WO2001079674A1 - Verfahren und vorrichtung zur steuerung einer antriebseinheit eines fahrzeugs - Google Patents

Verfahren und vorrichtung zur steuerung einer antriebseinheit eines fahrzeugs Download PDF

Info

Publication number
WO2001079674A1
WO2001079674A1 PCT/DE2001/001411 DE0101411W WO0179674A1 WO 2001079674 A1 WO2001079674 A1 WO 2001079674A1 DE 0101411 W DE0101411 W DE 0101411W WO 0179674 A1 WO0179674 A1 WO 0179674A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
filtered
vehicle
pass
Prior art date
Application number
PCT/DE2001/001411
Other languages
English (en)
French (fr)
Inventor
Andreas Huber
Horst Wagner
Ruediger Fehrmann
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to EP01940148A priority Critical patent/EP1276979B1/de
Priority to HU0201608A priority patent/HU228421B1/hu
Priority to JP2001577046A priority patent/JP4478371B2/ja
Priority to US10/018,197 priority patent/US6832136B2/en
Priority to DE50110703T priority patent/DE50110703D1/de
Publication of WO2001079674A1 publication Critical patent/WO2001079674A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter

Definitions

  • the invention relates to a method and a device for controlling a drive unit of a vehicle according to the preambles of the independent claims.
  • a method and such a device for controlling a drive unit of a vehicle is known for example from DE 195 34 633.
  • torque changes of the engine are delayed by low-pass filtering of the driver's specification.
  • a pulsed course of the injection quantity is proposed in order to achieve a smooth application of the engine, after which the injected fuel quantity is released without delay for acceleration.
  • the low-pass filtering impairs the spontaneity of driving behavior.
  • an interaction between the motor movement and the drive train can be observed in modern drive train concepts, so that the load impact can be intensified.
  • the quick change of state enables a spontaneous vehicle reaction to the driver's specifications.
  • the damping of the shock when it hits the new system position results in a significant reduction in the noise during the load change process, a reduction in the load impact during load changes as a result of small changes in the driver specification and a reduced excitation of the drive train for jerking.
  • the masses of the drive train are accelerated by at least one torque pulse and decelerated again before striking the new system position, the position of this pulse relative to the time of the change in quantity desired and the position of the pulses relative to one another being variable or applicable.
  • FIG. 1 shows an overview block diagram of an apparatus for implementation of the procedure according to the invention
  • FIG. 2 shows a detailed illustration as a block diagram of the device according to the invention
  • FIG. 3 shows various signals plotted over time.
  • FIG. 1 shows an overview block circuit diagram of a device for controlling the drive unit of a vehicle, in which the procedure according to the invention can be applied.
  • the procedure according to the invention is described using the example of a diesel internal combustion engine.
  • the procedure according to the invention can also be used with other types of internal combustion engines, in particular with spark-ignited internal combustion engines.
  • the 100 denotes an internal combustion engine, which is connected, among other things, to an actuator 110.
  • the actuator 110 processes signals from various sensors 115 and a signal QKF that is provided by a filter means 120.
  • the signal QK is fed to the filter means 120 as an input variable.
  • the filter means further processes the output signals from various sensors 125.
  • the signal QK is provided by a quantity specification 130.
  • the quantity specification is acted upon by signals from an accelerator pedal position sensor 140 and various sensors 135.
  • the accelerator pedal position sensor Starting from the position of the accelerator pedal, the accelerator pedal position sensor generates a signal FP relating to the accelerator pedal position.
  • the accelerator pedal position sensor can be designed, for example, as a rotary potentiometer. In this case, a resistance value and / or the voltage drop at the potentiometer is used as a signal.
  • the quantity specification 130 Based on the output signal of the accelerator pedal position sensor 140 and the output signals of the various sensors 135, the quantity specification 130 calculates the signal QK, which represents a measure of the power desired by the internal combustion engine.
  • the fuel quantity QK is specified, for example, as a function of sensors 135, which record various temperature values, pressure values and other operating states.
  • a spark-ignition internal combustion engine is preferably a signal that indicates the throttle valve position or the ignition timing.
  • the injection quantity in a diesel internal combustion engine must not be released suddenly. It is sufficient to filter the injection quantity only in the quantity range in which the internal combustion engine moves relative to the body.
  • This filtering of the fuel quantity signal is carried out by the filter means 120, the filtering taking place as a function of various state variables which characterize the state of the internal combustion engine and / or the driven vehicle.
  • the filtering preferably takes place as a function of the rotational speed, which is detected by means of a rotational speed sensor 125.
  • the transmission behavior of the filter medium 120 is shown in FIG. 2.
  • the filtered quantity signal QKF is supplied to the actuator 110.
  • the actuator 110 is, for example, a fuel metering device that determines the amount of fuel to be injected. This can be a solenoid valve, for example. Depending on the filtered fuel quantity signal QKF and the output signals of further The sensors 110 measure the corresponding amount of fuel to the internal combustion engine 100.
  • the procedure according to the invention is not restricted to use in diesel internal combustion engines. It can also be used in other internal combustion engines. Furthermore, it is not limited to use in fuel injection. It can also be used with other variables determining the power output, such as, for example, the throttle valve position or the ignition angle
  • the filter medium 120 is shown in more detail in FIG. Elements already described in FIG. 1 are drawn with corresponding reference symbols.
  • the quantity request signal QK reaches a first dead time element 200, a second dead time element 220 and a third dead time element 250.
  • a low pass filter 210 is applied to the output signal of the first dead time element 200.
  • the signal QKF0 is present at the output of the low pass 210 and is applied to a first node 215.
  • the output signal of the second dead time element 220 reaches a first high pass 240 via a first input limitation 230.
  • the output signal QKF1 is present at the output of the first high pass, with which the first connection point 215 is applied.
  • the output signal of the third dead time element 250 reaches a second high pass 270 via a second input limitation 260.
  • the output signal of the second high pass 270 reaches a second node 280, at whose second input the output signal of the first node 215 is present.
  • the output signal of the connection point 280 reaches the actuator 110 via an output limitation 290 as a filtered quantity request QKF.
  • a PTD1 element is preferably used as low pass 210. According to the invention, however, other filters with low-pass behavior can also be used. Filters with DTI behavior are preferably used as the first and second high pass. However, other filters with high-pass behavior can also be used.
  • the third dead time element 250, the second input limitation 260 and / or the second high pass 270 it is possible for the third dead time element 250, the second input limitation 260 and / or the second high pass 270 to be omitted.
  • the arrangement of the dead time elements 200, 220 and 250 is chosen only as an example. These dead time elements can also be arranged after the entry limit or after the low pass or after the high passes. Instead of the dead time elements, special low-pass or high-pass elements can also be used, which contain higher-order elements. Furthermore, it is possible, depending on the configuration, to omit the input limits 230, 260 or the output limit 290.
  • the low pass 210 determines the static transmission behavior of the filter. This transmission element also essentially determines the response behavior to the driver's request.
  • a fuel-quantity pulse is required to ensure the acceleration and deceleration of the masses.
  • This fuel quantity pulse is provided by the high-pass filters 240 and 270.
  • the signals of the filters 210, 240 and / or 270 are phase-shifted with respect to one another by the dead time elements 220 and 250. This ensures the temporal sequence of the pulses and thus the desired course of the output signal.
  • the position of this pulse is determined by suitable selection and / or dimensioning of the dead time elements can be applied relative to the time of the change in the quantity desired and the position of the pulses relative to one another. It when the dead time elements and thus the phase shift can be predetermined depending on the operating state of the internal combustion engine and / or the vehicle is particularly advantageous. Suitable parameters for characterizing the operating state are the speed of the internal combustion engine, the load of the internal combustion engine, the driving speed and / or other variables.
  • High reinforcements of the high-pass filters 240 and 270 enable load shock absorption even with small changes in the QK quantity specification.
  • the input limits 230 and 260 prevent excessive intervention when there are large changes in the signal QK.
  • the input limits 230 and 260 can be predetermined as a function of the desired quantity QK. At medium and high loads, the drive train is usually securely in place. Changes to the quantity requirement QK in this area generally do not cause a state transition between thrust and train. As a result, no load impact can occur here either.
  • the input limits 230 and 260 are designed such that the load shock absorption is deactivated at these operating points.
  • the output limitation 290 ensures that the maximum permissible quantity values are not exceeded.
  • the behavior of the filter can be optimally adapted to any vehicle by suitable selection of the dead time elements, the input limit, the transmission behavior of the high passes, the low pass and the output limit.
  • the time behavior of the various signals is plotted as an example in FIG.
  • time T1 changes the quantity request for an increased quantity.
  • time T3 the quantity request goes back to its original value.
  • This is plotted in sub-figure 3a.
  • the output signal of the low pass 210 is shown in sub-figure 3b.
  • the signal QKFO approaches its new end value, preferably according to an exponential function.
  • the signal QFO does not go back immediately, but the transition to its original output value takes place only after a certain delay time from the time T. This delay between the time T3 and the time T4 is caused by the first dead time element 200.
  • the partial signal 3K shows the output signal QKF1 of the first high pass.
  • This filter preferably generates a positive pulse at time T1 and a negative pulse at time T3. That the first high pass generates a positive quantity impulse when switching to an increased fuel quantity and a negative quantity impulse when switching to low fuel quantities.
  • the output signal QKF2 of the second high pass 270 is plotted in sub-figure 3d.
  • the " second high pass generates a negative quantity pulse when changing to higher quantities and a positive quantity pulse when changing to lower, smaller quantities.
  • the respective time pulse 250 is delayed by a certain delay time. That is, the negative pulse does not occur Time T1, but at time T2 and the positive quantity pulse not at time T3, but at time -T4.
  • a first high-pass filter generates a positive or a negative quantity impulse in the transition to higher or lower quantities.
  • the second high pass with a time delay, generates an in- verse quantity impulse.
  • the low pass connected in parallel passes on the corresponding quantity request with a predetermined course. The addition of these three filtered signals results in the output signal QKF of the filter means 120 shown in partial FIG. 3e.
  • two corresponding quantity pulses preferably occur. That when moving to an increased quantity, there is first a positive and then a negative quantity pulse, and when changing to smaller quantities, a negative and then a positive quantity pulse occurs. This ensures that there is no load impact.
  • the procedure according to the invention is not limited to the embodiment described with a low pass and a high pass. It can also be implemented with other filter media. In particular, corresponding digital filters can be used which have a corresponding behavior. It is essential that the filtering is carried out in such a way that, in the event of a transition to a changed signal, the filtered signal has at least one corresponding pulse. This means that there is a positive pulse when changing to a higher value, and a negative pulse when changing to a lower value.
  • the desired quantity with which the actuator is acted upon is preferably filtered accordingly. However, it can also be provided that the output signal of the sensor 140 or another size corresponding to the driver's request is filtered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Processes For Solid Components From Exhaust (AREA)

Abstract

Es werden eine Vorrichtung und ein Verfahren zur Steuerung einer Antriebseinheit eines Fahrzeugs beschrieben. Ausgehend von der Stellung eines Bedienelements ist ein leistungsbestimmendes Signal vorgebbar. Die Ansteuerung des Stellelements erfolgt abhängig von einem gefilterten leistungsbestimmenden Signal. Das Signal wird mit einem Filter gefiltert, der wenigstens einen Hochpass und einen Tiefpass aufweist, die parallel geschaltet sind. Die Filterung erfolgt derart, dass bei einem Übergang zu einem geänderten Signal das gefilterte Signal wenigstens einen entsprechenden Impuls aufweist.

Description

Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
Stand der Techni
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs gemäß den Oberbegriffen der unabhängigen Ansprüche.
Ein Verfahren und eine solche Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs ist beispielsweise aus der DE 195 34 633 bekannt. Bei dem dort beschriebenen Verfahren und der dort beschriebenen Vorrichtung werden Momentenänderungen des Motors durch Tiefpassfilterung der Fahrervorgabe verzögert. Desweiteren wird ein impulsförmiger Verlauf der Einspritzmenge vorgeschlagen, um ein weiches Anlegen des Motors zu erreichen, wobei danach die eingespritzte Kraftstoffmenge zur Beschleunigung unverzögert freigegeben wird.
Durch die Tiefpassfilterung kommt es zu einer Beeinträchtigung der Spontanität des Fahrverhaltens. Darüber hinaus ist bei modernen Antriebsstrangkonzepten eine Wechselwirkung zwischen Motorbewegung und Antriebsstrang zu beobachten, so dass sich der Lastschlag noch verstärken kann. Dadurch, dass ein Filter verwendet wird, bei dem wenigstens ein Hochpass- und ein Tiefpass parallel geschaltet sind, können Zustandswechsel zwischen Schub und Zug sehr schnell durchgeführt werden. Durch den schnellen Zustandswechsel kann eine spontane Fahrzeugreaktion auf die Fahrervorgabe realisiert werden. Die Dämpfung des Stosses beim Auftreffen in die neue Anlageposition bewirkt eine deutliche Verringerung des Geräuschs beim Lastwechselvorgang, eine Verringerung des Lastschlages bei Lastwechseln in Folge von kleinen Änderungen der Fahrervorgabe und eine verminderte Anregung des Antriebsstrangs zum Ruckein.
Dadurch dass die Signale des Hoch- und des Tiefpassfilters parallel geschaltet sind, und dass deren zeitliche Phasenlage an die Motortriebsstrangkombination applikativ angepasst wird, kann das Fahrverhalten weitgehend unabhängig von der Lastschlagdämpfung ausgelegt werden.
Bei langsamen Änderungen der Fahrervorgabe ist ein komfortabler Zustandsübergang auch ohne Beschleunigung und Verzögerung der Massen möglich. Bei solchen Anregungen erfolgt kein Eingriff des Lastschlagdämpfers.
Durch die spezielle Kombination der Filter werden die Massen des Antriebsstranges durch wenigstens einen Momentenimpuls beschleunigt und vor dem Auftreffen auf die neue Anlageposition wieder verzögert, wobei die Lage dieses Impulses relativ zum Zeitpunkt der Mengenwunschänderung sowie die Lage der Impulse zueinander variabel bzw. applizierbar ist.
Zeichnung
Die Erfindung wird nachstehend anhand der in der Zeichnung dargestellten Ausführungsformen erläutert. Es zeigen Figur 1 ein Übersichtsblockschaltbild einer Vorrichtung zur Durch- führung der erfindungsgemäßen Vorgehensweise, Figur 2 eine detaillierte Darstellung als Blockdiagramm der erfindungsgemäßen Vorrichtung und Figur 3 verschiedene über der Zeit aufgetragenen Signale.
Beschreibung der Ausführungsbeispiele
Figur 1 zeigt ein Übersichtsblockschaltdiagramm einer Vorrichtung zur Steuerung der Antriebseinheit eines Fahrzeugs, bei der die erfindungsgemäße Vorgehensweise angewendet werden kann. Dort ist die erfindungsgemäße Vorgehensweise am Beispiel einer Dieselbrennkraf maschine beschrieben. Die erfindungsgemäße Vorgehensweise kann aber auch bei anderen Typen von Brennkraftmaschinen, insbesondere bei fremdgezündeten Brennkraftmaschinen, eingesetzt werden.
Mit 100 ist eine Brennkraftmaschine bezeichnet, welche unter anderem mit einem Steller 110 verbunden ist. Der Steller 110 verarbeitet Signale verschiedener Sensoren 115 sowie ein Signal QKF, das von einem Filtermittel 120 bereitgestellt wird. Dem Filtermittel 120 wird als Eingangsgröße das Signal QK zugeleitet. Das Filtermittel verarbeitet weiter die Aus- gangssignale verschiedener Sensoren 125. Das Signal QK wird von einer Mengenvorgabe 130 bereitgestellt. Die Mengenvorgabe wird von einem Fahrpedalstellungssensor 140, verschiedener Sensoren 135 mit Signalen beaufschlagt.
Ausgehend von der Stellung des Fahrpedals erzeugt der Fahrpedalstellungssensor ein Signal FP bzgl . der Fahrpedalstel- lung. Der Fahrpedalstellungssensor kann beispielsweise als Drehpotentiometer ausgeführt sein. In diesem Fall wird ein Widerstandswert und/oder der Spannungsabfall am Potentiometer als Signal verwendet . Ausgehend von dem Ausgangssignal des Fahrpedalstellungssensor 140 und den AusgangsSignalen der verschiedenen Sensoren 135 berechnet die Mengenvorgabe 130 das Signal QK, das ein Maß für die von der Brennkraftmaschine gewünschte Leistung darstellt. Die Vorgabe der Kraftstoffmenge QK erfolgt beispielsweise abhängig von Sensoren 135 die verschiedene Temperaturwerte, Druckwerte und weitere Betriebszustände erfassen.
Bei einer Dieselbrennkraftmaschine handelt es sich hierbei vorzugsweise um die einzuspritzende Kraftstoffmenge. Bei einer fremdgezündeten Brennkraftmaschine handelt es sich hierbei vorzugsweise um ein Signal, das die Drosselklappenstellung oder der Zündzeitpunkt anzeigt .
Um den Lastschlag zu vermeiden, darf die Einspritzmenge bei einer Dieselbrennkraftmaschine nicht sprungartig freigegeben werden. Dabei genügt es, die Einspritzmenge nur in dem Mengenbereich zu filtern, in dem die Brennkraftmaschine sich relativ zur Karosserie bewegt. Diese Filterung des Kraft- Stoffmengensignals erfolgt durch das Filtermittel 120, wobei die Filterung abhängig von verschiedenen Zustandsgroßen, die den Zustand der Brennkraftmaschine und/oder des angetriebenen Fahrzeugs charakterisieren, erfolgt. Bevorzugt erfolgt die Filterung abhängig von der Drehzahl, die mittels eines Drehzahlsensors 125 erfaßt wird. Das Übertragungsverhalten des Filtermittels 120 ist in Figur 2 dargestellt. Das gefilterte Mengensignal QKF wird dem Steller 110 zugeführt.
Bei dem Steller 110 handelt es sich beispielsweise um eine die einzuspritzende KraftStoffmenge festlegende Kraftstoff- zumeßeinrichtung. Hierbei kann es sich beispielsweise um ein Magnetventil handeln. Abhängig von dem gefilterten Kraft- stoffmengensignal QKF und den Ausgangssignalen weiterer Sen- soren 115 mißt der Steller 110 die entsprechende Kraftstoffmenge der Brennkraftmaschine 100 zu.
Die erfindungsgemäße Vorgehensweise ist nicht auf die Anwendung bei Diesel-Brennkraftmaschinen beschränkt. Sie kann auch bei anderen Brennkraftmaschinen eingesetzt werden. Ferner ist sie nicht auf die Anwendung bei der Kraftstoffeinspritzung beschränkt. Sie kann auch bei anderen die Leistungsabgabe bestimmenden Größen, wie beispielsweise die Drosselklappenstellung oder den Zündwinkel eingesetzt werden
Das Filtermittel 120 ist in Figur 2 detaillierter dargestellt. Bereits in Figur 1 beschriebene Elemente sind mit entsprechenden Bezugszeichen gezeichnet. Das Mengenwunschsi- gnal QK gelangt zu einem ersten Totzeitglied 200, zu einem zweiten Totzeitglied 220 und zu einem dritten Totzeitglied 250. Mit dem Ausgangssignal des ersten Totzeitgliedes 200 wird ein Tiefpass 210 beaufschlagt. Am Ausgang des Tiefpasses 210 liegt das Signal QKF0 an, mit dem ein erster Verknüpfungspunkt 215 beaufschlagt wird.
Das Ausgangssignal des zweiten Totzeitgiiedes 220 gelangt über eine erste Eingangsbegrenzung 230 zu einem ersten Hoch- pass 240. Am Ausgang des ersten Hochpasses liegt das Ausgangssignal QKFl an, mit dem der erste Verknüpfungspunkt 215 beaufschlagt wird.
Das Ausgangssignal des dritten Totzeitgliedes 250 gelangt über eine zweite Eingangsbegrenzung 260 zu einem zweiten Hochpass 270. Das Ausgangssignal des zweiten Hochpasses 270 gelangt zu einem zweiten Verknüpfungspunkt 280, an dessen zweitem Eingang das Ausgangssignal des ersten Verknüpfungspunktes 215 anliegt. Das Ausgangssignal des Verknüpfungspunktes 280 gelangt über eine Ausgangsbegrenzung 290 als gefilterter Mengenwunsch QKF zu dem Steller 110. Als Tiefpass 210 wird vorzugsweise ein PTDl-Glied verwendet. Erfindungsgemäß können aber auch andere Filter mit Tiefpass- verhalten eingesetzt werden. Als erster und zweiter Hochpass werden vorzugsweise Filter mit DTl-Verhalten verwendet. Es sind aber auch andere Filter mit Hochpassverhalten verwendbar.
Bei einer vereinfachten Ausführungsform ist es möglich, dass das dritte Totzeitglied 250, die zweite Eingangsbegrenzung 260 und/oder der zweite Hochpass 270 weggelassen wird. Die Anordnung der Totzeitglieder 200, 220 und 250 ist nur beispielhaft gewählt. Diese Totzeitglieder können auch nach der Eingangsbegrenzung oder nach dem Tiefpass bzw. nach den Hochpässen angeordnet sein. Anstelle der Totzeitglieder können auch spezielle Tiefpässe bzw. Hochpässe verwendet werden, die Glieder höherer Ordnung enthalten. Desweiteren ist es möglich, dass je nach Ausgestaltung die Eingangsbegrenzungen 230, 260, bzw. die Ausgangsbegrenzung 290 weggelassen werde .
Der Tiefpass 210 bestimmt das statische Übertragungsverhalten des Filters. Ebenso bestimmt dieses Übertragungsglied im wesentlichen das Ansprechverhalten auf den Fahrerwunsch.
Bei einer Änderung der Eingangsgröße QK wird je ein Kraft- Stoffmengenimpuls benötigt, der die Beschleunigung und Verzögerung der Massen gewährleistet . Dieser Kraftstoffmengenimpuls wird durch die Hochpassfilter 240 und 270 bereitgestellt. Durch die Totzeitglieder 220 und 250 werden die Signale der Filter 210,240 und/oder 270 gegeneinander zeitlich phasenverschoben. Dadurch wird die zeitliche Abfolge der Impulse und damit der gewünschte Verlauf des Ausgangs- Signals gewährleistet. Durch geeignete Wahl und/oder Dimensionierung der Totzeitglieder ist die Lage dieses Impulses relativ zum Zeitpunkt der Mengenwunschänderung sowie die Lage der Impulse zueinander applizierbar ist. Besonders vorteilhaft ist es, wenn die Totzeitglieder und damit die Phasenverschiebung variabel abhängig vom Betriebszustand der Brennkraftmaschine und/oder des Fahrzeugs vorgebbar sind. Geeignete Parameter zur Charakterisierung des Betriebszustandes sind die Drehzahl der Brennkraftmaschine, die Last der Brennkraftmaschine, die Fahrgeschwindigkeit und/oder weitere Größen.
Hohe Verstärkungen der Hochpässe 240 und 270 ermöglichen die Lastschlagdämpfung schon bei kleinen Änderungen der Mengenvorgabe QK. Die Eingangsbegrenzungen 230 und 260 verhindern einen zu großen Eingriff bei großen Änderungen des Signals QK.
Erfindungsgemäß -ist vorgesehen, dass die Eingangsbegrenzungen 230 und 260 abhängig vom Mengenwunsch QK vorgebbar sind. Bei mittleren- und hohen Lasten liegt der Antriebssträng üblicherweise sicher an. Änderungen des Mengenwunsches QK in diesem Bereich verursachen in der Regel keinen Zustandsüber- gang zwischen Schub und Zug. Dadurch kann auch hier kein Lastschlag auftreten. Die Eingangsbegrenzungen 230 und 260 sind derart ausgebildet, dass eine Deaktivierung der Last- schlagdämpfung in diesen Betriebspunkten erfolgt .
Die Ausgaήgsbegrenzung 290 gewährleistet, dass die höchstzulässigen Mengenwerte nicht überschritten werden. Durch geeignete Wahl der Totzeitglieder, der Eingangsbegrenzung, des Übertragungsverhalten der Hochpässe, des Tiefpass und der Ausgangsbegrenzung lässt sich das Verhalten des Filters an beliebige Fahrzeuge optimal anpassen.
In Figur 3 ist das zeitliche Verhalten der verschiedenen Signale beispielhaft aufgetragen. Zum Zeitpunkt Tl ändert sich der Mengenwunsch zu einer erhöhten Menge. 'Zum Zeitpunkt T3 geht der Mengenwunsch auf seinen ursprünglichen Wert zurück. Diese ist in Teilfigur 3a aufgetragen. In Teilfigur 3b ist das Ausgangssignal des Tiefpasses 210 dargestellt. Ab dem Zeitpunkt Tl nähert sich das Signal QKFO seinem neuen Endwert vorzugsweise gemäß einer Exponential-Funktion an. Nach dem Zeitpunkt T3 geht das Signal QFO nicht unmittelbar zurück, sondern der Übergang auf seinen ursprünglichen Ausgangswert erfolgt erst nach einer gewissen Verzögerungszeit ab dem Zeitpunkt T . Diese Verzögerung zwischen dem Zeitpunkt T3 und dem Zeitpunkt T4 wird durch das erste Totzeitglied 200 verursacht.
In Teilfigur 3c ist das Ausgangssignal QKFl des ersten Hochpasses aufgetragen. Vorzugsweise erzeugt dieser Filter zum Zeitpunkt Tl einen positiven Impuls und zum Zeitpunkt T3 einen negativen Impuls. D.h. der erste Hochpass erzeugt beim Übergang zu einem erhöhten Kraftstoffmengen einen positiven und beim Übergang zu niederen Kraftstoffmengen einen negativen Mengenimpuls .
In Teilfigur 3d ist das Ausgangssignal QKF2 des zweiten Hochpasses 270 aufgetragen. Der "zweite Hochpass erzeugt beim Übergang zu höheren Mengen einen negativen Mengenimpuls und beim Übergang zu tieferen, kleineren Mengen einen positiven Mengenimpuls. Ferner wird durch das Totzeitglied 250 der jeweilige Mengenimpuls um eine gewisse Verzögerungszeit verzδ-. ger . D.h. der negative Impuls tritt nicht zum Zeitpunkt Tl, sondern zum Zeitpunkt T2 und der positive Mengenimpuls nicht zum Zeitpunkt T3 , sondern zum Zeitpunkt -T4 auf.
Im dem dargestellten Ausführungsbeispiel erzeugt ein erster Hochpass beim Übergang zu höheren bzw. zu niederen Mengen jeweils einen positiven bzw. einen negativen Mengenimpuls. Der zweite Hochpass erzeugt zeitverzögert jeweils einen in- versen Mengenimpuls. Der parallel geschaltete Tiefpass gibt den entsprechenden Mengenwunsch mit einem vorgegebenen Verlauf unmittelbar weiter. Durch Addition dieser drei gefilterten Signale ergibt sich das in Teilfigur 3e dargestellte Ausgangssignal QKF des Filtermittels 120.
Beim Übergang zu einem geänderten Mengenwunsch treten vorzugsweise zwei entsprechende Mengenimpulse auf. D.h. beim Übergang zu einer erhöhten Menge tritt zuerst ein positiver und dann ein negativer Mengenimpuls und beim Übergang zu kleineren Mengen zuerst ein negativer und dann ein positiver Mengenimpuls auf. Dadurch wird gewährleistet, dass kein Lastschlag auftritt.
Die erfindungsgemäße Vorgehensweise ist nicht auf die beschriebene Ausführungsform mit einem Tiefpass und einem Hochpass beschränkt. Sie kann auch mit anderen Filtermitteln realisiert werden. Insbesondere können entsprechende digitale Filter eingesetzt werden, die ein entsprechendes Verhalten aufweisen. Wesentlich ist, dass die Filterung derart erfolgt, dass bei einem Übergang zu einem geänderten Signal das gefilterte Signal wenigstens einen entsprechenden Impuls aufweist. Das bedeutet bei einem Übergang zu einem erhöhten Wert erfolgt ein positiver Impuls, bei einem Übergang zu einem niederen Wert erfolgt ein negativer Impuls .
Bisher wurde die erfindungsgemäße Vorgehens eise am Beispiel von Kraftstoffmengen aufgezeigt. Die erfindungsgemäße Vorgehensweise ist aber entsprechend auch auf Momentensignale oder andere der Kraftstoffmenge entsprechende Größen anwendbar.
Bevorzugt wird der Mengenwunsch, mit dem das Stellglied beaufschlagt wird, entsprechend gefiltert. Es kann aber auch vorgesehen sein, dass das Ausgangssignal des Sensors 140 oder eine andere dem Fahrerwunsch entsprechende Größe entsprechend gefiltert wird.

Claims

Ansprüche
1. Verfahren zur Steuerung einer Antriebseinheit eines Fahrzeugs, mit einem Stellelement zur Beeinflussung der Leistung, wobei ausgehend von der Stellung eines Bedienelements ein leistungsbestimmendes Signal vorgebbar ist, und die Ansteuerung des Stellelements abhängig von einem gefilterten leistungsbestimmenden Signal erfolgt, dadurch gekennzeichnet, dass das Signal mit einem Filter gefiltert wird, der wenigstens einen Hochpass und einen Tiefpass aufweist, die parallel geschaltet sind.
2. Verfahren zur Steuerung einer Antriebseinheit eines Fahrzeugs, mit einem Stellelement zur Beeinflussung der Leistung, wobei ausgehend von der Stellung eines Bedienelements ein leistungsbestimmendes Signal vorgebbar ist, und die Ansteuerung des Stellelements abhängig von einem gefilterten leistungsbestimmenden Signal erfolgt, dadurch gekennzeichnet, dass die Filterung derart erfolgt, dass bei einem Übergang zu einem geänderten Signal das gefilterte Signal wenigstens einen entsprechenden Impuls aufweist .
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein zweiter Hochpass parallel zu dem ersten Hochpass geschaltet ist.
4. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Signale des ersten Hochpasses, des zweiten Hochpasses und/oder des Tiefpasses phasenverschoben gegeneinander sind.
5. Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs, mit einem Stellelement zur Beeinflussung der Leistung, wobei ausgehend von der Stellung eines Bedienelements ein leistungsbestimmendes Signal vorgebbar ist, und die Ansteuerung des Stellelements abhängig von einem gefilterten leistungsbestimmenden Signal erfolgt, dadurch gekennzeichnet, dass das Filter wenigstens einen Hochpass und einen Tiefpass aufweist, die parallel geschaltet sind.
6. Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs, mit einem Stellelement zur Beeinflussung der Leistung, wobei ausgehend von der Stellung eines Bedienelements ein leistungsbestimmendes Signal vorgebbar ist, und die Ansteuerung des Stellelements abhängig von einem gefilterten leistungsbestimmenden Signal erfolgt, dadurch gekennzeichnet, dass das Filter derart ausgebildet ist, daß bei einem Übergang zu einem geänderten Signal das gefilterte Signal wenigstens einen entsprechenden Impulse aufweist.
PCT/DE2001/001411 2000-04-14 2001-04-10 Verfahren und vorrichtung zur steuerung einer antriebseinheit eines fahrzeugs WO2001079674A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP01940148A EP1276979B1 (de) 2000-04-14 2001-04-10 Verfahren und vorrichtung zur steuerung einer antriebseinheit eines fahrzeugs
HU0201608A HU228421B1 (en) 2000-04-14 2001-04-10 Method and device for controlling a drive unit of a vehicle
JP2001577046A JP4478371B2 (ja) 2000-04-14 2001-04-10 車両の駆動ユニットを制御するための方法および装置
US10/018,197 US6832136B2 (en) 2000-04-14 2001-04-10 Method and device for controlling a drive unit of a vehicle
DE50110703T DE50110703D1 (de) 2000-04-14 2001-04-10 Verfahren und vorrichtung zur steuerung einer antriebseinheit eines fahrzeugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10018551A DE10018551A1 (de) 2000-04-14 2000-04-14 Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeuges
DE10018551.7 2000-04-14

Publications (1)

Publication Number Publication Date
WO2001079674A1 true WO2001079674A1 (de) 2001-10-25

Family

ID=7638760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001411 WO2001079674A1 (de) 2000-04-14 2001-04-10 Verfahren und vorrichtung zur steuerung einer antriebseinheit eines fahrzeugs

Country Status (10)

Country Link
US (1) US6832136B2 (de)
EP (1) EP1276979B1 (de)
JP (1) JP4478371B2 (de)
KR (1) KR100749594B1 (de)
CN (1) CN1222686C (de)
DE (2) DE10018551A1 (de)
ES (1) ES2267776T3 (de)
HU (1) HU228421B1 (de)
RU (1) RU2268381C2 (de)
WO (1) WO2001079674A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005728B4 (de) * 2004-01-14 2017-04-27 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Abtriebseinheit eines Fahrzeugs
DE102004033615B3 (de) * 2004-07-12 2006-01-19 Siemens Ag Verfahren zur Glättung eines Sensorsignals, insbesondere eines Eingangssignals eines Steuergerätes einer Brennkraftmaschine
JP4583313B2 (ja) * 2006-01-31 2010-11-17 株式会社デンソー 車両用制御装置
DE102007013253B4 (de) * 2007-03-20 2021-03-25 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben einer Antriebseinheit
CN103339360B (zh) * 2011-02-02 2014-12-31 丰田自动车株式会社 带增压器的内燃机的控制装置
KR102058786B1 (ko) * 2015-09-14 2019-12-23 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 압연재의 온도 제어 장치
US10458344B2 (en) * 2016-10-21 2019-10-29 Spartan Motors, Inc. Throttle filter system and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337839A (en) * 1979-02-23 1982-07-06 The Bendix Corporation Means for improving automobile driveability
EP0449160A2 (de) * 1990-03-26 1991-10-02 Nippondenso Co., Ltd. Steuerungssystem zur Steuerung des Ausgangsdrehmoments einer Brennkraftmaschine
DE19534633A1 (de) 1995-05-30 1996-12-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
DE19838454C1 (de) * 1998-08-25 2000-03-16 Daimler Chrysler Ag Verfahren zur Reduzierung von Lastwechselschlag bei Kraftfahrzeugen

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4345558A (en) * 1979-04-28 1982-08-24 Nippon Soken, Inc. Knock detecting apparatus for an internal combustion engine
DE4325296A1 (de) * 1993-07-28 1995-02-02 Zahnradfabrik Friedrichshafen Steuersystem zum Schalten eines automatischen Getriebes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4337839A (en) * 1979-02-23 1982-07-06 The Bendix Corporation Means for improving automobile driveability
EP0449160A2 (de) * 1990-03-26 1991-10-02 Nippondenso Co., Ltd. Steuerungssystem zur Steuerung des Ausgangsdrehmoments einer Brennkraftmaschine
DE19534633A1 (de) 1995-05-30 1996-12-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
DE19838454C1 (de) * 1998-08-25 2000-03-16 Daimler Chrysler Ag Verfahren zur Reduzierung von Lastwechselschlag bei Kraftfahrzeugen

Also Published As

Publication number Publication date
RU2268381C2 (ru) 2006-01-20
HU228421B1 (en) 2013-03-28
JP4478371B2 (ja) 2010-06-09
HUP0201608A2 (en) 2002-10-28
EP1276979A1 (de) 2003-01-22
EP1276979B1 (de) 2006-08-09
CN1222686C (zh) 2005-10-12
US6832136B2 (en) 2004-12-14
JP2003531335A (ja) 2003-10-21
DE50110703D1 (de) 2006-09-21
DE10018551A1 (de) 2001-10-18
ES2267776T3 (es) 2007-03-16
KR20020032434A (ko) 2002-05-03
CN1366577A (zh) 2002-08-28
US20020152007A1 (en) 2002-10-17
KR100749594B1 (ko) 2007-08-14

Similar Documents

Publication Publication Date Title
DE19527218B4 (de) Verfahren und Vorrichtung zur Regelung der Laufruhe einer Brennkraftmaschine
DE2935916C3 (de) Steuervorrichtung für Antriebsanlagen von Kraftfahrzeugen
DE3423065C2 (de)
EP0631897B1 (de) nerfahren und Vorrichtung zur Steuerung einer Antreibseinheit eines Fahrzeugs
DE3018033A1 (de) Vorrichtung zur einstellung des drehmomentes einer brennkraftmaschine
EP0771943A2 (de) Verfahren und Vorrichtung zur Steuerung eines Kraftfahrzeug-Dieselmotors
DE3705278A1 (de) Elektronische steuereinrichtung zur kraftstoffmengenmodulation einer brennkraftmaschine
DE19501299B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine eines Fahrzeugs
EP1028242B1 (de) Verfahren und Vorrichtung zur Dämpfung von ruckartigen Fahrzeugbewegungen
DE19615806B4 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeuges
DE19534633A1 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
WO1997014886A1 (de) Verfahren und anordnung zum reduzieren von lastwechselschlägen bei einem kraftfahrzeug
EP0768455B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1959151A2 (de) Verfahren und Steuergerät zur Erkennung des Schließzustands einer Kupplung in einem Triebstrang eines Kraftfahrzeugs
EP1613852B1 (de) Verfahren zum betreiben eines verbrennungsmotors mit einer drehmoment berwachung
EP1276979B1 (de) Verfahren und vorrichtung zur steuerung einer antriebseinheit eines fahrzeugs
DE3526409A1 (de) Schaltungsanordnung zur vermeidung ruckartiger drehmomentaenderungen im antriebsstrang eines fahrzeugs
DE19610950A1 (de) System zur Verstellung der Übersetzung eines stufenlosen Getriebes
DE19931823B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102004005728B4 (de) Verfahren und Vorrichtung zur Steuerung einer Abtriebseinheit eines Fahrzeugs
EP1178202B1 (de) Verfahren und Vorrichtung zur Regelung einer Brennkraftmaschine
EP0953752A2 (de) Verfahren zur Vermeidung von Ruckelschwingungen beim Beschleunigen von Kraftfahrzeugen
DE19949449B4 (de) Verfahren zur Dämpfung von Ruckelschwingungen
EP1281853B1 (de) Verfahren und Vorrichtung zur Steuerung einer Antriebseinheit eines Fahrzeugs
DE4234970C2 (de) Vorrichtung und Verfahren zum Steuern einer Brennkraftmaschine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 01800915.8

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN HU IN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001940148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/1755/CHE

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2001 577046

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020017016017

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2002 2002100088

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020017016017

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10018197

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001940148

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001940148

Country of ref document: EP