JPS5834801B2 - Lighting device that doubles as a solar energy utilization device - Google Patents

Lighting device that doubles as a solar energy utilization device

Info

Publication number
JPS5834801B2
JPS5834801B2 JP51008274A JP827476A JPS5834801B2 JP S5834801 B2 JPS5834801 B2 JP S5834801B2 JP 51008274 A JP51008274 A JP 51008274A JP 827476 A JP827476 A JP 827476A JP S5834801 B2 JPS5834801 B2 JP S5834801B2
Authority
JP
Japan
Prior art keywords
light
illumination
lens
fresnel
item
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51008274A
Other languages
Japanese (ja)
Other versions
JPS5291452A (en
Inventor
幹夫 灘口
明 灘口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP51008274A priority Critical patent/JPS5834801B2/en
Publication of JPS5291452A publication Critical patent/JPS5291452A/en
Publication of JPS5834801B2 publication Critical patent/JPS5834801B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators

Description

【発明の詳細な説明】 この発明は、同一発明者の発明にかかる、特願昭50−
86578号〔特開昭52−10151、発明の名称〔
複合フレネル凹、凸柱面をもつレンズまたは鏡面〕)を
構成要素とするとき殊に効果的な太陽エネルギー利用装
置を兼ねる照光装置に関し、太陽光の高効率利用をその
目的とする。
DETAILED DESCRIPTION OF THE INVENTION This invention is based on a patent application filed in 1973 by the same inventor.
No. 86578 [Unexamined Japanese Patent Publication No. 52-10151, title of invention]
The present invention relates to an illumination device that doubles as a solar energy utilization device, which is particularly effective when it uses a composite Fresnel concave or convex cylindrical lens or mirror surface as a component, and its purpose is to utilize sunlight with high efficiency.

太陽光は、これを集光して太陽電池・集熱体・化合物そ
の他の受光体を照射し、その光学的エネルギーを電気的
、熱的、化学的等のエネルギーに変換して利用されるが
、上記のレンズはその集光用に殊に適している。
Sunlight is used by condensing it and irradiating it onto solar cells, heat collectors, compounds, and other photoreceptors, and converting its optical energy into electrical, thermal, chemical, etc. energy. , the abovementioned lenses are particularly suitable for that purpose.

先づ、上記の出願の発明につき説明する。First, the invention of the above application will be explained.

第1図に従来の平凸円柱フレネルレンズの複数個を一体
化したものの横断面図を示す。
FIG. 1 shows a cross-sectional view of a conventional plano-convex cylindrical Fresnel lens integrated with a plurality of lenses.

このフレネルレンズは円柱レンズaF10.bF10゜
cFlo、・・・・・・・・・を原形とするもので、レ
ンズの平面部Pに垂直に立てられた多数のフレネル区切
面a S 1 、b S 1 > c S 1 t・・
・・・・・・・とそれらで区切られた多数のフレネル柱
面aF1.bF1゜cFl、−・・・・・−・・からな
っている。
This Fresnel lens is a cylindrical lens aF10. The original shape is bF10゜cFlo,..., and a large number of Fresnel dividing planes a S 1 , b S 1 > c S 1 t...
. . . and a large number of Fresnel cylindrical surfaces aF1. It consists of bF1゜cFl, -...

これら区切面の数、配置には別設の理論的拘束はなく、
自由に設計できる。
There are no separate theoretical constraints on the number or arrangement of these dividing surfaces;
Can be designed freely.

レンズを薄くする目的で区切面は可成り多くするのが普
通である。
In order to make the lens thinner, it is common to have a large number of dividing surfaces.

(第1図は、わかりよくするため逆に区切を少くして示
している)。
(Figure 1 is shown with fewer divisions for clarity).

ab、be 、・・・・・・・・・は隣接レンズの境界
(線)である。
ab, be, . . . are boundaries (lines) of adjacent lenses.

第1A図に横断面図で示す頭記出願の発明のレンズは第
1図のものを改善したもので、互に重なり合って隣接す
る仮想円柱面レンズaF20 。
The lens according to the invention of the above-mentioned application, shown in cross-sectional view in FIG. 1A, is an improvement over that of FIG. 1, and includes virtual cylindrical lenses aF20 that overlap and are adjacent to each other.

bF20 、cF20 、・・・・・・・・・を原形と
して作られたものであり、第1図のものとちがってフレ
ネル区切面は互に他の隣接レンズのフレネル柱面aF2
1.bF22.aF22.bF22.・・・・・・・・
・で構成されている。
bF20 , cF20 , .
1. bF22. aF22. bF22.・・・・・・・・・
・It is made up of.

念のため入射光(太陽光)の進行径路を細線で示したが
、光はもれなく何れかの集光線aD2.bD2.・・・
・・・・・・上に集光されている。
As a precaution, the traveling path of the incident light (sunlight) is shown as a thin line, but the light will always flow along one of the condensing lines aD2. bD2. ...
...The light is focused above.

この発明のフレネル化の方法は、従来の方法の応用変形
にすぎず、区切数、区切面の立上り位置T1の配置には
別設の理論的拘束はない。
The Fresnelization method of the present invention is merely an applied variation of the conventional method, and there are no separate theoretical constraints on the number of sections and the arrangement of the rising position T1 of the section plane.

第1A図は第1図の立上り位置T1をそのままにして区
切面を隣接フレネル柱面で置換えている。
In FIG. 1A, the rising position T1 of FIG. 1 remains the same, and the dividing plane is replaced with an adjacent Fresnel column surface.

このレンズには次の長所がある。This lens has the following advantages:

(1)斜入光が散乱損失なく集光される。(1) Oblique incident light is focused without scattering loss.

(2)各円柱面の交角は鈍化し、山の高さも低くなるの
で、少い区切数でレンズを薄く作ることができる。
(2) Since the intersection angle of each cylindrical surface becomes obtuse and the height of the ridges becomes low, the lens can be made thin with a small number of sections.

(3)短焦点・大口径のものが容易に作れる。(3) Short focal length and large aperture can be easily made.

即ち製造は容易になり、例えば板ガラスの製法が流用で
き、プラスチックスでは押出成形等の量産的手法が採用
できる。
In other words, manufacturing becomes easier; for example, the manufacturing method of plate glass can be used, and mass production methods such as extrusion molding can be used for plastics.

(4)斜入光を散乱させないので、集光位置を太陽の運
行につき固定せんとするとき、太陽への追随移動は横方
向(レンズの光軸と柱面軸の両者に直角な方向、をいう
ものとする。
(4) Since oblique light is not scattered, when trying to fix the focusing position according to the movement of the sun, the movement following the sun is horizontal (direction perpendicular to both the optical axis and the cylindrical axis of the lens). shall be said.

)にずらせるか、若くは、集光せんとする光束を反射鏡
で反射させて別位置に集光を移し、その反射鏡を移動さ
せることで、その別位置を固定するか、又は、その両方
法を併用することで集光部を固定できる。
), or better yet, reflect the light beam to be focused on a reflector to move the focus to another position, and then move the reflector to fix that other position, or By using both methods together, the light condensing section can be fixed.

これは、このレンズが、屋根・壁面・平(傾斜)地に沿
って設置でき、太陽追尾が容易であることを意味し、実
用的価値が高い。
This means that this lens can be installed along roofs, walls, and flat (sloping) ground, making it easy to track the sun, and has high practical value.

さて、このレンズ又は従来のフレネルレンズ又はそのフ
レネル区切面を傾けて作り易くしたものを用いて構成さ
れた集光器の集光部(レンズが球面レンズのときは点状
Now, the condensing part of a condenser (in the case of a spherical lens, the condensing part is dot-shaped) is constructed using this lens, a conventional Fresnel lens, or one made by tilting its Fresnel dividing surface to make it easier to manufacture.

柱面レンズのときは一般には線状。Cylindrical lenses are generally linear.

もし柱面軸を直交させてレンズ二枚を重ねるときは点、
線分、矩形状となる。
If two lenses are stacked with their cylindrical axes perpendicular, then the point,
It becomes a line segment and a rectangular shape.

)に、例えば第2図のように、受光体20を置いたとき
、受光体20を外れる散乱光が少なからず存在し、それ
が照光用として好適であることに、本発明は殊に注目す
る。
), for example, as shown in FIG. 2, when the photoreceptor 20 is placed, there is a considerable amount of scattered light that leaves the photoreceptor 20, and the present invention particularly focuses on the fact that this is suitable for illumination. .

散乱光は主に二つの部分からなっている。Scattered light mainly consists of two parts.

(1)一つは、空で雲・ちり等によってすでに生じてい
る散乱光がレンズ21を通過するものであり、全光量の
数%から(部面では)50%にも及ぶもの、〔2〕他は
、太陽の直射光がレンズ21で、そのゆがみ、曲面の交
線で散乱を起したものである。
(1) One is that the scattered light already generated by clouds, dust, etc. in the sky passes through the lens 21, which ranges from a few percent to as much as 50% (in some areas) of the total light intensity. ] The other problem is that the direct sunlight is distorted by the lens 21 and scattered at the intersection lines of the curved surface.

これはレンズの仕上り、区切面数にもよるが、全光量の
数%から十数%までの間にあると考えられる。
Although this depends on the finish of the lens and the number of partitioned surfaces, it is thought to be between a few percent and more than ten percent of the total light amount.

これら散乱光は〔照光用〕として極めて優れている。These scattered lights are extremely excellent for illumination.

但し、ここで照光と言っているのは、照明光のほかに、
動・植物がその生活に利用している光(以下ではこれを
〔生活光〕と呼ぶ。
However, when we say illumination here, in addition to illumination light,
Light used by animals and plants in their daily lives (hereinafter referred to as ``living light'').

)−を指すものとする。)-.

太陽の直射光はこれを直接照明とするには適しない。Direct sunlight is not suitable for direct lighting.

一般にあまり強く、且光と影のコントラストが大きすぎ
る。
Generally, it is too strong and the contrast between light and shadow is too large.

広い空から諸方向から降下する散乱光のみの方が影がお
だやかであり照度も適当で照明に適している。
Scattered light falling from the wide sky from various directions produces gentler shadows and provides appropriate illuminance, making it suitable for illumination.

第2図のレンズを通過した散乱光についてもそれと同じ
ことが言える。
The same can be said about the scattered light that passes through the lens in FIG.

また、可視光線だけでな(紫外線・赤外線にも注目した
とき、太陽直射光は、人間を含む動・植物の生活光とし
ても強すぎ、例えば裸の人体、植物の苗には直射光は有
害である。
In addition, when looking at not only visible light (ultraviolet rays and infrared rays), direct sunlight is too strong as living light for animals and plants, including humans, and direct light is harmful to the naked human body and plant seedlings. It is.

多くの種類の植物、殊に栽培植物、飼育動物は直射光を
さけて散乱光下に置く方がよく育つ。
Many types of plants, especially cultivated plants and domesticated animals, grow better when placed under scattered light rather than direct light.

この散乱光(殊に紫外・赤外光を含む散乱光)を電灯で
得ることは、技術的にも困難であるが、それにも増して
エネルギー経済上非常に不利である。
Obtaining this scattered light (particularly scattered light including ultraviolet and infrared light) using an electric lamp is not only technically difficult, but also extremely disadvantageous in terms of energy economy.

例えば太陽光エネルギーでこの照光を〔作〕ろうとする
と、太陽光を電力に変換する効率が嵩高30%、その電
力で電灯をともし照光を得る効率は高々20%であり、
総合効率は6%以下となる。
For example, if you try to use solar energy to create this type of illumination, the efficiency of converting sunlight to electricity is 30%, and the efficiency of using that electricity to light a lamp and obtain illumination is at most 20%.
The overall efficiency will be less than 6%.

(通常は2%以下と考えられる。)更に、夏期の高温時
には電灯の発熱が室温を上昇させ、冷房に電灯以上の電
力を必要とすることを考慮すると総効率は大幅に低下す
る。
(Usually, it is thought to be less than 2%.) Furthermore, when taking into account that the heat generated by electric lights increases the room temperature during high temperatures in summer, and that cooling requires more electricity than electric lights, the total efficiency decreases significantly.

即ち、電力を経由する人工的照光はエネルギー利用効率
上極端に不経済であり、到底前記(2)、〔l〕の散乱
光を直接使用するに如かない。
That is, artificial illumination via electric power is extremely uneconomical in terms of energy utilization efficiency, and there is no way to directly use the scattered light in (2) and [1] above.

本発明は上述理由から、受光体を外れる〔1〕、(2)
の散乱光を積極的に内部(受光体につきレンズと反対側
の空間)の照光として利用するものである。
For the above-mentioned reasons, the present invention removes the photoreceptor [1], (2)
The scattered light is actively used to illuminate the interior (the space on the opposite side of the photoreceptor from the lens).

第2図では、レンズ21(以下、レンズは前記の複合フ
レネル凸柱面レンズで代表させる)はその柱面軸を太陽
の運行面に平行にして(例えば東西に向けて)設置して
あり、その集光線21D(複数)の上に集熱管20(複
数)が配置されているが、その集熱管200間を通りぬ
けて、散乱光が内部25に照光として供給される。
In FIG. 2, the lens 21 (hereinafter, the lens will be represented by the above-mentioned compound Fresnel convex cylindrical lens) is installed with its cylindrical axis parallel to the plane of movement of the sun (for example, facing east and west), Heat collecting tubes 20 (plurality) are arranged above the light collecting lines 21D (plurality), and scattered light passes between the heat collecting tubes 200 and is supplied to the interior 25 as illumination.

〔内部〕を構成するものは、一般家屋の室内、工場内、
温室内、田畑、山地の斜面、海浜、海面、砂漠、運動場
等々であり、人々に良質の照明を供給し、人を含む動・
植物に絶好の生活・生育環境を提供する。
[Inside] consists of the inside of a general house, inside a factory,
In greenhouses, fields, mountain slopes, beaches, ocean surfaces, deserts, playgrounds, etc., they provide high-quality lighting to people and are suitable for movement, including people.
Provide the perfect living and growing environment for plants.

この散乱光が広い面光源によるおだやかな性質のもので
あり、且、適度の紫外・赤外線を含み、生活光として有
用であることはすでに述べた通りである。
As already mentioned, this scattered light is of a gentle nature due to a wide surface light source, contains moderate amounts of ultraviolet and infrared rays, and is useful as daily life light.

レンズ21は、これを屋根や壁面に取付けても、そのフ
レネル区切面数をある程度多くしておけば、外から内部
をのぞき見て中のものを識別することが難しく、殊更目
かくし用のカーテン等を設置する必要はない。
Even if the lens 21 is installed on a roof or wall, if the number of Fresnel partitions is increased to a certain extent, it will be difficult to see inside from the outside and identify what is inside. There is no need to install etc.

また、内外から見て、屋根・壁面に張られたレンズ21
は美しい。
Also, when viewed from inside and outside, the lens 21 attached to the roof/wall surface
is beautiful.

もつとも、紫外線又は赤外線の一方または両方を選択的
に反射、吸収又は透過する透明蓋くは半透明のガラス又
はプラスチックス、又はそれらの表面を機械的若くは化
学的方法で荒れさせて散乱光を更に散乱させてまぶしさ
を除かせたものからなる中間仕切板(これは断熱用空間
29を作るという点でも有用である)22を太陽エネル
ギー利用装置と内部の間に置くことは照光の性質を調整
させる上で時、所により不可欠である。
However, transparent lids or translucent glass or plastics that selectively reflect, absorb, or transmit either or both of ultraviolet and infrared rays, or their surfaces may be roughened mechanically or chemically to prevent scattered light. Furthermore, placing an intermediate partition plate 22 made of a material that scatters and eliminates glare (this is also useful in creating a heat insulating space 29) between the solar energy utilization device and the interior improves the nature of the illumination. It is essential at times and places to make adjustments.

太陽エネルギー利用装置の中には受光体が光を透過(一
部透過)させるものがある。
Some solar energy utilization devices have photoreceptors that transmit (partially) light.

例えば、経済性の見地から薄く作られた太陽電池は一部
の光を透す。
For example, solar cells that are made thinner for economic reasons allow some light to pass through.

また、いわゆる〔光化学電池〕では水に溶かした化合物
(例えば、チアジン系色素と還元剤)に太陽光を照射し
て光化学反応を起させ〔ロイコ色素と還元剤の酸化体を
作り)、その反応生成物を分離貯蔵し、必要のとき電極
反応を起させて電力を得ると共にもとの化合物に戻すと
いう循環を行うが、このときの被照射水溶液もまた可成
の光を透す。
In addition, in so-called [photochemical cells], a compound dissolved in water (for example, a thiazine dye and a reducing agent) is irradiated with sunlight to cause a photochemical reaction (creating an oxidized product of the leuco dye and reducing agent), and the reaction occurs. A cycle is performed in which the product is separated and stored, and an electrode reaction is caused when necessary to obtain electricity and return to the original compound.The irradiated aqueous solution at this time also allows a considerable amount of light to pass through.

さらに、受光体となるものの中には、高い反射率を示す
ものがある。
Furthermore, some photoreceptors exhibit high reflectance.

完全な黒体を目指す、よくできた集熱体の場合でも10
%を越す光を反射するのが普通である。
Even in the case of a well-made heat collector that aims to be a perfect black body, 10
It is normal to reflect more than % of the light.

(第2図で、集熱管200表面で反射する光20Lがそ
の一例である。
(An example of this is the light 20L reflected on the surface of the heat collecting tube 200 in FIG. 2.

)これら透過光、反射光をも積極的に照光として利用す
ることができる。
) These transmitted light and reflected light can also be actively used as illumination.

第2図にて、24は集熱管200代りに置かれた厚さ数
十ミクロンの太陽電池(CaAsで液相成長法で作られ
たものが報告されている)であり、透明なガラス板23
上に置かれている。
In FIG. 2, reference numeral 24 is a solar cell several tens of microns thick (a solar cell made of CaAs using the liquid phase growth method has been reported) placed in place of the heat collecting tube 200, and a transparent glass plate 23
placed on top.

集光々のうち24.23の両方を透過したものが照光に
参加する。
Among the condensed lights, those that have passed through both 24 and 23 participate in illumination.

また、この図の20が透明ガラス管であり、この中を光
化学電池用の被照射水溶液26が流れているとするとき
、集光々のうち20 、26を透過したものが内部25
への照光に参加する。
In addition, when 20 in this figure is a transparent glass tube and an irradiated aqueous solution 26 for a photochemical cell is flowing inside this tube, the light that has passed through 20 and 26 among the condensed lights is inside 25.
Participate in illuminating.

照明によって人が作業し、生活光によって動・植物が生
育するとき、作業内容、成長時期によっては強い照光を
要求することがある。
When people work using lighting, and animals and plants grow using daily light, strong lighting may be required depending on the nature of the work and the growing season.

強すぎるときの散乱光は黒色吸収板28Aを設けてその
一部を熱エネルギーに変え集熱管28内の熱媒体に集め
ればよく、簡単にはブラインド、カーテンを使用し、又
は照度によって自動的に透光率を変えるガラス(例えば
KCl 、 AgNO3を分散させたガラスがある)を
中間仕切板22として使って、これを弱めることができ
るが、不足する光量は、何らかの方法で補充するしかな
い。
Scattered light when it is too strong can be collected by installing a black absorbing plate 28A and converting a part of it into thermal energy and collecting it on the heat medium in the heat collecting tube 28.This can easily be done by using blinds, curtains, or automatically depending on the illuminance. This can be weakened by using glass that changes the light transmittance (for example, glass in which KCl or AgNO3 is dispersed) as the intermediate partition plate 22, but the insufficient amount of light must be replenished in some way.

さて本発明は、散乱光(1)、(2)を照光に利用して
なお光が不足するときに、集光々の一部又は全部を照光
に振向けて補充するものである。
Now, in the present invention, when the scattered lights (1) and (2) are used for illumination and there is still insufficient light, part or all of the condensed light is directed to illumination to replenish the light.

集光々は集光部を遠ざかると急速に分散するし、太陽エ
ネルギー利用装置で集光器が広い面を覆って規則正しく
分散配置されるのが常であるため、この光は照光用にま
ことに優れている。
This light is excellent for illumination because the concentrated light rapidly disperses as it moves away from the condensing part, and in solar energy utilization devices the concentrators are usually distributed over a large area in an orderly manner. ing.

しかも光がすでに小面積に集っているので、集光々の取
入れは極めて容易である。
Moreover, since the light is already concentrated in a small area, it is extremely easy to incorporate light condensers.

受光体を第2図の2OA、20Bのように集光部の前後
(上下)又は左右に僅かにずらせるだけで事が足りる。
It is sufficient to simply shift the photoreceptor slightly to the front and back (up and down) or to the left and right of the light condensing section as shown in 2OA and 20B in FIG.

実施例 ル ンズを南面させ柱面軸を東西に向けるとき、入射光は正
午ごろ過大で朝夕に不足する。
Embodiment When the luns face south and the cylindrical axis faces east and west, the amount of incident light is excessive around noon and insufficient in the morning and evening.

東又は西に向けて例えば壁に立てかげた集光器では入射
光は正午の近辺にて不足となる。
If the condenser is placed facing east or west, for example against a wall, the incident light will be insufficient around noon.

この不足分が自然に集光々で補充されるようにするのは
簡単である。
It is easy to naturally replenish this deficiency with condensed light.

レンズの柱面軸を太陽の運行面と交わらせて設置し受光
体をそれに平行に置くなどで、受光体では照光の過大な
時間帯の集光々のみを受光するよう配慮すればよい。
By setting the cylindrical axis of the lens to intersect with the plane of travel of the sun and placing the photoreceptor parallel to it, care should be taken so that the photoreceptor only receives the concentrated light during periods of excessive illumination.

こうすれば照光が不足するころには集光4束は横に移動
して受光体から外れ自然に照光への参加分を増す。
In this way, when the illumination becomes insufficient, the four condensed beams will move laterally and come off the photoreceptor, naturally increasing their participation in the illumination.

増し方は柱面軸と太陽の運行面の交角を大きくとるほど
犬となる。
The larger the angle of intersection between the columnar axis and the sun's travel plane, the more it increases.

実施例 2 日照は時々刻々変化するので、照光に参加させる集光々
の光量は不足の都度速かに補充するのを理想とする。
Embodiment 2 Since sunlight changes from moment to moment, it is ideal to quickly replenish the amount of light from the condensed lights that participate in illumination each time there is a shortage.

本発明の場合は補充光量の調節が〔レンズを僅か横に移
動させる〕だけで自由且容易に行われるので光量の自動
制御には殊に適している。
In the case of the present invention, the amount of supplementary light can be freely and easily adjusted by simply moving the lens slightly laterally, so it is particularly suitable for automatic control of the amount of light.

例えば自動制御装置には次のものがある。第3図にて、
31,32は僅かな隙間33を設けて平行に設置された
透明平板ガラス、34は隙間33に挿入されているアク
リル樹脂製の薄い第2図のレンズで、その柱面軸は東西
に向いている。
For example, automatic control devices include: In Figure 3,
31 and 32 are transparent flat glass glasses installed in parallel with a slight gap 33, and 34 is a thin acrylic resin lens shown in Fig. 2 inserted into the gap 33, with its cylindrical axis facing east and west. There is.

そしてその集光線は照度計4L、4Rを光センサーとす
る制御装置で、集光器を太陽に追尾して横に移動させる
ことにより固定されているもとのする。
It is assumed that the condensing line is fixed by a control device using the illuminometers 4L and 4R as light sensors by moving the concentrator laterally to track the sun.

33Dはその固定された正規の集光線であり、33Eは
その集光4束を過不足なく受ける受光体とする。
33D is the fixed regular condensing line, and 33E is a photoreceptor that receives the four condensed beams in just the right amount.

このようにした太陽エネルギー利用装置では、照度計を
5L、SRのように僅かに横に移すことで集光4束を点
線の位置に移し照光量を補充調節することができる。
In such a solar energy utilization device, by slightly moving the illuminance meter to the side as in 5L and SR, the four focused beams can be moved to the position indicated by the dotted line, and the amount of illumination can be supplemented and adjusted.

上述の実施例1.2はこれを組合せて相当の効果をあげ
うる。
The above embodiments 1.2 can be combined to produce considerable effects.

本発明によれば、太陽光はその直射成分、散乱成分の全
部が高効率で利用できることになる。
According to the present invention, all of the direct and scattered components of sunlight can be utilized with high efficiency.

本発明の装置は、すでに述べたように、作業用又は人を
含む動・植物の、広く生活、飼育、生育用に理想的な照
光を提供するが、太陽エネルギー利用装置の副産物であ
ってその設置・構築にほとんど費用を要しない。
As mentioned above, the device of the present invention provides ideal illumination for a wide range of living, rearing, and growth of animals and plants including humans, and is a byproduct of solar energy utilization devices. It requires almost no cost to install or construct.

且、日常の照光に要する費用(維持経費)と言うものも
皆無に近い。
Moreover, the cost (maintenance cost) required for daily lighting is almost non-existent.

従来の太陽光利用装置では、散乱光は熱的・化学的エネ
ルギーに変換して利用されるか、徒らに空に向って放散
してしまうかの何れかであり、之を直接照光に利用する
ことはなかった。
In conventional solar energy devices, scattered light is either converted into thermal or chemical energy and used, or it is wasted away into the sky, which is used for direct illumination. There was nothing to do.

その理由の大吉は従来の太陽エネルギー利用装置がその
構成素材の性質から、採りうる構造に大きい制限と束縛
をもち照光への利用を不可能にしていた為である。
The main reason for this is that conventional solar energy utilization devices have large restrictions and constraints on the structures that can be adopted due to the nature of their constituent materials, making it impossible to use them for illumination.

本願の発明は、頭記複合フレネル柱面レンズ等のレンズ
が斜入太陽光を散乱させず(極く僅少にとどめ)且太陽
への追尾動作を短距離の横の移動で可能にし、そのため
屋根・壁・地面に沿わせて設置できることに着目し、且
、之で太陽光集光型太陽エネルギー利用装置を構成する
とき広い散乱光発生面を作ってそれが理想的な照光面た
りうろことに着目し、更に照光の不足分を集光々で補充
しうろことに注目し之を積極的に照光として使用するこ
とを提案するものである。
The invention of the present application is such that a lens such as the compound Fresnel cylindrical lens described above does not scatter oblique sunlight (minimize it) and can track the sun by moving horizontally over a short distance.・Focusing on the fact that it can be installed along a wall or ground, and when configuring a solar concentrator type solar energy utilization device, we create a wide scattered light generation surface and use it as an ideal illumination surface. This paper focuses on the fact that the lack of illumination can be supplemented by condensing light, and proposes to actively use it as illumination.

この照光装置を家屋、工場、温室の屋根・壁に取付ける
ときの効果の大きいことは既述の通りであるが、これに
増して従来の太陽エネルギー利用装置でそれを設置した
広い(太陽が希薄であるため必然的に広面積となる)地
面、海浜・面、砂漠の下方が、暗黒であり、あるいは邪
魔物の乱立すする空間であって之をデッドスペースとす
ることが当然のことと考えられていたものを、本発明の
装置はそれらを絶好の作業性・居住用・生活用・飼育用
・栽培用の広場とするものである。
As mentioned above, this lighting device is highly effective when installed on the roofs and walls of houses, factories, and greenhouses, but it is even more effective when installed on the roofs and walls of houses, factories, and greenhouses. Therefore, it is natural that the ground, the beach/surface, and the bottom of the desert are dark or filled with obstacles, and are considered dead spaces. The device of the present invention turns these areas into open areas for excellent workability, residence, living, rearing, and cultivation.

工業、産業上まことに有益な発明というべきである。It should be said that this invention is truly useful for industry.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のフレネルレンズの横断面図。 第1A図はこの発明で使用する複合フレネル柱面レンズ
の横断面図。 第2図はこの発明の、散乱光を照光に利用する太陽エネ
ルギー利用装置の横断面図。 第3図はレンズを移動させて照光量を調節する同様の図
。 21.34:複合フレネル柱面レンズ、20A。 20B、24,20,33E:受光体、21D。 21DW、33D:集光線、LSI、LWI:太陽光、
25:(被照光)内部、22:中間仕切板。
Figure 1 is a cross-sectional view of a conventional Fresnel lens. FIG. 1A is a cross-sectional view of a composite Fresnel cylindrical lens used in the present invention. FIG. 2 is a cross-sectional view of a solar energy utilization device according to the present invention that utilizes scattered light for illumination. FIG. 3 is a similar diagram in which the amount of illumination is adjusted by moving the lens. 21.34: Composite Fresnel cylindrical lens, 20A. 20B, 24, 20, 33E: Photoreceptor, 21D. 21DW, 33D: Condensing line, LSI, LWI: Sunlight,
25: (illuminated) interior, 22: intermediate partition plate.

Claims (1)

【特許請求の範囲】 1 平面状のレンズ型集光器と、該集光器の集光部に置
かれる受光体と、該受光体につき該集光器の反対側にあ
る空間を内容とする内部と、の三者より戒り、該受光体
を洩れる集光器の集光々を該内部の照光として利用する
如くしたことを特徴とする太陽エネルギー利用装置を兼
ねる照光装置。 2 該集光器の集光部が、太陽の運行によって受光体を
それるようにしておくことにより、集光々の照光への参
加分が自然に調節されるようにしたことを特徴とする第
1項記載の照光装置。 3 該集光器と該受光体の相対位置を太陽追尾から外れ
させるよう制御することにより、集光々の照光への参加
分を調節するようにしたことを特徴とする第1項記載の
照光装置。 4−面上に複数個のフレネル凸柱面を具え、且隣接する
二つの該フレネル凸柱面のフレネル区切面ば互に他のフ
レネル柱面で構成されている複合フレネル凸柱面をもつ
レンズを集光器として使用する第1.2又は3項記載の
照光装置。 5 該受光体の透過光又は反射光を照光に参加させるこ
とを特徴とする第1.2.3又は4項記載の照光装置。
[Claims] 1. A planar lens-type condenser, a light receptor placed in the condensing part of the condenser, and a space on the opposite side of the condenser for the light receptor. 1. An illumination device that also serves as a solar energy utilization device, characterized in that the light collected by a condenser leaking through the light receptor is used as illumination of the interior. 2. The light collecting part of the light collector is arranged so that the light receiving body is deflected by the movement of the sun, so that the participation of the light collecting parts in illumination is naturally adjusted. The lighting device according to item 1. 3. The illumination according to item 1, characterized in that the relative positions of the concentrator and the light receptor are controlled so as to deviate from solar tracking, thereby adjusting the contribution of the condensed light to the illumination. Device. A lens having a composite Fresnel convex column surface, which has a plurality of Fresnel convex column surfaces on the 4-plane, and in which the Fresnel dividing surfaces of two adjacent Fresnel convex column surfaces are each composed of other Fresnel column surfaces. 3. The illumination device according to item 1.2 or 3, wherein the illumination device is used as a concentrator. 5. The illumination device according to item 1.2.3 or 4, characterized in that transmitted light or reflected light from the photoreceptor participates in illumination.
JP51008274A 1976-01-27 1976-01-27 Lighting device that doubles as a solar energy utilization device Expired JPS5834801B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP51008274A JPS5834801B2 (en) 1976-01-27 1976-01-27 Lighting device that doubles as a solar energy utilization device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP51008274A JPS5834801B2 (en) 1976-01-27 1976-01-27 Lighting device that doubles as a solar energy utilization device

Publications (2)

Publication Number Publication Date
JPS5291452A JPS5291452A (en) 1977-08-01
JPS5834801B2 true JPS5834801B2 (en) 1983-07-29

Family

ID=11688582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP51008274A Expired JPS5834801B2 (en) 1976-01-27 1976-01-27 Lighting device that doubles as a solar energy utilization device

Country Status (1)

Country Link
JP (1) JPS5834801B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631737U (en) * 1986-06-20 1988-01-07
JPH0226835Y2 (en) * 1986-09-08 1990-07-20

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5669601A (en) * 1979-11-12 1981-06-11 Masao Kanazawa Preparation for sheet lens
JPS644401U (en) * 1987-06-29 1989-01-11
JP5029103B2 (en) * 2007-04-05 2012-09-19 トヨタ自動車株式会社 Solar power plant

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1341674A (en) * 1918-08-05 1920-06-01 Jacob F Rhodin Illuminating apparatus
US3203306A (en) * 1961-09-25 1965-08-31 Lefferts Peter Optical ray concentrator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1341674A (en) * 1918-08-05 1920-06-01 Jacob F Rhodin Illuminating apparatus
US3203306A (en) * 1961-09-25 1965-08-31 Lefferts Peter Optical ray concentrator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631737U (en) * 1986-06-20 1988-01-07
JPH0226835Y2 (en) * 1986-09-08 1990-07-20

Also Published As

Publication number Publication date
JPS5291452A (en) 1977-08-01

Similar Documents

Publication Publication Date Title
US4209222A (en) Installation for utilizing solar energy with wavelength selective reflector
US3991741A (en) Roof-lens solar collector
US4198953A (en) Solar illuminated energy conserving greenhouse
CN106052145B (en) The concentration solar generating in greenhouse
US7227077B2 (en) Light element with a translucent surface
US20090250095A1 (en) Low-profile solar tracking module
Chong et al. Design and construction of active daylighting system using two-stage non-imaging solar concentrator
US20220408660A1 (en) Agricultural sunlight transmission lighting system, supporting greenhouse and lighting method
CN1447058A (en) Device for illuminating indoors by using sunlight
Wu et al. Photothermal/day lighting performance analysis of a multifunctional solid compound parabolic concentrator for an active solar greenhouse roof
CN104663266A (en) Sunlight comprehensive utilization system of plant factory
CN105492707A (en) Roofing
KR20110067118A (en) Photovoltaic cell apparatus
EP1071317B1 (en) Greenhouse
JPS5834801B2 (en) Lighting device that doubles as a solar energy utilization device
US20150370054A1 (en) Electromagnetic radiation system
André et al. Daylighting by optical fiber
CN2572217Y (en) Device for indoor illumination by sun light
RU2676819C2 (en) Optical fibering lighting device with optical method of tracking a stable concentrator for the sun
JP4313841B1 (en) Solar lens and solar-powered equipment
CN1006326B (en) Solar thermal-arrest device with sub-mirror
RU2659319C1 (en) Fixed solar radiation concentrator with optical method of alignment
JP2010016109A (en) Concentrating photovoltaic power generation system
GB2435107A (en) Solar collector with receiver, spherical internally reflective chamber and emitter
JP2005062785A (en) Tracking type beam condensing unit