WO2001088383A1 - Dispositif d'entrainement hydraulique - Google Patents

Dispositif d'entrainement hydraulique Download PDF

Info

Publication number
WO2001088383A1
WO2001088383A1 PCT/JP2001/004012 JP0104012W WO0188383A1 WO 2001088383 A1 WO2001088383 A1 WO 2001088383A1 JP 0104012 W JP0104012 W JP 0104012W WO 0188383 A1 WO0188383 A1 WO 0188383A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
hydraulic pump
differential pressure
valve
switching valve
Prior art date
Application number
PCT/JP2001/004012
Other languages
English (en)
French (fr)
Inventor
Kiwamu Takahashi
Takashi Kanai
Yasutaka Tsuruga
Kenichiro Nakatani
Junya Kawamoto
Original Assignee
Hitachi Construction Machinery Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co., Ltd. filed Critical Hitachi Construction Machinery Co., Ltd.
Priority to EP01930129A priority Critical patent/EP1231386A1/en
Priority to US10/018,575 priority patent/US6651428B2/en
Publication of WO2001088383A1 publication Critical patent/WO2001088383A1/ja

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2292Systems with two or more pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2203Arrangements for controlling the attitude of actuators, e.g. speed, floating function
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2221Control of flow rate; Load sensing arrangements
    • E02F9/2232Control of flow rate; Load sensing arrangements using one or more variable displacement pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • E02F9/2278Hydraulic circuits
    • E02F9/2296Systems with a variable displacement pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B11/00Servomotor systems without provision for follow-up action; Circuits therefor
    • F15B11/16Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors
    • F15B11/161Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load
    • F15B11/165Servomotor systems without provision for follow-up action; Circuits therefor with two or more servomotors with sensing of servomotor demand or load for adjusting the pump output or bypass in response to demand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps
    • F15B2211/20584Combinations of pumps with high and low capacity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/305Directional control characterised by the type of valves
    • F15B2211/30525Directional control valves, e.g. 4/3-directional control valve
    • F15B2211/3053In combination with a pressure compensating valve
    • F15B2211/30535In combination with a pressure compensating valve the pressure compensating valve is arranged between pressure source and directional control valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/31Directional control characterised by the positions of the valve element
    • F15B2211/3105Neutral or centre positions
    • F15B2211/3111Neutral or centre positions the pump port being closed in the centre position, e.g. so-called closed centre
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/315Directional control characterised by the connections of the valve or valves in the circuit
    • F15B2211/3157Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line
    • F15B2211/31576Directional control characterised by the connections of the valve or valves in the circuit being connected to a pressure source, an output member and a return line having a single pressure source and a single output member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/30Directional control
    • F15B2211/355Pilot pressure control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/605Load sensing circuits
    • F15B2211/6051Load sensing circuits having valve means between output member and the load sensing circuit
    • F15B2211/6054Load sensing circuits having valve means between output member and the load sensing circuit using shuttle valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6346Electronic controllers using input signals representing a state of input means, e.g. joystick position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/635Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements
    • F15B2211/6355Circuits providing pilot pressure to pilot pressure-controlled fluid circuit elements having valve means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/70Output members, e.g. hydraulic motors or cylinders or control therefor
    • F15B2211/71Multiple output members, e.g. multiple hydraulic motors or cylinders

Definitions

  • the present invention relates to a hydraulic drive device equipped with a variable displacement hydraulic pump, and in particular, to a hydraulic pump that maintains a differential pressure between a discharge pressure of a hydraulic pump and a maximum load pressure of a plurality of actuators at a set value.
  • the present invention relates to a hydraulic drive device of load sensing control for controlling the capacity of a hydraulic pump.
  • Japanese Patent Application Laid-Open No. 5-9-191126 The hydraulic drive device described in Japanese Patent Application Laid-Open No. H10-196664 is disclosed.
  • the pump displacement control device described in Japanese Patent Application Laid-Open No. HEI 5-9-1912 discloses a rotary piston for tilting a swash plate of a variable displacement hydraulic pump, a discharge pressure P s of a hydraulic pump, and the hydraulic pressure.
  • Displacement control device that controls the displacement by supplying the pump discharge pressure to the servo biston by the differential pressure from the load pressure PLS of the actuator driven by the pump and the pump pressure, and maintaining the differential pressure PLS at the set value PLSref.
  • the setting value AP LSrei of the device is changed.
  • the hydraulic drive device described in Japanese Patent Application Laid-Open No. Hei 10-19664 discloses a hydraulic circuit described in Japanese Patent Application Laid-Open No. Hei 5-9-1926, which pumps a differential pressure across a plurality of flow control valves.
  • a plurality of pressure compensating valves are provided to control the differential pressure between the discharge pressure and the maximum load pressure, and the throttle provided in the discharge path of the fixed displacement hydraulic pump is Territory This is a variable throttle with a larger opening area when it is in the rated speed range than when it is in the range. This allows the target compensation difference of the pressure compensating valve when the engine speed is set low. The range of pressure drop is increased, the speed of the actuator is reduced, and good fine operability is obtained. Disclosure of the invention
  • a fixed throttle or a flow rate detection valve (variable throttle) is provided in the discharge path of a fixed displacement hydraulic pump, and the set value ⁇ P LSref of the load sensing control is set according to the differential pressure across the fixed throttle or the flow rate detection valve.
  • the set value ⁇ PL Sref is reduced according to the engine speed, and the overnight speed is reduced.
  • an example of a normal operation performed by a hydraulic excavator is an excavation and loading operation. This is the work of turning after raising the boom and discharging the excavated soil onto the truck bed after excavation.
  • crane work using hydraulic excavators has been increasing. This is the work of hanging the load on the tip of the front work machine and turning slowly.
  • the turning speed required for excavation and loading work is significantly different from the turning speed required for crane work.
  • the range of change in the turning speed exceeds the range that can be adjusted by the engine speed in the above-mentioned conventional technology. Inability to accommodate width.
  • the inversion control can provide a sufficiently large adjustment range of the rotation speed, and even if a wide range of required factor can be accommodated, in such a case,
  • An object of the present invention is to allow the target differential pressure of the mouth sensing control to be changed in accordance with the rotation speed of the prime mover, and that the required variation range of the actuator speed exceeds the range that can be adjusted by the rotation speed of the prime mover.
  • the present invention provides a prime mover, a variable displacement hydraulic pump driven by the prime mover, and a plurality of actuators driven by pressure oil discharged from the hydraulic pump.
  • a plurality of flow control valves for controlling the flow rate of pressure oil supplied from the hydraulic pump to a plurality of actuators; a differential pressure across the plurality of flow control valves, a discharge pressure of the hydraulic pump;
  • a plurality of pressure compensating valves that are controlled in accordance with the differential pressure between the maximum load pressure of the actuator and the differential pressure between the discharge pressure of the hydraulic pump and the maximum load pressure of the plurality of actuators;
  • Pump displacement control means for controlling the displacement of the hydraulic pump, and a fixed displacement hydraulic pump driven by the prime mover together with the variable displacement hydraulic pump.
  • a throttle means provided in the discharge path of the fixed displacement hydraulic pump; a change in the rotational speed of the prime mover is detected based on a change in a differential pressure across the throttle means;
  • the hydraulic drive device for changing the set value includes a switching valve connected in parallel with the throttle means and operated between a fully closed position and a throttle position.
  • the throttling means functions independently when the switching valve is in the fully closed position, and the set value of the pump displacement control (load sensing control) according to the rotation speed of the prime mover.
  • the target differential pressure can be adjusted as before, and when the switching valve is switched to the throttle position, the discharge oil from the fixed displacement hydraulic pump is divided into the throttle means and the switching valve, and the flow rate flowing through the throttle means is reduced. Because the pressure decreases, the differential pressure across the throttle means decreases, and as a result, even if the motor speed is the same, the set value is smaller than when the switching valve is in the fully closed position, so it is controlled by the pressure compensating valve.
  • the differential pressure before and after the flow control valve also decreases, and the supply flow rate to the actuator decreases, and the actuator speed decreases.
  • the target differential pressure for load sensing control can be changed according to the prime mover speed.
  • the required variation in the overnight speed exceeds the range that can be adjusted by the rotation speed of the prime mover, it is possible to cope with the variation and achieve the required required overnight speed, resulting in good operability. Can be obtained.
  • the hydraulic drive device further includes a manual operation means for switching the switching valve between the fully closed position and the throttle position.
  • the switching valve can be switched at will of the operator, and the operating speed can be changed.
  • the hydraulic drive device may be a manual operating means operated by an operator, and a switch for switching the switching valve between the fully closed position and the throttle position according to the operation of the manual operating means. Means may be provided.
  • the switching valve can be switched at will of the operator to change the actuator overnight speed.
  • the switching means is an electric hydraulic type.
  • the switching valve can be hydraulically switched.
  • the switching means may be of an electric type.
  • the switching valve can be electrically switched.
  • the switching valve can change the opening area continuously at the throttle position.
  • FIG. 1 is a hydraulic circuit diagram showing a configuration of a hydraulic drive device according to a first embodiment of the present invention.
  • FIG. 2A, FIG. 2B, and FIG. 2C are characteristic diagrams for explaining the operation of the flow rate detection valve and the switching valve in the first embodiment.
  • FIG. 3 shows an example of the calculation results of the discharge flow rate of the fixed displacement hydraulic pump and the differential pressure across the flow detection valve when the switching valve is in the fully closed position and the throttle position in the first embodiment.
  • FIG. FIG. 4 is a diagram showing a main part of a pump displacement control device in a hydraulic drive device according to a second embodiment of the present invention.
  • FIG. 5 is a diagram showing a main part of a pump displacement control device in a hydraulic drive device according to a third embodiment of the present invention.
  • FIG. 6 is a diagram showing a main part of a pump displacement control device in a hydraulic drive device according to a fourth embodiment of the present invention.
  • FIG. 7 is a diagram showing a main part of a pump displacement control device in a hydraulic drive device according to a fifth embodiment of the present invention.
  • a hydraulic drive device includes a prime mover, for example, an engine 1, a variable displacement hydraulic pump 2 driven by the engine 1, and discharge from the hydraulic pump 2. Connected to the plurality of actuators 3a, 3b, 3c driven by the pressurized oil and the discharge line 12 of the hydraulic pump 2, and from the hydraulic pump 2 to the actuators 3a, 3b, 3c.
  • a valve device 4 including a plurality of valve sections 4 a, 4 b, and 4 c for controlling the flow rate and the direction of the supplied pressure oil, respectively, and a pump displacement control device 5 for controlling the displacement of the hydraulic pump 2 are provided.
  • the plurality of valve sections 4a, 4b, 4c are respectively provided with a plurality of flow control valves 6a,
  • the plurality of pressure compensating valves 7a, 7b, 7c are of a pre-installed type installed upstream of the flow control valves 6a, 6b, 6c, respectively. It has control pressure chambers 70a, 70b and 70c, 70d, and guides the upstream and downstream pressures of the flow control valve 6a to the control pressure chambers 70a, 70b, respectively.
  • the discharge pressure P s of the hydraulic pump 2 and the maximum load pressures PLS of a plurality of actuators 3a, 3b and 3 are respectively led to 70d, thereby closing the differential pressure across the flow control valve 6a in the closing direction.
  • the discharge pressure P s of the hydraulic pump 2 and a plurality of actuators The differential pressure APLS from the maximum load pressure PLS of 3a, 3b, 3c is applied in the valve opening direction, and the differential pressure APLS is used as the target differential pressure for pressure compensation to control the differential pressure across the flow control valve 6a.
  • the pressure compensating valves 7b and 7c are similarly configured.
  • the pressure compensating valves 7a, 7b, and 7c use the same differential pressure APLS as the target differential pressure to control the differential pressures before and after the flow control valves 6a, 6b, and 6c, respectively.
  • the differential pressures before and after the flow control valves 6a, 6b, 6c are both controlled to be the differential pressure APLS, and the required flow rates of the flow control valves 6a, 6b, 6c are equal to the differential pressure APLS. It is expressed by the product of the opening area.
  • a plurality of flow control valves 6a, 6b, 6c are provided with load ports 60a, 60b, 60c, respectively, for taking out their load pressures when driving the actuators 3a, 3b, 3c.
  • the highest pressure among the load pressures taken out to these load ports 60a, 60b, 60c is supplied through the load lines 8a, 8b, 8c, 8d and the shuttle valves 9a, 9b. This pressure is detected on the signal line 10, and this pressure is given to the pressure compensating valves 7a, 7b, 7c as the above-mentioned maximum load pressure PLS.
  • the hydraulic pump 2 is a swash plate pump that increases the discharge flow rate by increasing the tilt angle of the swash plate 2a
  • the pump displacement control device 5 is a servo that tilts and drives the swash plate 2a of the hydraulic pump 2. It has a piston 20, a first tilt control valve 22 and a second tilt control valve 23 for controlling the drive of the servo piston 20, and the servo piston 20 is configured to control the pressure from the discharge line 12 (discharge of the hydraulic pump 2). It operates according to the pressure P s) and the command pressure from the tilt control valves 22 and 23, and controls the displacement of the hydraulic pump 2 by controlling the tilt angle of the swash plate 2a.
  • the first tilt control valve 22 is a horsepower control valve that reduces the discharge flow rate of the hydraulic pump 2 when the pressure (discharge pressure P s of the hydraulic pump 2) from the discharge pipe 12 increases, and the discharge pressure of the hydraulic pump 2
  • the discharge pressure Ps of the hydraulic pump 2 is equal to or lower than a predetermined level set by the panel 22a
  • the spool 22b is moved rightward in the drawing, and the discharge pressure Ps of the hydraulic pump 2 is input. Is output as is.
  • this output pressure is given to the servo piston 20 as it is as the command pressure, the servo piston 20 moves to the left in the figure due to the area difference, and increases the tilt angle of the swash plate 2a. Increase the discharge flow rate.
  • the second tilt control valve 23 maintains the differential pressure AP LS between the discharge pressure P s of the hydraulic pump 2 and the maximum load pressure P LS of the actuators 3 a, 3 b, 3 c at the target differential pressure A PLSref.
  • the control valve is a load sensing control valve having a spool 23 a and a setting control unit 23 b.
  • the setting control unit 23 b is configured to control the pressure (discharge of the hydraulic pump 2) from the discharge line 12. Pressure P s) and the maximum load pressure P LS of the actuators 3 a, 3 b, and 3 c are fed back, and the first drive unit 24 that moves the spool 23 a and the target differential pressure ⁇ PLSref are set. And a second drive section 32.
  • the first drive unit 24 has a piston 24 a acting on the spool 23 a and two hydraulic chambers 24 b and 24 c divided by the piston 24 a.
  • the hydraulic chamber 24 b The discharge pressure of the hydraulic pump 2 is led to the hydraulic chamber 24c, and the maximum load pressure PLS is led to the hydraulic chamber 24c, and a spring 25 that presses the piston 24a against the spool 23a is built in.
  • the second drive section 32 is provided integrally with the first drive section 24, and the piston 32a acting on the piston 24a of the first drive section 24 and the piston 32a divided by the piston 32a And two hydraulic chambers 32b and 32c.
  • the hydraulic chambers 32b and 32c are upstream of a flow detection valve 31 (described later) via pilot lines 34a and 34b, respectively.
  • the pressure on the downstream side and the pressure on the downstream side are led, and the piston 32 a urges the piston 24 a to the left in the drawing with a force corresponding to the differential pressure ⁇ P p of the flow detection valve 31.
  • the second tilt control valve 23 configured as described above inputs the output pressure of the first tilt control valve 22 as the original pressure, and outputs the target pressure difference ⁇ PLSref set by the second drive unit 32.
  • the differential pressure PLS is low
  • the spool 23a is moved leftward in the figure by the first drive unit 24, and the output pressure of the first tilt control valve 22 is output as it is.
  • the output pressure of the first tilt control valve 22 is the discharge pressure Ps of the hydraulic pump 2
  • the discharge pressure Ps is given to the servo piston 20 as a command pressure
  • the servo piston 20 Moved to the left in the figure due to the area difference, increasing the tilt angle of the swash plate 2a and increasing the discharge flow rate of the hydraulic pump 2.
  • the discharge pressure P s of the hydraulic pump 2 increases, and the differential pressure A PLS increases.
  • the spool 23a is moved rightward in the drawing by the first drive unit 24 to (1) Tilt control valve (2) Reduces the output pressure of (2) and outputs the reduced pressure as a command pressure.
  • the servo piston 20 moves rightward in the figure to decrease the tilt angle of the swash plate 2a and decrease the discharge flow rate of the hydraulic pump 2.
  • the discharge pressure P s of the hydraulic pump 2 decreases, and the differential pressure A PLS decreases.
  • the differential pressure A PLS is maintained at the target differential pressure A PLSref.
  • the differential pressure across the flow control valves 6 a, 6 b, 6 c is controlled by the pressure compensating valves 7 a, 7 b, 7 c to have the same value of the differential pressure A PLS.
  • the differential pressure across the flow control valves 6a, 6b, 6c is maintained at the target differential pressure A PLSref.
  • the pump displacement control device 5 is further driven by the engine 1 together with the variable displacement hydraulic pump 2 so that the target differential pressure A PLSref can be changed according to the rotation speed of the engine 1.
  • a fixed displacement hydraulic pump 30 and a variable restrictor 31 a provided in the discharge paths 30 a and 30 b of the fixed displacement hydraulic pump 30 and having an adjustable opening area.
  • a switching valve 50 provided in parallel with the flow detection valve 31 and operated between the fully open position and the throttle position, and a switching valve 50 provided in the switching valve 50. Operable between the fully open position and the aperture position.
  • the fixed displacement hydraulic pump 30 is a pilot pump normally provided as a pilot hydraulic pressure source, and a relief valve 33 for regulating the source pressure as a pilot hydraulic pressure source is connected to a discharge path 30 b thereof. Further, the discharge passage 30b is connected to a remote control valve (not shown) for generating a pilot pressure for switching the flow control valves 6a, 6b, 6c, for example.
  • the flow rate detection valve 31 has a structure in which the opening area of the variable throttle section 31a is changed depending on the differential pressure ⁇ of the variable throttle section 31a itself. That is, the flow detection valve 31 includes a valve element 3 lb, a spring 31 c acting on the valve element 31 b in a direction to reduce the opening area of the variable restrictor 31 a, and a valve element 31 b. Aperture area of the variable diaphragm 3 1 a And a control pressure chamber 31e acting in a direction to decrease the opening area of the variable throttle portion 31a with respect to the valve element 31b, and the control pressure chamber 31d. The pressure on the upstream side of the variable throttle section 31a is guided through the pilot line 35a to the pressure control section, and the pressure on the downstream side of the variable throttle section 31a is guided through the pilot line 35b to the control pressure chamber 31e. Has been.
  • the opening area of the variable throttle portion 31a is determined by the balance between the force of the spring 31c and the biasing force of the control pressure chambers 3Id and 31e.
  • the valve element 3 lb Moves to the right in the figure to reduce the opening area of the variable throttle section 31a, moves the valve element 31b to the left when the pressure difference ⁇ ⁇ increases, and increases the opening area of the variable throttle section 31a.
  • the differential pressure ⁇ ⁇ ⁇ across the variable throttle section 31 a changes according to the rotation speed of the engine 1. That is, when the rotation speed of the engine 1 decreases, the discharge flow rate of the hydraulic pump 30 decreases, and the differential pressure ⁇ across the variable throttle portion 31a decreases.
  • the upstream ffi and the downstream pressure of the variable throttle portion 31a of the flow rate detection valve 31 are applied to the hydraulic chambers 32b and 32c of the second drive unit 32 via the pilot lines 34a and 34b, respectively. Then, the piston 32a of the second drive unit 32 urges the piston 24a to the left in the figure with a force corresponding to the differential pressure ⁇ across the variable throttle unit 31a of the flow rate detection valve 31.
  • the switching valve 50 changes the change characteristic of the differential pressure ⁇ ⁇ ⁇ across the variable throttle portion 31a with respect to the discharge flow rate of the hydraulic pump 30 (proportional to the engine speed) according to the switching position between the normal operation mode and the crane operation mode.
  • the input port of the switching valve 50 is connected to the input port side of the flow detection valve 31 via a bypass oil passage 52, and the output port of the switching valve 50 is connected to the flow detection valve 31 via a bypass oil passage 53. Connected to the output port side.
  • the switching valve 50 has a throttle portion 50a, and the throttle portion 50a is turned off. When the switching valve 50 is at the throttle position, it functions as a fixed throttle.
  • the above hydraulic drive device is mounted on, for example, a hydraulic excavator.
  • a swing motor that rotates the swing body with respect to the undercarriage.
  • the outline of the operation in the present embodiment configured as described above is as follows.
  • the switching valve 50 When the switching valve 50 is in the fully closed position, when the switching valve 50 is not provided, that is, the pump displacement control device has the same configuration as that of the pump displacement control device described in Japanese Patent Application Laid-Open No. H10-196604, and has a fixed displacement.
  • the entire amount of oil discharged from the hydraulic pump 30 of the mold passes through the flow detection valve 31.
  • the change in the differential pressure ⁇ ⁇ ⁇ (or A P LSrei) across the flow detection valve 31 with respect to the discharge flow rate of the hydraulic pump 30 is a characteristic suitable for the normal operation mode.
  • the degree of decrease in the differential pressure ⁇ ⁇ of the flow detection valve 31 at this time can be arbitrarily set depending on the opening area of the throttle portion 50a of the switching valve 50.
  • the fixed displacement hydraulic pump 30 discharges a flow rate Qp obtained by multiplying the rotational speed N of the engine 1 by the displacement Cm.
  • Qp CmN... (1)
  • the opening area of the variable throttle section 3 1a of the flow rate detection valve 3 1 is Apl
  • the discharge flow rate Qp of the fixed displacement hydraulic pump 30 or the rotation speed N of the engine 1 and the variable throttle section 31 is related by the following equation.
  • the flow rate detection valve 31 has a structure in which the opening area Apl of the variable throttle section 31a is changed in accordance with the differential pressure ⁇ ⁇ ⁇ between the front and rear of the variable throttle section 31a, and the opening area Apl in this case is
  • the relationship with the differential pressure ⁇ is set, for example, as follows.
  • the differential pressure ⁇ p or APLSref increases linearly with respect to the discharge flow rate Qp of the hydraulic pump 30 or the rotation speed N of the engine 1 as shown by a solid line in FIG. 2A.
  • the flow control valve 6a Assuming that the opening area is AV, the flow rate Qv required by the flow control valve 6a is given by the following equation.
  • the required flow rate Qv increases in a parabolic manner with the target differential pressure APLSref convex upward as shown in FIG. 2B.
  • the opening area of the variable throttle portion 31a of the flow detection valve 31 is Apl as described above and the opening area of the fixed throttle of the switching valve 50 is Ap2
  • the flow rate passing through the flow detection valve 31 and the switching valve 50 is Q 1 and Q 2 are respectively represented by the following equations.
  • Equation (7) the relationship between the required flow rate Qv of the flow control valve 6a and the rotational speed N of the engine 1 can be obtained from the equations (6) and (12).
  • N or Qp indicated by a broken line in FIG. 2A and ⁇ PLSref or ⁇ Pp and ⁇ PLS shown in FIG. 2B
  • the required flow rate Qv increases as shown by the broken line in FIG. 2C with respect to the rotational speed N of the engine 1, and even if the rotational speed of the engine 1 is the same as when the switching valve 50 is in the fully closed position, the required flow rate Qv Is reduced, and the speed of ⁇ 3 is reduced.
  • the target differential pressure ⁇ PLSref can be reduced according to the engine speed, and the speed of the actuator can be reduced.
  • the required change in the turning speed (rotational speed of the rotating motor 3c) is large.
  • the flow rate detection valve It is not possible to cope simply by adjusting the engine speed using the engine speed. Now, this will be specifically described.
  • the rotation speed for example, in the drilling cargo work is required ThieiiG 1, the crane work Imin- 1 is requested (1Z9 times), the rotation speed of the governor Seihaba engine 1 is 1,000-250 Omin- Consider the case of 1 (2.5 times).
  • the switching valve 50 detects the flow rate at the throttle position.
  • the differential pressure across the valve 31 should be (1Z9) w 2 at its fully closed position. That is,
  • Figure 3 shows an example of the calculation results.
  • the horizontal axis is the discharge flow rate of the hydraulic pump 30 (proportional to the engine speed), and the vertical axis on the left side of the figure is the flow rate detection when the switching valve 50 is in the fully closed position (there is no switching valve 50).
  • the vertical axis on the right side of the drawing is the differential pressure across the flow rate detection valve 31 when the switching valve 50 is at the throttle position.
  • a discharge flow rate of the hydraulic pump 30 near 4.5 LZmin corresponds to an engine speed of 100 Omin- 1 .
  • a discharge flow rate of around 11.4 LZmin corresponds to an engine speed of 250 Omin- 1 .
  • the scale of the differential pressure across the flow detection valve 31 when the switching valve 50 on the right side of the drawing is in the throttle position is the scale of the differential pressure across the flow detection valve 31 when the switching valve 50 on the left side of the drawing is in the fully closed position. It has expanded 81 times.
  • the differential pressure across the flow detection valve 31 when the engine speed is 250 Omin- 1 is 15 kgf / cm 2.
  • the required flow rate, ie, the overnight speed can be reduced to 1/81.
  • the target differential pressure ⁇ P LSref of the load sensing control is changed according to the rotation speed of the engine 1. Even if the required change in the required overnight speed exceeds the range that can be adjusted with the engine 1 rotation speed, it can respond to the change and realize the required required overnight speed. And good operability can be obtained.
  • the actuator speed can be adjusted in the same manner as before by adjusting the engine speed, so that the engine for adjusting the actuator speed can be adjusted.
  • the number of revolutions it is possible to eliminate a sense of incongruity with the operation feeling of the conventional system.
  • variable throttle unit 31 a that changes the opening area depending on the pressure difference before and after itself is provided. Since the flow rate detection valve 31 is arranged, good fine operability is obtained when the engine speed is set low, as in the invention described in Japanese Patent Application Laid-Open No. H10-19664. When the rotation speed is set high, a powerful operation feeling with good responsiveness can be realized.
  • FIGS. 1 Second and third embodiments of the present invention will be described with reference to FIGS. In these embodiments, the switching method of the switching valve is different.
  • members equivalent to those shown in FIG. 1 are denoted by the same reference numerals.
  • the pump displacement control device has a switching valve 5 OA in which the switching means is of a hydraulic type, and a hydraulic drive unit is provided to bias the switching valve 5 OA to the throttle position. 60 is provided, and a spring 61 is provided on the side for biasing the switching valve 5OA to the fully closed position.
  • the manual dial 62 which is operated by the operator between the normal operation mode position and the crane operation mode position, and indicates whether to select the normal operation mode or the crane operation mode, and the manual dial 62, A signal generator 63 that outputs an electric signal when in the crane operation mode position; and an electromagnetic switching valve 64 that is operated by an electric signal from the signal generating unit 63.
  • the port is connected to the discharge path 30 b of the fixed displacement hydraulic pump 30, and the secondary port is connected to the hydraulic drive unit 60 of the switching valve 5 OA.
  • the solenoid-operated switching valve 64 When the manual dial 62 is in the normal operation mode position, the solenoid-operated switching valve 64 is activated. Without switching, the switching valve 5 OA is held at the fully closed position by the spring 61.
  • the signal generator 63 When the manual dial 62 is operated to the crane operation mode position, the signal generator 63 generates an electric signal, and the electromagnetic switching valve 64 uses the pressure oil from the hydraulic pump 30 as a hydraulic source to hydraulically drive the switching valve 5 OA. A hydraulic signal is output to the section 60. As a result, the switching valve 5OA is switched to the throttle position.
  • the pump displacement control device has a switching valve 50 B in which the switching means is an electric solenoid type, and the switching valve 50 B is biased to the throttle position on the side where the switching valve is biased to the throttle position.
  • a solenoid drive unit 65 is provided, and a spring 61 is provided on the side that urges the switching valve 50b to the fully closed position.
  • the electric signal from the signal generator 63 is directly input to the solenoid driver 65.
  • FIG. 1 A fourth embodiment of the present invention will be described with reference to FIG.
  • the setting can be continuously adjusted in the crane operation mode.
  • the same reference numerals are given to members equivalent to those shown in FIGS. 1, 4, and 5.
  • the pump displacement control device has a switching valve 50C in which the throttle portion 5OCa is a variable throttle, and the switching valve 50C is biased toward the throttle position.
  • a drive section 66 is provided, and a spring 61 is provided on a side for biasing the switching valve 50C to the fully closed position.
  • the operator operates between the normal operation mode position and the crane operation mode position, and in the crane operation mode position, the manual dial 62C and the manual dial 62C, which can continuously adjust the position, operate the crane operation.
  • a signal generator 63C that outputs an electric signal proportional to the position when the vehicle is in the mode position, and the electric signal from the signal generator 63C is input to the proportional solenoid driver 66.
  • the proportional solenoid drive Portion 66 When the manual dial 62C is in the normal working mode position, the proportional solenoid drive Portion 66 does not operate, and switching valve 50C is held in the fully closed position by panel 61.
  • the signal generator 63C When the manual dial 62C is operated to the crane operation mode position, the signal generator 63C generates an electric signal of a level corresponding to the position, and the proportional solenoid drive 66 operates according to the electric signal. Then, the switching valve 50C is switched to the throttle position according to the electric signal, and the throttle section 50Ca is adjusted to the opening area according to the position of the manual dial 62C.
  • the operation speed in the crane operation mode can be freely adjusted according to the operator's preference, and the operability can be further improved.
  • FIG. 1 A fifth embodiment of the present invention will be described with reference to FIG. This embodiment is different from the previous embodiments in that it is connected in parallel with the flow detection valve.
  • the same reference numerals are given to members equivalent to those shown in FIG.
  • the pump displacement control device has a switching valve 50 connected in parallel with a flow detection valve 31, and an input port of the switching valve 50 is connected via a bypass oil passage 52. It is connected to the oil passage 30a on the input port side of the flow detection valve 31.
  • the output port of the switching valve 50 is connected to the tank via the bypass oil passage 53D. Even when the bypass oil passage 53D is connected in this way, when the switching valve 50 is switched to the throttle position, part of the pressure oil from the hydraulic pump 30 is partially removed from the throttle portion 50a and the bypass oil passage 53.
  • the oil discharged from the hydraulic pump 30 is returned to the tank via D, and is diverted to a parallel throttle circuit formed by the flow detection valve 31 and the switching valve 50.
  • the switching valve 50 by switching the switching valve 50 to the throttle position, the flow rate flowing through the flow rate detection valve 31 decreases, and before and after the flow rate detection valve 31 with respect to the discharge flow rate of the hydraulic pump 30 (proportional to the engine speed).
  • a change in the differential pressure ⁇ ⁇ ⁇ (or AP LSref) is a characteristic suitable for the crane operation mode.
  • the pressure compensating valve is a pre-installed type that is installed upstream of the flow control valve, but is installed downstream of the flow control valve, and the outlet pressures of all the flow control valves are set to the same maximum load. Attached to control differential pressure to the same differential pressure AP LS by controlling to differential pressure Type.
  • the discharge pressure and the maximum load pressure of the hydraulic pump 2 are directly guided to the setting control part 23 b of the pump displacement control device 5 and the pressure compensating valves 7 a to 7 c, and the differential pressure A PLS of the two is respectively obtained.
  • the differential pressure detection valve that converts the differential pressure ⁇ PLS between the discharge pressure of the hydraulic pump 2 and the maximum load pressure into one hydraulic signal is provided, and the hydraulic signal is set to the control unit 23 b and the pressure compensation. Valves 7a to 7c may be introduced.
  • the upstream and downstream pressures of the flow detection valve 31 are not directly guided to the setting control section 23 b of the pump displacement control device 5, but the differential pressure ⁇ ⁇ ⁇ is not equal. It is also possible to provide a differential pressure detecting valve for converting the pressure into one hydraulic signal, and to guide the hydraulic signal to the setting controller 23b. By using the differential pressure detection valve in this manner, the number of hydraulic signals is reduced, and the circuit configuration can be simplified.
  • the differential pressure ⁇ ⁇ ⁇ before and after the flow rate detection valve 31 is guided to the setting control section 23 b of the pump displacement control device 5 without changing its magnitude, but is set on the pump displacement control device 5 side.
  • the differential pressure across the flow rate detection valve 31 may be reduced or increased.
  • the flow rate is provided with a variable throttle unit 31 a that changes the opening area depending on its own differential pressure before and after the throttle unit provided in the discharge path of the fixed displacement hydraulic pump 30.
  • a fixed throttle may be provided as in Japanese Patent Application Laid-Open No. 5-9-1926.
  • the detection of the engine speed and the change of the target differential pressure based thereon are performed hydraulically.
  • the engine speed is detected by a sensor, and the target differential pressure is calculated from the sensor signal. And electrically.
  • the switching valve is provided in parallel with the throttle means, the target differential pressure of the load sensing control can be changed according to the rotation speed of the prime mover, and the required change width of the actuator speed is reduced. Even if it exceeds the range that can be adjusted by the rotation speed of the prime mover, it is possible to cope with the variation range, realize the required required overnight speed, and obtain good operability.
  • the motor speed When the switching valve is in the fully closed position, the motor speed must be adjusted as As described above, the overnight speed can be adjusted, so that when setting the rotation speed of the prime mover for adjusting the overnight speed, it is possible to eliminate a sense of incongruity with the operation feeling of the conventional system.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Operation Control Of Excavators (AREA)

Description

技術分野
本発明は、 可変容量型の油圧ポンプを備えた油圧駆動装置に係わり、 特に、 油 圧ポンプの吐出圧と複数のァクチユエ一夕の最高負荷圧との差圧を設定値に維持 するよう油圧ポンプの容量を制御するロードセンシング制御の油圧駆動装置に関 する。 背景技術
油圧ポンプの吐出圧と複数のァクチユエ一夕の最高負荷圧との差圧を設定値に 維持するよう油圧ポンプの容量を制御するロードセンシング制御技術として、 特 開平 5— 9 9 1 2 6号公報に記載のポンプ容量制御装置ゃ特開平 1 0— 1 9 6 6 0 4号公報に記載の油圧駆動装置がある。
特開平 5— 9 9 1 2 6号公報に記載のポンプ容量制御装置は、 可変容量型の油 圧ポンプの斜板を傾転するサ一ボピストンと、 油圧ポンプの吐出圧 P sとこの油 圧ポンプにより駆動されるァクチユエ一夕の負荷圧 P LSとの差圧△ PLSによって ポンプ吐出圧をサーボビストンに供給して差圧△ PLSを設定値△ PLSrefに維持し、 容量制御する傾転制御装置とを備えている。 また、 可変容量型の油圧ポンプとと もにエンジンにより駆動される固定容量型の油圧ポンプと、 この固定容量型の油 圧ポンプの吐出路に設けられた絞りと、 この絞りの前後差圧 Δ Ρ pによって傾転 制御装置の設定値 A P LSrefを変更する手段とを備え、 固定容量型の油圧ポンプの 吐出路に設けた絞りの前後差圧の変化でエンジン回転数を検出し、 傾転制御装置 の設定値 A P LSreiを変更するようにしている。
特開平 1 0— 1 9 6 6 0 4号公報に記載の油圧駆動装置は、 特開平 5— 9 9 1 2 6号公報に記載の油圧回路に、 複数の流量制御弁の前後差圧をポンプ吐出圧と 最高負荷圧との差圧と同じ差圧に制御する複数の圧力補償弁を設け、 固定容量型 の油圧ポンプの吐出路に設けられた絞りを、 エンジン回転数が最低回転数側の領 域にあるときよりも定格回転数側の領域にあるときの方が開口面積が大きくなる 可変絞りとしたものであり、 これによりエンジン回転数を低く設定した場合に圧 力補償弁の目標補償差圧の低下幅を増大し、 ァクチユエ一夕速度を減少し、 かつ 良好な微操作性が得られるようにしている。 発明の開示
以上のように従来技術では、 固定容量型の油圧ポンプの吐出路に固定絞り或い は流量検出弁 (可変絞り) を設け、 その前後差圧に応じてロードセンシング制御 の設定値 Δ P LSrefを変更することにより、 エンジン回転数に応じて設定値 Δ P L Srefを小さくし、 ァクチユエ一夕速度を減少させている。
しかし、 上記従来技術では、 ァクチユエ一夕に要求される速度の変化幅が大き いときは、 その要求に対応できないという問題がある。
例えば、 油圧ショベルが行う通常作業の一例として掘削積み荷作業がある。 こ れは、 土砂掘削後、 ブームを上げながら旋回し、 掘削した土砂をトラックの荷台 に放土する作業である。 また、 近年、 油圧ショベルを用いてクレーン作業を行う ことが多くなつてきている。 これは、 フロント作業機の先端に荷を釣り下げ、 ゆ つくりと旋回する作業である。 掘削積み込み作業に要求される旋回速度とクレー ン作業に要求される旋回速度は大きく異なる。 1台の油圧ショベルで掘削積み荷 作業とクレーン作業を行う場合、 その旋回速度の変化幅は、 上記従来技術におけ るエンジン回転数による調整可能な範囲を超えており、 要求ァクチユエ一夕速度 の変化幅に対応することができない。
また、 仮に 原動機として電動モータを用い、 インバー夕制御により回転数に 十分大きな調整幅を持たせることができ、 広い要求ァクチユエ一夕速度幅に対応 することができたとしても、 その場合には、 ァクチユエ一夕速度の調整のための 原動機回転数の設定に際して、 従来システムの操作感との間に違和感が生じてし まう。
つまり、 オペレータが通常掘削作業での微操作を意図して原動機回転数を下げ る場合には、 ァクチユエ一夕速度が通常掘削作業に適さない速度まで下がってし まわないように留意しながら、 原動機回転数を調整する必要があるので、 ォペレ 一夕に余分な負担を強いてしまう。
本発明の目的は、 原動機回転数に応じて口一ドセンシング制御の目標差圧を変 更できるとともに、 要求されるァクチユエ一夕速度の変化幅が原動機回転数で調 整可能な範囲を超えていても、 その変化幅に対応でき、 それぞれの要求ァクチュ エー夕速度を実現することができる油圧駆動装置を提供することである。
( 1 ) 上記目的を達成するため、 本発明は、 原動機と、 この原動機により駆動 される可変容量型の油圧ポンプと、 この油圧ポンプから吐出された圧油により駆 動される複数のァクチユエ一夕と、 前記油圧ポンプから複数のァクチユエ一夕に 供給される圧油の流量を制御する複数の流量制御弁と、 前記複数の流量制御弁の 前後差圧を前記油圧ポンプの吐出圧と前記複数のァクチユエ一夕の最高負荷圧と の差圧に応じて制御する複数の圧力補償弁と、 前記油圧ポンプの吐出圧と前記複 数のァクチユエ一夕の最高負荷圧との差圧を設定値に維持するよう前記油圧ボン プを容量制御するポンプ容量制御手段と、 前記可変容量型の油圧ポンプとともに 前記原動機により駆動される固定容量型の油圧ポンプとを備え、 前記ポンプ容量 制御手段は前記固定容量型の油圧ポンプの吐出路に設けられた絞り手段を有し、 この絞り手段の前後差圧の変化で前記原動機の回転数の変化を検出し、 前記原動 機の回転数に応じて前記設定値を変更する油圧駆動装置において、 前記絞り手段 と並列に接続され、 全閉位置と絞り位置の間で操作される切換弁を備えるものと する。
このように絞り手段と並列に切換弁を設けることにより、 切換弁が全閉位置に あるときは絞り手段が単独で機能し、 原動機の回転数に応じてポンプ容量制御の 設定値 (ロードセンシング制御の目標差圧) を従来通り調整できるとともに、 切 換弁を絞り位置に切り換えたときは、 固定容量型の油圧ポンプからの吐出油は、 絞り手段と切換弁に分流され、 絞り手段を流れる流量が減少するので、 絞り手段 の前後差圧が小さくなり、 その結果、 原動機回転数が同じでも、 切換弁が全閉位 置にあるときに比べ設定値は小さくなるので、 圧力補償弁により制御される流量 制御弁の前後差圧も小さくなり、 ァクチユエ一夕への供給流量が減少しァクチュ エー夕速度が減少する。
このように原動機回転数に応じてロードセンシング制御の目標差圧を変更でき るとともに、 要求されるァクチユエ一夕速度の変化幅が原動機回転数で調整可能 な範囲を超えていても、 その変化幅に対応でき、 それぞれの要求ァクチユエ一夕 速度を実現し、 良好な操作性を得ることができる。
( 2 ) 上記 (1 ) において、 好ましくは、 油圧駆動装置は前記切換弁を前記全 閉位置と絞り位置の間で切り換える手動操作手段を更に備える。
これによりオペレータの意志で切換弁を切り換え、 ァクチユエ一夕速度を変更 できる。
( 3 ) また、 上記 (1 ) において、 油圧駆動装置はオペレータにより操作され る手動操作手段と、 この手動操作手段の操作に応じて前記切換弁を前記全閉位置 と絞り位置の間で切り換える切換手段とを備えていてもよい。
これによつてもオペレータの意志で切換弁を切り換え、 ァクチユエ一夕速度を 変更できる。
( 4 ) 上記 (3 ) において、 好ましくは、 前記切換手段が電気'油圧式である。 これにより油圧的に切換弁を切り換えることができる。
( 5 ) 上記 (3 ) において、 前記切換手段が電気式であってもよい。
これにより電気的に切換弁を切り換えることができる。
( 6 ) また、 上記 (1 ) において、 前記切換弁は、 前記絞り位置で連続的に開 口面積を変更できるようになつている。
これにより絞り位置において、 ァクチユエ一夕速度をオペレータの好みに応じ て自由に調整することができる。 図面の簡単な説明
図 1は、 本発明の第 1の実施の形態による油圧駆動装置の構成を示す油圧回路 図である。
図 2 A、 図 2 B、 図 2 Cは、 第 1の実施の形態における流量検出弁及び切換弁 の作用を説明するための特性図である。
図 3は、 第 1の実施の形態における切換弁が全閉位置にあるときと絞り位置に あるときの固定容量型の油圧ポンプの吐出流量と流量検出弁の前後差圧の計算結 果の一例を示す図である。 図 4は、 本発明の第 2の実施の形態による油圧駆動装置におけるポンプ容量制 御装置の要部を示す図である。
図 5は、 本発明の第 3の実施の形態による油圧駆動装置におけるポンプ容量制 御装置の要部を示す図である。
図 6は、 本発明の第 4の実施の形態による油圧駆動装置におけるポンプ容量制 御装置の要部を示す図である。
図 7は、 本発明の第 5の実施の形態による油圧駆動装置におけるポンプ容量制 御装置の要部を示す図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態を図面を用いて説明する。
まず、 本発明の第 1の実施の形態を図 1〜図 5により説明する。
図 1において、 本発明の第 1の実施の形態による油圧駆動装置は、 原動機、 例 えばエンジン 1と、 このエンジン 1により駆動される可変容量型の油圧ポンプ 2 と、 この油圧ポンプ 2から吐出された圧油により駆動される複数のァクチユエ一 夕 3 a, 3 b, 3 cと、 油圧ポンプ 2の吐出管路 12に接続され、 油圧ポンプ 2 からァクチユエ一夕 3 a, 3 b, 3 cに供給される圧油の流量と方向をそれぞれ 制御する複数の弁セクション 4 a, 4 b, 4 cからなる弁装置 4と、 油圧ポンプ 2を容量制御するポンプ容量制御装置 5とを備えている。
複数の弁セクシヨン 4 a, 4b, 4 cは、 それぞれ、 複数の流量制御弁 6 a ,
6 b, 6 cと、 これら複数の流量制御弁 6 a, 6 b, 6 cの前後差圧を同じに制 御する複数の圧力補償弁 7 a, 7 b, 7 cとで構成されている。
複数の圧力補償弁 7 a, 7 b, 7 cは、 それぞれ、 流量制御弁 6 a, 6 b, 6 cの上流に設置された前置きタイプであり、 圧力補償弁 7 aは 2対の対向する制 御圧力室 70 a, 70 b及び 70 c, 70 dを有し、 制御圧力室 70 a, 70 b に流量制御弁 6 aの上流側及び下流側の圧力をそれぞれ導き、 制御圧力室 70 c
70 dに油圧ポンプ 2の吐出圧 P sと複数のァクチユエ一夕 3 a, 3 b, 3じの 最高負荷圧 PLSとをそれぞれ導き、 これにより流量制御弁 6 aの前後差圧を閉弁 方向に作用させるとともに、 油圧ポンプ 2の吐出圧 P sと複数のァクチユエ一夕 3 a, 3 b, 3 cの最高負荷圧 PLSとの差圧 APLSを開弁方向に作用させ、 その 差圧 APLSを圧力補償の目標差圧として流量制御弁 6 aの前後差圧を制御する。 圧力補償弁 7 b, 7 cも同様に構成されている。
このように圧力補償弁 7 a, 7 b, 7 cが同じ差圧 APLSを目標差圧としてそ れぞれの流量制御弁 6 a, 6 b, 6 cの前後差圧を制御することにより、 流量制 御弁 6 a, 6 b, 6 cの前後差圧はともに差圧 APLSになるように制御され、 流 量制御弁 6 a, 6 b, 6 cの要求流量は差圧 APLSとそれぞれの開口面積との積 で表されるものとなる。
複数の流量制御弁 6 a, 6 b, 6 cには、 それぞれ、 ァクチユエ一夕 3 a, 3 b, 3 cの駆動時にそれらの負荷圧を取り出す負荷ポート 60 a, 60 b, 60 cが設けられ、 これら負荷ポート 60 a, 60 b, 60 cに取り出された負荷圧 のうちの最高の圧力が負荷ライン 8 a, 8 b, 8 c、 8 d及びシャトル弁 9 a, 9 bを介して信号ライン 10に検出され、 この圧力が上記最高負荷圧 PLSとして 圧力補償弁 7 a, 7 b, 7 cに与えられる。
油圧ポンプ 2は斜板 2 aの傾転角を大きくすることにより吐出流量を増加させ る斜板ポンプであり、 ポンプ容量制御装置 5は、 油圧ポンプ 2の斜板 2 aを傾転 駆動するサーボピストン 20と、 このサ一ボピストン 20の駆動を制御する第 1 傾転制御弁 22及び第 2傾転制御弁 23とを有し、 サーポピストン 20は吐出管 路 12からの圧力 (油圧ポンプ 2の吐出圧 P s) と傾転制御弁 22, 23からの 指令圧力とによって動作し、 斜板 2 aの傾転角を制御することで油圧ポンプ 2の 容量制御をする。
第 1傾転制御弁 22は吐出管路 12からの圧力 (油圧ポンプ 2の吐出圧 P s) が高くなると油圧ポンプ 2の吐出流量を減少させる馬力制御弁であり、 油圧ボン プ 2の吐出圧 P sを元圧として入力し、 油圧ポンプ 2の吐出圧 P sがパネ 22 a で設定される所定レベル以下であればスプール 22 bを図示右方に移動し、 油圧 ポンプ 2の吐出圧 P sをそのまま出力する。 このとき、 この出力圧が指令圧力と してそのままサーボピストン 20に与えられると、 サーボピストン 20は面積差 により図示左方に移動し、 斜板 2 aの傾転角を増加させ、 油圧ポンプ 2の吐出流 量を増加する。 その結果、 油圧ポンプ 2の吐出圧 P sが上昇する。 油圧ポンプ 2 の吐出圧 P sがバネ 2 2 aの所定レベルを越えるとスプール 2 2 bを図示左方に 移動して吐出圧 P sを減圧し、 その低下した圧力を指令圧力として出力する。 こ のため、 サーポピストン 2 0は図示右方に移動し、 斜板 2 aの傾転角を減少させ、 油圧ポンプ 2の吐出流量を減少する。 その結果、 油圧ポンプ 2の吐出圧 P sが低 下する。
第 2傾転制御弁 2 3は、 油圧ポンプ 2の吐出圧 P sとァクチユエ一夕 3 a, 3 b , 3 cの最高負荷圧 P LSとの差圧 A P LSを目標差圧 A PLSrefに維持するように 制御するロードセンシング制御弁であり、 スプール 2 3 aと設定制御部 2 3 bと を有し、 設定制御部 2 3 bは、 吐出管路 1 2からの圧力 (油圧ポンプ 2の吐出圧 P s ) とァクチユエ一夕 3 a , 3 b , 3 cの最高負荷圧 P LSをフィードバック入 力し、 スプール 2 3 aを動かす第 1駆動部 2 4と、 目標差圧 Δ PLSrefを設定する 第 2駆動部 3 2とを備えている。
第 1駆動部 2 4は、 スプール 2 3 aに作用するピストン 2 4 aと、 ピストン 2 4 aにより分割された 2つの油圧室 2 4 b, 2 4 cとを有し、 油圧室 2 4 bには 油圧ポンプ 2の吐出圧が導かれ、 油圧室 2 4 cには最高負荷圧 PLSが導かれかつ ピストン 2 4 aをスプール 2 3 aに押し付けるバネ 2 5が内蔵されている。
第 2駆動部 3 2は第 1駆動部 2 4と一体に設けられており、 第 1駆動部 2 4の ピストン 2 4 aに作用するピストン 3 2 aと、 ピストン 3 2 aにより分割された 2つの油圧室 3 2 b, 3 2 cとを有し、 油圧室 3 2 b , 3 2 cにはそれぞれパイ ロットライン 3 4 a, 3 4 bを介して流量検出弁 3 1 (後述) の上流側の圧力と 下流側の圧力が導かれ、 ピストン 3 2 aは流量検出弁 3 1の前後差圧 Δ P pに応 じた力でピストン 2 4 aを図示左方に付勢する。
以上のように構成された第 2傾転制御弁 2 3は第 1傾転制御弁 2 2の出力圧を 元圧として入力し、 第 2駆動部 3 2で設定された目標差圧 Δ PLSrefに比べ差圧厶 PLSが低い場合は、 第 1駆動部 2 4によりスプール 2 3 aを図示左方に移動し、 第 1傾転制御弁 2 2の出力圧をそのまま出力する。 このとき、 第 1傾転制御弁 2 2の出力圧が油圧ポンプ 2の吐出圧 P sであるとすると、 この吐出圧 P sが指令 圧力としてサーボピストン 2 0に与えられ、 サーボピストン 2 0は面積差により 図示左方に移動し、 斜板 2 aの傾転角を増加させ、 油圧ポンプ 2の吐出流量を増 加する。 その結果、 油圧ポンプ 2の吐出圧 P sが上昇し、 差圧 A PLSが上昇する。 逆に、 第 2駆動部 3 2で設定された目標差圧 A PLSrefに対し差圧 A PLSが高い場 合は、 第 1駆動部 2 4によりスプール 2 3 aを図示右方に移動して第 1傾転制御 弁 2 2の出力圧を減圧し、 その低下した圧力を指令圧力として出力する。 このた め、 サーポピストン 2 0は図示右方に移動し、 斜板 2 aの傾転角を減少させ、 油 圧ポンプ 2の吐出流量を減少する。 その結果、 油圧ポンプ 2の吐出圧 P sが低下 し、 差圧 A PLSが低下する。 結果として、 差圧 A PLSは目標差圧 A PLSrefに維持 される。
ここで、 流量制御弁 6 a , 6 b , 6 cの前後差圧は圧力補償弁 7 a , 7 b , 7 cにより同じ値である差圧 A PLSになるように制御されているので、 上記のよう に差圧 A PLSを目標差圧 A PLSrefに維持することにより流量制御弁 6 a , 6 b , 6 cの前後差圧は目標差圧 A PLSrefに維持される。
そして本実施の形態において、 ポンプ容量制御装置 5は、 エンジン 1の回転数 に応じて目標差圧 A PLSrefを変更可能とするため、 更に、 可変容量型の油圧ボン プ 2とともにエンジン 1により駆動される固定容量型の油圧ポンプ 3 0と、 この 固定容量型の油圧ポンプ 3 0の吐出路 3 0 a , 3 0 bに設けられ、 開口面積が調 整可能な可変絞り部 3 1 aを有する上記の流量検出弁 3 1と、 流量検出弁 3 1と 並列に設けられ、 全開位置と絞り位置との間で操作される切換弁 5 0と、 この切 換弁 5 0に設けられ、 切換弁 5 0を全開位置と絞り位置との間で操作可能とする 操作レバー 5 1とを有している。
固定容量型の油圧ポンプ 3 0は、 通常パイロット油圧源として設けられるパイ ロットポンプであり、 その吐出路 3 0 bにはパイロット油圧源としての元圧を規 定するリリーフ弁 3 3が接続され、 更に吐出路 3 0 bは、 例えば流量制御弁 6 a , 6 b , 6 cを切換操作するためのパイロット圧を生成するリモコン弁 (図示せ ず) へと接続されている。
流量検出弁 3 1は、 可変絞り部 3 1 a自身の前後差圧 Δ Ρ ρに依存して可変絞 り部 3 1 aの開口面積を変化させる構造を有している。 すなわち、 流量検出弁 3 1は、 弁体 3 l bと、 弁体 3 1 bに対し可変絞り部 3 1 aの開口面積を減少させ る方向に作用するバネ 3 1 cと、 弁体 3 1 bに対し可変絞り部 3 1 aの開口面積 を増大させる方向に作用する制御圧力室 31 dと、 弁体 31 bに対し可変絞り部 31 aの開口面積を減少させる方向に作用する制御圧力室 31 eとを有し、 制御 圧力室 31 dにはパイロットライン 35 aを介して可変絞り部 3 1 aの上流側の 圧力が導かれ、 制御圧力室 31 eにはパイロットライン 35 bを介して可変絞り 部 31 aの下流側の圧力が導かれている。
可変絞り部 31 aの開口面積はバネ 31 cの力と制御圧力室 3 I d, 31 eの 付勢力とのバランスにより決まり、 可変絞り部 31 aの前後差圧 ΔΡρが小さく なると弁体 3 l bは図示右方に移動し、 可変絞り部 31 aの開口面積を小さくし、 前後差圧 ΔΡρが増大すると弁体 31 b外し左方に移動し、 可変絞り部 31 aの 開口面積を大きくする。
そして、 可変絞り部 31 aの前後差圧 ΔΡρはエンジン 1の回転数によって変 化する。 すなわち、 エンジン 1の回転数が低下すれば、 油圧ポンプ 30の吐出流 量が減少し、 可変絞り部 31 aの前後差圧 ΔΡρは低下する。
前述したように、 流量検出弁 31の可変絞り部 31 aの上流 ffi及び下流側の圧 力はそれぞれパイロットライン 34 a, 34 bを介して第 2駆動部 32の油圧室 32 b, 32 cに導かれ、 第 2駆動部 32のピストン 32 aは流量検出弁 31の 可変絞り部 31 aの前後差圧 ΔΡρに応じた力でピストン 24 aを図示左方に付 勢する。 その結果、 流量検出弁 31の可変絞り部 31 aの前後差圧 ΔΡρが小さ くなるとピストン 32 aはピストン 24 aを押す力を小さくして目標差圧 APLS reiを減少し、 前後差圧 ΔΡρが増大するとピストン 32 aはピストン 24 aを押 す力を大きくして目標差圧 APLSrefを増大させ、 これにより第 1傾転制御弁 23 の目標差圧 APLSrefは流量検出弁 31の可変絞り部 31 aの前後差圧 ΔΡρ、 す なわちエンジン 1の回転数によって変化する。
切換弁 50は、 その切換位置に応じて油圧ポンプ 30の吐出流量 (エンジン回 転数に比例) に対する可変絞り部 31 aの前後差圧 ΔΡρの変化特性を普通作業 モードとクレーン作業モードに変更するものであり、 切換弁 50の入力ポートは バイパス油路 52を介して流量検出弁 31の入力ポート側に接続され、 切換弁 5 0の出力ポートはバイパス油路 53を介して流量検出弁 31の出力ポート側に接 続されている。 また、 切換弁 50は絞り部 50 aを有し、 この絞り部 50 aは切 換弁 5 0が絞り位置にあるとき固定絞りとして機能する。
以上の油圧駆動装置は例えば油圧ショベルに搭載され、 例えばァクチユエ一夕 3 aはブームを駆動するブームシリンダであり、 ァクチユエ一夕 3 bはアームを 駆動するアームシリンダであり、 ァクチユエ一夕 3 cは下部走行体に対し旋回体 を回転させる旋回モータである。
以上のように構成した本実施の形態における動作の概要は次のようである。 切換弁 5 0が全閉位置にあるときは、 切換弁 5 0がない場合、 つまり特開平 1 0 - 1 9 6 6 0 4号公報に記載のポンプ容量制御装置と同様の構成となり、 固定 容量型の油圧ポンプ 3 0からの吐出油の全量が流量検出弁 3 1を通過する。 この 場合の油圧ポンプ 3 0の吐出流量 (エンジン回転数に比例) に対する流量検出弁 3 1の前後差圧 Δ Ρ ρ (或いは A P LSrei) の変化は普通作業モードに適した特性 となる。
切換弁 5 0に設けられた操作レバー 5 1を操作し、 切換弁 5 0を絞り位置に切 り換えると、 流量検出弁 3 1に並列に絞り回路が追加された回路構成となる。 こ の場合、 油圧ポンプ 3 0からの吐出油は、 流量検出弁 3 1と切換弁 5 0による並 列絞り回路に分流される。 その結果、 切換弁 5 0を絞り位置に切り換えることに よって流量検出弁 3 1を流れる流量が減少し、 流量検出弁 3 1の前後差圧 Δ Ρ p
(或いは APLSref) が小さくなる。 この場合の油圧ポンプ 3 0の吐出流量 (ェン ジン回転数に比例) に対する流量検出弁 3 1の前後差圧 A P p (或いは A PLSre f) の変化はクレーン作業モードに適した特性となる。
すなわち。 エンジン 1の回転数が同じでも、 第 1傾転制御弁 2 3の目標差圧 Δ PLSrefは小さくなり、 圧力補償弁 7 a, 7 b , 7 cの目標補償差圧 (=△ P LSr ef) も小さくなるので、 ァクチユエ一夕 3 a, 3 b, 3 cの速度が減少する。 そ して、 このときの流量検出弁 3 1の前後差圧 Δ Ρ ρの減少具合は、 切換弁 5 0の 絞り部 5 0 aの開口面積によって任意に設定可能である。
切換弁 5 0が全閉位置にあるときと絞り位置にあるときの作用の詳細を図 2 A 〜図 2 Cを用いて説明する。
固定容量型の油圧ポンプ 3 0はエンジン 1の回転数 Nに押しのけ容積 Cmを乗じ た流量 Q pを吐出する。 Qp = CmN … (1) 流量検出弁 3 1の可変絞り部 3 1 aの開口面積を Aplとすると、 固定容量型の 油圧ポンプ 30の吐出流量 Qp或いはエンジン 1の回転数 Nと可変絞り部 31 a の前後差圧 Δ P pは以下の式で関係ずけられる。
Qp = CmN=c Apl " ((2/ρ) ΔΡρ) … (2)
ここで、 流量検出弁 31は、 可変絞り部 31 aの開口面積 Aplを可変絞り部 3 1 aの前後差圧 ΔΡρに応じて変化させる構造を有しており、 この場合の開口面 積 Aplと差圧 ΔΡρとの関係は例えば下記のように設定されている。
Apl= a 厶 P p … (3)
式 (2) に式 (3) を代入すると、 固定容量型の油圧ポンプ 30の吐出流量 Q Pと可変絞り部 3 1 aの前後差圧 ΔΡρの関係は以下の式 (4) のようになる。
ΔΡ p= (1/c a) (p/2) - Qp
= (C /c a) f (p/2) · N ··· (4) また、 第 2駆動部 32において、 パネ 25の押付力の圧力換算値を kとすれば、 △ PLSref=APp + kとなるので、 △ PLSref∞A P pとなる。 また、 パネ 25 の押付力を無視できるとすれば、 APLSref=AP pとなる。 従って、 式 (4) は 次のように表現できる。
APLSrefoc (又は =) Δ P pocQp
厶 PLSrefoc (又は =) ΔΡ pccN 。'。 (5)
すなわち、 差圧 ΔΡ p或いは APLSrefは油圧ポンプ 30の吐出流量 Qp又はェ ンジン 1の回転数 Nに対して図 2 Aに実線で示すように直線的に増加する。
また、 流量制御弁 6 a, 6 b, 6 cの 1つ、 例えば流量制御弁 6 aの前後差圧 厶 PLSが圧力補償弁 7 aにより APLSrefに制御されている場合、 流量制御弁 6 a の開口面積を A Vとすると、 流量制御弁 6 aの要求する流量 Qvは以下の式で与 えられる。
Qv = cAv ((2/p) APLSref) … (6)
すなわち、 要求流量 Qvは目標差圧 APLSrefに対して図 2 Bで示すように上に 凸の放物線的に増大する。
式 (4) 〜式 (6) から要求流量 Qvは以下のようにエンジン 1の回転数 Nと 関係ずけることができる。
Qvocc Av " ((Cm/c a) (2/p) 1/2) · V~N ··· (7)
つまり、
Qv∞N1/2 … (8)
すなわち、 図 2 Aに実線で示す流量 Qpと差圧 ΔΡρとの直線比例の関係 (式 (4)) と図 2 Βに示す差圧 APLSと要求流量 Qvとの上に凸の放物線の関係 (式 (6)) が組み合わされ、 要求流量 Qvはエンジン 1の回転数 Nに対して図 2 Cに 実線で示すように上に凸の放物線的に増大する。
次に、 切換弁 50が絞り位置に切り換えられた場合について説明する。
切換弁 50が絞り位置に切り換えられたときに流量検出弁 3 1と切換弁 50と に分流される流量をそれぞれ Ql, Q 2とすると、 下記の式が成り立つ。
Qp = Q 1 +Q 2 … (9)
また、 流量検出弁 3 1の可変絞り部 31 aの開口面積を上記のように Aplとし、 切換弁 50の固定絞りの開口面積を Ap2とすると、 流量検出弁 31と切換弁 50 を通過する流量 Q 1, Q 2はそれぞれ次の式で表される。
Ql = c ΑΡΙ ((2/ρ) ΔΡρ)
= c a (2/ ρ) · Δ P p
Q2 = cAp2 ((2/p) ΔΡρ) - (10) ここで、 =c Ά-f {2/ p), /3 = c Ap2 " (2/p) と置くと、
Q 1 = α 。 Δ Ρ ρ
Q2 = )S 。 7" (ΔΡ ρ) - (11) よって、 固定容量型の油圧ポンプ 30の吐出流量 Qp或いはエンジン 1の回転数 Nと可変絞り部 31 aの前後差圧 ΔΡρは以下の式で関係づけられる。
Qp = CmN = Q 1 +Q 2
=α · ΔΡρ + iS · (ΔΡρ) "' (12) 式 (12) から油圧ポンプ 30の吐出流量 Qpに対する差圧 ΔΡ ρの関数を求 めると、 図 2 Aに破線で示すように、 下に凸の微分可能な連続関数となり、 差圧 △ P p或いは P LSre fは切換弁 50が全閉位置にあるときに比べ小さくなるととも に、 油圧ポンプ 30の吐出流量 Qp又はエンジン 1の回転数 Nに対して図 2 Aに 破線で示すように増加する。
また、 式 (7) と同様に、 式 (6) と式 (12) 力 ^ら流量制御弁 6 aの要求流 量 Qvとエンジン 1の回転数 Nの関係を求めることができ、 これは、 図 2 Aに破 線で示す N或いは Q pと Δ PLSref或いは Δ P pとの関係と図 2 Bに示す△ PLS
(=APLSref) と Q vとの上に凸の放物線の関係を組み合わせた、 図 2 Cに破線 で示すような曲線で表されるものとなる。
つまり、 要求流量 Qvはエンジン 1の回転数 Nに対して図 2 Cに破線で示すよ うに増大し、 切換弁 50が全閉位置にあるときとエンジン 1の回転数が同じでも、 要求流量 Qvは減少し、 ァクチユエ一夕 3 aの速度が減少する。
次に、 本実施の形態の効果を説明する。
前述したように、 流量検出弁 31を設けることによりエンジン回転数に応じて 目標差圧 Δ PLSrefを小さくし、 ァクチユエ一夕速度を減少させることができるが、 1台の油圧ショベルで掘削積み荷作業とクレーン作業を行う場合には要求される 旋回速度 (旋回モ一夕 3 cの回転速度) の変化幅が大きく、 このようにァクチュ エー夕に要求される速度の変化幅が大きいと、 流量検出弁を用いたエンジン回転 数による調整だけでは対応できない。 今、 このことを具体的に説明する。
具体例として、 旋回速度として、 例えば、 掘削積み荷作業では θιηίιΓ1が要求さ れ、 クレーン作業では Imin—1が要求され (1Z9倍)、 エンジン 1の回転数の調 整幅が 1000〜250 Omin— 1 (2. 5倍) である場合を考える。
<切換弁 50がない場合 >
これは、 特開平 10— 196604号公報に記載の従来技術に該当する。 切換 弁 50がない場合は、 切換弁 50が全閉位置にある場合で説明したように、 目標 差圧 Δ PLSrefとエンジン回転数 Nの間には、 前述した式 (5) の関係が成り立つ。
Δ PLSref OCA P p x:N … (5)
—方、 ァクチユエ一夕要求流量 Qvとエンジン回転数 Nの関係は前述した式 (8) のように表される。
Q vocN1/2 … (8)
式 (8) から試算すると、 エンジン回転数が 1000〜250 Omin— 1で変化す ると、 旋回速度の変化範囲は 5. Ζ θιπίΐΓ1となり、 クレーン作業で要求される lmin—1に対応できない。
<流量検出弁が固定絞りの場合 >
これは特開平 5— 99126号公報に記載の従来技術に対応する。 流量検出弁 が固定絞りなので、 目標差圧 APLSrefとエンジン回転数 Nの間には下記の式のよ うな関係が成り立つ。
APLSrefocQp2
∞Ν2 … (13) 一方、 目標 LS差圧 APLSrefとァクチユエ一夕の要求流量 Qvの関係は上述し た式 (6〉 のように表されるので、 要求流量 Qvとエンジン回転数 Nの関係は以 下のようになる。
QocN … (14) 式 (14) から試算すると、 エンジン回転数が 1000〜250 Omin— 1で変化 すると、 旋回速度の変化範囲は 3. β θπιίιΓ1となり、 やはり上記要求旋回速度 lmin— 1に対応できない。
<本発明の場合 >
本発明の第 1の実施の形態によれば、 切換弁 50を絞り位置に切り換えること により最大ァクチユエ一夕速度 (最大旋回速度) を θιηίΐΓ1から lmin— 1 (1/ 9) にできる。 以下、 このことを検証する。
切換弁 50が絞り位置にあるとき、 固定容量型の油圧ポンプ 30の吐出流量 Q p或いはエンジン 1の回転数 Nと可変絞り部 31 aの前後差圧 ΔΡρとの関係は 式 (12) で表される。
Qp = CmN = Q 1 +Q 2
=α 。 ΔΡ p + i8 。 (ΔΡ P) - (12) ここで、 切換弁 50が全閉位置にあるときの流量検出弁 31の前後差圧を ΔΡ P0、 絞り位置にあるときの流量検出弁 31の前後差圧を ΔΡΡ1とすると、 それぞ れの場合の油圧ポンプ 30の吐出流量 Qpと前後差圧 ΔΡΡΟ, ΔΡΠとの関係は 次のように表される。
Qp = « 。 ΔΡΡ0
Qp = - APU+β · f (ΔΡΡΙ) 切換弁 50の切換前後で全流量 (油圧ポンプ 30の吐出流量) Qpは変わらな いので、
- ΔΡΡ0=α - APPl+j3 · ΛΓ (ΔΡΡΙ) '·· (15) 最大ァクチユエ一夕速度 (最大旋回速度) を 1/9とするためには、 切換弁 5 0が絞り位置での流量検出弁 31の前後差圧は全閉位置でのそれの (1Z9) w 2とする必要がある。 すなわち、
ΔΡΡ1= (1/81) ΔΡΡ0 … (16) となる。 式 (16) を式 (15) に代入すると、 下式が得られる。
· ΔΡΡ0= (1/81) - ΔΡΡ0+ (1/9) β - f (ΔΡΡΟ)
… (1 7) そして、 式 (17) を j6について解くと、 下式が得られる。
]3= (8 0/9) (ΪΛΓΔΡΡΟ … (1 8) つまり、 流量検出弁 31に関する定数ひと切換弁 50が全閉位置にあるときの 流量検出弁 31の前後差圧 ΔΡΡ0が決まっていれば、 を計算できる。 よって、 最大ァクチユエ一夕速度 (最大旋回速度) を 9mm—1から Imin— 1 (1/9) にで きる。
図 3に計算結果の一例を示す。 図中、 横軸が油圧ポンプ 30の吐出流量 (ェン ジン回転数に比例) であり、 図示左側の縦軸が切換弁 50が全閉位置にある (切 換弁 50がない) ときの流量検出弁 31の前後差圧であり、 図示右側の縦軸が切 換弁 50が絞り位置にあるときの流量検出弁 31の前後差圧である。 油圧ポンプ 30の吐出流量が 4. 5 LZmin付近がエンジン回転数 100 Omin—1に相当し、 吐出流量が 1 1. 4 LZmin付近がエンジン回転数 250 Omin— 1に相当する。 ま た、 図示右側の切換弁 50が絞り位置にあるときの流量検出弁 31の前後差圧の スケールは図示左側の切換弁 50が全閉位置にあるときの流量検出弁 31の前後 差圧の 81倍に拡大している。
この図 3から分かるように、 切換弁 50を全閉位置から絞り位置に切り換える ことにより、 エンジン回転数が 250 Omin— 1のときの流量検出弁 31の前後差圧 は 15 k g f /cm2からその 1/81に低下し、 ァクチユエ一夕の要求流量、 す なわちァクチユエ一夕速度を 1/9に落とすことができる。 以上のように本実施の形態によれば、 流量検出弁 3 1と並列に切換弁 5 0を設 けることにより、 エンジン 1の回転数に応じてロードセンシング制御の目標差圧 △ P LSrefを変更できるとともに、 要求されるァクチユエ一夕速度の変化幅がェン ジン 1の回転数で調整可能な範囲を超えていても、 その変化幅に対応でき、 それ ぞれの要求ァクチユエ一夕速度を実現し、 良好な操作性を得ることができる。 また、 切換弁 5 0が全閉位置にあるときは、 従来通りエンジン回転数を調整す れば今までと同じようにァクチユエ一夕速度を調整できるので、 ァクチユエ一夕 速度の調整のためのエンジン回転数の設定に際して、 従来システムの操作感との 間の違和感をなくすことができる。
また、 本実施の形態によれば、 固定容量型の油圧ポンプ 3 0の吐出路に設ける 絞り手段として、 自身の前後差圧に依存して開口面積を変化させる可変絞り部 3 1 aを備えた流量検出弁 3 1を配置したので、 特開平 1 0— 1 9 6 6 0 4号公報 に記載の発明と同様、 エンジン回転数を低く設定した場合には良好な微操作性が 得られ、 エンジン回転数を高く設定した場合には応答性の良い力強い操作フィー リングを実現することができる。
本発明の第 2及び第 3の実施の形態を図 4及び図 5により説明する。 これらの 実施の形態は切換弁の切換方式を異ならせたものである。 図中、 図 1に示すもの と同等の部材には同じ符号を付している。
図 4において、 本発明の第 2の実施の形態におけるポンプ容量制御装置は切換 手段を油圧式とした切換弁 5 O Aを有し、 切換弁 5 O Aを絞り位置に付勢する側 に油圧駆動部 6 0が設けられ、 切換弁 5 O Aを全閉位置に付勢する側にバネ 6 1 が設けられている。 また、 オペレータにより通常作業モード位置とクレーン作業 モード位置との間で操作され、 通常作業モードを選択するか、 クレーン作業モー ドを選択するかを指示する手動ダイヤル 6 2と、 手動ダイヤル 6 2がクレーン作 業モード位置にあるときに電気信号を出力する信号発生部 6 3と、 信号発生部 6 3からの電気信号により作動する電磁切換弁 6 4とを備え、 電磁切換弁 6 4の一 次ポートは固定容量型の油圧ポンプ 3 0の吐出路 3 0 bに接続され、 二次ポート は切換弁 5 O Aの油圧駆動部 6 0に接続されている。
手動ダイヤル 6 2が通常作業モード位置にあるときは、 電磁切換弁 6 4は作動 せず、 切換弁 5 O Aはバネ 6 1により全閉位置に保持される。 手動ダイヤル 6 2 をクレーン作業モード位置に操作すると、 信号発生部 6 3は電気信号を発生し、 電磁切換弁 6 4は油圧ポンプ 3 0からの圧油を油圧源として切換弁 5 O Aの油圧 駆動部 6 0に油圧信号を出力する。 これにより切換弁 5 O Aは絞り位置に切り換 えられる。
図 5において、 本発明の第 3の実施の形態におけるポンプ容量制御装置は切換 手段を電気ソレノィド式とした切換弁 5 0 Bを有し、 切換弁 5 0 Bを絞り位置に 付勢する側にソレノィド駆動部 6 5が設けられ、 切換弁 5 0 bを全閉位置に付勢 する側にバネ 6 1が設けられている。 また、 信号発生部 6 3からの電気信号が直 接ソレノィド駆動部 6 5に入力される。
手動ダイヤル 6 2が通常作業モード位置にあるときは、 ソレノィド駆動部 6 5 は作動せず、 切換弁 5 0 Bはパネ 6 1により全閉位置に保持される。 手動ダイヤ ル 6 2をクレーン作業モード位置に操作すると、 信号発生部 6 3は電気信号を発 生し、 切換弁 5 0 Bはソレノィド駆動部 6 5により絞り位置に切り換えられる。 第 2及び第 3の実施の形態によっても、 第 1の実施の形態と同様の効果が得ら れる。
本発明の第 4の実施の形態を図 6により説明する。 本実施の形態はクレーン作 業モードにおいて設定を連続的に調整できるようにしたものである。 図中, 図 1、 図 4、 図 5に示すものと同等の部材には同じ符号を付している。
図 6において、 本実施の形態におけるポンプ容量制御装置は絞り部 5 O C aを 可変絞りとした切換弁 5 0 Cを有し、 切換弁 5 0 Cを絞り位置に付勢する側に比 例ソレノィド駆動部 6 6が設けられ、 切換弁 5 0 Cを全閉位置に付勢する側にバ ネ 6 1が設けられている。 また、 オペレータにより通常作業モード位置とクレー ン作業モード位置との間で操作され、 クレーン作業モード位置では更に連続的に 位置を調整可能な手動ダイヤル 6 2 Cと、 手動ダイヤル 6 2 Cがクレーン作業モ ード位置にあるときの位置に比例した電気信号を出力する信号発生部 6 3 Cとを 備え、 信号発生部 6 3 Cからの電気信号が比例ソレノィド駆動部 6 6に入力され る。
手動ダイヤル 6 2 Cが通常作業モード位置にあるときは、 比例ソレノィド駆動 部 6 6は作動せず、 切換弁 5 0 Cはパネ 6 1により全閉位置に保持される。 手動 ダイヤル 6 2 Cをクレーン作業モード位置に操作すると、 信号発生部 6 3 Cはそ の位置に応じたレベルの電気信号を発生し、 比例ソレノィド駆動部 6 6はその電 気信号に応じて作動し、 切換弁 5 0 Cはその電気信号に応じた絞り位置に切り換 えられ、 絞り部 5 0 C aは手動ダイヤル 6 2 Cの位置に応じた開口面積に調整さ れる。 その結果、 クレーン作業モードを選択したとき、 クレーン作業モードでの ァクチユエ一夕速度をオペレータの好みに応じて自由に調整することができ、 更 に操作性を向上できる。
本発明の第 5の実施の形態を図 7により説明する。 本実施の形態は、 今までの 実施の形態とは異なる形態で流量検出弁と並列に接続したものである。 図中、 図 1に示すものと同等の部材には同じ符号を付している。
図 7において、 本実施の形態におけるポンプ容量制御装置は、 流量検出弁 3 1 と並列に接続された切換弁 5 0を有し、 切換弁 5 0の入力ポートはバイパス油路 5 2を介して流量検出弁 3 1の入力ポート側の油路 3 0 aに接続されている。 こ の点は第 1の実施の形態と同じである。 ただし、 本実施の形態では、 切換弁 5 0 の出力ポートはバイパス油路 5 3 Dを介してタンクに接続されている。 このよう にバイパス油路 5 3 Dを接続しても、 切換弁 5 0を絞り位置に切り換えたときは 油圧ポンプ 3 0からの圧油の一部は絞り部 5 0 a及びバイパス油路 5 3 Dを介し てタンクに戻され、 油圧ポンプ 3 0からの吐出油は、 流量検出弁 3 1と切換弁 5 0による並列絞り回路に分流される。 その結果、 切換弁 5 0を絞り位置に切り換 えることによって流量検出弁 3 1を流れる流量が減少し、 油圧ポンプ 3 0の吐出 流量 (エンジン回転数に比例) に対する流量検出弁 3 1の前後差圧 Δ Ρ ρ (或い は A P LSref) の変化はクレーン作業モードに適した特性となる。
従って、 本実施の形態によっても、 第 1の実施の形態と同様の効果が得られる。 以上、 本発明の実施の形態を説明したが、 本発明はこれらに限定されることな く、 本発明の精神の範囲内で種々の修正、 変更が可能である。
例えば、 上記実施の形態では、 圧力補償弁は流量制御弁の上流に設置される前 置きタイプとしたが、 流量制御弁の下流に設置され、 全ての流量制御弁の出口圧 力を同じ最大負荷圧に制御することで前後差圧を同じ差圧 A P LSに制御する後置 きタイプであってもよい。
また、 ポンプ容量制御装置 5の設定制御部 2 3 bと圧力補償弁 7 a〜 7 cには 油圧ポンプ 2の吐出圧と最大負荷圧とをそのまま導き、 両者の差圧 A PLSをそれ ぞれの内部で得たが、 油圧ポンプ 2の吐出圧と最大負荷圧の差圧 Δ PLSを 1つの 油圧信号に変換する差圧検出弁を設け、 その油圧信号を設定制御部 2 3 bと圧力 補償弁 7 a〜7 cに導いてもよい。 流量検出弁 3 1の前後差圧 Δ Ρ ρについても、 同様に、 その上流側の圧力と下流側の圧力をそのままポンプ容量制御装置 5の設 定制御部 2 3 bに導くのでなく、 その差圧を 1つの油圧信号に変換する差圧検出 弁を設け、 その油圧信号を設定制御部 2 3 bに導いてもよい。 このように差圧検 出弁を用いることにより、 油圧信号の数が減り、 回路構成を簡素化できる。
更に、 流量検出弁 3 1の前後差圧 Δ Ρ ρは、 その大きさを変えずにポンプ容量 制御装置 5の設定制御部 2 3 bに導いたが、 ポンプ容量制御装置 5側で設定され るロードセンシング制御の目標差圧 A PLSrefの調整を容易にするなどの目的で、 流量検出弁 3 1の前後差圧を減圧或いは増圧して導いてもよい。
更に、 上記の実施の形態では、 固定容量型の油圧ポンプ 3 0の吐出路に設ける 絞り手段として、 自身の前後差圧に依存して開口面積を変化させる可変絞り部 3 1 aを備えた流量検出弁 3 1を配置したが、 特開平 5— 9 9 1 2 6号公報のもの と同様、 固定絞りを配置してもよい。
また、 上記の実施の形態では、 エンジン回転数の検出及びそれに基づく目標差 圧の変更を油圧的に行ったつが、 エンジン回転数をセンサで検出し、 そのセンサ 信号から目標差圧を計算するなどして電気的に行ってもよい。 産業上の利用可能性
本発明によれば、 絞り手段と並列に切換弁を設けたので、 原動機の回転数に応 じてロードセンシング制御の目標差圧を変更できるとともに、 要求されるァクチ ユエ一夕速度の変化幅が原動機の回転数で調整可能な範囲を超えていても、 その 変化幅に対応でき、 それぞれの要求ァクチユエ一夕速度を実現し、 良好な操作性 を得ることができる。
また、 切換弁が全閉位置にあるときは、 従来通り原動機回転数を調整すれば今 までと同じようにァクチユエ一夕速度を調整できるので、 ァクチユエ一夕速度の 調整のための原動機回転数の設定に際して、 従来システムの操作感との間の違和 感をなくすことができる。

Claims

請求の範囲 i。 原動機 α)と,
この原動機により駆動される可変容量型の油圧ポンプ と、
この油圧ポンプから吐出された圧油により駆動される複数のァクチユエ一夕(3 a-3c)と、
前記油圧ポンプから複数のァクチユエ一夕に供給される圧油の流量を制御する 複数の流量制御弁(6a- 6c)と、
前記複数の流量制御弁の前後差圧を前記油圧ポンプの吐出圧と前記複数のァク チユエ一夕の最高負荷圧との差圧に応じて制御する複数の圧力補償弁 (7a- 7c)と、 前記油圧ポンプの吐出圧と前記複数のァクチユエ一夕の最高負荷圧との差圧を 設定値に維持するよう前記油圧ポンプを容量制御するボンプ容量制御手段 (5)と、 前記可変容量型の油圧ポンプとともに前記原動機により駆動される固定容量型 の油圧ポンプ(30)とを備え、
前記ポンプ容量制御手段は前記固定容量型の油圧ポンプの吐出路に設けられた 絞り手段 (31 a)を有し、 この絞り手段の前後差圧の変化で前記原動機の回転数の変 化を検出し、 前記原動機の回転数に応じて前記設定値を変更する油圧駆動装置に おいて、
前記絞り手段 (31a)と並列に接続され、 全閉位置と絞り位置の間で操作可能な切 換弁 (50; 50A; 50B; 50C)を備えることを特徴とする油圧駆動装置。
2。 請求項 1記載の油圧駆動装置において、
前記切換弁 (50; 50A; 50B; 50C)を前記全閉位置と絞り位置の間で切り換える手動 操作手段(51; 62; 620を更に備えることを特徴とする油圧駆動装置。
3 . 請求項 1記載の油圧駆動装置において、
オペレータにより操作される手動操作手段(62 ; 62C)と、
この手動操作手段の操作に応じて前記切換弁(50A; 50B ; 50C)を前記全閉位置と絞 り位置の間で切り換える切換手段(63, 64, 60 ; 63, 65 ; 63C, 66)とを備えることを特徴 とする油圧駆動装置。
4 . 請求項 3記載の油圧駆動装置において、 前記切換手段 (63, 64, 60)が電気- 油圧式であることを特徴とする油圧駆動装置。
5 . 請求項 3記載の油圧駆動装置において、 前記切換手段 (63, 6 ; 63C, 66)が電 気式であることを特徴とする油圧駆動装置。
6 . 請求項 1記載の油圧駆動装置において、 前記切換弁 (50C)は、 前記絞り位置 で連続的に開口面積を変更できるようになつていることを特徴とする油圧駆動装
PCT/JP2001/004012 2000-05-16 2001-05-15 Dispositif d'entrainement hydraulique WO2001088383A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01930129A EP1231386A1 (en) 2000-05-16 2001-05-15 Hydraulic drive device
US10/018,575 US6651428B2 (en) 2000-05-16 2001-05-15 Hydraulic drive device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-143390 2000-05-16
JP2000143390A JP2001323902A (ja) 2000-05-16 2000-05-16 油圧駆動装置

Publications (1)

Publication Number Publication Date
WO2001088383A1 true WO2001088383A1 (fr) 2001-11-22

Family

ID=18650220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/004012 WO2001088383A1 (fr) 2000-05-16 2001-05-15 Dispositif d'entrainement hydraulique

Country Status (5)

Country Link
US (1) US6651428B2 (ja)
EP (1) EP1231386A1 (ja)
JP (1) JP2001323902A (ja)
KR (1) KR100480949B1 (ja)
WO (1) WO2001088383A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617594B2 (en) 2003-09-22 2009-11-17 Lg Electronics Inc. Apparatus for fixing a stator of a motor of a reciprocal compressor

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100517849B1 (ko) * 2000-05-23 2005-10-04 코벨코 겐키 가부시키가이샤 건설 기계
DE10216119A1 (de) * 2002-04-12 2003-10-23 Bosch Rexroth Ag Hydraulische Steueranordnung in Load-Sensing Technik
JP2004190845A (ja) * 2002-12-13 2004-07-08 Shin Caterpillar Mitsubishi Ltd 作業機械の駆動装置
JP2007024103A (ja) * 2005-07-13 2007-02-01 Hitachi Constr Mach Co Ltd 油圧駆動装置
JP5523028B2 (ja) * 2009-09-04 2014-06-18 日立建機株式会社 油圧作業機械の油圧駆動装置
KR20120072729A (ko) * 2010-12-24 2012-07-04 두산인프라코어 주식회사 상이한 컷오프 압력을 구비한 유압 펌프를 포함하는 휠로더
JP5878811B2 (ja) * 2012-04-10 2016-03-08 日立建機株式会社 建設機械の油圧駆動装置
JP6525898B2 (ja) * 2016-01-26 2019-06-05 株式会社日立建機ティエラ 建設機械の油圧駆動装置
JP6248144B2 (ja) * 2016-06-08 2017-12-13 Kyb株式会社 ポンプ装置
JP6761283B2 (ja) * 2016-06-08 2020-09-23 Kyb株式会社 ポンプ装置
CN107357242B (zh) * 2017-06-20 2019-08-23 江苏科技大学 一种割草机翻滚试验台远程遥控系统及方法
JP6682476B2 (ja) * 2017-06-29 2020-04-15 株式会社クボタ 作業機
CN110594222B (zh) * 2019-08-31 2024-04-19 洛阳智能农业装备研究院有限公司 一种无人化农机的液压阀组
KR20220078335A (ko) * 2020-12-03 2022-06-10 현대두산인프라코어(주) 유압 시스템
CN113323933B (zh) * 2021-05-21 2023-07-18 杭州诺祥科技有限公司 一种压差匹配式双向大流量液压控制装置
GB202117524D0 (en) 2021-12-03 2022-01-19 Agco Int Gmbh System and method for controlling a hydraulic supply system on a mobile machine

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164941A (ja) * 1988-12-19 1990-06-25 Hitachi Constr Mach Co Ltd 土木・建設機械の油圧駆動装置
JPH02261902A (ja) * 1989-03-31 1990-10-24 Komatsu Ltd クローズドセンタ・ロードセンシングシステムにおけるポンプの吐出容積の可変回路
WO1992006305A1 (en) * 1990-09-28 1992-04-16 Kabushiki Kaisha Komatsu Seisakusho Circuit capable of varying pump discharge volume in closed center-load sensing system
JPH0599126A (ja) * 1991-10-07 1993-04-20 Komatsu Ltd 可変容量型油圧ポンプの容量制御装置
WO1994023213A1 (en) * 1993-03-26 1994-10-13 Kabushiki Kaisha Komatsu Seisakusho Controller for hydraulic drive machine
JPH0874805A (ja) * 1994-09-05 1996-03-19 Komatsu Mec Corp 建設機械の油圧制御装置
WO1998022716A1 (fr) * 1996-11-15 1998-05-28 Hitachi Construction Machinery Co., Ltd. Dispositif d'entrainement hydraulique

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579642A (en) * 1995-05-26 1996-12-03 Husco International, Inc. Pressure compensating hydraulic control system
US5937645A (en) * 1996-01-08 1999-08-17 Nachi-Fujikoshi Corp. Hydraulic device
JP3910280B2 (ja) 1996-11-15 2007-04-25 日立建機株式会社 油圧駆動装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164941A (ja) * 1988-12-19 1990-06-25 Hitachi Constr Mach Co Ltd 土木・建設機械の油圧駆動装置
JPH02261902A (ja) * 1989-03-31 1990-10-24 Komatsu Ltd クローズドセンタ・ロードセンシングシステムにおけるポンプの吐出容積の可変回路
WO1992006305A1 (en) * 1990-09-28 1992-04-16 Kabushiki Kaisha Komatsu Seisakusho Circuit capable of varying pump discharge volume in closed center-load sensing system
JPH0599126A (ja) * 1991-10-07 1993-04-20 Komatsu Ltd 可変容量型油圧ポンプの容量制御装置
WO1994023213A1 (en) * 1993-03-26 1994-10-13 Kabushiki Kaisha Komatsu Seisakusho Controller for hydraulic drive machine
JPH0874805A (ja) * 1994-09-05 1996-03-19 Komatsu Mec Corp 建設機械の油圧制御装置
WO1998022716A1 (fr) * 1996-11-15 1998-05-28 Hitachi Construction Machinery Co., Ltd. Dispositif d'entrainement hydraulique

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7617594B2 (en) 2003-09-22 2009-11-17 Lg Electronics Inc. Apparatus for fixing a stator of a motor of a reciprocal compressor

Also Published As

Publication number Publication date
KR100480949B1 (ko) 2005-04-07
EP1231386A1 (en) 2002-08-14
US6651428B2 (en) 2003-11-25
US20030097836A1 (en) 2003-05-29
KR20020030745A (ko) 2002-04-25
JP2001323902A (ja) 2001-11-22

Similar Documents

Publication Publication Date Title
WO2001088383A1 (fr) Dispositif d&#39;entrainement hydraulique
JP4653091B2 (ja) 少なくとも2つの流体圧コンシューマに圧力手段を供給するための制御装置および方法
JP3139769B2 (ja) 油圧再生装置
WO1992004505A1 (en) Hydraulic control system in construction machine
JP3854027B2 (ja) 油圧駆動装置
WO1992018711A1 (en) Hydraulic driving system in construction machine
WO1997003292A1 (fr) Dispositif hydraulique de commande
WO1997011278A1 (fr) Systeme hydraulique
WO2000073664A1 (fr) Dispositif de regulation du debit nominal d&#39;une pompe et dispositif a soupape
WO1990011413A1 (en) Hydraulic drive unit for civil engineering and construction machinery
WO1993018308A1 (en) Hydraulically driving system
JP3477687B2 (ja) 流量制御装置
JP2007024103A (ja) 油圧駆動装置
WO1998022716A1 (fr) Dispositif d&#39;entrainement hydraulique
WO1990009528A1 (en) Hydraulic circuit for working machines
KR100491696B1 (ko) 유압구동장치
JP3910280B2 (ja) 油圧駆動装置
JP6731387B2 (ja) 建設機械の油圧駆動装置
WO1991002905A1 (en) Hydraulic driving apparatus of civil engineering/construction equipment
JP2601890B2 (ja) 土木・建設機械の油圧駆動装置
JP3522959B2 (ja) 油圧駆動装置
JP2839567B2 (ja) 建設機械の油圧駆動装置
JPH05346101A (ja) 建設機械の油圧駆動装置
JP3760055B2 (ja) 建設機械の油圧駆動制御装置
JPH0932042A (ja) 油圧制御方法およびその回路

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1020017015329

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10018575

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001930129

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020017015329

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2001930129

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1020017015329

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001930129

Country of ref document: EP