Ground calcium carbonate may, for example, be the Durcal ® 1 (OMYA, France).
  • the non-pozzolanic materials preferably have an average particle size of less than 5 ⁇ , for example from 1 to 4 ⁇ .
  • Non-pozzolanic materials may be ground quartz, for example C800 which is a substantially non-pozzolanic silica filler supplied by Sifraco, France.
  • the preferred BET surface area (determined by known methods) of calcium carbonate or crushed quartz is 2 - 10 m 2 / g, generally less than 8 m 2 / g, for example from 4 to 7 m 2 / g, preferably less than 6 m 2 / g.
  • Precipitated calcium carbonate is also suitable as a non-pozzolanic material.
  • Individual particles generally have a size (primary) of the order of 20 nm.
  • the individual particles agglomerate into agglomerates having a (secondary) size of about 0.1 to 1 ⁇ . Agglomerates themselves form clusters having a size (ternary) greater than 1 ⁇ .
  • a single non-pozzolanic material or a mixture of non-pozzolanic materials may be used, for example ground calcium carbonate, ground quartz or precipitated calcium carbonate or a mixture thereof.
  • a mixture of pozzolanic materials or a mixture of pozzolanic and non-pozzolanic materials can also be used.
  • Suitable cements are the Portland cements described in "Lea's Chemistry of Concrete and Concrete.”
  • Portland cements include slag cements, pozzolana cements, fly ash cements, shale cements, limestone cements, and cements.
  • composite cements This is for example a CEM I, CEM II, CEM III, CEM IV or CEM V type cement according to the "Cement" NF EN 197-1 standard
  • a preferred cement for the invention is the CEM I.
  • the permeable concrete according to the invention may comprise a plasticizer (or water reducer) or a superplasticizer.
  • the concrete comprises a superplasticizer.
  • plasticizer / water reducer is meant according to the present invention an adjuvant which, without modifying the consistency, makes it possible to reduce the water content of a given concrete, or which, without modifying the water content , increases the sagging / spreading, or produces both effects at the same time.
  • the EN 934-2 standard specifies that the water reduction must be greater than 5%.
  • the water reducers may, for example, be based on lignosulfonic acids, hydroxycarboxylic acids or treated carbohydrates and other specialized organic compounds, for example glycerol, polyvinyl alcohol, sodium alumino methyl-siliconate, sulfanilic acid and casein.
  • superplasticizer or “superfluidifier” or “super water reducer” or “high water reducer” is meant according to the present invention a water reducer which reduces by more than 12% the amount of water necessary for the realization of a concrete (standard EN 934-2).
  • a superplasticizer has a fluidizing action since, for the same quantity of water, the workability of the concrete is increased in the presence of the superplasticizer.
  • Superplasticizers have been broadly classified into four groups: sulfonated naphthalene formaldehyde condensate (SNF) (usually a sodium salt); or sulphonated formaldehyde melamine condensate (SMF); modified lignosulfonates (MLS); and others.
  • SNF sulfonated naphthalene formaldehyde condensate
  • SMF sulphonated formaldehyde melamine condensate
  • MLS modified lignosulfonates
  • An example of a new-generation superplasticizer includes compounds comprising a carbon chain comprising heteroatoms and having at one end one or more phosphate groups.
  • Another example of a new generation superplasticizer includes polycarboxylic compounds such as polyacrylates.
  • the superplasticizer is preferably a new generation of superplasticizer, for example a copolymer comprising polyethylene glycol as a graft and carboxylic functions in the main chain such as a polycarboxylic ether.
  • Sodium polysulphonate polycarboxylate and sodium polyacrylates may also be used.
  • the superplasticizer can be used as a calcium salt rather than a sodium salt.
  • the concrete may further comprise a superplasticizer comprising a polymer comprising a main chain to which more than three side chains are connected.
  • the mass percentage of solids content of the plasticizer or superplasticizer ranges from 0.1 to 0.3%, more preferably from 0.1 to 0.2%, relative to the weight of hydraulic binder (the hydraulic binder). including cement and any mineral additions).
  • adjuvants may be added to the concrete according to the invention, for example an antifoaming agent (for example, polydimethylsiloxane). It may also be silicones in the form of a solution, a solid or preferably in the form of a resin, an oil or an emulsion, preferably in water.
  • an antifoaming agent for example, polydimethylsiloxane
  • silicones in the form of a solution, a solid or preferably in the form of a resin, an oil or an emulsion, preferably in water.
  • Particularly suitable silicones include the characteristic groups (RSiOOS) and (R 2 SiO).
  • the R radicals which may be the same or different, are preferably hydrogen or an alkyl group of 1 to 8 carbon atoms, the methyl group being the preferred group.
  • the number of characteristic groups is preferably from 30 to 120.
  • the amount of such an agent in the concrete is generally at most 5 parts by weight relative to the cement.
  • the concrete according to the invention may also include anti-efflorescence agents (to control primary and / or secondary efflorescence).
  • anti-efflorescence agents include formulations comprising a water-repellent acidic compound, for example a liquid fatty acid mixture (for example a tall oil fatty acid which may comprise a water insoluble fatty acid, a rosinic acid or a mixture thereof).
  • a water-repellent acidic compound for example a liquid fatty acid mixture (for example a tall oil fatty acid which may comprise a water insoluble fatty acid, a rosinic acid or a mixture thereof).
  • a water-repellent acidic compound for example a liquid fatty acid mixture (for example a tall oil fatty acid which may comprise a water insoluble fatty acid, a rosinic acid or a mixture thereof).
  • a water-repellent acidic compound for example a liquid fatty acid mixture (for example a tall oil fatty acid which may comprise a water insoluble fatty acid
  • the anti-efflorescence agents controlling the primary and secondary efflorescence include compositions comprising a water-repellent acidic compound, generally selected from fatty acids, rosin acids and mixtures thereof and an aqueous dispersion of calcium stearate.
  • a water-repellent acidic compound generally selected from fatty acids, rosin acids and mixtures thereof
  • calcium stearate dispersion generally means a dispersion of calcium stearate, calcium palmitate, calcium myristate or a combination of these.
  • Silicates for example alkali silicates, can also be included in the concrete according to the invention to fight against efflorescence. Similar products can be used as surface treatments on hardened concrete according to the invention.
  • the concrete according to the invention may comprise a viscosity agent and / or a flow threshold modifier (generally to increase the viscosity and / or the yield point).
  • a viscosity agent and / or a flow threshold modifier (generally to increase the viscosity and / or the yield point).
  • Such agents include:
  • cellulose derivatives for example water-soluble cellulose ethers, such as the ethers of carboxymethyl, methyl, ethyl, hydroxyethyl and sodium hydroxypropyl;
  • a mixture of these agents can be used.
  • the permeable concrete according to the invention may comprise an activating agent which makes it possible to accelerate the hydration reactions of the vitreous materials.
  • activating agents include sodium and / or calcium salts.
  • the permeable concrete according to the invention may comprise an accelerator and / or a retarder.
  • Permeable concrete may include per cubic meter of fresh permeable concrete:
  • Permeable concrete may include per cubic meter of fresh permeable concrete:
  • the hydraulic binder paste preferably has a Vicat setting time of less than 24 hours, preferably less than 10 hours.
  • Permeable concrete can be prepared by known methods, including mixing of solid components and water, setting up and then curing.
  • the method of manufacturing a permeable concrete according to the invention may comprise the mixture of the constituents of the permeable concrete, the placement of the permeable concrete, in particular the casting in a mold or a formwork, and the compaction permeable concrete, the placing and compacting steps being able to be performed at least partly simultaneously.
  • the compaction of the permeable concrete can be achieved by any type of tool, for example a rule of leveling or a roll, in a manual manner preferably.
  • the pressure applied to the permeable concrete during a compacting operation is 0 to 0.2 MPa, the value of 0.2 MPa corresponding to approximately the pressure exerted by a man weighing 100 kg on the concrete.
  • the compressive strength of the permeable concrete after 28 days is 3 to 15 MPa, preferably 6 to 13 MPa.
  • the density of the concrete according to the invention in the cured state is from 1.5 to 1.9, preferably from 1.7 to 1.8, for aggregates whose density varies from 2.5 to 2.7.
  • the density of the permeable concrete according to the invention may be lower for lighter aggregates.
  • the invention further relates to an element for the field of construction, made using a concrete as defined above. Examples, illustrating the invention without limiting its scope, will be described in connection with the single figure showing the evolution of the apparent volume of a permeable concrete sample according to the invention as a function of the number of compaction operations applied. to the sample by a gyratory shear press.
  • the BL 200 TM material was a calcareous filling material having a D90 of less than 50 ⁇ .
  • Portland cement Saint Pierre La Cour site
  • It was a cement of the type CEM I 52, 5N CE CP2.
  • CHRYSOFluid Premia 196 TM was a superplasticizer of Polyoxyethylene Polycarboxylate (PCP) type.
  • CHRYSOPIast 209 TM was a lignosulfonate plasticizer.
  • the D90 for the various powders was obtained from the particle size curves of the curves determined by a Malvern MS2000 laser granulometer. The measurement was carried out in a suitable medium (for example, in an aqueous medium); the particle size to be 0.02 ⁇ m to 2 mm.
  • the light source consisted of a red He-Ne laser (632 nm) and a blue diode (466 nm).
  • the optical model was that of Fraunhofer, the calculation matrix was of polydisperse type.
  • a background measurement was first performed with a pump speed of 2000 rpm, an agitator speed of 800 rpm and a noise measurement over 10 s, in the absence of ultrasound.
  • the luminous intensity of the laser has been verified for to be at least 80%, and a decreasing exponential curve was obtained for the background noise. If this was not the case, the lenses of the cell had to be cleaned.
  • a first measurement on the sample was carried out with the following parameters: pump speed of 2000 rpm, agitator speed of 800 rpm, absence of ultrasound, obscuration limit between 10 and 20%.
  • the sample was introduced to have a darkness slightly above 10%. After darkening stabilization, the measurement was made with a time between immersion and the measurement set at 10 s. The measurement time was 30 s (30,000 diffraction images analyzed). In the granulogram obtained, it had to be taken into account that part of the population of the powder could be agglomerated.
  • a second measurement (without draining the tank) was performed with ultrasound.
  • the pump speed was raised to 2500 rpm, agitation at 1000 rpm, ultrasound emitted at 100% (30 watts).
  • This diet was maintained for 3 minutes, then the initial parameters were returned: pump speed 2000 rpm, stirrer speed 800 rpm, absence of ultrasound.
  • pump speed 2000 rpm was raised to 2500 rpm
  • stirrer speed 800 rpm was maintained for 3 minutes, then the initial parameters were returned: pump speed 2000 rpm, stirrer speed 800 rpm, absence of ultrasound.
  • 10 s to evacuate any air bubbles
  • a measurement of 30 s (30,000 images analyzed) was made. This second measurement corresponded to an ultrasonic dispersion deagglomerate powder.
  • the permeable concrete according to the invention was made with a Zyclos type mixer (50 liters). The entire operation was performed at 20 ° C.
  • the method of preparation included the following steps:
  • the flow threshold of the paste of the hydraulic binder was measured with a Physica MCR301 rheometer marketed by Anton Paar.
  • a sample of hydraulic binder paste was placed in the rheometer bowl.
  • a motor shaft with four blades was immersed in the binder paste.
  • the shaft rotated at a speed of 0.1 rpm for 120 s.
  • the resistant torque exerted by the binder paste on the shaft was measured. From this pair the stress applied to the binder paste was determined.
  • the evolution of the stress has been obtained over time. The stress increased first before reaching a pseudo plateau corresponding to the value of the flow threshold.
  • the flow threshold is indicated in Pascal.
  • the principle of the spreading measurement is to fill a truncated cone of spreading measurement with the paste of the hydraulic binder (in the absence of chippings), to test and then to release the dough from the truncated cone of measurement. spreading to determine the surface of the disk obtained when the paste of the hydraulic binder has finished spreading.
  • the truncated cone of spreading measurement has the following dimensions:
  • a measure of porosity could be performed on fresh concrete or hardened concrete.
  • the method consisted in filling with fresh concrete a container of known internal volume (preferably cylindrical and non-deformable), to weigh all, to remove from the measurement result the mass represented by the container.
  • the density of the fresh concrete corresponded to the ratio between the measured mass of concrete and the internal volume of the container.
  • the compactness of the fresh concrete corresponded to the ratio between the density of the fresh concrete and the theoretical density without porosity of the concrete. It was a value between 0 and 1.
  • the porosity was equal to the unit minus the compactness (1 -compactness).
  • the method involved the use of a 16 cm diameter and 32 cm high hardened cylindrical test specimen which was placed in a vessel whose internal volume corresponded to the sample size. The entire internal volume of the container was filled with water, the sample then being completely immersed in water. The porosity corresponded to the ratio between the volume of water added and the internal volume of the container.
  • a sample of fresh permeable concrete was placed in a cylindrical vessel.
  • the sample initially had a total volume, or apparent volume, of 2.4 to 3 liters.
  • a gyratory shear press comprised a rotatably driven platen and exerted pressure on the upper surface of the sample.
  • the rotation speed of the plate was 5 rpm.
  • the angle of inclination of the plate with respect to a horizontal plane was about 2 degrees.
  • the average pressure exerted by the press was 0.1 MPa.
  • the evolution over time of the total volume, or apparent volume, of the permeable concrete was measured according to the number of cycles of rotation of the press.
  • the compressibility of concrete is expressed in relation to the variation observed on the apparent volume of the concrete (relative or absolute variation).
  • a low compressible concrete has a relatively low variation in apparent volume.
  • a compressible concrete has a significant variation in the apparent volume.
  • a reference permeable concrete was produced according to the following formulation (1):
  • FIG. 1 represented the curve C1 of evolution of the apparent volume of the permeable concrete of reference according to the formulation (1) and the curve C2 of evolution of the apparent volume of the permeable concrete according to the formulation (2) as a function of the number of cycles of rotation of the gyratory shear press.
  • the variation in the apparent volume of the permeable concrete according to the formulation (2) was much less than the variation in the apparent volume of the reference permeable concrete according to the formulation (2).
  • the permeable concrete according to the formulation (2) was not very compressible.
  • the hydraulic binder included cement and BL 200 TM mineral additive.
  • the volume of hydraulic binder paste was 160 liters per cubic meter of fresh concrete.
  • the binder paste was made by mixing the cement, BL 200 TM filler material, superplasticizer and water.
  • the flow threshold and the spreading of the hydraulic binder paste were measured according to the methods described above.
  • a permeable concrete was made by mixing the paste of the hydraulic binder and the aggregates in a concrete mixer and a cylindrical specimen of 1 1 cm in diameter and 22 cm in height was made. The free surface of the permeable concrete has been equalized to the rule. A measure of the compressibility of the concrete was carried out as it was described above. The formwork of IL'eprouvette was removed after 3 days. The porosity of the concrete in the cured state has been measured. A visual observation of the presence of drips of the hydraulic binder paste on the underside of the test piece was performed.
  • the threshold of flow of the hydraulic binder paste was less than 20 Pa (corresponding to a spread greater than 100 mm)
  • the paste of the hydraulic binder tended to flow to the bottom of the formwork, which was undesirable since the permeability of the concrete element was therefore reduced.
  • the flow threshold of the cement paste was greater than 100 Pa (corresponding to a spread of less than 60 mm)
  • the concrete was compressible, which was undesirable.
  • the flow threshold of the cement paste varied from 20 Pa to 100 Pa (corresponding to a spread ranging from 60 mm to 100 mm)
  • the final porosity of the concrete in the cured state remained substantially constant (and from order of 30%) regardless of the energy used to compact the concrete.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

La présente invention se rapporte à un béton perméable comprenant, par mètre cube de béton perméable frais : de 80 à 160 litres d'un mélange d'un liant hydraulique et d'eau, le rapport entre la masse d'eau et la masse de liant hydraulique étant de 0,25 à 0,4, lemélange ayant un seuil d'écoulement de 20 à 100 Pa; et de 450 à 700 litres de granulats dont le diamètre est de 2 mm à 32 mm, le béton perméable ayant à l'état durci une porosité de 25 % à 35 %.

Description

BETON PERMEABLE
L'invention se rapporte à un béton perméable et un procédé de fabrication d'un tel béton perméable.
Un béton perméable ou drainant est un béton dont la porosité, ou volume de vides, est suffisamment élevée pour que l'eau puisse s'écouler au travers des vides. Un béton perméable a généralement peu de granulats fins et une interconnexion importante entre les vides du béton.
Des exemples d'application du béton perméable correspondent à la fabrication de dalles pour zones de parking, pour zones à faible trafic, à la réalisation de rues de zones résidentielles, de zones de passages pour piétons, etc.
Un élément en béton perméable est généralement réalisé en mélangeant les granulats à la pâte de ciment, en remplissant un coffrage avec le mélange et en appliquant une pression sur la surface supérieure de l'élément en béton pour obtenir un remplissage convenable du coffrage ainsi qu'une surface supérieure plane. L'application d'une pression sur le béton perméable est généralement appelée compactage du béton et peut être réalisée de façon manuelle ou mécanisée, par exemple au moyen d'une pelle, d'un rouleau, d'un paveur, etc.
Un inconvénient est que le compactage peut entraîner un tassement du béton perméable et donc à une réduction de la porosité du béton perméable qui dépend de la pression appliquée. Une difficulté est qu'il peut être difficile de contrôler l'énergie avec laquelle le compactage est réalisé et qu'il peut donc être difficile de prévoir à l'avance la porosité qui sera obtenue après compactage pour le béton perméable durci. En particulier, il peut être difficile de réaliser des bétons perméables ayant une porosité supérieure à 25 %.
Un autre inconvénient est que le béton perméable est généralement ferme, c'est-à-dire que l'affaissement du béton mesuré selon la norme EN 12350-2 est généralement inférieur à quelques millimètres. Il peut alors être difficile de couler le béton perméable sur le site d'utilisation du béton. En outre, il peut être difficile de faire s'écouler le béton perméable de la benne du camion-toupie transportant le béton perméable et de répartir le béton perméable dans un coffrage ou sur une dalle.
Il existe donc un besoin d'une formulation d'un béton perméable dont la mise en place est facilitée et permettant la fabrication d'un élément en béton perméable pour lequel la porosité du béton perméable obtenue après une opération de compactage est peu sensible à l'énergie utilisée pour réaliser l'opération de compactage.
Dans ce but, la présente invention se rapporte à un béton perméable comprenant par mètre cube de béton perméable frais :
de 80 à 160 litres, de préférence de 120 à 160 litres, plus préférentiellement de 140 à 160 litres, d'un mélange d'un liant hydraulique et d'eau, ou pâte de liant hydraulique, le rapport entre la masse d'eau et la masse de liant hydraulique étant de 0,25 à 0,4, ledit mélange ayant un seuil d'écoulement de 20 à 100 Pa ; et
de 450 à 700 litres, de préférence de 500 à 620 litres, plus préférentiellement de 520 à 600 litres, de granulats dont le diamètre est de 2 mm à 32 mm,
le béton perméable ayant à l'état durci une porosité de 25 % à 35 %. L'invention offre l'un des avantages suivants :
-le comportement rhéologique du béton perméable selon l'invention est proche de celui d'une composition ne comprenant que des granulats d'où il résulte que le béton obtenu n'est pas très compressible, peut être mis en place facilement et s'écoule facilement de la benne d'un camion-toupie ;
-la porosité du béton perméable obtenu est sensiblement indépendante de l'énergie utilisée lors du compactage du béton perméable frais et ne dépend que de la formulation du béton ;
-le compactage du béton perméable peut être réalisé avec une énergie réduite ; et
-un élément en béton ayant une porosité supérieure à 25 % peut être réalisé de façon simple, en particulier sans prendre de précautions particulières quant à la pression utilisée lors du compactage.
Enfin l'invention a pour avantage de pouvoir être utilisée dans l'industrie du bâtiment, l'industrie chimique (adjuvantiers), les marchés de la construction (bâtiment, génie civil ou usine de préfabrication), l'industrie de la construction ou l'industrie cimentière.
D'autres avantages et caractéristiques de l'invention apparaîtront clairement à la lecture de la description et des exemples donnés à titre purement illustratifs et non limitatifs qui vont suivre.
Par l'expression « liant hydraulique », on entend selon la présente invention un matériau pulvérulent qui, gâché avec de l'eau, forme une pâte qui fait prise et durcit par suite de réactions d'hydratation, et qui après durcissement, conserve sa résistance et sa stabilité même sous l'eau.
Par l'expression « additions minérales » on entend selon la présente invention un ou plusieurs matériaux particulaires ayant un D90 inférieur à 200 μηη. Des exemples sont des cendres volantes (telles que définies dans la norme « Ciment »
NF EN 197-1 paragraphe 5.2.4 ou telles que définies dans la norme « Béton » EN
450), des matériaux pouzzolaniques (tels que définis dans la norme « Ciment » NF
EN 197-1 paragraphe 5.2.3), des fumées de silice (telles que définies dans la norme
« Ciment » NF EN 197-1 paragraphe 5.2.7 ou telles que définies dans la norme « Béton » prEN 13263 :1998 ou NF P 18-502), des laitiers (tels que définis dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.2 ou tels que définis dans la norme
« Béton » NF P 18-506), des schistes calcinés (tels que définis dans la norme
« Ciment » NF EN 197-1 paragraphe 5.2.5), des additions calcaires (telles que définis dans la norme « Ciment » NF EN 197-1 paragraphe 5.2.6 ou telles que définies dans la norme « Béton » NF P 18-508) et des additions siliceuses (telles que définies dans la norme « Béton) NF P 18-509) ou leurs mélanges.
Le D90, également noté Dv90, correspond au 90eme centile de la distribution en volume de taille des grains, c'est-à-dire que 90 % des grains ont une taille inférieure au D90 et 10 % ont une taille supérieure au D90.
Dans la suite de la description, sauf indication contraire, les proportions indiquées par des pourcentages correspondent à des proportions massiques.
Toutefois, la porosité d'un béton est exprimée par un pourcentage par rapport au volume du béton durci final.
Selon un exemple de réalisation de la présente invention, la porosité du béton perméable à l'état durci est de 28 % à 35 %, de préférence de 30 % à 35 %, plus préférentiellement strictement supérieure à 30 %.
Selon un exemple de réalisation de la présente invention, ledit mélange (la pâte de liant hydraulique) a un seuil d'écoulement de 50 à 100 Pa, de préférence de
50 à 80 Pa.
Selon un exemple de réalisation de la présente invention, l'affaissement du béton perméable mesuré selon la norme EN 12350-2 est supérieur à 170 mm.
Le granulat est généralement un granulat de silice ou de calcaire ou un mélange de différents types de granulats. Il peut s'agir de granulats roulés ou concassés.
Selon un exemple de réalisation de la présente invention, le diamètre des granulats est de 4 mm à 14 mm, de préférence de 6 mm à 10 mm. Le béton peut comprendre de préférence moins de 10 % de granulats dont le diamètre est compris entre 2 mm et 6,3 mm.
Le liant hydraulique peut comprendre du ciment, notamment du ciment Portland, et un matériau particulaire (ou addition minérale) ayant un D90 inférieur à 200 μηη, ou un mélange de matériaux particulaires. Les additions minérales peuvent comprendre des matériaux pouzzolaniques ou des matériaux non pouzzolaniques ou un mélange de ceux-ci.
Des matériaux pouzzolaniques adaptés comprennent les fumées de silice, également connues sous le nom de micro-silice, qui sont un sous-produit de la production de silicium ou d'alliages de ferrosilicium. Il est connu comme un matériau pouzzolanique réactif. Son principal constituant est le dioxyde de silicium amorphe. Les particules individuelles ont généralement un diamètre d'environ 5 à 10 nm. Les particules individuelles s'agglomèrent pour former des agglomérats de 0,1 à 1 μηη, et puis peuvent s'agglomérer ensemble en agglomérats de 20 à 30 μηη. Les fumées de silice ont généralement une surface spécifique BET de 10 - 30 m2/g.
D'autres matériaux pouzzolaniques comprennent des matériaux riches en aluminosilicate tels que le métakaolin et les pouzzolanes naturelles ayant des origines volcaniques, sédimentaires, ou diagéniques.
Des matériaux non-pouzzolaniques adaptés comprennent des matériaux comprenant du carbonate de calcium (par exemple du carbonate de calcium broyé ou précipité), de préférence un carbonate de calcium broyé. Le carbonate de calcium broyé peut, par exemple, être le Durcal® 1 (OMYA, France). Les matériaux non-pouzzolaniques ont de préférence une taille moyenne de particules inférieure à 5 μηη, par exemple de 1 à 4 μηη. Les matériaux non-pouzzolaniques peuvent être un quartz broyé, par exemple le C800 qui est un matériau de remplissage de silice sensiblement non-pouzzolanique fourni par Sifraco, France. La surface spécifique BET préférée (déterminée par des méthodes connues) du carbonate de calcium ou du quartz broyé est de 2 - 10 m2/g, généralement moins de 8 m2/g, par exemple de 4 à 7 m2/g, de préférence moins de 6 m2/g. Le carbonate de calcium précipité convient également comme matériau non-pouzzolanique. Les particules individuelles ont généralement une taille (primaire) de l'ordre de 20 nm. Les particules individuelles s'agglomèrent en agglomérats ayant une taille (secondaire) d'environ 0,1 à 1 μηη. Les agglomérats forment eux-mêmes des amas ayant une taille (ternaire) supérieure à 1 μηι.
Un seul matériau non-pouzzolanique ou un mélange de matériaux non- pouzzolaniques peut être utilisé, par exemple du carbonate de calcium broyé, du quartz broyé ou du carbonate de calcium précipité ou un mélange de ceux-ci. Un mélange de matériaux pouzzolaniques ou un mélange de matériaux pouzzolaniques et non-pouzzolaniques peuvent également être utilisés.
Des ciments qui conviennent sont les ciments Portland décrits dans l'ouvrage "Lea's Chemistry of Cernent and Concrète ». Les ciments Portland incluent les ciments de laitier, ciments de pouzzolane, ciments de cendres volantes, ciments de schistes brûlés, ciments de calcaire et les ciments composites. Il s'agit par exemple d'un ciment de type CEM I, CEM II, CEM III, CEM IV ou CEM V selon la norme « Ciment » NF EN 197-1. Un ciment préféré pour l'invention est le CEM I.
Le béton perméable selon l'invention peut comprendre un plastifiant (ou réducteur d'eau) ou un superplastifiant. De préférence, le béton comprend un superplastifiant.
Par l'expression « plastifiant/réducteur d'eau », on entend selon la présente invention un adjuvant qui, sans modifier la consistance, permet de réduire la teneur en eau d'un béton donné, ou qui, sans modifier la teneur en eau, en augmente l'affaissement/l'étalement, ou qui produit les deux effets en même temps. La norme EN 934-2 spécifie que la réduction d'eau doit être supérieure à 5 %. Les réducteurs d'eau peuvent, par exemple, être à base d'acides lignosulfoniques, d'acides hydroxycarboxyliques ou d'hydrates de carbone traités et d'autres composés organiques spécialisés, par exemple le glycérol, l'alcool polyvinylique, le sodium alumino-méthyl-siliconate, l'acide sulfanilique et la caséine.
Par l'expression « superplastifiant » ou « superfluidifiant » ou « super réducteur d'eau » ou « haut réducteur d'eau », on entend selon la présente invention un réducteur d'eau qui permet de réduire de plus de 12 % la quantité d'eau nécessaire à la réalisation d'un béton (norme EN 934-2). Un superplastifiant présente une action fluidifiante puisque, pour une même quantité d'eau, l'ouvrabilité du béton est augmentée en présence du superplastifiant. Les superplastifiants ont été classés de façon générale en quatre groupes : condensât de naphtalène formaldéhyde sulfoné (SNF) (généralement un sel de sodium) ; ou condensât de mélamine formaldéhyde sulfoné (SMF) ; des lignosulfonates modifiés (MLS) ; et autres. Un exemple de superplastifiant de nouvelle génération comprend des composés comprenant une chaîne carbonée comprenant des hétéroatomes et ayant à une extrémité un ou plusieurs groupes phosphate. Un autre exemple de superplastifiant de nouvelle génération comprend des composés polycarboxyliques tels que les polyacrylates. Le superplastifiant est de préférence une nouvelle génération de superplastifiant, par exemple un copolymère comprenant du polyéthylène glycol comme greffon et des fonctions carboxyliques dans la chaîne principale telle qu'un éther polycarboxylique. Des polysulphonates-polycarboxylate de sodium et des polyacrylates de sodium peuvent également être utilisés. Afin de réduire la quantité totale d'alcalins, le superplastifiant peut être utilisé comme un sel de calcium plutôt que d'un sel de sodium.
Le béton peut comprendre, en outre, un superplastifiant comprenant un polymère comprenant une chaîne principale à laquelle sont reliées plus de trois chaînes latérales.
De préférence, le pourcentage massique d'extrait sec du plastifiant ou de superplastifiant varie de 0,1 à 0,3 %, plus préférentiellement de 0,1 à 0,2 %, par rapport à la masse de liant hydraulique (le liant hydraulique comprenant le ciment et les éventuelles additions minérales).
D'autres adjuvants peuvent être ajoutés au béton selon l'invention, par exemple, un agent antimousse (par exemple, du polydiméthylsiloxane). Il peut s'agir également de silicones sous la forme d'une solution, d'un solide ou de préférence sous la forme d'une résine, d'une huile ou d'une émulsion, de préférence dans l'eau.
Des silicones plus particulièrement adaptées comprennent les groupes caractéristiques (RSiOo.s) et (R2SiO). Dans ces formules, les radicaux R, qui peuvent être identiques ou différents, sont de préférence l'hydrogène ou un groupe alkyle de 1 à 8 atomes de carbone, le groupe méthyle étant le groupe préféré. Le nombre de groupes caractéristiques est de préférence de 30 à 120. La quantité d'un tel agent dans le béton est généralement au plus de 5 parties par poids par rapport au ciment.
Le béton selon l'invention peut également inclure des agents anti- efflorescence (pour contrôler l'efflorescence primaire et/ou secondaire). Ces agents comprennent des formulations comprenant un composé acide hydrofuge, par exemple un mélange liquide d'acide gras (par exemple un acide gras de tall oil qui peut comprendre un acide gras insoluble dans l'eau, un acide rosinique ou un mélange de ceux-ci) pour l'efflorescence primaire et des mélanges aqueux comprenant une dispersion de stéarate de calcium (CSD) pour l'efflorescence secondaire. Les agents anti-efflorescence contrôlant l'efflorescence primaire et secondaire comprennent des compositions comprenant un composé acide hydrofuge, généralement choisi parmi les acides gras, les acides rosiniques et les mélanges de ceux-ci et une dispersion aqueuse de stéarate de calcium. Le terme dispersion de stéarate de calcium signifie généralement une dispersion de stéarate de calcium, de palmitate de calcium, de myristate de calcium ou une combinaison de ceux-ci. Des silicates, par exemple des silicates alcalins, peuvent également être inclus dans le béton selon l'invention pour lutter contre l'efflorescence. Des produits similaires peuvent être utilisés comme traitements de surface sur le béton durci selon l'invention.
Le béton selon l'invention peut comprendre un agent viscosant et/ou un agent de modification du seuil d'écoulement (généralement pour accroître la viscosité et/ou le seuil d'écoulement). De tels agents comprennent :
-les dérivés de cellulose, par exemple des éthers de cellulose solubles dans l'eau, tels que les éthers de carboxyméthyl, méthyl, éthyl, hydroxyéthyl et hydroxypropyl de sodium ;
-les alginates ;
-le xanthane, la carraghénine ou la gomme de guar ;
-le polyéthylène glycol et le propylène glycol ;
-l'alcool polyvinylique ; ou
-le polyacrylamide.
Un mélange de ces agents peut être utilisé.
Le béton perméable selon l'invention peut comprendre un agent activateur qui permet d'accélérer les réactions d'hydratation des matériaux vitreux. De tels agents comprennent des sels sodique et/ou calcique.
Le béton perméable selon l'invention peut comprendre un accélérateur et/ou un retardateur.
Le béton perméable peut comprendre par mètre cube de béton perméable frais :
de 35 litres à 95 litres, de préférence de 50 litres à 80 litres, plus préférentiellement de 60 litres à 70 litres, de ciment Portland ;
de 0 litre à 40 litres, de préférence de 0 litre à 20 litres, d'un matériau particulaire ayant un D90 inférieur à 200 μηη ;
de 0,10 kg à 0,9 kg, de préférence de 0,12 kg à 0,5 kg, d'extrait sec du superplastifiant ;
de 450 litres à 700 litres, de préférence de 500 litres à 620 litres, des granulats ; et
de 50 litres à 90 litres, de préférence de 50 litres à 80 litres, d'eau. Le béton perméable peut comprendre par mètre cube de béton perméable frais :
de 120 kg à 300 kg, de préférence de 170 kg à 250 kg, plus préférentiellement de 190 kg à 220 kg, de ciment Portland ; de 0 kg à 100 kg, de préférence de 0 kg à 50 kg, d'un matériau particulaire ayant un D90 inférieur à 200 μηη ;
de 0,10 kg à 0,9 kg, de préférence de 0,12 kg à 0,5 kg, d'extrait sec du superplastifiant ;
de 1300 kg à 1800 kg, de préférence de 1400 kg à 1600 kg, desgranulats ; et
de 50 kg à 90 kg, de préférence de 50 kg à 80 kg, d'eau.
La pâte de liant hydraulique a de préférence un temps de prise Vicat inférieur à 24 heures, de préférence inférieur à 10 heures.
Le rapport E/L, où E désigne la quantité d'eau et L la quantité de liant
(comprenant le ciment Portland et le matériau particulaire pouzzolanique ou non- pouzzolanique lorsque ce-dernier est présent), varie de 0,25 à 0,4, de préférence de 0,28 à 0,35, plus préférentiellement de 0,31 à 0,34.
Le béton perméable peut être préparé par des méthodes connues, notamment le mélange des composants solides et de l'eau, la mise en place puis le durcissement.
Selon un exemple de réalisation, le procédé de fabrication d'un béton perméable selon l'invention peut comprendre le mélange des constituants du béton perméable, la mise en place du béton perméable, notamment le coulage dans un moule ou un coffrage, et le compactage du béton perméable, les étapes de mise en place et de compactage pouvant être réalisées au moins en partie simultanément. Le compactage du béton perméable peut être réalisé par tout type d'outil, par exemple une règle d'arasement ou un rouleau, d'une façon manuelle de préférence.
A titre d'exemple, la pression appliquée sur le béton perméable lors d'une opération de compactage est de 0 à 0,2 MPa, la valeur de 0,2 MPa correspondant approximativement à la pression exercée par un homme pesant 100 kg sur le béton.
Selon un exemple de réalisation de la présente invention, la résistance à la compression du béton perméable après 28 jours est de 3 à 15 MPa, de préférence de 6 à 13 MPa.
Selon un exemple de réalisation de la présente invention, la densité du béton selon l'invention à l'état durci est de 1 ,5 à 1 ,9, de préférence de 1 ,7 à 1 ,8, pour des granulats dont la densité varie de 2,5 à 2,7. La densité du béton perméable selon l'invention peut être inférieure pour des granulats plus légers.
L'invention se rapporte, en outre, à un élément pour le domaine de la construction, réalisé en utilisant un béton tel que défini ci-dessus. Des exemples, illustrant l'invention sans en limiter la portée, vont être décrits en relation avec la figure unique représentant l'évolution du volume apparent d'un échantillon de béton perméable selon l'invention en fonction du nombre d'opérations de compactage appliquées à l'échantillon par une presse à cisaillement giratoire.
EXEMPLES
Dans ces exemples, les matériaux utilisés sont disponibles auprès des fournisseurs suivants :
Ciment Saint Pierre La Cour Lafarge, France
Addition minérale BL 200 Omya, France
Durcal 1 Omya, France
Cendres Volantes centrale de Carling (France)
Gravillons 1 ,6/10 Lafarge, site de Cassis (France)
Gravillon concassé 6/10 Lafarge, site de Cassis (France)
Gravillon roulé 6/10 Lafarge, site de Saint Bonnet (France)
Gravillons 5/14 Site de Burlington (Grande-Bretagne)
CHRYSOPIast 209 Chryso
CHRYSOFluid Premia 196 Chryso
Le matériau BL 200 était un matériau de remplissage calcaire ayant un D90 inférieur à 50 μηη. Le ciment Portland (site de Saint Pierre La Cour) avait un D90 inférieur à 40 μηη. Il s'agissait d'un ciment du type CEM I 52, 5N CE CP2. Le CHRYSOFluid Premia 196 était un superplastifiant du type Polycarboxylate Polyoxyéthylène (PCP). Le CHRYSOPIast 209 était un plastifiant de type lignosulfonate.
Méthode de granulométrie laser
Le D90 pour les différentes poudres a été obtenu à partir des courbes granulométriques des courbes déterminées par un granulomètre laser Malvern MS2000. La mesure s'est effectuée dans un milieu approprié (par exemple, en milieu aqueux) ; la taille des particules devant être de 0,02 pm à 2 mm. La source lumineuse était constituée par un laser rouge He-Ne (632 nm) et une diode bleue (466 nm). Le modèle optique était celui de Fraunhofer, la matrice de calcul était de type polydisperse.
Une mesure de bruit de fond a été d'abord effectuée avec une vitesse de pompe de 2000 tr/min, une vitesse d'agitateur de 800 tr/min et une mesure du bruit sur 10 s, en l'absence d'ultrasons. L'intensité lumineuse du laser a été vérifiée pour être au moins égale à 80%, et une courbe exponentielle décroissante a été obtenue pour le bruit de fond. Si ce n'était pas le cas, les lentilles de la cellule devaient être nettoyées.
Une première mesure sur l'échantillon a été effectuée avec les paramètres suivants : vitesse de pompe de 2000 tr/min, vitesse d'agitateur de 800 tr/min, absence d'ultrasons, limite d'obscuration entre 10 et 20 %. L'échantillon a été introduit pour avoir une obscuration légèrement supérieure à 10 %. Après stabilisation de l'obscuration, la mesure a été effectuée avec une durée entre l'immersion et la mesure fixée à 10 s. La durée de mesure était de 30 s (30000 images de diffraction analysées). Dans le granulogramme obtenu, il a fallu tenir compte du fait qu'une partie de la population de la poudre pouvait être agglomérée.
Une seconde mesure (sans vidanger la cuve) a été effectuée avec des ultrasons. La vitesse de pompe a été portée à 2500 tr/min, l'agitation à 1000 tr/min, les ultrasons émis à 100 % (30 watts). Ce régime a été maintenu pendant 3 minutes, puis on est revenu aux paramètres initiaux : vitesse de pompe de 2000 tr/min, vitesse d'agitateur de 800 tr/min, absence d'ultrasons. Au bout de 10 s (pour évacuer les bulles d'air éventuelles), une mesure de 30 s (30000 images analysées) a été effectuée. Cette seconde mesure correspondait à une poudre désagglomérée par dispersion ultrasonique.
Chaque mesure a été répétée au moins deux fois pour vérifier la stabilité du résultat. L'appareil a été étalonné avant chaque séance de travail avec un échantillon standard (silice C10 Sifraco) dont la courbe granulométrique était connue. Toutes les mesures présentées dans la description et les gammes annoncées correspondaient aux valeurs obtenues avec ultrasons.
Méthode de préparation du béton
Le béton perméable selon l'invention a été réalisé avec un malaxeur de type Zyclos (50 litres). L'ensemble de l'opération a été réalisé à 20°C. La méthode de préparation comprenait les étapes suivantes :
Mettre les granulats dans le bol du malaxeur ;
A T = 0 seconde : débuter le malaxage et ajouter simultanément l'eau de mouillage en 30 secondes, puis continuer à malaxer jusqu'à 60 secondes ;
A T = 1 minute : arrêter le malaxage et laisser reposer pendant 4 minutes ;
A T = 5 minutes : ajouter le liant hydraulique ;
A T = 6 minutes : malaxer pendant 1 minute ; A T = 7 minutes : ajouter l'eau de gâchage en 30 secondes (tout en malaxant) ; et
A T = 7 minutes et 30 secondes : malaxer pendant 2 minutes. Méthode de mesure du seuil d'écoulement de la pâte du liant hydraulique
Le seuil d'écoulement de la pâte du liant hydraulique (en l'absence des gravillons) a été mesuré avec un rhéomètre Physica MCR301 commercialisé par la société Anton Paar. Un échantillon de pâte de liant hydraulique a été placé dans le bol du rhéomètre. Un arbre moteur muni de quatre pales a été immergé dans la pâte de liant. L'arbre a tourné à une vitesse de rotation de 0,1 rpm pendant 120 s. Le couple résistant exercé par la pâte de liant sur l'arbre a été mesuré. A partir de ce couple la contrainte appliquée à la pâte de liant a été déterminée. L'évolution de la contrainte a été obtenue dans le temps. La contrainte a augmenté tout d'abord avant d'atteindre un pseudo plateau correspondant à la valeur du seuil d'écoulement. Le seuil d'écoulement est indiqué en Pascal.
Méthode de mesure de l'étalement de la pâte du liant hydraulique
Le principe de la mesure d'étalement consiste à remplir un tronc de cône de mesure d'étalement avec la pâte du liant hydraulique (en l'absence des gravillons), à tester puis à libérer la pâte du tronc de cône de mesure d'étalement afin de déterminer la surface du disque obtenu quand la pâte du liant hydraulique a fini de s'étaler. Le tronc de cône de mesure d'étalement a les dimensions suivantes :
-diamètre du cercle de la base supérieure : 20 +/- 0,5 mm ;
-diamètre du cercle de la base inférieure : 40 +/- 0,5 mm ; et
-hauteur : 56 +/-0,5 mm.
L'ensemble de l'opération a été réalisée à 20 °C. La mesure de l'étalement a été réalisée de la façon suivante :
• Remplir le tronc de cône de référence en une seule fois avec la pâte du liant hydraulique à tester ;
· Répartir la pâte du liant hydraulique de manière homogène dans le tronc de cône ;
• Araser la surface supérieure du cône ;
• Soulever le tronc de cône verticalement ; et
• Mesurer l'étalement selon quatre diamètres à 45° avec un pied à coulisse. Le résultat de la mesure d'étalement était la moyenne des quatre valeurs à +/- 1 mm. Méthode de mesure de la porosité d'un élément en béton perméable
Une mesure de la porosité pouvait être réalisée sur du béton frais ou du béton durci. Sur du béton frais, la méthode a consisté à remplir de béton frais un récipient de volume interne connu (préférentiellement cylindrique et non déformable), à peser l'ensemble, à ôter au résultat de mesure la masse représentée par le récipient. La densité du béton frais correspondait au rapport entre la masse mesurée de béton et le volume interne du récipient. La compacité du béton frais correspondait au rapport entre la densité du béton frais et la densité théorique sans porosité du béton. Il s'agissaitt d'une valeur entre 0 et 1. La porosité était égale à l'unité diminuée de la compacité (1 -compacité).
Sur béton durci, la méthode a consisté à utiliser une éprouvette cylindrique béton durci de 16 cm de diamètre et 32 cm de hauteur qui a été placée dans un récipient dont le volume interne correspondait aux dimensions de l'échantillon. On a rempli la totalité du volume interne du récipient avec de l'eau, l'échantillon étant alors complètement immergé dans l'eau. La porosité correspondait au rapport entre le volume d'eau ajouté et le volume interne du récipient.
Méthode de mesure de la résistance de compression
Quelle que soit l'échéance, la résistance de compression a été mesurée sur un échantillon cylindrique ayant un diamètre de 1 1 cm et une hauteur de 22 cm selon la norme prEN 12390-3 : 2001 « Essais pour béton durci - Partie 3 : Résistance à la compression des éprouvettes ». Méthode de mesure de la compressibilité d'un élément en béton perméable à l'état frais
Un échantillon de béton perméable à l'état frais a été placé dans un récipient cylindrique. L'échantillon avait initialement un volume total, ou volume apparent, de 2,4 à 3 litres. Une presse à cisaillement giratoire, comprenait un plateau entraîné en rotation et exerçait une pression sur la surface supérieure de l'échantillon. La vitesse de rotation du plateau était de 5 tours par minute. L'angle d'inclinaison du plateau par rapport à un plan horizontal était d'environ 2 degrés. La pression moyenne exercée par la presse était de 0,1 MPa. L'évolution dans le temps du volume total, ou volume apparent, du béton perméable a été mesurée en fonction du nombre de cycles de rotation de la presse. La compressibilité du béton est exprimée par rapport à la variation constatée sur le volume apparent du béton (variation relative ou absolue). Un béton peu compressible présente une variation du volume apparent relativement faible. A contrario, un béton compressible présente une variation importante du volume apparent.
Dans la suite de la description, on considère que le béton perméable était peu compressible lorsque la variation du volume apparent était inférieure à 15 %.
EXEMPLE 1
Un béton perméable de référence a été réalisé selon la formulation (1 ) suivante :
Formulation (1 ) de béton perméable de référence
Figure imgf000014_0001
Un exemple de béton perméable selon l'invention a été réalisé selon la formulation (2) suivante :
Formulation (2) de béton perméable selon l'invention
Figure imgf000014_0002
Le volume de pâte de liant hydraulique était de 137 litres par mètre béton frais. Les évolutions du volume apparent du béton perméable de référence et du béton perméable selon l'invention ont été mésurées. La figure 1 représentait la courbe C1 d'évolution du volume apparent du béton perméable de référence selon la formulation (1 ) et la courbe C2 d'évolution du volume apparent du béton perméable selon la formulation (2) en fonction du nombre de cycles de rotation de la presse à cisaillement giratoire.
La variation du volume apparent du béton perméable selon la formulation (2) était très inférieure à la variation du volume apparent du béton perméable de référence selon la formulation (2). Le béton perméable selon la formulation (2) était peu compressible.
EXEMPLE 2
Un exemple de béton perméable selon l'invention a été réalisé selon la formulation (3) suivante :
Formulation (3) de béton perméable de comparaison
Figure imgf000015_0001
Dans le présent exemple, le liant hydraulique comprenait le ciment et l'addition minérale BL 200. Le volume de pâte de liant hydraulique était de 160 litres par mètre cube de béton frais.
Pour chaque valeur de la concentration du superplastifiant, la pâte de liant a été réalisée en mélangeant le ciment, le matériau de remplissage BL 200, le superplastifiant et l'eau. Le seuil d'écoulement et l'étalement de la pâte du liant hydraulique ont été mesurés selon les méthodes décrites ci-dessus.
Pour chaque valeur de la concentration du superplastifiant, un béton perméable a été réalisé en mélangeant la pâte du liant hydraulique et les granulats en bétonnière et une éprouvette cylindrique de 1 1 cm de diamètre et de 22 cm de hauteur a été réalisée. La surface libre du béton perméable a été égalisée à la règle. Une mesure de la compressibilité du béton a été réalisée comme cela été décrit ci-dessus. Le coffrage de IL'éprouvette a été enlevé après 3 jours. La porosité du béton à l'état durci a été mesurée. Une observation visuelle de la présence de coulures de la pâte du liant hydraulique sur la face inférieure de l'éprouvette a été réalisée.
Les résultats sont rassemblés dans le tableau 1 :
Tableau 1
Figure imgf000016_0001
Lorsque le seuil d'écoulement de la pâte du liant hydraulique était inférieur à 20 Pa (correspondant à un étalement supérieur à 100 mm), la pâte du liant hydraulique tendait à s'écouler au fond du coffrage, ce qui n'était pas souhaitable étant donné que la perméabilité de l'élément en béton était donc réduite. Lorsque le seuil d'écoulement de la pâte de ciment était supérieur à 100 Pa (correspondant à un étalement inférieur à 60 mm), le béton était compressible, ce qui n'était pas souhaitable. Lorsque le seuil d'écoulement de la pâte de ciment variait de 20 Pa à 100 Pa (correspondant à un étalement variant de 60 mm à 100 mm), la porosité finale du béton à l'état durci restait sensiblement constante (et de l'ordre de 30 %) quelle que soit l'énergie utilisée pour compacter le béton.

Claims

REVENDICATIONS
1 . Béton perméable comprenant, par mètre cube de béton perméable frais :
de 80 à 160 litres d'un mélange d'un liant hydraulique et d'eau, le rapport entre la masse d'eau et la masse de liant hydraulique étant de 0,25 à 0,4, ledit mélange ayant un seuil d'écoulement de 20 à 100 Pa ; et de 450 à 700 litres de granulats dont le diamètre est de 2 mm à 32 mm,
le béton perméable ayant à l'état durci une porosité de 25 % à 35 %.
2. Béton perméable selon la revendication 1 , ayant une porosité à l'état durci de 30 % à 35 %.
Béton perméable selon la revendication 1 ou 2, comprenant, en outre, un superplastifiant comprenant un polymère comprenant une chaîne principale à laquelle sont reliées plus de trois chaînes latérales.
Béton perméable selon l'une quelconque des revendications 1 à 3, dans lequel le mélange a un seuil d'écoulement de 50 à 100 Pa.
5. Béton perméable selon l'une quelconque des revendications 1 à 4, dans lequel le diamètre des granulats est de 4 mm à 10 mm.
Béton perméable selon l'une quelconque des revendications 1 à 5, comprenant moins de 10 % de granulats dont le diamètre est de 2 mm à 6,3 mm.
Béton perméable selon l'une quelconque des revendications 1 à 6, dans lequel la résistance à la compression du béton perméable après 28 jours est de 3 à 15 MPa.
8. Béton perméable selon l'une quelconque des revendications 1 à 7, comprenant de 120 à 160 litres du mélange du liant hydraulique et d'eau par mètre cube de béton perméable frais. Béton perméable selon la revendication 3, comprenant par mètre cube de béton perméable frais :
de 35 litres à 95 litres de ciment Portland ;
de 0 litre à 40 litres d'un matériau particulaire ayant un D90 inférieur 200 m ;
de 0,10 kg à 0,
9 kg d'extrait sec du superplastifiant ;
de 450 litres à 700 litres des granulats ; et
de 50 litres à 90 litres d'eau.
10. Elément pour le domaine de la construction, caractérisé en ce qu'il est réalisé en utilisant un béton perméable selon l'une quelconque des revendications 1 à 9.
PCT/FR2011/051499 2010-06-29 2011-06-28 Beton permeable WO2012001292A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1055217A FR2961806B1 (fr) 2010-06-29 2010-06-29 Beton permeable
FR1055217 2010-06-29

Publications (1)

Publication Number Publication Date
WO2012001292A1 true WO2012001292A1 (fr) 2012-01-05

Family

ID=43598469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2011/051499 WO2012001292A1 (fr) 2010-06-29 2011-06-28 Beton permeable

Country Status (2)

Country Link
FR (1) FR2961806B1 (fr)
WO (1) WO2012001292A1 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20121741A1 (it) * 2012-10-16 2014-04-17 Italcementi Spa Calcestruzzo drenante
EP3222780A1 (fr) 2016-03-23 2017-09-27 Holcim Technology Ltd. Structure de chaussée en béton comprenant une couche de base en béton et couche d'usure de béton améliorée en élastomère
CN107354838A (zh) * 2017-06-16 2017-11-17 惠州富盈新材料科技有限公司 单向透水混凝土结构及其制备方法
EP3632874A1 (fr) * 2018-10-04 2020-04-08 Rainer Staretschek Béton haute performance drainant et absorbant le son
US11254613B2 (en) 2016-03-25 2022-02-22 Enhancer Pro, Inc. Pervious concrete having a super-absorbent polymer
CN114751690A (zh) * 2022-03-09 2022-07-15 新余学院 一种道路用透水型生态混凝土及其制备方法
US11746051B2 (en) 2020-01-24 2023-09-05 Permabase Building Products, Llc Cement board with water-resistant additive
WO2024018075A1 (fr) 2022-07-21 2024-01-25 Holcim Technology Ltd Utilisation d'additifs dans des compositions de béton perméable

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3042380A1 (fr) * 2015-10-14 2017-04-21 Lafarge Sa Element de construction vegetalise et procede de preparation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1953158A1 (de) * 1969-10-22 1971-05-06 Henkel & Cie Gmbh Verfahren zur Herstellung eines wasserdurchlaessigen Probetons
FR2652806A1 (fr) * 1989-10-09 1991-04-12 Beton Dev Coulis de ciment a hautes performances, son procede de realisation et utilisation de ce coulis.
EP0710633A1 (fr) * 1994-11-07 1996-05-08 Hoechst Aktiengesellschaft Béton de drainage
DE102008044395A1 (de) * 2008-12-05 2010-06-10 Wacker Chemie Ag Dränbeton-Zusammensetzung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1953158A1 (de) * 1969-10-22 1971-05-06 Henkel & Cie Gmbh Verfahren zur Herstellung eines wasserdurchlaessigen Probetons
FR2652806A1 (fr) * 1989-10-09 1991-04-12 Beton Dev Coulis de ciment a hautes performances, son procede de realisation et utilisation de ce coulis.
EP0710633A1 (fr) * 1994-11-07 1996-05-08 Hoechst Aktiengesellschaft Béton de drainage
DE102008044395A1 (de) * 2008-12-05 2010-06-10 Wacker Chemie Ag Dränbeton-Zusammensetzung

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMI20121741A1 (it) * 2012-10-16 2014-04-17 Italcementi Spa Calcestruzzo drenante
BE1021425B1 (fr) * 2012-10-16 2015-11-19 Italcementi S.P.A. Beton permeable.
EP3222780A1 (fr) 2016-03-23 2017-09-27 Holcim Technology Ltd. Structure de chaussée en béton comprenant une couche de base en béton et couche d'usure de béton améliorée en élastomère
WO2017162799A1 (fr) 2016-03-23 2017-09-28 Holcim Technology Ltd Structure de chaussée en béton comprenant une couche de base en béton et une couche d'usure en béton améliorée par un élastomère
US10815624B2 (en) 2016-03-23 2020-10-27 Holcim Technology Ltd Concrete pavement structure comprising a concrete base layer and an elastomer improved concrete wearing layer
US11254613B2 (en) 2016-03-25 2022-02-22 Enhancer Pro, Inc. Pervious concrete having a super-absorbent polymer
CN107354838A (zh) * 2017-06-16 2017-11-17 惠州富盈新材料科技有限公司 单向透水混凝土结构及其制备方法
CN107354838B (zh) * 2017-06-16 2019-09-06 惠州富盈新材料科技有限公司 单向透水混凝土结构及其制备方法
EP3632874A1 (fr) * 2018-10-04 2020-04-08 Rainer Staretschek Béton haute performance drainant et absorbant le son
US11746051B2 (en) 2020-01-24 2023-09-05 Permabase Building Products, Llc Cement board with water-resistant additive
CN114751690A (zh) * 2022-03-09 2022-07-15 新余学院 一种道路用透水型生态混凝土及其制备方法
WO2024018075A1 (fr) 2022-07-21 2024-01-25 Holcim Technology Ltd Utilisation d'additifs dans des compositions de béton perméable

Also Published As

Publication number Publication date
FR2961806A1 (fr) 2011-12-30
FR2961806B1 (fr) 2015-03-06

Similar Documents

Publication Publication Date Title
WO2012001292A1 (fr) Beton permeable
EP2562149B1 (fr) Béton à faible teneur en clinker
EP2411342B1 (fr) Beton a haute ou ultra haute performance
EP2467349B1 (fr) Ciment geopolymerique et son utilisation
CA2951994C (fr) Nouveau beton a ultra haute performance
CA2754294C (fr) Beton a faible teneur en clinker
FR2964379A1 (fr) Beton permeable a faible cout co2 et a aspect homogene
EP3157886B1 (fr) Betons a ultra haute performance a faible teneur en ciment
EP3157883B1 (fr) Betons a ultra haute performance non autoplacant
WO2007132098A1 (fr) Beton a faible teneur en ciment
WO2014096701A1 (fr) Composition de béton ou mortier allégé comprenant une mousse aqueuse
WO2011161383A1 (fr) Procede de transport d'une composition hydraulique
WO2011161384A1 (fr) Composition hydraulique ayant sa prise retardee declenchee par un accelerateur
EP2585417B1 (fr) Composition hydraulique a prise retardee
CA2749418C (fr) Composition utile pour la preparation d'un beton sans ajout d'eau
EP1995224B1 (fr) Beton leger prêt à l'emploi et procédé d'obtention
FR2964097A1 (fr) Systeme de filtration d'eau
BE1021425B1 (fr) Beton permeable.
CA2188627A1 (fr) Additif pour controler la sedimentation des conglomerats

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11741257

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11741257

Country of ref document: EP

Kind code of ref document: A1