WO2001088443A1 - Solar plant provided with radiation concentrating optics and a first radiation converter - Google Patents

Solar plant provided with radiation concentrating optics and a first radiation converter Download PDF

Info

Publication number
WO2001088443A1
WO2001088443A1 PCT/DE2001/001260 DE0101260W WO0188443A1 WO 2001088443 A1 WO2001088443 A1 WO 2001088443A1 DE 0101260 W DE0101260 W DE 0101260W WO 0188443 A1 WO0188443 A1 WO 0188443A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation
converter
solar system
optics
radiation converter
Prior art date
Application number
PCT/DE2001/001260
Other languages
German (de)
French (fr)
Inventor
Jürgen KLEINWÄCHTER
Original Assignee
Power Pulse Holding Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Power Pulse Holding Ag filed Critical Power Pulse Holding Ag
Priority to DE10191990T priority Critical patent/DE10191990D2/en
Priority to AU2001258199A priority patent/AU2001258199A1/en
Publication of WO2001088443A1 publication Critical patent/WO2001088443A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • F24S20/25Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants using direct solar radiation in combination with concentrated radiation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S50/00Arrangements for controlling solar heat collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0547Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the reflecting type, e.g. parabolic mirrors, concentrators using total internal reflection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the invention relates to a solar system with a concentrating radiation optics and a first radiation converter which is arranged in the region of the focal point of the radiation optics.
  • optical concentrators are used in many cases.
  • the sunlight is concentrated in a focal point in which an absorber is located using mirrors or lenses. These systems lead to high temperatures but also to the loss of the diffuse radiation component.
  • Concentrators which concentrate the light on a line, are distinguished from concentrators, which concentrate the light in a memect form.
  • concentrators which concentrate the light in a memect form.
  • tub collectors or Channel collectors and in the second case mostly parabolic mirror arrangements are used, which are known under the generic term "dish concentrators"
  • the object is achieved in that the direct at least one second radiation converter for converting the diffuse radiation is arranged adjacent to the concentration range.
  • the parallel direct radiation components of the light are concentrated using refractive optics, for example a Fresnel lens, and fall on the central radiation converter in the area of their linear or point-like focus with high energy density.
  • the diffuse radiation components of the light fall to the right and left of the focal line or concentrically around the focal point on the adjacent radiation converter and can be used for additional energy conversion.
  • the radiation optics are tracked by the sun. That's why a correspondingly large proportion of direct radiation is converted. Since an ideal diffuse radiation of the isotropic hemispheric, for example in thick fog, does not really exist. The tracking of the optics results in a significantly higher radiation yield overall.
  • the first radiation converter is designed to generate high-temperature heat and the second radiation converter is designed to generate low-temperature heat. Because the high-energy, direct radiation component is used by the first radiation converter, it can correspondingly easily and quickly use the supplied energy to generate high-temperature heat. The less energy-rich, diffuse radiation component can therefore be used particularly advantageously for the generation of low-temperature heat.
  • a particularly efficient utilization of the radiation energy can be achieved in that the first radiation converter is connected downstream of the second radiation converter.
  • a fluid to be heated can first be preheated by the second radiation converter and then can be reheated particularly quickly to a desired temperature by the first radiation converter using the energy already contained.
  • a radiation sensor is proposed which measures the distribution of the direct and the diffuse radiation and, as a function thereof, controls or regulates a fluid flow through the first and the second radiation converter.
  • the values measured by a sensor can be fed, for example, to a microprocessor, the memory of which contains a family of characteristic curves of the solar optics according to the invention.
  • the microprocessor can then calculate a setting for good efficiency for reaching a specified desired temperature for a particular irradiation situation and determine a corresponding mass flow for the selected setting and feed this to the respective radiation converter via a valve.
  • a mirror arrangement is advantageous which directs part of the diffuse radiation to the second radiation converter. As a result, the energy contained in this radiation can be used for an additional energy conversion in the solar system.
  • the mirror arrangement be arranged between the outer edges of the radiation optics and the outer edges of the second radiation converter.
  • the diffuse rays can be directed into a region which is substantially closer to the focal line or the focal point.
  • suitable Mirror inclination angle and / or mirror curvatures allow a further increase in the temperatures that can be generated by the solar system.
  • An embodiment of the solar system according to the invention provides that at least one radiation converter has a photovoltaic converter element.
  • at least one radiation converter has a photovoltaic converter element.
  • the photovoltaic converter element is actively or passively cooled.
  • the invention provides that at least one radiation converter has a thermo- or photochemically cooled converter element.
  • the solar system according to the invention can be operated particularly cost-effectively.
  • a further embodiment of the invention proposes that at least one radiation converter has an actively cooled and / or tempered biological converter element. As a result, the energy can be transformed in a further way.
  • FIG. 1 shows a schematic illustration of a section through radiation optics according to the invention
  • FIG. 2 shows a top view of the radiation optics with a schematic representation of the fluid guidance through the radiation converter
  • FIG. 3 is a schematic representation of the control and regulation of the solar system according to the invention.
  • FIG. 4 shows another embodiment of the solar system according to the invention with several photovoltaic converters.
  • the radiation optics 1 shown schematically in FIG. 1 essentially consists of the lens 2, the first radiation converter 3 with an integrated absorber 4 and the cover 5. Adjacent to the absorber 4, the second radiation converter 6 with an integrated absorber 7 and the cover 8 is arranged on the left-hand side and on the right side of the radiation converter 6 'with the associated absorber 7' and the cover 8 '.
  • the mirror 9 is at an angle at the lens periphery arranged inclined to the outer edges of the second radiation converter 6 and 6 '.
  • the lens 2 concentrating on a line in this embodiment tracks the sun so that the parallel direct rays 10, 11 and 12 always fall perpendicularly onto the lens 2 and meet the radiation converter 3 in the area of the linear focus with high energy density in this version works as a high temperature collector.
  • the centrally arranged radiation converter 3 extracts the heat from the concentrated parallel light beams 10, 11 and 12 and transfers it to a fluid passed through it.
  • the heat-insulated housing of the absorber 4 is transparent to the top with the transparent cover 5, so that convection and radiation losses of the hot absorber 4 are reduced. It goes without saying that, to further improve the efficiency of the radiation converter 3, known measures such as, for example, evacuation, or a selective coating of the absorber 4 and the cover 5, or transparent insulation layers and the like are useful additional measures to the present invention.
  • Diffuse light beams 13 and 14 are also refracted by lens 2 and condensed by reflection on mirror 9. You either meet the radiation converter 3 or the radiation converter 6 and 6 '.
  • improvements to the absorber 7 and 7 ′, or to the transparent cover 8 and 8 ′, as already described above for the first radiation converter 3 can represent useful additional measures.
  • FIG. 2 shows the central radiation converter 3 and the radiation converters 6 and 6 ′ arranged to the left and right thereof with the fluid supply line 15 and the fluid supply line 16.
  • the fluid to be heated is passed through the fluid supply line 15 in parallel into the radiation converters 6 and 6 '. Here it is preheated in the low temperature range and supplied to the downstream radiation converter 3 via the fluid supply line 16 and reheated to a desired higher temperature.
  • the control and regulation of the radiation optics 1 shown as an example in FIG. 3 consists of the solar sensor 17, the microprocessor 18 with the family of characteristics 19 and the valve 20.
  • the solar sensor 17 measures the direct (Os dir ) and the diffuse (Os diff )
  • Exposure are fed to the microprocessor 18, the memory of which is the family of characteristics 19 of the invention Contains radiation optics.
  • the microprocessor 18 calculates the efficiency for reaching the entered temperature for the respective irradiation situation.
  • the microprocessor 18 determines the corresponding mass flow m of the fluid to be heated from the instantaneous efficiency and controls the valve 20 in accordance with the desired temperature.
  • the radiation optics 21 shown in FIG. 4 has the central photovoltaic converters 22 and 27 instead of the radiation converters 3, 6 and 6 ', as well as the photovoltaic converters 23 and 25 arranged on the right and those arranged on the left photovoltaic converters 24 and 26.
  • the central photovoltaic converters 22 and 27 generate direct current in concentrated, direct light with particularly good efficiency.
  • the photovoltaic converters 23, 24, 25 and 26 also convert the diffuse light into direct current. The energy generated in this way in a particularly environmentally friendly and cost-effective manner can then be used to operate a wide variety of electrical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

The aim of the present invention is to enable simultaneous conversion of a radiation fraction both direct (10, 11) and diffuse (13, 14) into heat energy. Therefor a solar plant is used that is provided with radiation concentrating optics (1), at least one second radiation converter (6) being arranged about the concentrating area of a first radiation converter (3).

Description

Solaranlage mit einer konzentrierenden Strahlungsoptik und einem ersten Solar system with a concentrating radiation optics and a first one
Strahlungswandlerradiation converter
Die Erfindung betrifft eine Solaranlage mit einer konzentrierenden Stral lungsoptik und einem ersten Strahlungswandler, der im Bereich des Brennpunktes der Strahlungsoptik angeordnet ist.The invention relates to a solar system with a concentrating radiation optics and a first radiation converter which is arranged in the region of the focal point of the radiation optics.
Solaranlagen sind in vielen Ausf hrungsformen bekannt. Günstig in der Herstellung sind beispielsweise Flachkollektorsolaranlagen, die die direkte und indirekte (diffuse) Strahlung zur Energieumwandlung nutzen. Diese Anlagen haben meist einen hohen Wirkungsgrad, fuhren jedoch nur zu niedrigen Temperaturen am Absorber.Solar systems are known in many designs. Flat collector solar systems that use direct and indirect (diffuse) radiation for energy conversion, for example, are inexpensive to manufacture. These systems usually have a high degree of efficiency, but only operate at low temperatures at the absorber.
Daher werden in vielen Fällen optische Konzentratoren verwendet. Über Spiegel oder Linsen wird hierbei das Sonnenlicht in einem Brennpunkt konzentriert, in dem ein Absorber steht. Diese Anlagen fuhren zu hohen Temperaturen aber auch zum Wegfall der Nutzung des diffusen Strahlungsanteils.Therefore, optical concentrators are used in many cases. The sunlight is concentrated in a focal point in which an absorber is located using mirrors or lenses. These systems lead to high temperatures but also to the loss of the diffuse radiation component.
Bei Konzentratoren werden Konzentratoren, die das Licht auf einer Linie konzentrieren, von Konzentratoren unterschieden, die das Licht puiktförmig konzentrieren. Im ersteren Fall spricht man von Wannenkollektoren oder Rinnenkollektoren und im zweiten Fall werden meistens parabolisch geformte Spiegelanordnungen verwendet, die unter den Oberbegriff „Dish- Konzentratoren" bekannt sindConcentrators, which concentrate the light on a line, are distinguished from concentrators, which concentrate the light in a puict form. In the former case one speaks of tub collectors or Channel collectors and in the second case mostly parabolic mirror arrangements are used, which are known under the generic term "dish concentrators"
Es ist Aufgabe der vorliegenden Erfindung eine Solaranlage bereitzustellen, welche die Ausnutzung der direkten wie auch der diffusen Lichtstrahlung in einem System erlaubt und diese simultan in thermische Nutzenergie wandelt.It is an object of the present invention to provide a solar system which allows the use of both direct and diffuse light radiation in a system and converts them simultaneously into useful thermal energy.
Die Aufgabe wird dadurch gelöst, dass angrenzend an den Konzentrationsbereich der direkten mindestens ein zweiter Strahlungswandler zur Umwandlung der diffusen Strahlung angeordnet ist.The object is achieved in that the direct at least one second radiation converter for converting the diffuse radiation is arranged adjacent to the concentration range.
Die parallelen direkten Strahlungsanteile des Lichtes werden mit einer refraktiven Optik, beispielsweise einer Fresnellinse konzentriert und fallen im Bereich ihres linearen oder punktförmigen Fokus mit hoher Energiedichte auf den zentralen Strahlungswandler. Die diffusen Strahlungsanteile des Lichtes fallen rechts und links von der Brennlinie oder konzentrisch um den Brennpunkt auf den dazu angrenzend angeordneten Strahlungswandler und können zur zusätzlichen Energieumwandlung genutzt werden.The parallel direct radiation components of the light are concentrated using refractive optics, for example a Fresnel lens, and fall on the central radiation converter in the area of their linear or point-like focus with high energy density. The diffuse radiation components of the light fall to the right and left of the focal line or concentrically around the focal point on the adjacent radiation converter and can be used for additional energy conversion.
Um möglichst gut den energiereichen, direkten Strahlungsanteil nutzen zu können, wird die Strahlungsoptik der Sonne nachgeführt. Deswegen wird ein entsprechend großer Anteil an direkter Strahlung umgewandelt. Da eine ideale diffuse die Isotrop hemispherisch einstrahlt, beispielsweise bei dickem Nebel, real nicht existiert. Ergibt sich durch das Nachführen der Optik insgesamt eine erheblich höhere Strahlungsausbeute.In order to make the best possible use of the high-energy, direct radiation component, the radiation optics are tracked by the sun. That's why a correspondingly large proportion of direct radiation is converted. Since an ideal diffuse radiation of the isotropic hemispheric, for example in thick fog, does not really exist. The tracking of the optics results in a significantly higher radiation yield overall.
Es wird vorgeschlagen, dass der erste Strahlungswandler zur Erzeugung von Hochtemperaturwärme und der zweite Strahlungswandler zur Erzeugung von Niedertemperaturwärme ausgelegt ist. Dadurch, dass der energiereiche, direkte Strahlungsanteil von dem ersten Strahlungswandler genutzt wird, kann er entsprechend einfach und schnell die zugeführte Energie zur Erzeugung von Hochtemperaturwärme nutzen. Der weniger energiereiche diffuse Strahlungsanteil kann demzufolge besonders vorteilhaft für die Erzeugung von Niedertemperaturwärme verwendet werden.It is proposed that the first radiation converter is designed to generate high-temperature heat and the second radiation converter is designed to generate low-temperature heat. Because the high-energy, direct radiation component is used by the first radiation converter, it can correspondingly easily and quickly use the supplied energy to generate high-temperature heat. The less energy-rich, diffuse radiation component can therefore be used particularly advantageously for the generation of low-temperature heat.
Eine besonders effiziente Ausnutzung der Strahlungsenergie kann dadurch erreicht werden, dass der erste Strahlungswandler dem zweiten Strahlungswandler nachgeschaltet ist. Es kann beispielsweise ein zu erwärmendes Fluid zuerst durch den zweiten Strahlungswandler vorgewärmt werden und dann mit der bereits enthaltenen Energie durch den ersten Strahlungswandler besonders schnell auf eine gewünschte Temperatur nacherhitzt werden. Es wird ein Strahlungssensor vorgeschlagen, der die Verteilung der direkten und der diffusen Strahlung misst und in Abhängigkeit davon einen Fluidstrom durch den ersten und den zweiten Strahlungswandler steuert oder regelt. Die von einem Sensor gemessenen Werte können beispielsweise einem Mikroprozessor zugeführt werden, dessen Speicher eine Kennlinien-Schar der erfindungsgemäßen Solaroptik enthält. Der Mikroprozessor kann dann für eine jeweilige Einstrahlungssituation eine Einstellung für einen guten Wirkungsgrad zum Erreichen einer eingegebenen gewünschten Temperatur errechnen und zur gewählten Einstellung einen entsprechenden Massestrom ermitteln und diesen über ein Ventil dem jeweiligen Strahlungswandler zuführen.A particularly efficient utilization of the radiation energy can be achieved in that the first radiation converter is connected downstream of the second radiation converter. For example, a fluid to be heated can first be preheated by the second radiation converter and then can be reheated particularly quickly to a desired temperature by the first radiation converter using the energy already contained. A radiation sensor is proposed which measures the distribution of the direct and the diffuse radiation and, as a function thereof, controls or regulates a fluid flow through the first and the second radiation converter. The values measured by a sensor can be fed, for example, to a microprocessor, the memory of which contains a family of characteristic curves of the solar optics according to the invention. The microprocessor can then calculate a setting for good efficiency for reaching a specified desired temperature for a particular irradiation situation and determine a corresponding mass flow for the selected setting and feed this to the respective radiation converter via a valve.
Vorteilhaft ist eine Spiegelanordnung, die einen Teil der diffusen Strahlung zum zweiten Strahlungswandler lenkt. Dadurch kann die in dieser Strahlung enthaltene Energie für eine zusätzliche Energieumwandlung in der Solaranlage genutzt werden.A mirror arrangement is advantageous which directs part of the diffuse radiation to the second radiation converter. As a result, the energy contained in this radiation can be used for an additional energy conversion in the solar system.
Um darüber hinaus eine weitere Verbesserung der Energieumwandlung zu erreichen, wird vorgeschlagen, das die Spiegelanordnung zwischen den äußeren Rändern der Strahlungsoptik und den äußeren Rändern des zweiten Strahlungswandlers angeordnet ist. Dadurch können die diffusen Strahlen auf Grund von Reflektionen in einen wesentlich näher um die Brennlinie oder den Brennpunkt liegenden Bereich gelenkt werden. Darüber hinaus kann durch eine Auswahl geeigneter Spiegelneigungswinkel und/oder Spiegelkrümmungen eine weitere Erhöhung der durch die Solaranlage erzeugbaren Temperaturen ermöglicht werden.In order to achieve a further improvement in energy conversion, it is proposed that the mirror arrangement be arranged between the outer edges of the radiation optics and the outer edges of the second radiation converter. As a result of the reflections, the diffuse rays can be directed into a region which is substantially closer to the focal line or the focal point. In addition, through a selection of suitable Mirror inclination angle and / or mirror curvatures allow a further increase in the temperatures that can be generated by the solar system.
Eine Ausgestaltung der erfindungsgemäßen Solaranlage sieht vor, dass zumindest ein Strahlungswandler ein photovoltaisches Wandlerelement aufweist. Dadurch kann zusätzlich zur Umwandlung in thermische Energie eine weitere Umwandlung in Form von elektrischer Energie erzeugt werden.An embodiment of the solar system according to the invention provides that at least one radiation converter has a photovoltaic converter element. As a result, in addition to the conversion into thermal energy, a further conversion in the form of electrical energy can be generated.
Zur Verbesserung der Energieumwandlung wird vorgeschlagen, dass das photovoltaische Wandlerelement aktiv oder passiv gekühlt ist.To improve the energy conversion, it is proposed that the photovoltaic converter element is actively or passively cooled.
Darüber hinaus sieht die Erfindung vor, dass zumindest ein Strahlungswandler ein thermo- oder photochemisch gekühltes Wandlerelement aufweist. Dadurch kann die erfindungsgemäße Solaranlage besonders kostengünstig betrieben werden.In addition, the invention provides that at least one radiation converter has a thermo- or photochemically cooled converter element. As a result, the solar system according to the invention can be operated particularly cost-effectively.
Eine weitere Ausgestaltung der Erfindung schlägt vor, dass zumindest ein Strahlungswandler ein aktiv gekühltes und/oder temperiertes, biologisches Wandlerelement aufweist. Dadurch kann in einer weiteren Weise die Energie umgeformt werden. Mehrere Ausführungsbeispiele der erfindungsgemäßen Solaranlage sind in der Zeichnung dargestellt und werden in folgendem näher beschrieben.A further embodiment of the invention proposes that at least one radiation converter has an actively cooled and / or tempered biological converter element. As a result, the energy can be transformed in a further way. Several embodiments of the solar system according to the invention are shown in the drawing and are described in more detail below.
Es zeigt:It shows:
Figur 1 eine schematische Darstellung eines Schnittes durch eine erfindungsgemäße Strahlungsoptik,FIG. 1 shows a schematic illustration of a section through radiation optics according to the invention,
Figur 2 eine Draufsicht auf die Strahlungsoptik mit einer schematischen Darstellung der Fluidführung durch die Strahlungswandler ,FIG. 2 shows a top view of the radiation optics with a schematic representation of the fluid guidance through the radiation converter,
Figur 3 eine schematische Darstellung der Steuerung und Regelung der erfindungsgemäßen Solaranlage undFigure 3 is a schematic representation of the control and regulation of the solar system according to the invention and
Figur 4 eine weitere Ausführungsform der erfmdungsgemäßen Solaranlage mit mehreren photovoltaischen Wandlern.Figure 4 shows another embodiment of the solar system according to the invention with several photovoltaic converters.
Die in der Figur 1 schematisch dargestellte Strahlungsoptik 1 besteht im wesentlichen aus der Linse 2, dem ersten Strahlungswandler 3 mit integriertem Absorber 4 und der Abdeckung 5. Angrenzend an den Absorber 4 ist linksseitig der zweite Strahlungswandler 6 mit integriertem Absorber 7 und der Abdeckung 8 angeordnet und rechtsseitig der Strahlungswandler 6' mit dem zugehörigen Absorber 7' und der Abdeckung 8'. Der Spiegel 9 ist an der Linsenperipherie in einem Winkel geneigt zu den äußeren Rändern des zweiten Strahlungswandlers 6 und 6' angeordnet.The radiation optics 1 shown schematically in FIG. 1 essentially consists of the lens 2, the first radiation converter 3 with an integrated absorber 4 and the cover 5. Adjacent to the absorber 4, the second radiation converter 6 with an integrated absorber 7 and the cover 8 is arranged on the left-hand side and on the right side of the radiation converter 6 'with the associated absorber 7' and the cover 8 '. The mirror 9 is at an angle at the lens periphery arranged inclined to the outer edges of the second radiation converter 6 and 6 '.
Die in dieser Ausführung auf eine Linie konzentrierende Linse 2, wird der Sonne so nachgeführt, dass die parallelen direkten Strahlen 10, 11 und 12 immer senkrecht auf die Linse 2 fallen und im Bereich des linearen Fokus mit hoher Energiedichte auf den Strahlungswandler 3 treffen, der in dieser Ausführung als Hochtemperaturkollektor arbeitet. Der zentral angeordnete Strahlungswandler 3 entzieht den konzentrierten parallelen Lichtstrahlen 10, 11 und 12 die Wärme und überträgt sie auf ein hindurch geleitetes Fluid. Das wärmeisolierte Gehäuse des Absorbers 4 ist strahlungsdurchlässig nach oben hin mit der transparenten Abdeckung 5 isoliert, sodass Konvektions- und Strahlungsverluste des heißen Absorbers 4 gemindert werden. Es versteht sich, dass zur weiteren Verbesserung des Wirkungsgrades des Strahlungswandlers 3, bekannte Maßnahmen wie beispielsweise Evakuierung, oder eine selektive Beschichtung des Absorbers 4 und der Abdeckung 5, oder transparente Isolationsschichten und Ahnliches, sinnvolle Zusatzmaßnahmen zur vorliegenden Erfindung darstellen.The lens 2 concentrating on a line in this embodiment tracks the sun so that the parallel direct rays 10, 11 and 12 always fall perpendicularly onto the lens 2 and meet the radiation converter 3 in the area of the linear focus with high energy density in this version works as a high temperature collector. The centrally arranged radiation converter 3 extracts the heat from the concentrated parallel light beams 10, 11 and 12 and transfers it to a fluid passed through it. The heat-insulated housing of the absorber 4 is transparent to the top with the transparent cover 5, so that convection and radiation losses of the hot absorber 4 are reduced. It goes without saying that, to further improve the efficiency of the radiation converter 3, known measures such as, for example, evacuation, or a selective coating of the absorber 4 and the cover 5, or transparent insulation layers and the like are useful additional measures to the present invention.
Auch die diffusen Lichtstrahlen 13 und 14 werden durch die Linse 2 gebrochen und durch Reflektion am Spiegel 9 verdichtet. Sie treffen entweder, auf die Strahlungswandler 3 oder auf die Strahlungswandler 6 und 6'. Die Strahlungswandler 6 und 6' arbeiten entsprechend wie der Strahlungswandler 3 und entziehen den diffusen Lichtstrahlen 13 und 14 die Wärme und übertragen diese auf ein durch sie hindurch geleitetes Fluid. Auch hier können beispielsweise Verbesserungen am Absorber 7 und 7', oder an der transparenten Abdeckung 8 und 8', wie bereits obenstehend für den ersten Strahlungswandler 3 beschrieben, sinnvolle Zusatzmaßnahmen darstellen.Diffuse light beams 13 and 14 are also refracted by lens 2 and condensed by reflection on mirror 9. You either meet the radiation converter 3 or the radiation converter 6 and 6 '. The radiation converters 6 and 6 'work in accordance with that Radiation converter 3 and extract the heat from the diffuse light beams 13 and 14 and transfer them to a fluid passed through them. Here, too, improvements to the absorber 7 and 7 ′, or to the transparent cover 8 and 8 ′, as already described above for the first radiation converter 3, can represent useful additional measures.
Die Figur 2 zeigt den zentralen Strahlungswandler 3 und die links und rechts davon angeordneten Strahlungswandler 6 und 6' mit der Fluidzufuhrleitung 15 und der Fluidzufuhrleitung 16.FIG. 2 shows the central radiation converter 3 and the radiation converters 6 and 6 ′ arranged to the left and right thereof with the fluid supply line 15 and the fluid supply line 16.
Das zu erwärmende Fluid wird durch die Fluidzufuhrleitung 15 parallel in die Strahlungswandler 6 und 6' geleitet. Hier wird es im Niedertemperaturbereich vorgewärmt und über die Fluidzufuhrleitung 16 dem nachgeschalteten Strahlungswandler 3 zugeführt und auf eine gewünschte höhere Temperatur nacherhitzt.The fluid to be heated is passed through the fluid supply line 15 in parallel into the radiation converters 6 and 6 '. Here it is preheated in the low temperature range and supplied to the downstream radiation converter 3 via the fluid supply line 16 and reheated to a desired higher temperature.
Die in der Figur 3 als Beispiel dargestellte Steuerung und Regelung der Strahlungsoptik 1 besteht aus dem Solarsensor 17, dem Mikroprozessor 18 mit der Kennlinien-Schar 19 und dem Ventil 20.The control and regulation of the radiation optics 1 shown as an example in FIG. 3 consists of the solar sensor 17, the microprocessor 18 with the family of characteristics 19 and the valve 20.
Der Solarsensor 17 misst die direkte (Osdir) und die diffuse (Osdiff)The solar sensor 17 measures the direct (Os dir ) and the diffuse (Os diff )
Einstrahlung. Diese Werte werden dem Mikroprozessor 18 zugeführt, dessen Speicher die Kennlinien-Schar 19 der erfindungsgemäßen Strahlungsoptik enthält. Der Mikroprozessor 18 errechnet für die jeweilige Einstrahlungssituation den Wirkungsgrad zur Erreichung der eingegebenen Temperatur. Der Mikroprozessor 18 ermittelt dann aus dem momentanen Wirkungsgrad den entsprechenden Massestrom m des zu erwärmenden Fluids und steuert das Ventil 20 entsprechend der gewünschten Temperatur.Exposure. These values are fed to the microprocessor 18, the memory of which is the family of characteristics 19 of the invention Contains radiation optics. The microprocessor 18 calculates the efficiency for reaching the entered temperature for the respective irradiation situation. The microprocessor 18 then determines the corresponding mass flow m of the fluid to be heated from the instantaneous efficiency and controls the valve 20 in accordance with the desired temperature.
In Abweichung zu der in Figur 1 dargestellten Strahlungsoptik 1 weist die in der Figur 4 dargestellte Strahlungsoptik 21 anstelle der Strahlungswandler 3, 6 und 6' die zentralen photovoltaischen Wandler 22 und 27 auf, sowie die rechts angeordneten photovoltaischen Wandler 23 und 25 und die links angeordneten photovoltaischen Wandler 24 und 26 auf.In contrast to the radiation optics 1 shown in FIG. 1, the radiation optics 21 shown in FIG. 4 has the central photovoltaic converters 22 and 27 instead of the radiation converters 3, 6 and 6 ', as well as the photovoltaic converters 23 and 25 arranged on the right and those arranged on the left photovoltaic converters 24 and 26.
Die zentralen photovoltaischen Wandler 22 und 27 erzeugen im konzentrierten, direkten Licht mit besonders gutem Wirkungsgrad Gleichstrom. Die photovoltaischen Wandler 23, 24, 25 und 26 setzen das diffuse Licht ebenfalls in Gleichstrom um. Die auf diese Weise besonders umweltfreundlich und kostengünstig erzeugte Energie kann dann zum Betreiben verschiedenster elektrischer Geräte genutzt werden. The central photovoltaic converters 22 and 27 generate direct current in concentrated, direct light with particularly good efficiency. The photovoltaic converters 23, 24, 25 and 26 also convert the diffuse light into direct current. The energy generated in this way in a particularly environmentally friendly and cost-effective manner can then be used to operate a wide variety of electrical devices.

Claims

Patentansprüche: claims:
1. Solaranlage (1) mit einer konzentrierenden Strahlungsoptik (2) und einem ersten Strahlungswandler (3), der im Bereich des Brennpunktes der Strahlungsoptik (2) angeordnet ist, dadurch gekennzeichnet, dass angrenzend an den Konzentrationsbereich der direkten Strahlung mindestens ein zweiter Strahlungswandler zur Umwandlung der diffusen Strahlung (6 und 6') angeordnet ist.1. Solar system (1) with a concentrating radiation optics (2) and a first radiation converter (3), which is arranged in the region of the focal point of the radiation optics (2), characterized in that adjacent to the concentration range of the direct radiation at least a second radiation converter for Conversion of the diffuse radiation (6 and 6 ') is arranged.
2. Solaranlage nach Anspruch 1, dadurch gekennzeichnet, dass die2. Solar system according to claim 1, characterized in that the
Strahlungsoptik (2) einer Strahlungsquelle nachführbar ausgebildet ist.Radiation optics (2) of a radiation source is designed to be trackable.
3. Solar anläge nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Strahlungswandler (3) zur Erzeugung von Hochtemperaturwärme und der zweite Strahlungswandler (6 und 6') zur Erzeugung von Niedertemperaturwärme ausgelegt ist.3. Solar system according to one of the preceding claims, characterized in that the first radiation converter (3) is designed for generating high-temperature heat and the second radiation converter (6 and 6 ') for generating low-temperature heat.
4. Solaranlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der erste Strahlungswandler (3) dem zweiten Strahlungswandler (6 und 6') nachgeschaltet ist. 4. Solar system according to one of the preceding claims, characterized in that the first radiation converter (3) is connected downstream of the second radiation converter (6 and 6 ').
5. Solaranlage nach einem der vorhergehenden Ansprüche gekennzeichnet durch einen Strahlungssensor (17) der die Verteilung der direkten (10, 11, 12) und der difftisen Strahlung (13 und 14) misst und in Abhängigkeit davon einen Fluidstrom durch den ersten und den zweiten Strahlungswandler (3,5. Solar system according to one of the preceding claims, characterized by a radiation sensor (17) which measures the distribution of the direct (10, 11, 12) and the difftisen radiation (13 and 14) and, as a function thereof, a fluid flow through the first and the second radiation converter (3,
6, 6') steuert oder regelt.6, 6 ') controls or regulates.
6. Solaranlage nach einem der vorhergehenden Ansprüche, gekennzeichnet durch eine Spiegelanordnung (9) die einen Teil der diffusen Strahlung (13, 14) zum zweiten Strahlungswandler (6 und 6') lenkt.6. Solar system according to one of the preceding claims, characterized by a mirror arrangement (9) which directs part of the diffuse radiation (13, 14) to the second radiation converter (6 and 6 ').
7. Solaranlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spiegelanordnung (9) zwischen den äußeren Rändern der Strahlungsoptik (2) und den äußeren Rändern des zweiten Strahlungswandlers (6 und 6') angeordnet ist.7. Solar system according to one of the preceding claims, characterized in that the mirror arrangement (9) between the outer edges of the radiation optics (2) and the outer edges of the second radiation converter (6 and 6 ') is arranged.
8. Solaranlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Strahlungswandler (3, 6, 6') ein photovoltaisches Wandlerelement (22 bis 27) aufweist.8. Solar system according to one of the preceding claims, characterized in that at least one radiation converter (3, 6, 6 ') has a photovoltaic converter element (22 to 27).
9. Solaranlage nach Anspruch 8, dadurch gekennzeichnet, dass das photovoltaische Wandlerelement (22 bis 27) aktiv oder passiv gekühlt ist. 9. Solar system according to claim 8, characterized in that the photovoltaic converter element (22 to 27) is actively or passively cooled.
10. Solar anläge nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Strahlungswandler (3, 6, 6') ein thermo- oder photochemisches, gekühltes Wandlerelement aufweist.10. Solar system according to one of the preceding claims, characterized in that at least one radiation converter (3, 6, 6 ') has a thermo- or photochemical, cooled converter element.
11. Solaranlage nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zumindest ein Strahlungswandler (3, 6, 6') ein aktiv gekühltes und/oder temperiertes biologisches Wandlerelement aufweist. 11. Solar system according to one of the preceding claims, characterized in that at least one radiation converter (3, 6, 6 ') has an actively cooled and / or temperature-controlled biological converter element.
PCT/DE2001/001260 2000-05-19 2001-03-31 Solar plant provided with radiation concentrating optics and a first radiation converter WO2001088443A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10191990T DE10191990D2 (en) 2000-05-19 2001-03-31 Solar system with a concentrating radiation optics and a first radiation converter
AU2001258199A AU2001258199A1 (en) 2000-05-19 2001-03-31 Solar plant provided with radiation concentrating optics and a first radiation converter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10024152.2 2000-05-19
DE10024152A DE10024152A1 (en) 2000-05-19 2000-05-19 Solar power installation, includes additional radiation converter for converting diffuse solar radiation

Publications (1)

Publication Number Publication Date
WO2001088443A1 true WO2001088443A1 (en) 2001-11-22

Family

ID=7642381

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001260 WO2001088443A1 (en) 2000-05-19 2001-03-31 Solar plant provided with radiation concentrating optics and a first radiation converter

Country Status (3)

Country Link
AU (1) AU2001258199A1 (en)
DE (2) DE10024152A1 (en)
WO (1) WO2001088443A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT500760B1 (en) * 2004-08-31 2007-02-15 Martin Dipl Ing Hadlauer SUBSEQUENT COLLECTOR MODULE FOR THERMAL AND ELECTRIC ENERGY RECOVERY

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210463A (en) * 1977-07-11 1980-07-01 Escher William J D Multimode solar energy collector and process
FR2446447A1 (en) * 1978-12-05 1980-08-08 Comp Generale Electricite Solar panel providing electrical and thermal outputs - has photovoltaic cells mounted on heat collector, carried longitudinally by mirrored reflectors
US4220136A (en) * 1978-09-13 1980-09-02 Penney Richard J Solar energy collector
FR2476281A1 (en) * 1980-01-18 1981-08-21 Seyve Daniel Semicircular section solar collectors with fresnel lines - has section plastic tunnels laid over pipes carrying working fluid with auxiliary pipes collecting diffused rays
JPS5912252A (en) * 1982-07-12 1984-01-21 Sanyo Electric Co Ltd Sunlight energy converter
US4427838A (en) * 1981-06-09 1984-01-24 Goldman Arnold J Direct and diffused solar radiation collector
DE3634213A1 (en) * 1986-10-08 1988-04-21 Friedrich Becker Concentrating collector for diffuse sunlight
AT403095B (en) * 1995-07-27 1997-11-25 Weger Robert Dr Solar radiation measuring sensor for global and diffuse radiation

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH592853A5 (en) * 1976-12-03 1977-11-15 Bbc Brown Boveri & Cie
DE4134614C2 (en) * 1991-10-19 1997-02-20 Deutsche Forsch Luft Raumfahrt Solar energy system for chemical reactions
DE4405650C1 (en) * 1994-02-22 1995-06-14 Fritz Dipl Ing Linhardt Solar power generator using cooled photovoltaic modules
DE19746799A1 (en) * 1997-10-23 1999-04-29 Franz Hegele Solar plant

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4210463A (en) * 1977-07-11 1980-07-01 Escher William J D Multimode solar energy collector and process
US4220136A (en) * 1978-09-13 1980-09-02 Penney Richard J Solar energy collector
FR2446447A1 (en) * 1978-12-05 1980-08-08 Comp Generale Electricite Solar panel providing electrical and thermal outputs - has photovoltaic cells mounted on heat collector, carried longitudinally by mirrored reflectors
FR2476281A1 (en) * 1980-01-18 1981-08-21 Seyve Daniel Semicircular section solar collectors with fresnel lines - has section plastic tunnels laid over pipes carrying working fluid with auxiliary pipes collecting diffused rays
US4427838A (en) * 1981-06-09 1984-01-24 Goldman Arnold J Direct and diffused solar radiation collector
JPS5912252A (en) * 1982-07-12 1984-01-21 Sanyo Electric Co Ltd Sunlight energy converter
DE3634213A1 (en) * 1986-10-08 1988-04-21 Friedrich Becker Concentrating collector for diffuse sunlight
AT403095B (en) * 1995-07-27 1997-11-25 Weger Robert Dr Solar radiation measuring sensor for global and diffuse radiation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 008, no. 100 (M - 295) 11 May 1984 (1984-05-11) *

Also Published As

Publication number Publication date
DE10191990D2 (en) 2002-08-29
AU2001258199A1 (en) 2001-11-26
DE10024152A1 (en) 2001-11-22

Similar Documents

Publication Publication Date Title
US6384320B1 (en) Solar compound concentrator of electric power generation system for residential homes
DE10248068B4 (en) Plant for solar thermal steam generation and process for solar thermal generation of steam
DE10296508T5 (en) Photovoltaic array module design for solar electric power generation systems
EP1403595B1 (en) Absorber element for high temperature solar heat recovery and process for manufacturing same
EP1984624B1 (en) Method and device to increase the energy production in a solar thermal power plant
EP1121564A1 (en) Light element having a translucent surface
DE2629641A1 (en) DEVICE FOR THE CONVERSION OF LIGHT ENERGY INTO HEAT ENERGY BY LIGHT CONCENTRATION WITH THE HELP OF FLUORESCENT LAYERS
DE19854391A1 (en) Prism system for light deflection, converting solar radiation into thermal, electrical energy has prism arrangement in region exposed to solar radiation depending on daily course of sun
DE3130226A1 (en) Solar-energy installation with photo-electric cells
WO2001088443A1 (en) Solar plant provided with radiation concentrating optics and a first radiation converter
DE2523479A1 (en) Solar collector with black panel and photocells - liquid or gaseous heat carrier circulates between two collector panels
DE19718044C1 (en) Solar-heat-collecting system e.g. for solar radiation thermal electrical power station
DE102012103457B4 (en) Method for operating a solar thermal power plant
AU2016349191B2 (en) Solar heat collection system and operation method thereof
WO2012028494A2 (en) Solar thermal continuous evaporator heating surface with local cross-sectional narrowing on the inlet thereof
WO2010015362A2 (en) Solar power plant
DE2607509A1 (en) Concentrating lens for solar energy collector - has mathematically determined side shape to achieve uniform energy density on absorber
DE60208665T2 (en) SOLAR POWER PLANT
JP2003322419A (en) Sunlight composite focusing machine of electric power generation system for house
DE102010040200A1 (en) Solar thermal absorber for direct evaporation, in particular a solar tower power plant
JPS5834801B2 (en) Lighting device that doubles as a solar energy utilization device
CH704007A1 (en) Solar collector comprises first concentrator arrangement having first radiation path with combustion line portion, which exhibits incident solar radiation alternately in operating region, and absorber arrangement for concentrated radiation
JPS613953A (en) Solar heat collecting device
DE9412438U1 (en) Two-stage, low-concentration collector system for converting direct sunlight into heat, suitable for process heat applications in the temperature range around 200 degrees Celsius
DE112010001880B4 (en) Solar collector for the production of electricity and hot water

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP