WO2001075277A1 - Systeme de production d'energie a combustible solide a sequestration de dioxyde de carbone et procede associe - Google Patents

Systeme de production d'energie a combustible solide a sequestration de dioxyde de carbone et procede associe Download PDF

Info

Publication number
WO2001075277A1
WO2001075277A1 PCT/US2000/008392 US0008392W WO0175277A1 WO 2001075277 A1 WO2001075277 A1 WO 2001075277A1 US 0008392 W US0008392 W US 0008392W WO 0175277 A1 WO0175277 A1 WO 0175277A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
turbine
stream
oxygen
exhaust stream
Prior art date
Application number
PCT/US2000/008392
Other languages
English (en)
Inventor
Elia P. Demetri
Original Assignee
Northern Research And Engineering Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northern Research And Engineering Corporation filed Critical Northern Research And Engineering Corporation
Priority to EP00919850A priority Critical patent/EP1268985A1/fr
Priority to PCT/US2000/008392 priority patent/WO2001075277A1/fr
Priority to AU2000240471A priority patent/AU2000240471A1/en
Publication of WO2001075277A1 publication Critical patent/WO2001075277A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04533Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the direct combustion of fuels in a power plant, so-called "oxyfuel combustion"
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04036Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04145Mechanically coupling of different compressors of the air fractionation process to the same driver(s)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • F25J3/04581Hot gas expansion of indirect heated nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/34Indirect CO2mitigation, i.e. by acting on non CO2directly related matters of the process, e.g. pre-heating or heat recovery

Definitions

  • the present invention relates to power generation and more specifically relates to a solid-fueled power system which provides for complete carbon dioxide recovery and methods therefor.
  • C0 2 capture Another longer-term strategy which is receiving serious support from the international community, in general, and the U.S. Department of Energy, in particular, consists of sequestering and capturing the C0 2 emitted from fossil fueled systems (hereinafter referred to as "C0 2 capture").
  • C0 2 capture is typically accomplished by treating the exhaust stream to separate out the C0 2 component in a form suitable for removal and storage. In conventional systems, this is difficult to achieve because of the low concentration of C0 2 compared to the other components (namely, nitrogen) in the exhaust. The result is a process that is both costly and energy intensive.
  • U.S. Patent 5,724,805 to Golomb et al. discloses a power plant including W wOv j 0v1 i /t7 i 5z2 i .7 i 7 l PCT/US00/08392
  • the power plant includes a carbon dioxide removal unit arranged to recover carbon dioxide gas from the exhaust gas, recycle a portion of the recovered carbon dioxide gas for passage through the gas turbine, and liquefy the remainder of the recovered carbon dioxide gas for removal from the plant.
  • a portion of the C0 2 gas leaving the turbine is recovered from the C0 2 /H 2 0 exhaust stream, recycled to the inlet of the compressor and recompressed. The compression of the C0 2 gas prior to recycling requires a significant amount of energy, thereby minimizing the overall efficiency of the system.
  • a method of generating power with sequestration of carbon-dioxide emission may include the steps of compressing ambient air and then separating substantially pure oxygen from the compressed ambient air using an air separator.
  • the substantially pure oxygen separated from the ambient air may then be further compressed.
  • the air separator used to separate the oxygen from the ambient air may also be used to separate nitrogen from the compressed ambient air.
  • the separated nitrogen may be vented to atmosphere or may be processed for recovering energy therefrom, such as by passing the compressed nitrogen through a turbine.
  • the oxygen may be divided into a first oxygen stream and a second oxygen stream.
  • the second oxygen stream has a larger flow volume than the first oxygen stream.
  • the first oxygen stream and a solid fuel are then introduced into a solid-fuel gasifier for converting the first oxygen stream and the solid fuel into a combustible gas.
  • the solid fuel is preferably selected from the group consisting of coal and biomass.
  • the combustible gas may then be filtered to remove particulate matter and/or contaminants therefrom.
  • the combustible gas may then be combusted in the presence of the second oxygen stream.
  • the combusting step may include the step of introducing water into the combustor for generating an exhaust stream of carbon dioxide and steam.
  • the introduction of water during combustion increases, inter alia, the total volume flow of the carbon dioxide and steam.
  • the introduction of water may also reduce the maximum temperature within the combustor. This is beneficial because the combustion of solid fuel in substantially pure oxygen yields a much higher temperature than combustion in ambient air. While the higher temperatures improve the thermodynamic efficiency of the system, present materials used in combustors and turbines may be unable to survive at these high temperatures.
  • the carbon dioxide and steam may then be passed through a turbine for driving the turbine and generating power.
  • the turbine preferably drives a rotatable shaft which, in turn, is connected to the compressors and to a generator for producing electrical power. In other words, rotation of the turbine drives the compressors and the generator for producing electrical power.
  • the introduction of water into the combustor during the combusting step also preferably increases the total mass flow and volume flow of the exhaust stream passing through the turbine, thereby elevating the amount of power generated by the turbine.
  • the turbine exhaust stream After the exhaust stream passes through the turbine for generating power, the turbine exhaust stream is cooled, preferably in a condenser, for producing carbon dioxide gas and liquid water.
  • the carbon dioxide gas may then be separated from the liquid water so that the carbon dioxide gas does not escape back into the atmosphere as a green house gas.
  • the carbon dioxide gas separated from the cooled turbine exhaust stream may be collected and stored in storage vessels or disposed of by any one of several different processes presently under consideration for long-term sequestration, such as deep ocean storage.
  • the heat present in the turbine exhaust stream may be recovered for reuse as waste heat or to generate steam for additional energy recovery.
  • the water separated from the turbine exhaust stream may be recycled and directed to the combustor for serving as the water introduced into the combustor during the combusting step.
  • the water is preferably re-pressurized in a pump prior to being introduced into the combustor.
  • the method of generating power may also include adding an additional amount of make-up water to the recycled water being directed to the combustor.
  • the make-up water is generally added to the recycled water before the water is re-pressurized in the pump.
  • the method may include spraying a stream of the water into the combustible gas before the filtering step for reducing the temperature of the combustible gas.
  • a power generating system with sequestration of carbon-dioxide emission including a first compressor for compressing ambient air; an air separation unit downstream from the first compressor for separating substantially pure oxygen from the compressed ambient air; and a second compressor downstream from the air separation unit for further compressing the substantially pure oxygen.
  • the power generating system preferably includes conduit, such as tubes or ducts, for dividing the substantially pure oxygen into a first oxygen stream and a second oxygen stream.
  • the system includes a gasifier designed for receiving the first oxygen stream and a solid fuel (e.g., coal) therein for converting the first oxygen stream and the solid fuel into a combustible gas.
  • the power generating system may also include a combustor adapted for combusting the combustible gas in the presence of the second oxygen stream and water for generating an exhaust stream including primarily carbon dioxide and steam.
  • the power generating system may also include a turbine downstream from the combustor through which the exhaust stream passes for driving the turbine and generating power.
  • a condenser located downstream from the turbine preferably cools the turbine exhaust stream so as to produce carbon dioxide gas and liquid water.
  • the condenser may include coils and tubing for separating the carbon dioxide gas from the water, wherein introducing water into the combustor during combustion of the combustible gas increases the mass flow and volume flow of the exhaust stream passing through the turbine for elevating the amount of power generated by the turbine.
  • the power generating system may also include a pump for pressurizing the water present in the cooled turbine exhaust stream after the carbon dioxide gas has been separated from the exhaust stream and tubing for directing the pressurized water back to the combustor so as to introduce the pressurized water into the combustor.
  • the system may also be connected to a source of additional make-up water so as to supply additional water to the recycled water present in the cooled turbine exhaust stream.
  • the make-up water is preferably added to the recycled water before the water is re-pressurized by the pump.
  • the system may include a filter between the solid-fuel gasifier and the combustor for filtering the combustible gas so as to remove particulate and/or contaminants therefrom.
  • Figure 1 shows a schematic drawing of a solid-fueled power generation system with carbon dioxide sequestration, the system including a single-shaft arrangement, in accordance with one preferred embodiment ofthe present invention.
  • Figure 2 shows a schematic drawing of a solid-fueled power generation system with carbon dioxide sequestration, the system including a two-shaft arrangement, in accordance with other preferred embodiments of the present invention.
  • Figure 3 shows a schematic drawing of a solid-fueled power generation system with carbon dioxide sequestration, the system including a recuperator pr regenerator for recovering energy, in accordance with further preferred embodiments of the present invention.
  • Fig. 1 shows a power generation system with carbon dioxide sequestration in accordance with certain preferred embodiments of the present invention.
  • the power generation system shown in Fig. 1 preferably includes a cogeneration system 10 having a solid-fueled Brayton cycle with waste heat recovery.
  • the power system 10 includes a first compressor 12 for compressing ambient air.
  • the compressed ambient air is then directed downstream via line 14 to an air separation unit 16 wherein the compressed air is separated into two streams including nitrogen directed downstream in line 16 and oxygen directed downstream in line 20 to a second compressor 22.
  • the air separation unit 16 may separate the compressed ambient air by various processes, in preferred embodiments the compressed ambient air is preferably separated using membrane separation, cryogenic air liquefaction or pressure swing adsorption (PSA) techniques.
  • PSA pressure swing adsorption
  • the power generation system 10 also includes the second compressor 22 located downstream from the first compressor 12 for further compressing the substantially pure oxygen which has been separated from the compressed ambient air.
  • the compressed oxygen discharged from the second compressor 22 is then separated into a first oxygen stream via line 24 and a second oxygen stream via line 26, preferably using conduits, such as tubes or ducts, for dividing the substantially pure oxygen.
  • the power generation system 10 also preferably includes a gasifier 28 designed for receiving the first oxygen stream via line 24 and a solid fuel, such as coal or biomass, via line 30 for converting the first oxygen stream and the solid fuel into a combustible gas.
  • the gasifier 28 is an oxygen-blown gasifier capable of generating a medium-Btu gas from the supply of the solid fuel.
  • the power generation system 10 includes a spraying element 32 for spraying a small stream of water into the gas discharged from the gasifier 28.
  • the water vaporizes and provides partial cooling of the gas before it flows through a filter 34 for removal of particulates, thereby eliminating the necessity of using filter materials capable of withstanding high temperatures.
  • the gas is directed downstream via line 34 to a combustor 36.
  • the combustor 36 is adapted for combusting the combustible gas in the presence of both the second oxygen stream supplied via line 26 and water introduced into the combustor via line 38, thereby generating an exhaust stream discharged via line 40 comprising essentially carbon dioxide and steam.
  • the power generating system 10 also includes a turbine 42 located downstream from the combustor 36 adapted for passing the exhaust stream from the combustor therethrough for driving the turbine 42.
  • the turbine 42 is connected to and drives the compressor and a generator 44 for generating electrical power.
  • the carbon dioxide and steam is directed via line 46 to a condenser 48.
  • the condenser 48 preferably cools the turbine exhaust stream so as to produce carbon dioxide gas and liquid water.
  • the carbon dioxide separated from the turbine exhaust is directed downstream via line 50 for utilization or storage.
  • the condenser 48 may also include a heat recovery element 52 for recovering waste heat from the turbine exhaust stream. As shown in Fig. 1 , the heat recovery element 52 includes passing cooling water in close communication with the turbine exhaust for transferring heat from the exhaust to the water, thereby generating hot water or steam which is discharged from the condenser 48 via line 52.
  • the waste heat may be used for many purposes including generating heat for direct use or generating pressurized steam for energy recovery in a steam bottoming cycle.
  • the condensed water removed from the turbine exhaust stream is preferably recycled via line 54 so that it may be used as the source of water injected into the combustor via line 38 and/or sprayed into the gas stream by spraying element 32.
  • the power generating system 10 may also include a pump 56 for re- pressurizing the condensed water separated from the turbine exhaust stream. After the water has passed through the pump 56, the re-pressurized water is directed back to the combustor 36 via line 58.
  • the power generating system 10 may also be connected to an additional source of water 60 (e.g., "make-up water” ) so as to provide additional water to be added to the condensed water removed from the turbine exhaust stream to make up for any water lost from the system.
  • the "make-up water” is preferably added to the condensed water before the latter is re-pressurized by the pump.
  • Fig. 2 shows a power generation system with carbon dioxide sequestration in accordance with other preferred embodiments of the present invention wherein the system 100 comprises a two shaft configuration.
  • a compressor turbine 170 is connected to a first shaft 172 for driving air compressor 112 and oxygen compressor 122.
  • the exhaust stream from combustor 136 passes through compressor turbine 170 which drives the first shaft 172.
  • rotation of the first shaft 172 drives air compressor 112 and oxygen compressor 122.
  • the exhaust stream After exiting the compressor turbine 170, the exhaust stream is directed downstream for passing through a power turbine 174 connected to a second shaft 176.
  • the second shaft 176 is rotated for driving electrical generator 144.
  • Fig. 3 shows a power generation system with carbon dioxide sequestration in accordance with still further preferred embodiments of the present invention wherein the system 200 includes a recuperator or regenerator 280, such as the recuperator disclosed in commonly assigned, copending U.S. Patent Application Serial No. 08/792,261 filed January 1 , 1997 and entitled "Unit Construction Plate- Fin Heat Exchanger.”
  • the exhaust stream exiting power turbine 274 is directed through the recuperator 280 so that the exhaust stream may pass closely by the compressed oxygen stream leaving the oxygen compressor 222. As the exhaust stream passes closely by the compressed oxygen stream, energy, in the form of heat, is transferred from the exhaust stream to the compressed oxygen stream.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Treating Waste Gases (AREA)

Abstract

L'invention concerne un procédé de production d'énergie à séquestration de dioxyde de carbone, qui consiste notamment à comprimer l'air ambiant, à séparer l'oxygène sensiblement pur de l'air et à comprimer une nouvelle fois l'oxygène. On divise ensuite l'oxygène en un premier flux d'oxygène et en un second flux d'oxygène. Le premier flux d'oxygène et un combustible solide, par exemple du charbon, sont introduits dans un gazéifieur à combustible solide pour produire un gaz combustible. Le gaz est brûlé en présence du second flux d'oxygène et, durant la combustion, l'eau est introduite dans la chambre de combustion pour produire un flux d'échappement de dioxyde de carbone et de fumée. Le gaz d'échappement traverse et entraîne une turbine pour produire de l'énergie. On refroidit ensuit le gaz d'échappement pour produire du dioxyde de carbone et de l'eau, que l'on sépare pour recueillir le dioxyde de carbone. L'introduction de l'eau dans la chambre de combustion augmente le débit massique et volumétrique du flux d'échappement traversant la turbine, ce qui accroît la quantité d'énergie produite par la turbine.
PCT/US2000/008392 2000-03-31 2000-03-31 Systeme de production d'energie a combustible solide a sequestration de dioxyde de carbone et procede associe WO2001075277A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00919850A EP1268985A1 (fr) 2000-03-31 2000-03-31 Systeme de production d'energie a combustible solide a sequestration de dioxyde de carbone et procede associe
PCT/US2000/008392 WO2001075277A1 (fr) 2000-03-31 2000-03-31 Systeme de production d'energie a combustible solide a sequestration de dioxyde de carbone et procede associe
AU2000240471A AU2000240471A1 (en) 2000-03-31 2000-03-31 Solid-fueled power generation system with carbon dioxide sequestration and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2000/008392 WO2001075277A1 (fr) 2000-03-31 2000-03-31 Systeme de production d'energie a combustible solide a sequestration de dioxyde de carbone et procede associe

Publications (1)

Publication Number Publication Date
WO2001075277A1 true WO2001075277A1 (fr) 2001-10-11

Family

ID=21741214

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/008392 WO2001075277A1 (fr) 2000-03-31 2000-03-31 Systeme de production d'energie a combustible solide a sequestration de dioxyde de carbone et procede associe

Country Status (3)

Country Link
EP (1) EP1268985A1 (fr)
AU (1) AU2000240471A1 (fr)
WO (1) WO2001075277A1 (fr)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004072443A1 (fr) 2003-02-11 2004-08-26 Statoil Asa Centrale electrique a turbines a gaz a cycle combine comportant une interception de co2 et un systeme de chambre de combustion a flux separes
US6910335B2 (en) 2000-05-12 2005-06-28 Clean Energy Systems, Inc. Semi-closed Brayton cycle gas turbine power systems
WO2008065156A1 (fr) * 2006-12-01 2008-06-05 Alstom Technology Ltd Procédé de fonctionnement d'une turbine à gaz
WO2008075022A1 (fr) * 2006-12-16 2008-06-26 Keld Energy Limited Traitement de la biomasse
CN100430583C (zh) * 2003-03-18 2008-11-05 弗劳尔公司 具有二氧化碳回收的湿空气涡轮机循环设备
WO2010104547A3 (fr) * 2009-03-09 2010-11-04 Clean Energy Systems, Inc. Procédé et système pour améliorer une sortie de puissances de centrales électriques à cycle thermique renouvelable
FR2958999A1 (fr) * 2010-04-16 2011-10-21 Air Liquide Procede de chauffage d'au moins un fluide
WO2010072337A3 (fr) * 2008-12-23 2012-07-05 Uhde Gmbh Procédé d'utilisation d'un gaz de synthèse issu d'un gazéificateur
WO2013022682A1 (fr) * 2011-08-11 2013-02-14 Kellogg Brown & Root Llc Systèmes et procédés pour la commande de réacteurs de transport
EP2706298A1 (fr) * 2012-09-05 2014-03-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil pour fournir un gaz riche en oxygène à au moins deux unités de consommation de gaz riche en oxygène
US8752391B2 (en) 2010-11-08 2014-06-17 General Electric Company Integrated turbomachine oxygen plant
CN103912385A (zh) * 2014-04-03 2014-07-09 华北电力大学 集成氧离子传输膜富氧燃烧法捕集co2的igcc系统
NO343989B1 (no) * 2003-02-11 2019-08-05 Equinor Asa Effektiv kombinert syklus kraftverk med CO2-innfanging og et brennkammerarrangement med separate strømmer
US10391464B2 (en) 2015-03-16 2019-08-27 Watt Fuel Cell Corp. Centrifugal blower system with internal gas mixing and gas phase chemical reactor incorporating same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1298434A (en) * 1971-05-21 1972-12-06 John Joseph Kelmar Non-polluting constant output electric power plant
DE3924908A1 (de) * 1989-07-27 1991-01-31 Siemens Ag Verfahren und anlage zur minderung des kohlendioxidgehalts der abgase bei fossiler verbrennung
US5590519A (en) * 1992-07-13 1997-01-07 Bal Ab Combined combustion and exhaust gas cleansing plant
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
EP0831205A2 (fr) * 1996-09-20 1998-03-25 Kabushiki Kaisha Toshiba Système de production d'énergie capable de la séparation et de la récupération du dioxyde de carbone
US9623098B2 (en) 2008-05-26 2017-04-18 Cadila Healthcare Limited Combined measles-human papilloma vaccine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1298434A (en) * 1971-05-21 1972-12-06 John Joseph Kelmar Non-polluting constant output electric power plant
DE3924908A1 (de) * 1989-07-27 1991-01-31 Siemens Ag Verfahren und anlage zur minderung des kohlendioxidgehalts der abgase bei fossiler verbrennung
US5590519A (en) * 1992-07-13 1997-01-07 Bal Ab Combined combustion and exhaust gas cleansing plant
US5724805A (en) * 1995-08-21 1998-03-10 University Of Massachusetts-Lowell Power plant with carbon dioxide capture and zero pollutant emissions
EP0831205A2 (fr) * 1996-09-20 1998-03-25 Kabushiki Kaisha Toshiba Système de production d'énergie capable de la séparation et de la récupération du dioxyde de carbone
US9623098B2 (en) 2008-05-26 2017-04-18 Cadila Healthcare Limited Combined measles-human papilloma vaccine

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6910335B2 (en) 2000-05-12 2005-06-28 Clean Energy Systems, Inc. Semi-closed Brayton cycle gas turbine power systems
US7490472B2 (en) 2003-02-11 2009-02-17 Statoil Asa Efficient combined cycle power plant with CO2 capture and a combustor arrangement with separate flows
NO343989B1 (no) * 2003-02-11 2019-08-05 Equinor Asa Effektiv kombinert syklus kraftverk med CO2-innfanging og et brennkammerarrangement med separate strømmer
WO2004072443A1 (fr) 2003-02-11 2004-08-26 Statoil Asa Centrale electrique a turbines a gaz a cycle combine comportant une interception de co2 et un systeme de chambre de combustion a flux separes
CN100430583C (zh) * 2003-03-18 2008-11-05 弗劳尔公司 具有二氧化碳回收的湿空气涡轮机循环设备
US8375723B2 (en) 2006-12-01 2013-02-19 Alstom Technology Ltd. Method for operating a gas turbine
WO2008065156A1 (fr) * 2006-12-01 2008-06-05 Alstom Technology Ltd Procédé de fonctionnement d'une turbine à gaz
JP2010511123A (ja) * 2006-12-01 2010-04-08 アルストム テクノロジー リミテッド ガスタービンを運転する方法
WO2008075022A1 (fr) * 2006-12-16 2008-06-26 Keld Energy Limited Traitement de la biomasse
GB2444856B (en) * 2006-12-16 2011-04-06 Keld Energy Ltd Processing biomass
US9091213B2 (en) 2006-12-16 2015-07-28 Keld Energy Limited Processing biomass
US8631658B2 (en) 2008-03-07 2014-01-21 Clean Energy Systems, Inc. Method and system for enhancing power output of renewable thermal cycle power plants
CN102405340B (zh) * 2008-12-23 2015-06-03 犹德有限公司 利用来自气化器的合成气的方法
WO2010072337A3 (fr) * 2008-12-23 2012-07-05 Uhde Gmbh Procédé d'utilisation d'un gaz de synthèse issu d'un gazéificateur
US9410480B2 (en) 2008-12-23 2016-08-09 Thyssenkrupp Uhde Gmbh Method for use of the synthesis gas that comes from a gasifier
WO2010104547A3 (fr) * 2009-03-09 2010-11-04 Clean Energy Systems, Inc. Procédé et système pour améliorer une sortie de puissances de centrales électriques à cycle thermique renouvelable
FR2958999A1 (fr) * 2010-04-16 2011-10-21 Air Liquide Procede de chauffage d'au moins un fluide
US8752391B2 (en) 2010-11-08 2014-06-17 General Electric Company Integrated turbomachine oxygen plant
WO2013022682A1 (fr) * 2011-08-11 2013-02-14 Kellogg Brown & Root Llc Systèmes et procédés pour la commande de réacteurs de transport
EP2706298A1 (fr) * 2012-09-05 2014-03-12 L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Procédé et appareil pour fournir un gaz riche en oxygène à au moins deux unités de consommation de gaz riche en oxygène
WO2014037250A1 (fr) * 2012-09-05 2014-03-13 Babcock And Wilcox Power Generation Group, Inc. Procédé pour fournir un gaz riche en oxygène et un combustible à au moins deux unités consommant un gaz riche en oxygène
US9453645B2 (en) 2012-09-05 2016-09-27 L'Air Liquide Société Anonyme Pour L'Étude Et L'Exploitation Des Procedes Georges Claude Process for providing an oxygen rich gas and fuel to at least two oxygen rich gas consuming units
CN103912385A (zh) * 2014-04-03 2014-07-09 华北电力大学 集成氧离子传输膜富氧燃烧法捕集co2的igcc系统
US10391464B2 (en) 2015-03-16 2019-08-27 Watt Fuel Cell Corp. Centrifugal blower system with internal gas mixing and gas phase chemical reactor incorporating same

Also Published As

Publication number Publication date
EP1268985A1 (fr) 2003-01-02
AU2000240471A1 (en) 2001-10-15

Similar Documents

Publication Publication Date Title
US6148602A (en) Solid-fueled power generation system with carbon dioxide sequestration and method therefor
JP5128243B2 (ja) 発電用ガスタービンを利用した発電所並びにco2排出量の低減法
US6877322B2 (en) Advanced hybrid coal gasification cycle utilizing a recycled working fluid
US20040011057A1 (en) Ultra-low emission power plant
US7739864B2 (en) Systems and methods for power generation with carbon dioxide isolation
EP1827656B1 (fr) Procede d'elimination et de recuperation de co2 a partir d'un gaz d'echappement
US20030131582A1 (en) Coal and syngas fueled power generation systems featuring zero atmospheric emissions
US5572861A (en) S cycle electric power system
US10940424B2 (en) Method for liquid air energy storage with fueled and zero carbon emitting power output augmentation
EP1268985A1 (fr) Systeme de production d'energie a combustible solide a sequestration de dioxyde de carbone et procede associe
RU2594096C2 (ru) Устройство для компрессии диоксида углерода
MX2012014459A (es) Combustion estequiometrica con recirculacion de gas de escape y enfriador de contacto directo.
WO2008119784A2 (fr) Ensemble muni d'une turbine à vapeur et d'un condensateur
KR101586105B1 (ko) 이산화탄소를 제거하는 화력 발전소
CA2618030C (fr) Une methode pour l'exploitation d'une turbine a gaz et une turbine a gaz pour la mise en oeuvre de la methode
AU2012201567B2 (en) Integrated gasification combined cycle system with vapour absorption chilling
JP2000337108A (ja) 二酸化炭素回収型複合発電システム
CN109681325B (zh) 天然气-超临界co2联合循环发电工艺
CN209875312U (zh) 适用于低温环境的热力发电系统
CN109630269B (zh) 天然气-蒸汽联合循环洁净发电工艺
CN113623074B (zh) 一种采用燃气轮机排烟的制氧的igcc系统及其工作方法
Allam et al. Systems and methods for power production using nested CO2 cycles
JP2004150356A (ja) 発電プラント
Stankovic Gas-Turbine-Cycle District Heating/Cooling-Power System With Refrigerating Exhaust
JP2000130184A (ja) ガスタービン装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000919850

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000919850

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2000919850

Country of ref document: EP