WO2001077021A1 - Production de carbonate de strontium a partir de celestite - Google Patents

Production de carbonate de strontium a partir de celestite Download PDF

Info

Publication number
WO2001077021A1
WO2001077021A1 PCT/TR2000/000020 TR0000020W WO0177021A1 WO 2001077021 A1 WO2001077021 A1 WO 2001077021A1 TR 0000020 W TR0000020 W TR 0000020W WO 0177021 A1 WO0177021 A1 WO 0177021A1
Authority
WO
WIPO (PCT)
Prior art keywords
strontium
carbonate
celestite
solution
ammonium
Prior art date
Application number
PCT/TR2000/000020
Other languages
English (en)
Inventor
Sidika KOCAKUŞAK
Raşit TOLUN
Hacer Dogan
Murat Koral
Kani Akcay
Hansu Julide Koroglu
Hayrettin Yuzer
Fehim Isbilir
Omer Tunc Savasci
Turhan Ayok
Handan Karakale
Alaiddin Yilmaz
Original Assignee
Tübitak-Marmara Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tübitak-Marmara Research Center filed Critical Tübitak-Marmara Research Center
Priority to TR200103265T priority Critical patent/TR200103265T1/xx
Priority to PCT/TR2000/000020 priority patent/WO2001077021A1/fr
Publication of WO2001077021A1 publication Critical patent/WO2001077021A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/18Carbonates
    • C01F11/186Strontium or barium carbonate
    • C01F11/187Strontium carbonate
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/20Obtaining alkaline earth metals or magnesium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • This product is converted to strontium carbonate (SrCO 3 ) by double decomposition method with ammonium carbonate.
  • SrCO 3 strontium carbonate
  • Particle size of the celestite to be further purified by magnetic separation must be same as the particle size of the product which is used for production of SrCO 3 by double decomposition method. This is to eliminate further grinding after magnetic separation, which results in increase in iron content originating from the grinding equipment.
  • the desired particle size is below 50 ⁇ . Therefore commercial grade celestite is first grinded to particle size of below 50 ⁇ , then 20 % grinded celestite containing sludge is prepared by addition of water. Iron is separated from this sludge by magnetic separation, which results in 1-2 % celestite loss alongside with iron removal. It is also found that cleaned celestite by magnetic separation for double decomposition reaction retains about 10% water.
  • Double Decomposition Reaction The main equation of the double decomposition reaction is shown below:
  • a Japanese patent covers production of 97 % pure SrCO 3 by using ammonium carbonate. However to reach 99 % purity, the reaction temperature is increased to 90 °C which also indicate that the reaction is carried out under pressure.
  • purification of the SrCO 3 obtained by double decomposition is achieved by two main approaches. In the first approach the impure SrCO 3 is dissolved in an acid, impurities are filtered out and from the impurity clean solution, SrCO 3 is precipitated once again. In the second approach, as it is the patent of Kaiser Aluminum & Chemical Corp.
  • the process is developed in two reactors in series. Celestite is mixed in the first reactor with recycle solutions from the centrifuges of second reactor which contain 20-25 % ammonium carbonate and 8-10 % ammonium sulfate.
  • the recycle solution added contains 20-25 % stoichiometric excess of ammonium carbonate.
  • water is added to achieve 3.0-3.5 liquid/solid ratio.
  • the reaction is carried out at 65 °C at atmospheric pressure for 3 hours.
  • the conversion of SrSO 4 to SrCO 3 obtained is 70-80 %.
  • a suspension containing 25-30 % solids with the mean particle size of about 15 > is obtained. From this suspension, solids are separated of centrifugation. The filtrate containing 20-25 % ammonium sulfate and 8-10 % ammonium carbonate is sent to a filtrate tank. The filtrate is used to produce ammonia and carbondioxide and/or ammonium sulfate.
  • the solid obtained from centrifugation is loaded to the II. reactor.
  • stoichiometric excess ammonium carbonate is 60 % of the strontium sulfate, fed to the first reactor.
  • This reaction is also carried out at 65 °C at atmospheric pressure for duration of three hours. 1,5 % excess of ammonia, needed to form ammonium carbonate consumed during reaction, is used additionally. The reason for this addition is to keep the pH between 8,5 and 9,0.
  • solids are separated by a centrifuge.
  • the solution containing 20-25 % ammonium carbonate and 8-10 % ammonium sulfate is recycled to the first reactor.
  • the solid carries about 15 % solution, then it is washed thoroughly to remove ammonium carbonate and ammonium sulfate.
  • the CaCO 3 impurity in the raw SrCO 3 is also converted to CaO.
  • the strontium oxide product obtained after calcination containing calcium oxide and some other impurities, is dissolved in water where SrO is converted to strontium hydroxide and CaO is converted to calcium hydroxide.
  • the temperature is kept around the boiling temperature of water due to the fact that solubility of Sr(OH) 2 is low under 100 °C while solubility of Ca(OH) 2 decreases as the temperature increases.
  • the Sr(OH) 2 concentration of the solution must be around 10 %.
  • the leaching process is carried out in a mixing tank. During this process iron oxide (Fe 2 O 3 ), silicon dioxide (SiO 2 ), calcium hydroxide (Ca(OH) 2 ), sulfates and insoluble complex strontium compounds remain undissolved and are separated from the Sr(OH) 2 solution by centrifugation during which attention must be paid to keep the temperature about 96-100 °C.
  • the CO 2 needed for the above reaction can be obtained from the calcination by cleaning the effluent gases via a cyclone and a dust collecter.
  • the strontium carbonate obtained from CO 2 treatment is separated by centrifugation. Since the particle size of the SrCO 3 precipitated is quite small, a decanter centrifuge must be used here. The filtrate, which is quite clean, is recycled for dissolving SrO.
  • Drying 20-30 % water containing strontium carbonate obtained from the centrifuge is dried at 150 - 160 °C .
  • the filtrate obtained by centrifugation of the reactor mixture from the first reactor contains about 20- 25 % ammonium sulfate and 8-10 % ammonium carbonate.
  • the filtrate which is at about 65 °C, is heated to 80-100°C the ammonium carbonate decomposes to ammonia and carbondioxide, which are distilled of with some amount of water.
  • the ammonium sulfate in the solution is stable at this temperature and remains in the solution.
  • (NH 4 ) SO 4 is crystallized from this solution or inline with the below given equation, by Ca(OH) 2 addition (NH 4 ) 2 SO in solution is decomposed to obtain ammonia and CaSO 4 .
  • the firs row indicates the solids separated as waste from the solution as percent of the original raw SrCO 3 used as feed for calcination and as percent of some other parameters.
  • This waste contains SrCO 3 , Sr(OH) 2 , SrSO 4 , Fe O 3 , BaSO 4 , BaCO 3 , SiO 2 and other insolubles.
  • On second row of Table 1 shows the waste of SrCO3 ratio to raw SrCO 3 produced in the reactors.
  • the last row of Table 1 indicates total waste of strontium loss in the overall process. Table 1. Amount of Solid Waste

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compounds Of Iron (AREA)

Abstract

Les minéraux principaux et commerciaux de strontium sont la célestite et la strontianite. Le plus commun de ces deux minéraux est la célestite, laquelle est le sulfate de strontium. L'autre minéral est essentiellement du carbonate de strontium et sa présence est rare. Par conséquent, le strontium pur est essentiellement produit à partir de célestite laquelle est ensuite utilisée dans la production de verre apte à la production de tube de télévision en couleur, dans l'industrie électrocéramique et dans la production de métaux électrolytiques. Il existe deux procédés principaux de production économique de carbonate de strontium à partir de célestite à l'échelle industrielle. Ces procédés sont un procédé de réduction (carbonate de soude), un procédé de conversion de carbonate de soude et directe en carbonate et/ou de double décomposition DD. Bien qu'il existe certains procédés utilisant du carbonate d'ammonium pour la double décomposition, la majorité des procédés DD utilisent du carbonate de sodium pour la conversion en carbonate. Dans le nouveau procédé développé, la célestite est convertie en carbonate de strontium par une double décomposition avec du carbonate d'ammonium. Le carbonate de strontium obtenu contient certaines impuretés et est appelé carbonate de strontium brut. Pour purifier le carbonate de strontium brut, celui-ci est ensuite calciné afin d'obtenir de l'oxyde de strontium, lequel est alors converti en solution d'hydroxyde de strontium par une réaction avec de l'eau. La solution d'hydroxyde de strontium est filtrée pour éliminer les impuretés insolubles. A partir de la solution d'hydroxyde de strontium filtrée et purifiée, le strontium pur est précipité par réaction de la solution avec du dioxyde de carbone. Le carbonate de strontium précipité est alors séparé et séché sous la forme d'une poudre. La solution obtenue à partir de la double décomposition contient à la fois du carbonate d'ammonium et du sulfate d'ammonium. Par augmentation de la température de cette solution à une valeur appropriée, le carbonate d'ammonium est décomposé en ammoniac et en dioxyde de carbone à recycler dans le procédé. Etant donné que la solution restante est exempte de carbonate d'ammonium, le sulfate d'ammonium est cristallisé à partir de celle-ci sous la forme d'un produit commercial ou est mis à réagir avec du lait de chaux afin de récupérer l'ammoniac.
PCT/TR2000/000020 2000-04-12 2000-04-12 Production de carbonate de strontium a partir de celestite WO2001077021A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TR200103265T TR200103265T1 (tr) 2000-04-12 2000-04-12 Selestitten stronsiyum karbonat üretimi.
PCT/TR2000/000020 WO2001077021A1 (fr) 2000-04-12 2000-04-12 Production de carbonate de strontium a partir de celestite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/TR2000/000020 WO2001077021A1 (fr) 2000-04-12 2000-04-12 Production de carbonate de strontium a partir de celestite

Publications (1)

Publication Number Publication Date
WO2001077021A1 true WO2001077021A1 (fr) 2001-10-18

Family

ID=21619297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/TR2000/000020 WO2001077021A1 (fr) 2000-04-12 2000-04-12 Production de carbonate de strontium a partir de celestite

Country Status (2)

Country Link
TR (1) TR200103265T1 (fr)
WO (1) WO2001077021A1 (fr)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060317A (zh) * 2010-10-11 2011-05-18 重庆新申世纪化工有限公司 天青石黑灰法生产碳酸锶的废渣中回收天青石的方法
CN103290235A (zh) * 2013-06-26 2013-09-11 中国地质科学院矿产综合利用研究所 一种含锶稀土矿的综合利用工艺
CN103768989A (zh) * 2014-01-29 2014-05-07 南京金焰锶业有限公司 一种稀硫酸自动化配制装置及方法
CN103864125A (zh) * 2014-01-29 2014-06-18 南京金焰锶业有限公司 一种碳酸盐的自动化制备装置及方法
CN105836779A (zh) * 2016-03-28 2016-08-10 余国礼 一种天青石空化效应作用下转化为碳酸锶的装置
RU2610775C2 (ru) * 2015-07-16 2017-02-15 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) Способ получения особочистого карбоната стронция
CN109336155A (zh) * 2018-11-02 2019-02-15 中国科学院青海盐湖研究所 一种锶渣的回收利用方法
CN109806966A (zh) * 2019-02-21 2019-05-28 中国地质科学院矿产综合利用研究所 一种从稀土尾矿中综合回收锶矿物的选矿方法
CN113896215A (zh) * 2021-11-18 2022-01-07 贵州红星发展股份有限公司 一种生产氢氧化锶联产硫化钠的方法
CN115108574A (zh) * 2022-07-21 2022-09-27 秦皇岛微晶科技有限公司 一种4n高纯碳酸钙高纯度提纯工艺
CN115215362A (zh) * 2022-06-24 2022-10-21 河北纽思泰伦环保科技有限公司 一种天青石熟料连续浸取工艺及生产碳酸锶的方法
CN115637336A (zh) * 2022-10-18 2023-01-24 中国地质科学院矿产综合利用研究所 一种高钡锶矿制备碳酸锶工艺

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743691A (en) * 1971-06-21 1973-07-03 Kaiser Aluminium Chem Corp Purification of strontium carbonate
JPS4851895A (fr) * 1971-11-02 1973-07-20
US3875298A (en) * 1973-07-17 1975-04-01 Kaiser Aluminium Chem Corp Calcination of strontium carbonate
SU565877A1 (ru) * 1975-09-24 1977-07-25 Институт Неорганической Химии И Электрохимии Ан Грузинской Сср Способ получени карбоната строени кальци
JPS5983934A (ja) * 1982-10-30 1984-05-15 Sumitomo Metal Mining Co Ltd 純度の良い炭酸ストロンチウムの製造方法
ES2006338A6 (es) * 1988-02-29 1989-04-16 Philopatent Sa Proceso de obtencion de sales de estroncio y derivados fertilizantes.
CN1035995A (zh) * 1988-03-26 1989-10-04 景志熙 用氯化铵生产碳酸锶的方法
CN1043482A (zh) * 1988-12-22 1990-07-04 化工部天津化工研究院 碳酸锶的制法
EP0495937A1 (fr) * 1990-07-20 1992-07-29 Proinsur Promociones Industriales Del Sur, S.A. Obtention en continu de sels fertilisants et de derives de strontium et de platre
CN1208017A (zh) * 1997-08-08 1999-02-17 熊尚彬 溶剂法制备碳酸锶

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3743691A (en) * 1971-06-21 1973-07-03 Kaiser Aluminium Chem Corp Purification of strontium carbonate
JPS4851895A (fr) * 1971-11-02 1973-07-20
US3875298A (en) * 1973-07-17 1975-04-01 Kaiser Aluminium Chem Corp Calcination of strontium carbonate
SU565877A1 (ru) * 1975-09-24 1977-07-25 Институт Неорганической Химии И Электрохимии Ан Грузинской Сср Способ получени карбоната строени кальци
JPS5983934A (ja) * 1982-10-30 1984-05-15 Sumitomo Metal Mining Co Ltd 純度の良い炭酸ストロンチウムの製造方法
ES2006338A6 (es) * 1988-02-29 1989-04-16 Philopatent Sa Proceso de obtencion de sales de estroncio y derivados fertilizantes.
CN1035995A (zh) * 1988-03-26 1989-10-04 景志熙 用氯化铵生产碳酸锶的方法
CN1043482A (zh) * 1988-12-22 1990-07-04 化工部天津化工研究院 碳酸锶的制法
EP0495937A1 (fr) * 1990-07-20 1992-07-29 Proinsur Promociones Industriales Del Sur, S.A. Obtention en continu de sels fertilisants et de derives de strontium et de platre
CN1208017A (zh) * 1997-08-08 1999-02-17 熊尚彬 溶剂法制备碳酸锶

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE CA [online] AMERICAN CHEMICAL SOCIETY, KARLSRUHE; TU MIN-DUAN ET AL.: "Study on the new technology of purifying raw strontium carbonate", accession no. STN International Database accession no. 132:37627 *
SICHUAN LIANHE DAXUE XUEBAO, GONGCHENG KEXUEBAN, vol. 3, no. 5, 1999, pages 45 - 52 *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102060317A (zh) * 2010-10-11 2011-05-18 重庆新申世纪化工有限公司 天青石黑灰法生产碳酸锶的废渣中回收天青石的方法
CN102060317B (zh) * 2010-10-11 2012-07-11 重庆新申世纪化工有限公司 天青石黑灰法生产碳酸锶的废渣中回收天青石的方法
CN103290235A (zh) * 2013-06-26 2013-09-11 中国地质科学院矿产综合利用研究所 一种含锶稀土矿的综合利用工艺
CN103290235B (zh) * 2013-06-26 2014-07-09 中国地质科学院矿产综合利用研究所 一种含锶稀土矿的综合利用工艺
CN103768989A (zh) * 2014-01-29 2014-05-07 南京金焰锶业有限公司 一种稀硫酸自动化配制装置及方法
CN103864125A (zh) * 2014-01-29 2014-06-18 南京金焰锶业有限公司 一种碳酸盐的自动化制备装置及方法
CN103864125B (zh) * 2014-01-29 2015-08-12 南京金焰锶业有限公司 一种碳酸盐的自动化制备装置及方法
RU2610775C2 (ru) * 2015-07-16 2017-02-15 Федеральное государственное бюджетное учреждение науки Институт неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (ИНХ СО РАН) Способ получения особочистого карбоната стронция
CN105836779A (zh) * 2016-03-28 2016-08-10 余国礼 一种天青石空化效应作用下转化为碳酸锶的装置
CN109336155A (zh) * 2018-11-02 2019-02-15 中国科学院青海盐湖研究所 一种锶渣的回收利用方法
CN109806966A (zh) * 2019-02-21 2019-05-28 中国地质科学院矿产综合利用研究所 一种从稀土尾矿中综合回收锶矿物的选矿方法
CN113896215A (zh) * 2021-11-18 2022-01-07 贵州红星发展股份有限公司 一种生产氢氧化锶联产硫化钠的方法
CN115215362A (zh) * 2022-06-24 2022-10-21 河北纽思泰伦环保科技有限公司 一种天青石熟料连续浸取工艺及生产碳酸锶的方法
CN115108574A (zh) * 2022-07-21 2022-09-27 秦皇岛微晶科技有限公司 一种4n高纯碳酸钙高纯度提纯工艺
CN115108574B (zh) * 2022-07-21 2024-03-12 秦皇岛微晶科技有限公司 一种4n高纯碳酸钙高纯度提纯工艺
CN115637336A (zh) * 2022-10-18 2023-01-24 中国地质科学院矿产综合利用研究所 一种高钡锶矿制备碳酸锶工艺
CN115637336B (zh) * 2022-10-18 2024-01-30 中国地质科学院矿产综合利用研究所 一种高钡锶矿制备碳酸锶工艺

Also Published As

Publication number Publication date
TR200103265T1 (tr) 2002-06-21

Similar Documents

Publication Publication Date Title
CN100542961C (zh) 一种氢氧化钠熔盐法处理铝土矿生产氢氧化铝的工艺
US3949047A (en) Method of precipitating radium to yield high purity calcium sulfate from phosphate ores
EP0157503B1 (fr) Production d'alumine de haute pureté à faible teneur en silice
GB2034681A (en) Preparing aluminium hydroxide
CN110668482B (zh) 一种干法氟化铝的生产方法
WO2001077021A1 (fr) Production de carbonate de strontium a partir de celestite
US20220185689A1 (en) Process for preparing alumina
US5053144A (en) Method for the multistage, waste-free processing of red mud to recover basic materials of chemical industry
US4668485A (en) Recovery of sodium aluminate from Bayer process red mud
US4548795A (en) Treatment of aluminous materials
EP0150033B1 (fr) Procédé de préparation d'hydroxyde de magnésium très pur
WO1985000799A1 (fr) Production d'alumine tres pure
EP1150919A1 (fr) Traitement de la chaux
US3383166A (en) Process for producing iron-free aluminum nitrate solutions
US3743691A (en) Purification of strontium carbonate
US3642437A (en) Production of alumina and portland cement from clay and limestone
US4366129A (en) Process for producing alumina and ferric oxide from aluminium carriers with high iron and silicon content
US4452770A (en) Phosphoanhydrite process
US2994582A (en) Production of cryolite
US4519989A (en) Removal of organic contaminants from bauxite and other ores
US3240561A (en) Production of alumina
US4455284A (en) Process for desilication of aluminate solution
US3966874A (en) Extraction of alumina from bauxite ores
US4402922A (en) Process for rapid conversion of fluoroanhydrite to gypsum
CN1258640A (zh) 石膏法生产硫酸钾并联产水泥的工艺方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN DZ IN MA MX TR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 2001/03265

Country of ref document: TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase