WO2001077604A1 - Torche a plasma incorporant un fusible d'amorcage reactif et tube allumeur integrant une telle torche - Google Patents

Torche a plasma incorporant un fusible d'amorcage reactif et tube allumeur integrant une telle torche Download PDF

Info

Publication number
WO2001077604A1
WO2001077604A1 PCT/FR2001/000961 FR0100961W WO0177604A1 WO 2001077604 A1 WO2001077604 A1 WO 2001077604A1 FR 0100961 W FR0100961 W FR 0100961W WO 0177604 A1 WO0177604 A1 WO 0177604A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma torch
fuse
torch according
mass
conductive material
Prior art date
Application number
PCT/FR2001/000961
Other languages
English (en)
Inventor
Luc Brunet
Jean Mary Lombard
Jean François PIERROT
Jean Luc Taillandier
Original Assignee
Giat Industries
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Giat Industries filed Critical Giat Industries
Priority to US09/958,572 priority Critical patent/US6703580B2/en
Priority to IL145774A priority patent/IL145774A/en
Priority to DE60112012T priority patent/DE60112012T2/de
Priority to AT01919602T priority patent/ATE300031T1/de
Priority to EP01919602A priority patent/EP1185833B1/fr
Publication of WO2001077604A1 publication Critical patent/WO2001077604A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/18Caseless ammunition; Cartridges having combustible cases
    • F42B5/181Caseless ammunition; Cartridges having combustible cases consisting of a combustible casing wall and a metal base; Connectors therefor
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B27/00Compositions containing a metal, boron, silicon, selenium or tellurium or mixtures, intercompounds or hydrides thereof, and hydrocarbons or halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B33/00Compositions containing particulate metal, alloy, boron, silicon, selenium or tellurium with at least one oxygen supplying material which is either a metal oxide or a salt, organic or inorganic, capable of yielding a metal oxide
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06BEXPLOSIVES OR THERMIC COMPOSITIONS; MANUFACTURE THEREOF; USE OF SINGLE SUBSTANCES AS EXPLOSIVES
    • C06B45/00Compositions or products which are defined by structure or arrangement of component of product
    • C06B45/12Compositions or products which are defined by structure or arrangement of component of product having contiguous layers or zones
    • C06B45/14Compositions or products which are defined by structure or arrangement of component of product having contiguous layers or zones a layer or zone containing an inorganic explosive or an inorganic explosive or an inorganic thermic component
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06CDETONATING OR PRIMING DEVICES; FUSES; CHEMICAL LIGHTERS; PYROPHORIC COMPOSITIONS
    • C06C9/00Chemical contact igniters; Chemical lighters
    • CCHEMISTRY; METALLURGY
    • C06EXPLOSIVES; MATCHES
    • C06DMEANS FOR GENERATING SMOKE OR MIST; GAS-ATTACK COMPOSITIONS; GENERATION OF GAS FOR BLASTING OR PROPULSION (CHEMICAL PART)
    • C06D5/00Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets
    • C06D5/06Generation of pressure gas, e.g. for blasting cartridges, starting cartridges, rockets by reaction of two or more solids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B5/00Cartridge ammunition, e.g. separately-loaded propellant charges
    • F42B5/02Cartridges, i.e. cases with charge and missile
    • F42B5/08Cartridges, i.e. cases with charge and missile modified for electric ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/0803Primers; Detonators characterised by the combination of per se known chemical composition in the priming substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/0811Primers; Detonators characterised by the generation of a plasma for initiating the charge to be ignited
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/0823Primers or igniters for the initiation or the propellant charge in a cartridged ammunition
    • F42C19/0826Primers or igniters for the initiation or the propellant charge in a cartridged ammunition comprising an elongated perforated tube, i.e. flame tube, for the transmission of the initial energy to the propellant charge, e.g. used for artillery shells and kinetic energy penetrators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C19/00Details of fuzes
    • F42C19/08Primers; Detonators
    • F42C19/12Primers; Detonators electric
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/52Generating plasma using exploding wires or spark gaps

Definitions

  • the technical field of the invention is that of plasma torches and more particularly torches used to ignite a propellant charge of an ammunition.
  • a plasma torch is a system which makes it possible to generate gases at high pressure (of the order of 500 MPa) and at high temperature (greater than 10,000 K) from a high voltage electrical discharge (from 20 kV) caused between two electrodes.
  • Plasma torches are used in industry to cut conductive materials, for example, or to destroy certain products or materials, or to make metallic deposits. They are also used in the armament field to generate pressure allowing the firing of a projectile.
  • Known plasma torches comprise an anode and a cathode separated by a capillary tube made of a material which is both electrical insulator and capable of decomposing to generate a plasma (for example a plastic material).
  • the electrical discharge between anode and cathode is started by means of a copper or other conductive material fuse.
  • the electric arc thus created causes a plasma which ablates the wall of the capillary tube, which causes the generation of light gases at high pressure and high temperature.
  • These gases are used either to directly accelerate a projectile or to vaporize a working fluid (for example water) which makes it possible to increase the volume of gas.
  • a working fluid for example water
  • a drawback of known plasma torches is the fragility of the fusible wire enabling the plasma to be primed.
  • Such a fusible wire has a diameter of 0.1 to 0.5 mm. It is likely to rupture as a result of thermal and mechanical stresses (vibration, shocks) that occur during the storage or implementation phases of the ammunition elements.
  • a plasma torch comprising a fuse made in the form of a porous aluminum tube. It may possibly contain an energetic fluid which is then dispersed with the plasma through the propellant charge.
  • This fuse occupies a large volume and requires a certain level of energy to vaporize and strike a plasma arc. This results in difficulties in integrating such a torch in a combat vehicle where the electrical energy resources are necessarily reduced. It is the object of the invention to overcome such drawbacks.
  • the torch according to the invention has improved resistance to mechanical stress which increases its reliability.
  • it is simple in structure and can be manufactured at lower cost.
  • the torch according to the invention incorporates a fuse of reduced mass and requiring a reduced energy level to be vaporized.
  • this fuse combines at least one conductive material and at least one energetic or reactive material, that is to say capable of reacting with the conductive material. These materials are associated:
  • the flame thus produced is a conductive medium which allows the arc between the torch electrodes to be maintained with a minimum supply voltage (of the order of 1000 volts for 10 cm air gap, while known torches operate between 10 KV and 30 KV for 10 cm air gap).
  • the torch according to the invention can be produced without difficulty with very different lengths.
  • the invention also relates to an ignition tube for ammunition incorporating such a plasma torch.
  • the subject of the invention is a plasma torch comprising at least two electrodes separated by a cylindrical insulating case delimiting an internal volume, electrodes connected by a fuse of conducting ignition arranged in the internal volume, torch characterized in that the fuse comprises at least one conductive material associated with at least one energetic material or capable of reacting with the conductive material.
  • the conductive material will consist of carbon or a metal.
  • the energetic material or material capable of reacting with the conductive material may be chosen from the following compounds or compositions:
  • Copper oxide polytetrafluoroethylene; chlorofluoroethylene copolymer; polytetrafluoroethylene / chlorofluoroethylene copolymer; Magnesium / polytetrafluoroethylene / chlorofluoroethylene copolymer; Boron / potassium nitrate; plasticized nitrocellulose film or film; polyvinyl nitrate; polyoxymethylene; Trifluoroethylene polychloride; polyvinyl chloride; Trifluoroethylene polychloride; polysulfone; polyvinylidene fluoride.
  • the conductive material may be in the form of powder or particles mixed with the energetic material or else capable of reacting with the conductive material.
  • the fuse can thus be produced in a homogeneous mixture associating 6 to 40% by mass of powder of conductive material and 60 to 94% by mass of an energetic material or material capable of reacting with the conductive material.
  • the fuse can thus be produced in a homogeneous mixture combining:
  • the fuse can be produced in a homogeneous mixture associating: - 10 to 40% by mass of silver powder and preferably
  • composition associating Boron and potassium nitrate preferably 80%.
  • the conductive material can form at least one layer deposited on at least part of the energetic material or capable of reacting with the conductive material.
  • the fuse may thus comprise at least one conductive layer of aluminum or magnesium deposited on a reactive layer of polytetrafluoroethylene, or nitrocellulose or polyvinyl nitrate, or copper oxide or copolymer of chlorofluoroethylene, or polyoxymethylene, or of trifluoroethylene polychloride, or of polysulfone, or of polyvinylidene fluoride.
  • the dimensions of the different layers will be chosen such that 85 to 95 parts by mass of the material of the conductive layer are combined with 5 to 15 parts by mass of the material or materials of the reactive layer or layers.
  • the fuse may include at least one layer of aluminum and at least one layer of chlorofluoroethylene copolymer.
  • the fuse may also comprise at least one layer of a flame-reinforcing material.
  • the flame-enhancing material may be polyoxymethylene or nitrocellulose.
  • the mass of the flame-enhancing material may represent between 15 and 25 parts by mass added to the other materials of the fuse.
  • the fuse may advantageously be in the form of a tube arranged in the internal volume.
  • the tube may have at least one longitudinal slot.
  • the insulating cylindrical case may be placed in a conductive tubular frame connected electrically to an electrode, the conductive tubular body being covered on at least part of its external surface by an insulator.
  • the tubular body may be pierced with at least two radial vents arranged opposite radial holes made on the insulating case, vents and holes being closed by the tubular fuse.
  • the front electrode may be pierced with an axial hole.
  • the invention also relates to an ignition tube for ammunition comprising at least one such plasma torch.
  • FIG. 1 represents in longitudinal section a first embodiment of a torch according to the invention
  • FIG. 2 shows the adaptation to an ammunition of the torch according to the invention
  • FIG. 3 shows in longitudinal section a fuse used in a second embodiment of the invention
  • FIG. 4 represents a torch according to a third embodiment of the invention
  • FIG. 5 partially shows in section an alternative embodiment of a fuse according to the invention
  • a plasma torch 1 according to a first embodiment of the invention comprises a metallic tubular body 2, closed at a front part 2a by a cover 3 made of plastic.
  • the cover 3 is fixed to the body 2, for example by threading.
  • the rear part 2b of the body 2 has an enlarged diameter so as to constitute a stop flange facilitating the fixing of the torch in a bore of a support (not shown) for example of an ammunition base.
  • the body 2 carries a thread 4.
  • the body 2 has an axial bore 5 inside which is arranged an insulating cylindrical case 6 made of a plastic material capable of being damaged, that is to say of generating light gases by the action of a plasma .
  • the case 6 may be made of polyethylene, polyoxymethylene or polytetrafluoroethylene.
  • the case 6 could also be made of an energetic material, for example nitrocellulose.
  • Such a case is generally called capillary in known plasma torches.
  • Two metal electrodes 7 and 8 are separated by the insulating case 6.
  • the electrodes are produced for example from a copper alloy.
  • a generally cylindrical rear electrode 7 having the same axis as the body 2 extends inside the case 6. It has a rear end 7a which is flush with a rear face 1a of the torch. Its front end 7b is pointed so as to obtain a field effect and thus allow the attachment of the foot of the electric arc which will generate the plasma.
  • a front electrode 8 is applied against the case 6 by the cover 3. It has a peripheral shoulder 8a which is tightly adjusted with the body 2. It also has a pointed central stud 8b favorable for the attachment of the arc which extends inside the case 6.
  • the rear electrode 7 also has a shoulder 7c which acts as a positioning stop for the rear electrode 7 relative to the body 2.
  • the shoulder 7c is in bearing against a counterbore 9a of a support 9 made of an insulating material with high mechanical strength, for example a phenoplast or polyoxymethylene.
  • the support 9 has a flared rear part 9b which is fixed to the body 2 by a thread 10.
  • the support 9 has a tubular front part 9c which is adjusted in the bore 5 of the body 2.
  • This front part has sealing lips annular 30 separated by annular grooves 31.
  • the lips 30 provide by their radial deformation, during operation of the torch, 1 sealing gas produced by the torch 1.
  • the grooves 31 form expansion chambers also improving 1 sealing.
  • a tube 11 is disposed in the internal volume delimited by the insulating case 6. This tube covers the cylindrical ends 7b and 8b of the electrodes 7 and 8. At the rear electrode 7, the tube 11 is clamped between the external cylindrical surface of the electrode 7 and a thinned end 12 of the insulating case 6, itself in contact with the front part 9c of the support 9.
  • the tube 11 constitutes a fuse for ignition for the torch to plasma 1.
  • the tube 11 comprises at least one conductive material associated with at least one energetic material or capable of reacting with the conductive material.
  • the term “energetic material” is understood to mean a material capable of providing chemical energy in the form of a flame when it is initiated by the Joule effect generated by the flow of current through the conductive material with which it is intimately associated.
  • the term reactive material or material capable of reacting with the conductive material means a material which is inert in isolation, but capable of reacting chemically with the conductive material during the heating thereof by the Joule effect. Chemical energy is then provided by this reaction in the form of a flame.
  • the conductive material may consist of carbon or else of a metal such as copper, aluminum, silver or magnesium.
  • the energetic material or material capable of reacting with the conductive material may be chosen from the following compounds or compositions:
  • Copper oxide polytetrafluoroethylene; chlorofluoroethylene copolymer; polytetrafluoroethylene / chlorofluoroethylene copolymer; Magnesium / polytetrafluoroethylene / chlorofluoro-ethylene copolymer; Boron / potassium nitrate; plasticized nitrocellulose film or film; polyvinyl nitrate; polyoxymethylene; Trifluoroethylene polychloride; polyvinyl chloride; Trifluoroethylene polychloride; polysulfone; polyvinylidene fluoride.
  • the energetic materials are the compositions: Magnesium / polytetrafluoroethylene / chlorofluoro-ethylene copolymer; Boron / potassium nitrate; plasticized nitrocellulose film or film; polyvinyl nitrate.
  • Reactive materials with a conductive material are: Copper oxide; polytetrafluoroethylene; chlorofluoroethylene copolymer; polytetrafluoroethylene / chlorofluoroethylene copolymer; polyoxymethylene; Trifluoroethylene polychloride; Polyvinyl chloride; polysulfone; Polyvinylidene fluoride.
  • the fusible tube is formed by a homogeneous mixture associating 6 to 20% by mass of powder or particles of conductive material and 80 to 94% by mass of an energetic or very susceptible material to react with the conductive material.
  • Example 2 10 to 40% by mass of silver powder and preferably 20%,
  • composition combining Magnesium, polytetrafluoroethylene and chloroflucro-ethylene copolymer, and preferably 80%.
  • composition associating Boron and potassium nitrate preferably 80%.
  • the composition Boron potassium nitrate will combine 80% by mass of Boron for 20% by mass of potassium nitrate.
  • the tube is produced first by mixing the various grain materials and then isostatic compression in an appropriate mold.
  • the patent FR2776656 describes, for example, a production method that can be implemented to produce such a tube.
  • the thickness of the tube 11 is of the order of 0.5 mm, its resistance is of the order of a few hundred milliohms.
  • the metal body 2 has radially conical vents 13 which are flared towards the outside of the body 2 to promote the evacuation of gases.
  • vents are regularly distributed angularly and longitudinally (here only eight vents are represented out of a total of sixteen).
  • vents 13 are arranged opposite cylindrical radial holes 14 made on the insulating case 6.
  • Events 13 and holes 14 are intended to allow the radial diffusion of the plasma generated by the torch 1, for example to ensure the ignition of a propellant charge of ammunition (not shown).
  • the diameter of the holes 14 is less than the smallest diameter of the vents 13, this in order to promote the ablation of the capillary case 6.
  • the holes 14 and the vents 13 are closed by the tubular fuse 11.
  • the conductive tubular body 2 will be covered over substantially all of its external and internal surfaces by an insulator (not shown), for example by a vacuum deposition of 30 to 80 micrometers of a plastic material. such as di-parazylylene. Plastic deposits will be avoided only at the level of the cylindrical surface ensuring the passage of current from the tube 2 to the electrode 8 and at the level of the current return zone towards the generator 19 (for example at the rear face 2b).
  • an insulator for example by a vacuum deposition of 30 to 80 micrometers of a plastic material. such as di-parazylylene. Plastic deposits will be avoided only at the level of the cylindrical surface ensuring the passage of current from the tube 2 to the electrode 8 and at the level of the current return zone towards the generator 19 (for example at the rear face 2b).
  • this torch is carried out quite simply by stacking the various elements inside the body 2. We could for example start by fixing the rear support 9 carrying the rear electrode 7 on the body 2. We then slide from the front of the body 2 the case 6 inside which is the fusible tube 11. The insertion of the case 6 in the body makes it possible to pinch the tube 11 around the rear electrode 7, and consequently to make a good electrical contact at this level.
  • the case will be oriented angularly in an appropriate manner to ensure the positioning of the holes 14 opposite the vents 13. Such indexing may be facilitated by providing on the case 6 a peripheral mdentation located in the vicinity of the front electrode 8 and cooperating with a notch arranged in the body (details not shown).
  • the front electrode 8 is then pushed in, which is fitted tight both in the tube 11 and in the body 2 for the quality of the electrical contacts, then the torch is closed by screwing on the cover 3.
  • the fuse tube 11 is easily installed. No soldering is necessary, no break of a fusible wire is to be feared.
  • the contact resistances between the electrodes 7,8 and the fuse tube are reduced due to the large contact surfaces.
  • the set is robust. The case ensures the support of the fuse tube over substantially its entire cylindrical surface.
  • a torch 1 according to the invention is for example fixed at the level of a base 15 of an ammunition 16 (partially shown).
  • the ammunition 16 comprises in a conventional manner a propellant charge of powder 17 placed in a combustible case 18.
  • a projectile (not shown) is fixed to the combustible case 18 at the level of a front part of the latter.
  • Ammunition 16 is disposed in the chamber of a weapon (not shown).
  • the weapon comprises an electric generator 19 which is connected by electrical connections 24 and 25 to the torch 1.
  • a first connection 24 is in electrical contact by an appropriate means (for example a spring touch not shown) with the rear electrode 7.
  • a second connection 25 is in electrical contact with the metal body 2 of the torch, for example by a spring touch resting on the rear part 2b thereof or else on the metal base 15 itself.
  • the body 2 is in electrical contact with the front electrode 8 by virtue of the tight adjustment of the shoulder 8a of the electrode in the bore 5 of the body 2.
  • the fuse tube 11 is in electrical contact with the two electrodes 7 and 8 thanks to a tight adjustment by pinching the tube 11 between the case 6 and the cylindrical parts 7b and 8b of the electrodes (see FIG. 1).
  • the operation of this torch is as follows.
  • the generator 19 is designed to be able to deliver energy from 10 kJ to 1 megaJoule in the form of voltage pulses from 1000 volts to 20 kilo Volts.
  • Such a generator is conventional and includes, for example, capacitors, an inductor, thyristors and a stabilized power supply.
  • a small fraction of the energy supplied by the generator is used to initiate the fusible tube 11 by the Joule effect.
  • the energetic material is then initiated or else the reaction between the conductive material and the reactive material is initiated.
  • a combustion flame is established on substantially the entire length of the tube 11, clearing the holes 14 and the vents 13.
  • This flame is naturally formed from ionized atoms and molecules. It provides electrical conduction of reduced resistance between the electrodes 7 and 8 ⁇ ui allows the arc to be maintained between the electrodes 7 and 8.
  • the confinement of the electric arc in the case 6 based on ablatable material allows the generation of a plasma which flows out of the body through the vents 13.
  • the plasma ensures the initiation of the propellant charge 17 of the ammunition by providing the advantages usually linked to electric plasma ignition: pressure and temperature level higher than that of a conventional pyrotechnic ignition due to the supply of electrical energy. by the generator. This results in a higher speed for the projectile.
  • the energy fuse proposed by the invention also has the advantage of also providing ignition energy (in chemical form). It thus allows the use of a generator delivering a lower voltage than that of the generators used in conventional plasma torches. In practice, a voltage of 1000 volts is sufficient against 10 to 35 kilovolts for known plasma torches. This improves the performance of the torch and facilitates its integration into a weapon system.
  • FIG. 3 represents a preferred embodiment for the fuse tube 11 which can be put in place in a torch such as that represented in FIG. 1.
  • This tube 11 differs from the previous one in that the conductive material is not homogeneously mixed with the energetic material or capable of reacting with it.
  • the conductive material here forms a layer 26 deposited on at least part of the energetic material or capable of reacting with the conductive material.
  • the conductive layer 26 is cylindrical and deposited inside a tube 27 of energetic material or capable of reacting with the conductive material.
  • the metallic deposit will be obtained for example by vapor deposition under vacuum of a metal on the energetic material or likely to react. It can also be obtained by spraying a metal sheet with a mixture of glue and energetic material or material which can react with the conductive material.
  • the tube 11 may also include two conductive layers separated by the energy layer. Such an arrangement will promote the generation of discharge arcs between the two conductive layers.
  • a fusible tube comprising at least one layer of aluminum or magnesium deposited on a layer of polytetrafluoroethylene or polyvinyl chloride.
  • the thickness of the metal layer (s) will be of the order of 100 micrometers. That of the energetic material will be of the order of 150 micrometers.
  • At least one layer of aluminum or magnesium with a layer of nitrocellulose or polyvinyl nitrate. It will be possible to deposit a copper oxide or a chlorofluoroethylene copolymer on an aluminum or magnesium sheet. It will also be possible to deposit aluminum on a polyoxymethylene layer.
  • At least one layer of chlorofluoroetnylene copolymer (known under the trademark Viton) will be deposited on an aluminum layer.
  • the chlorofluoro-ethylene copolymer may possibly be deposited on both sides of a conductive layer 26 of aluminum (this latter variant is shown diagrammatically in FIG. 5).
  • the references 27a and 27b designate the two layers of chlorofluoro-ethylene copolymer deposited on either side of the aluminum layer 26.
  • the thicknesses and lengths of the different sheets will be determined as a function of the relative proportions desired for the components that react with each other (aluminum and chlorofluoroethylene copolymer).
  • the stoichiometric proportions of 90 parts by mass of aluminum are preferably associated with 10 parts by mass of chlorofluoroethylene copolymer.
  • a layer of conductive material 26 for example aluminum
  • one or two layers (27a, 27b) of chlorofluoroethylene copolymer and with a layer 30 d 'a flame-enhancing material which may be polyoxymethylene or nitrocellulose.
  • the dimensions and masses of the different layers will preferably respect the previous stoichiometry of 90 parts by mass of aluminum for 10 parts by mass of chlorofluoroethylene copolymer.
  • the mass of polyoxymethylene added will represent between 15 and 25 parts by mass added to the other materials of the fuse. It will preferably be 20 parts by mass.
  • This last variant makes it possible to obtain a plasma temperature of 17,000 K to 20,000 K which is much higher (at equal electrical energy) than the temperature obtained with the torches using polyethylene (of the order of 6000 K).
  • FIG. 7 shows in cross section an alternative embodiment of a fuse in the form of a tube 11 of a material as described above with reference to FIG. 6.
  • this fuse combines a layer 26 of conductive material (for example aluminum) with one or two layers (27a, 27b) of chlorofluoroethylene copolymer and with a layer 30 of a flame-reinforcing material which may be polyoxymethylene or nitrocellulose.
  • This variant differs from the previous one in that after winding the fuse before it is placed in the tubular body 2 (FIG. 1), the fuse does not cover an arc of 360 °. There remains a slot 31 representing an arc which will be less than 180 °.
  • This variant makes it possible to further reduce the mass of the fuse while preserving the relative proportions of the conductive and energetic components. This reduction in mass makes it possible to reduce the duration of the heating phase by the Joule effect of the fuse. This reduces the energy consumed without reducing the temperature of the plasma obtained.
  • a person skilled in the art will adjust the width of the slot which is necessary for him according to the characteristics desired for the weapon system which he defines.
  • the operation of the various embodiments of FIGS. 3, 5, 6 and 7 is similar to that of the mode previously described with reference to FIGS. 1 and 2.
  • Figure 4 shows a torch according to a third embodiment of the invention.
  • This mode differs from that according to FIG. 1 in that the body 2 is devoid of radial vents and the insulating case 6 is devoid of radial holes.
  • the front electrode 8 is here fixed by threading on the body 2. It has an axial hole 28 which passes through it and which is intended to allow the plasma generated by the torch to pass axially.
  • the fuse tube 11 is as in the previous mode arranged around the electrodes 7 and 8 and surrounded by the ablatable case 6.
  • the hole 28 will advantageously be closed by a closing disc or straw 29 made of metal or plastic and bonded to the electrode 8.
  • This disc is intended to ensure a sealing of storage. It broke from ignition to the torch.
  • This embodiment makes it possible to obtain a compact plasma torch (length L less than or equal to 40mm) and having an axial direction of action.
  • a compact plasma torch could be used for ammunition of reduced caliber (less than 50mm) or else for civil applications (cutting of materials, security openings, deposition of thin materials, manufacture of metals in nanometric powder).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Fuses (AREA)
  • Plasma Technology (AREA)
  • Spark Plugs (AREA)
  • Insulated Conductors (AREA)
  • Air Bags (AREA)
  • Gas Burners (AREA)
  • Spray-Type Burners (AREA)

Abstract

L'invention a pour objet une torche à plasma (1) comprenant au moins deux électrodes (7, 8) séparées par un étui cylindrique isolant (6) délimitant un volume interne, électrodes reliées par un fusible d'amorçage conducteur (11) disposé dans le volume interne. Cette torche est caractérisée en ce que le fusible comprend au moins un matériau conducteur associé à au moins un matériau énergétique ou susceptible de réagir avec le matériau conducteur. Application à l'allumage du chargement propulsif de munitions.

Description

TORCHE A PLASMA INCORPORANT UN FUSIBLE D'AMORÇAGE REACTIF ET TUBE ALLUMEUR INTEGRANT UNE TELLE TORCHE
Le domaine tecnnique de 1 ' invention est celui des torches a plasma et plus particulièrement des torches utilisées pour assurer l'allumage d'un chargement propulsif d'une munition.
Une torche a plasma est un système qui permet d'engendrer des gaz a haute pression (de l'ordre de 500 MPa) et a haute température (supérieure a 10000 K) a partir d'une décharge électrique de haute tension (de l'ordre de 20 kV) provoquée entre deux électrodes .
Les torches a plasma sont utilisées dans l'industrie pour réaliser par exemple la découpe de matériaux conducteurs, ou encore pour détruire certains produits ou matériels, ou pour effectuer des dépôts métalliques. Elles sont également utilisées dans le domaine de l'armement pour engendrer une pression permettant le tir d'un projectile.
Les torches a plasma connues comprennent une anode et une cathode séparées par un tube capillaire réalise en un matériau qui est a la fois isolant électrique et susceptible de se décomposer pour engendrer un plasma (par exemple une matière plastique) . La décharge électrique entre anode et cathode est amorcée au moyen d'un fusible en cuivre ou autre matériau conducteur. L'arc électrique ainsi crée provoque un plasma qui réalise l'ablation de la paroi du tube capillaire, ce qui entraîne la génération de gaz légers a haute pression et haute température.
Ces gaz sont utilises, soit pour accélérer directement un projectile, soit pour vaporiser un fluide de travail (par exemple de l'eau) qui permet d'accroître le volume de gaz.
On pourra par exemple considérer les brevets FR2754969 et FR2768810 qui décrivent des torches a plasma utilisées pour initier un chargement propulsif de munition.
Un inconvénient des torches a plasma connues est la fragilité du fil fusible permettant d'amorcer le plasma. Un tel fil fusible a un diamètre de 0,1 a 0,5mm. Il est susceptible de se rompre comme suite aux contraintes thermiques et mécaniques (vibration, chocs) qui se produisent lors des phases de stockage ou de mise en oeuvre des éléments de munition.
De plus la fabrication des torches connues est rendue délicate et coûteuse par l'opération de montage d'un tel fil fusible.
On connaît également par le brevet US5503081 une torche à plasma comportant un fusible réalisé sous la forme d'un tube d'aluminium poreux. Il peut éventuellement renfermer un fluide énergétique qui se trouve alors dispersé avec le plasma au travers du chargement propulsif.
Ce fusible occupe un volume important et nécessite un certain niveau d' énergie pour se vaporiser et amorcer un arc de plasma. Il en résulte des difficultés pour intégrer une telle torche dans un véhicule de combat où les ressources en énergie électrique sont forcément réduites. C'est le but de l'invention de pallier de tels inconvénients.
Ainsi la torche selon l'invention a une résistance aux contraintes mécaniques améliorée ce qui augmente sa fiabilité. De plus elle est de structure simple et peut être fabriquée à moindre coûts.
Par ailleurs la torche selon l'invention incorpore un fusible de masse réduite et nécessitant un niveau d' énergie réduit pour être vaporisé. Selon l'invention ce fusible associe au moins un matériau conducteur et au moins un matériau énergétique ou réactif c'est à dire susceptible de réagir avec le matériau conducteur. Ces matériaux sont associés :
- soit sous la forme d'un mélange homogène des matériaux pulvérulents, agglomérés avec éventuellement un liant, - soit sous la forme du contact intime d' au moins une couche d'un matériau conducteur avec au moins une couche d'un matériau énergétique ou réactif.
Ces deux modes de réalisation de l'invention ont pour caractéristique commune d'associer intimement une masse relativement réduite de matériau conducteur qui se vaporise dès l'application de la tension d'alimentation et provoque alors, soit l'initiation d'un matériau énergétique, soit la réaction chimique d'un matériau réactif avec le matériau conducteur .
Dans tous les cas l'énergie chimique qui se trouve libérée par la réaction ainsi déclenchée se manifeste sous la forme d'une flamme de combustion qui va servir de milieu conducteur assurant le passage de l'arc électrique du plasma. Dans la torche connue par US5503081 un fusible métallique poreux se vaporise tout d'abord pour assurer l'amorçage de l'arc électrique puis libère un matériau combustible ou énergétique qui va être répandu par le plasma. La vaporisation de ce fusible métallique poreux ainsi que la dispersion du matériau qu' il renferme va consommer de l'énergie et diminuer la température du plasma engendré, donc l'efficacité de l'allumage. Au contraire dans la torche selon l'invention la masse totale du fusible mis en oeuvre est très réduite (de l'ordre de quelques centaines de milligrammes). Elle consomme donc peu d'énergie mais suffit à initier le matériau énergétique ou à amorcer la réaction d'un matériau réactif approprié avec le matériau conducteur.
La flamme ainsi produite est un milieu conducteur qui permet le maintien de l'arc entre les électrodes de la torche avec une tension d'alimentation minimale (de l'ordre de 1000 volts pour 10 cm d'entrefer, alors que les torches connues fonctionnent entre 10 KV et 30 KV pour 10 cm d'entrefer) .
On notera que la structure du fusible poreux décrit par US5503081 ne permet pas d'obtenir un tel fonctionnement. En effet, la porosité du tube est difficile à maîtriser. Il en découle que les proportions relatives entre matériau conducteur et matériau réactif sont figées par la porosité et ne peuvent donc être ajustées de façon à assurer une réaction chimique entre ces deux matériaux. Par ailleurs un tube métallique poreux tel que décrit par US5503081 ne peut recevoir dans ses pores un matériau réactif ou énergétique solide tel qu'une composition pyrotechnique.
La torche selon l'invention peut être réalisée sans difficulté avec des longueurs très différentes. L'invention a également pour objet un tube allumeur pour munition incorporant une telle torche à plasma.
Ainsi l'invention a pour objet une torche à plasma comprenant au moins deux électrodes séparées par un étui cylindrique isolant délimitant un volume interne, électrodes reliées par un fusible d' amorçage conducteur disposé dans le volume interne, torche caractérisée en ce que le fusible comprend au moins un matériau conducteur associé à au moins un matériau énergétique ou susceptible de réagir avec le matériau conducteur.
Le matériau conducteur sera constitué par du carbone ou bien un métal.
Le matériau énergétique ou susceptible de réagir avec le matériau conducteur pourra être choisi parmi les composés ou compositions suivantes :
Oxyde de cuivre; polytétrafluoréthylène; copolymère de chlorofluoroéthylène; polytétrafluoréthylène/copolymère de chlorofluoroéthylène; Magnésium / polytétrafluoréthylène / copolymère de chlorofluoroéthylène; Bore/Nitrate de potassium; pellicule ou film de nitrocellulose plastifiée; nitrate de polyvmyle; Polyoxyméthylène; Polychlorure de trifluoroéthylène; polychlorure de vinyle; Polychlorure de trifluoroéthylène; polysulfone; polyfluorure de vinylidène.
Suivant un premier mode de réalisation de l'invention, le matériau conducteur pourra être sous la forme de poudre ou de particules mélangées au matériau énergétique ou bien susceptible de réagir avec le matériau conducteur.
Le fusible pourra ainsi être réalisé en un mélange homogène associant 6 à 40% en masse de poudre de matériau conducteur et 60 à 94% en masse d'un matériau énergétique ou bien susceptible de réagir avec le matériau conducteur.
Le fusible pourra ainsi être réalisé en un mélange homogène associant :
- 10 à 40 % en masse de poudre de cuivre et de préférence 20%,
- 60 à 90% en masse d'une composition associant Magnésium, polytétrafluoréthylène et copolymère de chlorofluoroéthylène, et de préférence 80%. Le fusible pourra également être réalisé en un mélange homogène associant :
- 10 a 40 % en masse de poudre d'argent et de préférence 10%, 60 a 90% en masse d'une composition associant
Magnésium, polytétrafluoréthylène et copolymère de chlorofluoro-éthylène, et de préférence 80%.
Le fusible pourra être réalisé en un mélange homogène associant : - 10 à 40 % en masse de poudre d'argent et de préférence
20%,
- 60 a 90% en masse d'une composition associant Bore et nitrate de potassium, et de préférence 80%.
Suivant un deuxième mode de réalisation, le matériau conducteur pourra former au moins une couche déposée sur au moins une partie du matériau énergétique ou bien susceptible de réagir avec le matériau conducteur.
Le fusible pourra ainsi comprendre au moins une couche conductrice d'aluminium ou de magnésium déposée sur une couche réactive de polytétrafluoréthylène, ou de nitrocellulose ou de nitrate de polyvmyle, ou d'oxyde de cuivre ou de copolymère de chlorofluoroéthylène, ou de polyoxymethylene, ou de Polychlorure de trifluoroéthylène, ou de polysulfone, ou de polyfluorure de vinylidène. Les dimensions des différentes couches seront choisies telles qu'on associe de 85 à 95 parties en masse du matériau de la couche conductrice à 5 à 15 parties en masse du ou des matériaux de la ou des couches réactives.
Le fusible pourra comprendre au moins une couche d' aluminium et au moins une couche de copolymère de chlorofluoroéthylène .
Avantageusement le fusible pourra comprendre également au moins une couche d'un matériau renforçateur de flamme.
Le matériau renforçateur de flamme pourra être le polyoxymethylene ou la nitrocellulose.
La masse du matériau renforçateur de flamme pourra représenter entre 15 et 25 parties en masse ajoutées aux autres matériaux du fusible. Le fusible pourra être avantageusement sous la forme d'un tube disposé dans le volume interne.
Le tube pourra présenter au moins une fente longitudinale . L' étui cylindrique isolant pourra être disposé dans un ccrps tubulaire conducteur relié électriquement à une électrode, le corps tubulaire conducteur étant recouvert sur au moins une partie de sa surface externe par un isolant.
Suivant une variante de réalisation, le corps tubulaire pourra être percé d' au moins deux évents radiaux disposés en regard de trous radiaux réalisés sur l'étui isolant, évents et trous étant obturés par le fusible tubulaire.
Suivant une autre variante de réalisation, l'électrode avant pourra être percée d'un trou axial. L'invention a également pour objet un tube allumeur pour munition comprenant au moins une telle torche à plasma.
D'autres caractéristiques, détails et avantages de l'invention apparaîtront plus clairement à la lecture du complément de description qui va suivre de différents modes de réalisation, description faite en référence aux dessins annexés et dans lesquels : la figure 1 représente en coupe longitudinale un premier mode de réalisation d'une torche selon l'invention,
- la figure 2 montre l'adaptation à une munition de la torche selon l'invention, la figure 3 représente en coupe longitudinale un fusible mise en oeuvre dans un deuxième mode de réalisation de l' invention,
- la figure 4 représente une torche suivant un troisième mode de réalisation de l'invention, la figure 5 représente partiellement en coupe une variante de réalisation d'un fusible selon l'invention,
- la figure 6 représente partiellement en coupe une autre variante de réalisation d'un fusible selon l'invention, - la figure 7 montre en coupe transversale une autre variante de réalisation d'un fusible selon l'invention.
En se reportant à la figure 1, une torche à plasma 1 selon un premier mode de réalisation de l'invention comprend un corps tubulaire métallique 2, obturé au niveau d'une partie avant 2a par un opercule 3 réalisé en matière plastique. L'opercule 3 est fixé au corps 2 par exemple par filetage . La partie arrière 2b du corps 2 présente un diamètre élargi de façon à constituer une collerette butée facilitant la fixation de la torche dans un alésage d'un support (non représenté) par exemple d'un culot de munition. Pour permettre également cette fixation de la torche 1, le corps 2 porte un filetage 4.
Le corps 2 présente un alésage axial 5 à l'intérieur duquel est disposé un étui cylindrique isolant 6 réalisé en une matière plastique susceptible de s'abiater, c'est à dire d'engendrer des gaz légers par l'action d'un plasma. On pourra par exemple réaliser l'étui 6 en polyéthylène, en polyoxymethylene ou en polytétrafluoréthylène . On pourrait également réaliser l'étui 6 en un matériau énergétique par exemple en nitrocellulose.
Un tel étui est généralement appelé capillaire dans les torches à plasma connues.
Deux électrodes métalliques 7 et 8 sont séparées par l'étui isolant 6. Les électrodes sont réalisées par exemple en un alliage cuivreux.
Une électrode arrière 7 globalement cylindrique et de même axe que le corps 2 s'étend à l'intérieur de l'étui 6. Elle présente une extrémité arrière 7a qui est affleurante au niveau d'une face arrière la de la torche. Son extrémité avant 7b est pointue de façon à obtenir un effet de champ et permettre ainsi l'accrochage du pied de l'arc électrique qui engendrera le plasma.
Une électrode avant 8 se trouve appliquée contre l'étui 6 par l'opercule 3. Elle présente un épaulement périphérique 8a qui est ajusté de façon serrée avec le corps 2. Elle présente également un téton central 8b pointu favorable à l'accrochage de l'arc et qui s'étend à l'intérieur de l'étui 6.
L' électrode arrière 7 présente également un épaulement 7c qui joue le rôle de butée de positionnement de l'électrode arrière 7 par rapport au corps 2. L' épaulement 7c est en appui contre un lamage 9a d'un support 9 réalisé en un matériau isolant à haute tenue mécanique, par exemple un phénoplaste ou du polyoxymethylene. Le support 9 comporte une partie arrière 9b évasée qui est fixée au corps 2 par un filetage 10. Le support 9 comporte une partie avant tubulaire 9c qui est ajustée dans l'alésage 5 du corps 2. Cette partie avant comporte des lèvres d' étanchéité annulaires 30 séparées par des gorges annulaires 31. Les lèvres 30 assurent par leur déformation radiale, lors du fonctionnement de la torche, 1' étanchéité aux gaz produits par la torche 1. Les gorges 31 forment des chambres de détente améliorant également 1 ' étanchéité .
Conformément à l'invention, un tube 11 est disposé dans le volume interne délimité par l'étui isolant 6. Ce tube coiffe les extrémités cylindriques 7b et 8b des électrodes 7 et 8. Au niveau de l'électrode arrière 7, le tube 11 est pincé entre la surface cylindrique externe de l'électrode 7 et une extrémité amincie 12 de l'étui isolant 6, elle même en contact avec la partie avant 9c du support 9. Le tube 11 constitue un fusible d'amorçage pour la torche à plasma 1. A cet effet, le tube 11 comprend au moins un matériau conducteur associé à au moins un matériau énergétique ou susceptible de réagir avec le matériau conducteur. On entend par matériau énergétique un matériau susceptible de fournir de l'énergie chimique sous la forme d'une flamme lorsqu'il se trouve initié par l'effet Joule engendré par la passage du courant dans le matériau conducteur auquel il est intimement associé. On entend par matériau réactif ou susceptible de réagir avec le matériau conducteur un matériau, inerte isolément, mais susceptible de réagir chimiquement avec le matériau conducteur lors de l' échauffement de celui ci par effet Joule. De l'énergie chimique se trouve alors fournie par cette réaction sous la forme d'une flamme.
Le matériau conducteur pourra être constitué par du carbone ou bien par un métal tel du cuivre, de l'aluminium, de l'argent ou du magnésium. Le matériau énergétique ou susceptible de réagir avec le matériau conducteur pourra être choisi parmi les composés ou compositions suivantes :
Oxyde de cuivre; polytétrafluoréthylène; copolymère de chlorofluoroéthylène; polytétrafluoréthylène/copolymère de chlorofluoroéthylène; Magnésium / polytétrafluoréthylène / copolymère de chlorofluoro-étnylène; Bore/Nitrate de potassium; pellicule ou film de nitrocellulose plastifiée; nitrate de polyvmyle; polyoxymethylene; Polychlorure de trifluoroéthylène; polychlorure de vmyle; Polychlorure de trifluoroéthylène; polysulfone; polyfluorure de vinylidène.
Dans cette liste les matériaux énergétiques sont les compositions : Magnésium / polytétrafluoréthylène / copolymère de chlorofluoro-éthylène; Bore/Nitrate de potassium; pellicule ou film de nitrocellulose plastifiée; nitrate de polyvmyle.
Les matériaux réactifs avec un matériau conducteur sont : Oxyde de cuivre; polytétrafluoréthylène; copolymère de chlorofluoroéthylène; polytétrafluoréthylène/copolymère de chlorofluoroéthylène; Polyoxymethylene; Polychlorure de trifluoroéthylène; Polychlorure de vmyle; Polysulfone; Polyfluorure de vinylidène.
Suivant le mode particulier de réalisation de la figure 1, le tube fusible est formé par un mélange homogène associant 6 à 20 % en masse de poudre ou de particules de matériau conducteur et 80 à 94% en masse d'un matériau énergétique ou bien susceptible de réagir avec le matériau conducteur .
On pourra par exemple réaliser un tube fusible avec les compositions suivantes : Exemple 1
10 à 40 % en masse de poudre de cuivre et de préférence 20%,
60 à 90% en masse d'une composition associant Magnésium, polytétrafluoréthylène et copolymère de chlorofluoroéthylène, et de préférence 80%. Exemple 2 10 à 40 % en masse de poudre d'argent et de préférence 20%,
60 à 90% en masse d'une composition associant Magnésium, polytétrafluoréthylène et copolymère de chloroflucro- éthyiène, et de préférence 80%.
Exemple 3
- 10 à 40 % en masse de poudre d'argent et de préférence 20%,
- 60 à 90% en masse d'une composition associant Bore et nitrate de potassium, et de préférence 80%.
La composition Bore nitrate de potassium associera 80 % en masse de Bore pour 20 % en masse de nitrate de potassium.
Le tube est réalisé tout d' abord par le mélange des différents matériaux en grains puis compression isostatique dans un moule approprié. On pourra prévoir un liant nitrocellulosique assurant la tenue mécanique du tube.
Le brevet FR2776656 décrit par exemple un procédé de réalisation pouvant être mis en oeuvre pour réaliser un tel tube . L'épaisseur du tube 11 est de l'ordre de 0,5 mm, sa résistance est de l'ordre de quelques centaines de milliohms.
Suivant le mode de réalisation de la figure 1, le corps métallique 2 présente radialement des évents coniques 13 qui sont évasés vers l'extérieur du corps 2 pour favoriser l'évacuation des gaz.
Ces évents sont régulièrement répartis angulairement et longitudinalement (ici seuls huit évents sont représentés sur un total de seize) .
Les évents 13 sont disposés en regard de trous radiaux cylindriques 14 réalisés sur l'étui isolant 6.
Events 13 et trous 14 sont destinés à permettre la diffusion radiale du plasma engendré par la torche 1, par exemple pour assurer l'allumage d'un chargement propulsif de munition (non représenté) . Le diamètre des trous 14 est inférieur au plus petit diamètre des évents 13 cela dans le but de favoriser l'ablation de l'étui capillaire 6. Les trous 14 et les évents 13 sont obtures par le fusible tubulaire 11.
Pour améliorer l'isolation électrique de la torche, le corps tubulaire conducteur 2 sera recouvert sur sensiblement toute ses surfaces externes et internes par un isolant (non représenté), par exemple par un dépôt sous vide de 30 a 80 micromètres d'une matière plastique telle que du di-para- zylylène. On évitera le dépôt de matière plastique uniquement au niveau de la portée cylindrique assurant le passage du courant du tube 2 a l'électrode 8 et au niveau de la zone de retour de courant vers le générateur 19 (par exemple au niveau de la face arrière 2b) .
Le montage de cette torche est réalise tout simplement par empilement des différents éléments a l' intérieur du corps 2. On pourra par exemple commencer par fixer le support arrière 9 portant l'électrode arrière 7 sur le corps 2. On glisse ensuite par l'avant du corps 2 l'étui 6 à l' intérieur duquel est dispose le tube fusible 11. L'enfoncement de l'etui 6 dans le corps permet d'assurer le pincement du tube 11 autour de l'électrode arrière 7, et par conséquent de réaliser un bon contact électrique a ce niveau.
On orientera l'etui angulairement d'une façon appropriée pour assurer le positionnement des trous 14 en regard des évents 13. Une telle indexation pourra être facilitée en prévoyant sur l'étui 6 une mdentation périphérique localisée au voisinage de l'électrode avant 8 et coopérant avec une encoche aménagée dans le corps (détails non représentés).
On enfonce ensuite l'électrode avant 8 qui est ajustée serrée à la fois dans le tube 11 et dans le corps 2 pour la qualité des contacts électriques, puis on ferme la torche par le vissage de l'opercule 3.
On voit qu'un tel montage est extrêmement aisé. Le tube fusible 11 se met en place facilement. Aucune soudure n'est nécessaire, aucune rupture d'un fil fusible n'est a craindre. Les résistances de contact entre les électrodes 7,8 et le tube fusible sont réduites du fait des surfaces de contact importantes. L'ensemble réalise est robuste. L'etui assure le soutien du tube fusible sur sensiblement toute sa surface cylindrique .
Conformément a la figure 2, une torche 1 selon l'invention est par exemple fixée au niveau d'un culot 15 d'une munition 16 (représentée partiellement). La munition 16 comporte d' une façon classique un chargement propulsif de poudre 17 dispose dans un étui combustible 18. Un projectile (non représente) est fixe a l'etui combustible 18 au niveau d'une partie avant de ce dernier. La munition 16 est disposée dans la chambre d'une arme (non représentée). L'arme comporte un générateur électrique 19 qui est relie par des connexions électriques 24 et 25 a la torche 1. Une première connexion 24 est en contact électrique par un moyen approprie (par exemple un toucheau a ressort non représente) avec l'électrode arrière 7. Une seconde connexion 25 est en contact électrique avec le corps 2 métallique de la torche, par exemple par un toucheau a ressort en appui sur la partie arrière 2b de celui ci ou bien sur le culot métallique 15 lui même. Le corps 2 est en contact électrique avec l'électrode avant 8 grâce a l'ajustement serre de l' épaulement 8a de l'électrode dans l'alésage 5 du corps 2.
Par ailleurs le tube fusible 11 est en contact électrique avec les deux électrodes 7 et 8 grâce a un ajustement serre par pincement du tube 11 entre l'etui 6 et les parties cylindriques 7b et 8b des électrodes (voir figure 1) . Le fonctionnement de cette torche est le suivant. Le générateur 19 est conçu pour pouvoir délivrer une énergie de 10 kJ a 1 megaJoule sous forme d' impulsions de tension de 1000 volts a 20 kilo Volts. Un tel générateur est classique et comprend par exemple des capacités, une inductance, des thyristors et une alimentation stabilisée.
Une faible fraction de l'énergie fournie par le générateur est utilisée pour initier le tube fusible 11 par effet joule. Le matériau énergétique est alors initie ou bien la reaction entre le matériau conducteur et le matériau reactif est initiée. Une flamme de combustion s'établit sur sensiblement toute la longueur du tube 11, dégageant les trous 14 et les évents 13.
Cette flamme est formée naturellement d' atomes et molécules ionises. Elle assure une conduction électrique de résistance réduite entre les électrodes 7 et 8 αui permet le maintien de l'arc entre les électrodes 7 et 8.
D'une façon classique, le confinement de l'arc électrique dans l'etui 6 a base de matériau ablatable permet la génération d'un plasma qui s'écoule hors du corps au travers des évents 13.
Le plasma assure l' initiation du chargement propulsif 17 de la munition en procurant les avantages habituellement lies a l'allumage par plasma électrique : niveau de pression et température supérieur a celui d'un allumage pyrotechnique classique dû a l'apport d'énergie électrique par le générateur. Il en resuite une vitesse supérieure pour le proj ectile .
Le fusible énergétique propose par l'invention présente également pour avantage de fournir lui aussi de l'énergie d'allumage (sous forme chimique). Il permet ainsi d'utiliser un générateur délivrant une tension plus faible que celle des générateurs utilises dans les torches a plasma classiques. Pratiquement, une tension de 1000 Volts suffit contre 10 a 35 kilovolts pour les torches a plasma connues. On améliore ainsi le rendement de la torche et on facilite son intégration dans un système d'arme.
On notera que, même si une fissure localisée apparaissait sur le tube fusible 11, une telle fissure ne pourrait pas empêcher l'allumage du tube fusible. Les arcs électriques se produiront entre les particules conductrices et suffiront a initier la reaction qui progressera dans tous le tube. Le niveau de fiabilité d'une telle torche est donc bien supérieur a celui de la torche a fil fusible dont le fonctionnement est impossible en cas de rupture du fil. La figure 3 représente un mode de réalisation préfère pour le tube fusible 11 qui peut être mis en place dans une torche telle que celle représentée a la figure 1. Ce tube 11 diffère du précédent en ce que le matériau conducteur n'est pas mélangé de façon homogène au matériau énergétique ou susceptible de réagir avec lui.
Le matériau conducteur forme ici une couche 26 déposée sur au moins une partie du matériau énergétique ou bien susceptible de réagir avec le matériau conducteur.
Dans ce mode particulier de réalisation la couche conductrice 26 est cylindrique et déposée à l'intérieur d'un tube 27 de matériau énergétique ou susceptible de réagir avec le matériau conducteur. Une telle disposition permet d'assurer le contact électrique entre les électrodes 7 et 8 et la couche conductrice 26. Le dépôt métallique sera obtenu par exemple par vapo déposition sous vide d'un métal sur le matériau énergétique ou susceptible de réagir. Il pourra aussi être obtenu par projection sur une feuille métallique d' un mélange de colle et du matériau énergétique ou pouvant réagir avec le matériau conducteur.
On pourra avantageusement découper une feuille formée des deux couches et l'enrouler de façon à former le tube fusible 11.
Le tube 11 pourra également comporter deux couches conductrices séparées par la couche énergétique. Une telle disposition favorisera la génération d'arcs de décharge entre les deux couches conductrices. Concrètement on pourra réaliser un tube fusible comportant au moins une couche d'aluminium ou de magnésium déposée sur une couche de polytétrafluoréthylène ou de chlorure de polyvmyle.
L'épaisseur de la (ou des) couches métalliques sera de l'ordre de 100 micromètres. Celle du matériau énergétique sera de l'ordre de 150 micromètres.
On pourra également associer au moins une couche d' aluminium ou de magnésium avec une couche de nitrocellulose ou de nitrate de polyvmyle. On pourra réaliser un dépôt d' oxyde de cuivre ou de copolymère de chlorofluoroéthylène sur une feuille d'aluminium ou de magnésium. On pourra également réaliser un dépôt d' aluminium sur une couche αe polyoxymethylene.
Suivant un mode de réalisation préféré (qui peut se décrire lui aussi en référence a la figure 3) on déposera au moins une couche de copolymère de chlorofluoroetnylene (connu sous la marque déposée Viton) sur une couche d' aluminium.
On pourra éventuellement déposer le copolymère de chlorofluoro-éthylène sur les deux côtés d'une couche conductrice 26 d'aluminium (cette dernière variante est schématisée à la figure 5) . Les repères 27a et 27b désignent les deux couches de copolymère de chlorofluoro-éthylène déposées de part et d'autre de la couche d' aluminium 26.
Les épaisseurs et longueurs des différentes feuilles seront déterminées en fonctions des proportions relatives souhaitées pour les composants réagissants entre eux (aluminium et copolymère de chlorofluoroéthylène) .
On associera de 85 à 95 parties en masse du matériau de la couche conductrice à 5 à 15 parties en masse du ou des matériaux de la ou des couches réactives. On associera de préférence les proportions stoechiometriques de 90 parties en masse d' aluminium pour 10 parties en masse de copolymère de chlorofluoroéthylène.
Suivant une variante schématisée à la figure 6, on pourra associer en un même fusible une couche de matériau conducteur 26 (par exemple de l' aluminium) a une ou deux couches (27a, 27b) de copolymère de chlorofluoroéthylène et à une couche 30 d'un matériau renforçateur de flamme qui pourra être le polyoxymethylene ou bien la nitrocellulose.
Les dimensions et masses des différentes couches respecteront de préférence la stoechiométπe précédente de 90 parties en masse d' aluminium pour 10 parties en masse de copolymère de chlorofluoroéthylène. La masse de polyoxymethylene ajoutée représentera entre 15 et 25 parties en masse ajoutées aux autres matériaux du fusible. Elle sera de préférence de 20 parties en masse.
Cette dernière variante permet d' obtenir une température de plasma de 17000 K à 20000 K ce qui est bien supérieur (à énergie électrique égale) à la température obtenue avec les torches mettant en oeuvre le polyéthylène (de l'ordre de 6000 K) .
La figure 7 montre en coupe transversale une variante de réalisation d'un fusible sous la forme d'un tube 11 d'un matériau tel que décrit précédemment en référence à la figure 6. Là encore ce fusible associe une couche 26 de matériau conducteur (par exemple de l'aluminium) à une ou deux couches (27a, 27b) de copolymère de chlorofluoroéthylène et à une couche 30 d'un matériau renforçateur de flamme qui pourra être le polyoxymethylene ou bien la nitrocellulose.
Cette variante diffère de la précédente en ce qu'après enroulement du fusible avant sa mise en place dans le corps tubulaire 2 (figure 1), le fusible ne couvre pas un arc de 360°. Il subsiste une fente 31 représentant un arc qui sera inférieur à 180°. Cette variante permet de réduire encore la masse du fusible tout en préservant les proportions relatives des composants conducteurs et énergétiques. Cette diminution de masse permet de réduire la durée de la phase de chauffage par effet Joule du fusible. On diminue ainsi l'énergie consommée sans pour autant diminuer la température du plasma obtenu. L'Homme du Métier ajustera la largeur de la fente qui lui est nécessaire en fonction des caractéristiques souhaitées pour le système d'arme qu'il définit. Le fonctionnement des différents modes de réalisation des figures 3, 5, 6 et 7 est analogue à celui du mode précédemment décrit en référence aux figures 1 et 2.
L' avantage de ces modes de réalisation associant au moins deux couches (un matériau conducteur et un matériau réactif) est qu'ils sont de fabrication simple. La figure 4 montre une torche suivant un troisième mode de réalisation de l'invention.
Ce mode diffère de celui selon la figure 1 en ce que le corps 2 est dépourvu d' évents radiaux et l'étui isolant 6 est dépourvu de trous radiaux. L' électrode avant 8 est ici fixée par filetage sur le corps 2. Elle comporte un trou axial 28 qui la traverse et qui est destiné à laisser passer axialement le plasma engendré par la torche. Le tube fusible 11 est comme dans le mode précédent disposé autour des électrodes 7 et 8 et entouré par l'etui ablatable 6.
Le trou 28 sera avantageusement obturé par un disque ou paillet de fermeture 29 réalisé en métal ou en matière plastique et collé sur l'électrode 8. Ce disque est destiné à assurer une étanchéité de stocKage. Il est rompu des l'allumage αe la torche.
Ce mode de réalisation permet d' obtenir une torche a plasma compacte (longueur L inférieure ou égale à 40mm) et ayant une direction d'action axiale. Une telle torche pourra être utilisée pour les munitions de calibre réduit (inférieur a 50mm) ou bien pour les applications civiles (découpe de matériaux, ouvertures de sécurité, dépôts de matériaux sous faible épaisseur, fabrication de métaux en poudre nanométrique) .
Il est bien entendu possible d'utiliser pour cette torche un tube fusible 11 en matériau homogène comme celui décrit en référence à la figure 1 ou bien un tube fusible multicouche comme celui décrit en référence aux figures 3, 5, 6 et 7.

Claims

REVENDICATIONS
1. Torche à plasma (1) comprenant au moins deux électrodes (7,8) séparées par un étui cylindrique isolant (6) délimitant un volume interne, électrodes reliées par un fusible d'amorçage conducteur (11) disposé dans le volume interne, torche caractérisée en ce que le fusible Ml) comprend au moins un matériau conducteur associé à au moins un matériau énergétique ou susceptible de réagir avec le matériau conducteur.
2. Torche à plasma suivant la revendication 1, caractérisée en ce que le matériau conducteur est constitué par du carbone ou bien un métal.
3. Torche à plasma suivant une des revendications 1 c_ 2, caractérisée en ce que le matériau énergétique ou susceptible de réagir avec le matériau conducteur est choisi parmi les composés ou compositions suivantes :
Oxyde de cuivre; polytétrafluoréthylène; copolymère de chlorofluoroéthylène; polytétrafluoréthylène/copolymère de chlorofluoroéthylène; Magnésium / polytétrafluoréthylène / copolymère de chlorofluoro-ethylène; Bore/Nitrate de potassium; pellicule ou film de nitrocellulose plastifiée; nitrate de polyvmyle; Polyoxymethylene; Polychlorure de trifluoroéthylène; polychlorure de vinyle; Polychlorure de trifluoroéthylène; polysulfone; polyfluorure de vinylidène.
4. Torche à plasma suivant une des revendications 1 à 3, caractérisée en ce que le matériau conducteur est sous la forme de poudre ou de particules mélangées au matériau énergétique ou bien susceptible de réagir avec le matériau conducteur .
5. Torche à plasma suivant la revendication 4, caractérisée en ce que le fusible (11) est réalisé en un mélange homogène associant 6 à 40% en masse de poudre de matériau conducteur et 60 à 94% en masse d'un matériau énergétique ou bien susceptible de réagir avec le matériau conducteur.
6. Torche à plasma suivant la revendication 5, caractérisée en ce que le fusible (11) est réalisé en un mélange homogène associant : - 10 a 40 % en masse de poudre de cuivre et de préférence 20-s,
- 60 a 90% en masse d'une composition associant Magnésium, polytétrafluoréthylène et copolymère de cnlorofluoroéthylène, et de préférence 80%.
7. Torche a plasma suivant la revendication 5, caractérisée en ce que le fusible (11) est réalise en un mélange homogène associant :
- 10 a 40 % en masse de poudre d'argent et de préférence 10%,
- 60 a 90% en masse d'une composition associant Magnésium, polytétrafluoréthylène et copolymère de chlorofluoro-ethylene, et de préférence 80%.
8. Torche a plasma suivant la revendication 5, caractérisée en ce que le fusible (11) est réalise en un mélange homogène associant :
- 10 a 40 % en masse de poudre d'argent et de préférence 20%,
- 60 a 90% en masse d'une composition associant Bore et nitrate de potassium, et de préférence 80%.
9. Torche a plasma suivant une des revendications 1 a 3, caractérisée en ce que le matériau conducteur forme au moins une couche (26) déposée sur au moins une partie (27) du matériau énergétique ou bien susceptible de reagir avec le matériau conducteur.
10. Torche a plasma suivant la revendication 9, caractérisée en ce que le fusible comprend au moins une couche (26) conductrice d' aluminium ou de magnésium déposée sur une couche (27) reactive de polytétrafluoréthylène, ou de nitrocellulose ou de nitrate de polyvmyle, ou d'oxyde de cuivre ou de copolymère de chlorofluoroéthylène, ou de polyoxymethylene, ou de Polychlorure de trifluoroéthylène, ou de polysulfone, ou de polyfluorure de vinylidène.
11. Torche a plasma suivant la revendication 10, caractérisée en ce que les dimensions des différentes couches sont telles qu'on associe de 85 a 95 parties en masse du matériau de la couche conductrice a 5 a 15 parties en masse du ou des matériaux de la ou des couches reactives.
12. Torche a plasma suivant la revendication 11, caractérisée en ce que le fusible comprend au moins une couche d' aluminium et au moins une couche de copolymère de cnlorofiuoroethylene.
13. Torche a plasma suivant une des revendications 11 ou 12, caractérisée en ce que le fusible comprend également au moins une couche d'un matériau renforçateur de flamme.
14. Torche a plasma suivant la revendication 13, caractérisée en ce que le matériau renforçateur de flamme est le polyoxymethylene ou la nitrocellulose.
15. Torche a plasma suivant la revendication 14, caractérisée en ce que le matériau renforçateur de flamme représente entre 15 et 25 parties en masse ajoutées aux autres matériaux du fusible.
16. Torche a plasma suivant une des revendications 1 a 15, caractérisée en ce que le fusible (11) est sous la forme d'un tube dispose dans le volume interne.
17. Torche a plasma suivant la revendication 16, caractérisée en ce que le tube présente au moins une fente longitudinale.
18. Torche a plasma suivant une des revendications 1 a 17, caractérisée en ce que l'etui cylindrique isolant (6) est dispose dans un corps tubulaire conducteur (2) relie électriquement a une electroαe, le corps tubulaire conducteur étant recouvert sur au moins une partie de sa surface externe par un isolant.
19. Torche a plasma suivant la revendication 18 et une des revendications 16 ou 17, caractérisée en ce que le corps tubulaire (2) est perce d'au moins deux évents radiaux (13) disposés en regard de trous radiaux réalises sur l'etui isolant (6), évents et trous étant obtures par le fusible tubulaire ( 11 ) .
20. Torche a plasma suivant la revendication 18 et une des revendications 16 ou 17, caractérisée en ce que l'électrode avant (8) est percée d'un trou axial (28) .
21. Tube allumeur pour munition, caractérise en ce qu'il comprend au moins une torche a plasma suivant une des revendications 1 a 20.
PCT/FR2001/000961 2000-04-11 2001-03-30 Torche a plasma incorporant un fusible d'amorcage reactif et tube allumeur integrant une telle torche WO2001077604A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US09/958,572 US6703580B2 (en) 2000-04-11 2001-03-30 Plasma torch incorporating a reactive ignition tube and igniter squib integrating such a torch
IL145774A IL145774A (en) 2000-04-11 2001-03-30 Plasma torch incorporating a reactive ignition tube and igniter squib tube integrating such a torch
DE60112012T DE60112012T2 (de) 2000-04-11 2001-03-30 Plasmabrenner, enthaltend eine reaktive zündersicherung und einen solchen brenner enthaltendes zündrohr
AT01919602T ATE300031T1 (de) 2000-04-11 2001-03-30 Plasmabrenner, enthaltend eine reaktive zündersicherung und einen solchen brenner enthaltendes zündrohr
EP01919602A EP1185833B1 (fr) 2000-04-11 2001-03-30 Torche a plasma incorporant un fusible d'amorcage reactif et tube allumeur integrant une telle torche

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0004734A FR2807610B1 (fr) 2000-04-11 2000-04-11 Torche a plasma incorporant un fusible d'amorcage reactif et tube allumeur integrant une telle torche
FR00/04734 2000-04-11

Publications (1)

Publication Number Publication Date
WO2001077604A1 true WO2001077604A1 (fr) 2001-10-18

Family

ID=8849205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2001/000961 WO2001077604A1 (fr) 2000-04-11 2001-03-30 Torche a plasma incorporant un fusible d'amorcage reactif et tube allumeur integrant une telle torche

Country Status (8)

Country Link
US (1) US6703580B2 (fr)
EP (1) EP1185833B1 (fr)
AT (1) ATE300031T1 (fr)
DE (1) DE60112012T2 (fr)
FR (1) FR2807610B1 (fr)
IL (1) IL145774A (fr)
WO (1) WO2001077604A1 (fr)
ZA (1) ZA200110054B (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015359A1 (fr) * 2002-08-08 2004-02-19 Bofors Defence Ab Douille isolee et procede de production de telles douilles et munitions, et utilisation de telles douilles et munitions dans differents systemes d'armes
FR2844873A1 (fr) * 2002-09-25 2004-03-26 Giat Ind Sa Inflammateur a double effet et procede d'allumage mettant en oeuvre un tel inflammateur

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10140599A1 (de) * 2001-08-18 2003-03-06 Rheinmetall W & M Gmbh Patrone
FR2847975B1 (fr) 2002-12-02 2006-06-16 Giat Ind Sa Dispositif assurant la liaison electrique entre une masse reculante d'une arme et un berceau fixe
FR2849179B1 (fr) 2002-12-18 2006-06-30 Giat Ind Sa Munition sans douille et procede de montage d'une telle munition
US7073447B2 (en) * 2003-02-12 2006-07-11 Bae Systems Land & Armaments L.P. Electro-thermal chemical igniter and connector
US6805055B1 (en) * 2003-06-25 2004-10-19 Gamma Recherches & Technologies Patent Sa Plasma firing mechanism and method for firing ammunition
FR2869101B1 (fr) 2004-04-15 2006-06-02 Giat Ind Sa Munition sans douille et procede de montage d'une telle munition
SE533831C2 (sv) * 2005-03-15 2011-02-01 Bae Systems Bofors Ab Plasmajettändare för en elektro-termisk-kemisk(ETK) kanon, kulspruta eller annat eldrörsvapen av motsvarande typ
DE102006017100B4 (de) * 2006-04-07 2012-10-31 Bae Systems Bofors Ab Zünder
US7878120B1 (en) * 2007-12-20 2011-02-01 The United States Of America As Represented By The Secretary Of The Army Ammunition data link
US8607702B1 (en) * 2010-01-15 2013-12-17 The United States Of America As Represented By The Secretary Of The Army Low energy ignition system for large and medium caliber ammunition
SE536256C2 (sv) * 2011-12-29 2013-07-23 Bae Systems Bofors Ab Repeterbar plasmagenerator och metod därför
US10370539B2 (en) 2014-01-30 2019-08-06 Monolith Materials, Inc. System for high temperature chemical processing
US10100200B2 (en) 2014-01-30 2018-10-16 Monolith Materials, Inc. Use of feedstock in carbon black plasma process
US11939477B2 (en) 2014-01-30 2024-03-26 Monolith Materials, Inc. High temperature heat integration method of making carbon black
US10138378B2 (en) 2014-01-30 2018-11-27 Monolith Materials, Inc. Plasma gas throat assembly and method
CN105940774A (zh) 2014-01-31 2016-09-14 巨石材料公司 等离子体炬的设计
US9360285B1 (en) * 2014-07-01 2016-06-07 Texas Research International, Inc. Projectile cartridge for a hybrid capillary variable velocity electric gun
WO2016028760A1 (fr) 2014-08-18 2016-02-25 Woodward, Inc. Allumeur de chalumeau
BR112017016692A2 (pt) 2015-02-03 2018-04-10 Monolith Materials, Inc. método e aparelho para resfriamento regenerativo
CN113171741A (zh) 2015-02-03 2021-07-27 巨石材料公司 炭黑生成系统
CA3032246C (fr) * 2015-07-29 2023-12-12 Monolith Materials, Inc. Procede et appareil de conception d'alimentation electrique de torche a plasma a courant continu
CN108352493B (zh) 2015-09-14 2022-03-08 巨石材料公司 由天然气制造炭黑
CA3060565C (fr) 2016-04-29 2024-03-12 Monolith Materials, Inc. Procede et appareil de gougeage au chalumeau
EP3448553A4 (fr) 2016-04-29 2019-12-11 Monolith Materials, Inc. Ajout de chaleur secondaire à un processus de production de particules et appareil
MX2019010619A (es) 2017-03-08 2019-12-19 Monolith Mat Inc Sistemas y metodos para fabricar particulas de carbono con gas de transferencia termica.
CN110799602A (zh) 2017-04-20 2020-02-14 巨石材料公司 颗粒系统和方法
WO2019084200A1 (fr) 2017-10-24 2019-05-02 Monolith Materials, Inc. Systèmes particulaires et procédés
EP4242575A3 (fr) 2017-12-08 2023-10-18 Rabuffo SA Cartouche de munition
CN108301997A (zh) * 2018-01-24 2018-07-20 上海交通大学 基于z-pinch无火花塞的脉冲等离子体推力器
US11421601B2 (en) 2019-03-28 2022-08-23 Woodward, Inc. Second stage combustion for igniter
CN110595304B (zh) * 2019-08-20 2021-12-10 南京理工大学 一种点点火药装置
SE544051C2 (sv) 2019-12-20 2021-11-23 Bae Systems Bofors Ab Plasmagenerator samt ammunitionsenhet och utskjutningsanordning innehållandes nämnda plasmagenerator
US11060831B1 (en) * 2020-05-14 2021-07-13 The United States Of America As Represented By The Secretary Of The Army System and method for routing flame within an explosive device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1231181A (fr) * 1967-05-05 1971-05-12
JPS5054631A (fr) * 1973-09-17 1975-05-14
JPS5946419A (ja) * 1981-01-24 1984-03-15 Pegasus Kiyandoru Kk キヤンドル点火用の導火線
CN1059897A (zh) * 1990-09-19 1992-04-01 浙江省临安县矿产工业公司 安全爆响药及其生产方法
US5355764A (en) * 1992-05-04 1994-10-18 Fmc Corporation Plasma actuated ignition and distribution pump
US5503081A (en) * 1993-11-22 1996-04-02 Fmc Corp Annular plasma injector
EP0905470A1 (fr) * 1997-09-24 1999-03-31 Giat Industries Composant d'allumage pour composition pyrotechnique ou charge propulsive
EP0949224A1 (fr) * 1998-03-30 1999-10-13 Giat Industries Procédé de fabrication d'un objet à partir d'un matériau granulaire, tube allumeur et charge propulsive obtenus avec un tel procédé

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5431101A (en) * 1991-04-16 1995-07-11 Thiokol Corporation Low cost hermetically sealed squib
US6435095B1 (en) * 2000-08-09 2002-08-20 Mccormick Selph, Inc. Linear ignition system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1231181A (fr) * 1967-05-05 1971-05-12
JPS5054631A (fr) * 1973-09-17 1975-05-14
JPS5946419A (ja) * 1981-01-24 1984-03-15 Pegasus Kiyandoru Kk キヤンドル点火用の導火線
CN1059897A (zh) * 1990-09-19 1992-04-01 浙江省临安县矿产工业公司 安全爆响药及其生产方法
US5355764A (en) * 1992-05-04 1994-10-18 Fmc Corporation Plasma actuated ignition and distribution pump
US5503081A (en) * 1993-11-22 1996-04-02 Fmc Corp Annular plasma injector
EP0905470A1 (fr) * 1997-09-24 1999-03-31 Giat Industries Composant d'allumage pour composition pyrotechnique ou charge propulsive
EP0949224A1 (fr) * 1998-03-30 1999-10-13 Giat Industries Procédé de fabrication d'un objet à partir d'un matériau granulaire, tube allumeur et charge propulsive obtenus avec un tel procédé

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 197547, Derwent World Patents Index; Class A17, AN 1975-77729W, XP002171163 *
DATABASE WPI Section Ch Week 199246, Derwent World Patents Index; Class K04, AN 1992-373666, XP002154596 *
PATENT ABSTRACTS OF JAPAN vol. 008, no. 148 (M - 308) 11 July 1984 (1984-07-11) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004015359A1 (fr) * 2002-08-08 2004-02-19 Bofors Defence Ab Douille isolee et procede de production de telles douilles et munitions, et utilisation de telles douilles et munitions dans differents systemes d'armes
US7581499B2 (en) 2002-08-08 2009-09-01 Bofors Defence Ab Insulated cartridge case and ammunition, method for manufacturing such cases and ammunition, and use of such cases and ammunition in various different weapon systems
FR2844873A1 (fr) * 2002-09-25 2004-03-26 Giat Ind Sa Inflammateur a double effet et procede d'allumage mettant en oeuvre un tel inflammateur
EP1403611A1 (fr) * 2002-09-25 2004-03-31 Giat Industries Inflammateur à double effet et procédé d'allumage mettant en oeuvre un tel inflammateur

Also Published As

Publication number Publication date
ATE300031T1 (de) 2005-08-15
DE60112012T2 (de) 2006-04-20
FR2807610B1 (fr) 2002-10-11
IL145774A0 (en) 2002-07-25
DE60112012D1 (de) 2005-08-25
EP1185833B1 (fr) 2005-07-20
EP1185833A1 (fr) 2002-03-13
ZA200110054B (en) 2002-07-22
IL145774A (en) 2006-06-11
FR2807610A1 (fr) 2001-10-12
US6703580B2 (en) 2004-03-09
US20020157559A1 (en) 2002-10-31

Similar Documents

Publication Publication Date Title
EP1185833B1 (fr) Torche a plasma incorporant un fusible d'amorcage reactif et tube allumeur integrant une telle torche
US4895062A (en) Combustion augmented plasma gun
EP0905470B1 (fr) Composant d'allumage pour composition pyrotechnique ou charge propulsive
FR2807611A1 (fr) Torche plasma comportant des electrodes separees par un entrefer et allumeur incorporant une telle torche
EP2132429B1 (fr) Allumeur électrolytique pour moteur-fusée à monergol
FR2914368A1 (fr) Allumeur electrolytique pour moteur-fusee a ergols liquides
EP1273875B1 (fr) Dispositif d'allumage pour un chargement propulsif
FR2929754A1 (fr) Collecteur et tube electronique
EP0717256B1 (fr) Système de mise à feu par arc électrique d'une munition sans douille
FR2463383A1 (fr) Projectile fumigene
EP1367355B1 (fr) Amorce de sécurité à torche à plasma
EP3663703B1 (fr) Tête militaire perforante
EP1367356B1 (fr) Amorce de sécurité
FR2745951A1 (fr) Cathode thermoionique et son procede de fabrication
FR2966582A1 (fr) Charge formee multimodes
EP0330543B1 (fr) Cathode à chauffage direct en matériau thermoémissif
FR3044201A1 (fr) Torche a plasma d'arc avec electrode en tungstene
JP3888649B2 (ja) プラズマ生成用ホローカソード
EP1988355A1 (fr) Projectile générateur d'éclats
EP1403611A1 (fr) Inflammateur à double effet et procédé d'allumage mettant en oeuvre un tel inflammateur
BE356103A (fr)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2001919602

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): IL US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09958572

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001/10054

Country of ref document: ZA

Ref document number: 200110054

Country of ref document: ZA

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001919602

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001919602

Country of ref document: EP