明細書 淡水化装置 技術分野 Description Desalination equipment Technical field
本発明は、 太陽エネルギーやその他の熱源を利用して海水, 塩分を含んだ地下 水 (かん水) 、 産業廃水等から淡水 (蒸留水)を得るための淡水化装置及び方法に 関する。 背景技術 The present invention relates to a desalination apparatus and method for obtaining fresh water (distilled water) from seawater, salt-containing groundwater (brine water), industrial wastewater, or the like using solar energy or another heat source. Background art
近年は、 生活用水、 工業用水, 灌漑用水など、 淡水の使用は増大し、 水資源の 保全、 有効利用が益々重要な課題となってきている。 In recent years, the use of fresh water, such as domestic water, industrial water, and irrigation water, has increased, and conservation and effective use of water resources has become an increasingly important issue.
海水を淡水化する装置は、 従来から知られており、 中東などでは、 大規模な淡 水化プラントが設置されてきている。 Devices for desalinating seawater have been known for some time, and large-scale desalination plants have been installed in the Middle East and elsewhere.
しかし、 淡水化装置は、 基本的には、 海水などの原水を加熱することにより水 蒸気となし、 これを凝縮して淡水を生成するのを基本的構成とするものであり、 原水の加熱には、 これまでは化石燃料や電力などのエネルギーを大量に消費して 行うのが-一般的であった。 However, desalination equipment basically has the basic configuration of heating raw water such as seawater to form water vapor and condensing it to produce fresh water. In the past, it was common practice to consume large amounts of energy, such as fossil fuels and electricity.
これに対して、 近年は、 エネルギー消費ができるだけ少なく、 しかも、 効率良 く淡水化のできる装置が望まれ、 その開発が行われてきている。 例えば、 太陽熱 を利用したものや、 工業用夕一ビンからの廃熱を利用するものなどが開発されて きており、 その実用化も計られているが、 それらのより一層の改善が望まれてい る。 On the other hand, in recent years, there has been a demand for a device that can reduce energy consumption as much as possible and that can efficiently desalinate, and its development has been carried out. For example, those that use solar heat and those that use waste heat from industrial bins have been developed and are being put to practical use, but further improvements are desired. ing.
本発明は、 このような点に関しなされたものであり、 より効率良く淡水化する ことのできる装置を提供することを目的とするものである。 発明の開示 The present invention has been made in view of such a point, and an object of the present invention is to provide a device capable of desalinating more efficiently. Disclosure of the invention
すなわち、 本発明は、 熱源と、 複数の蒸発器を備え、 原水を前記熱源からの熱 で加熱することにより同原水から水蒸気を発生させる蒸発装置と、 蒸発装置内で
加熱された原水から発生した水蒸気を当該蒸発装置の最後段の蒸発器から受け入 れ凝縮させて蒸留水とするための凝縮器と、 蒸発装置の蒸発器内の空間を大気圧 以下に減圧する真空装置とを有し、 蒸発器は、 その最前段の蒸発器が外部からの 原水を受け入れるようになされ、 各蒸発器は所定量を超える原水を次段の蒸発器 に流下するように接続されており、 且つ、 最前段の蒸発器の熱交換器には熱源か らの熱が供給され、 同最前段の熱交換器において原水から発生した水蒸気は次段 の蒸発器の熱交換器に加熱源として供給され、 該供給された水蒸気が当該次段の 蒸発器において原水との熱交換によって凝縮されて発生した凝縮水と、 同熱交換 によって原水から発生した水蒸気とを、 更に次段の蒸発器の熱交換器に加熱源と して供給し、 以下の蒸発器において同様の加熱源供給を行うようにされており、 最後段の蒸発器で発生した水蒸気は前記凝縮器に供給されて凝縮されて蒸留水と され、 同最後段の蒸発器から排出される蒸留水とともに淡水として取り出される ようにしたことを特徴とする淡水化装置を提供する。 この装置では、 前段の蒸発 器で発生した水蒸気と凝縮水とが次段の熱交換器での加熱源として用いられるの で、 当該淡水化装置内での熱を有効に利用することができる。 That is, the present invention provides a heat source, a plurality of evaporators, and an evaporator that generates steam from the raw water by heating the raw water with heat from the heat source. A condenser for receiving water vapor generated from heated raw water from the last evaporator of the evaporator and condensing it into distilled water, and depressurizing the space in the evaporator of the evaporator to below atmospheric pressure. A vacuum device, wherein the evaporator at the foremost stage receives raw water from the outside, and each evaporator is connected such that more than a predetermined amount of raw water flows down to the next evaporator. In addition, heat from the heat source is supplied to the heat exchanger of the first stage evaporator, and the steam generated from the raw water in the first stage heat exchanger is heated by the heat exchanger of the next stage evaporator. The condensed water generated by condensing the supplied water vapor by heat exchange with the raw water in the next-stage evaporator and the water vapor generated from the raw water by the heat exchange are further supplied to the next-stage evaporator. As a heat source to the heat exchanger And the same heating source is supplied to the following evaporator.The water vapor generated in the last evaporator is supplied to the condenser and condensed into distilled water. Provided is a desalination apparatus characterized in that it is taken out as desalinated water together with distilled water discharged from an evaporator. In this apparatus, since the steam and the condensed water generated in the evaporator in the preceding stage are used as a heating source in the heat exchanger in the next stage, the heat in the desalination apparatus can be effectively used.
具体的には、 真空装置は、 各蒸発器の蒸発空間、 該蒸発空間に連通する凝縮空 間、 及び、 蒸留水貯蔵空間を減圧するようにし、 また、 最後段の蒸発器から排出 される濃縮原水を、 凝縮器の冷却水として使用するができる。 また、 蒸発器は、 原水を受け入れるための貯留室を有し、 最前段の蒸発器に供給される原水は、 少 なくとも一部の蒸発器の貯留室内を通る原水予熱管路を通された後に、 最前段の 蒸発器に供給されるようにすることもできる。 更に、 蒸発装置は、 最前段の蒸発 器の前段に配置された脱気室を有し、 該脱気室は供給される原水を収容し、 熱源 からの熱によって加熱して当該原水中に含まれるガスを脱気し、 該脱気した原水 を該最前段の蒸発器に供給するようにすることができる。 このようにすることに より、 より効率よく淡水化作用を行うことができる。 Specifically, the vacuum device reduces the pressure in the evaporating space of each evaporator, the condensing space communicating with the evaporating space, and the distilled water storage space, and the concentration discharged from the last evaporator. Raw water can be used as cooling water for the condenser. In addition, the evaporator has a storage chamber for receiving raw water, and the raw water supplied to the foremost evaporator is passed through a raw water preheating pipeline that passes through at least some of the evaporator storage chambers. Later, it can be supplied to the first stage evaporator. Further, the evaporator has a deaeration chamber arranged in front of the foremost evaporator, and the deaeration chamber contains supplied raw water, and is heated by heat from a heat source to be contained in the raw water. The degasified raw water can be supplied to the foremost evaporator. By doing so, desalination can be performed more efficiently.
また、 1つの蒸発器において加熱源として使用され熱交換によって凝縮され発 生した前記凝縮水を、 次段の蒸発器へ加熱源として供給するための凝縮水通路を 有し、 該通路には絞りが設けられ、 該絞りの前後で差圧が生じるようにすること ができる。 このようにすることにより、 原水から脱気された不凝縮ガスが通路内
に溜まらずに流下し、 外部へ排出されやすくすることができ、 これによつても原 水と加熱源との間の熱交換をより適正に行うことを可能として効率的な淡水化作 用を行うことができるようになる。 In addition, a condensed water passage for supplying the condensed water used as a heating source in one evaporator and condensed and generated by heat exchange to a next-stage evaporator as a heating source is provided. And a differential pressure can be generated before and after the throttle. By doing so, the non-condensable gas degassed from the raw water will The water can flow down without accumulating in the water, and it can be easily discharged to the outside.This also enables the heat exchange between the raw water and the heating source to be performed more appropriately, and thus enables efficient desalination. Will be able to do it.
更に、 本発明は、 熱源と、 原水を収容する脱気室, 及び、 該脱気室に続いて多 段に配置した、 原水を収容する複数の蒸発器を具備し、 前記熱源から供給される 熱により原水の加熱蒸発を行う蒸発装置であって、 脱気室に原水が導入され、 導 入された原水が順次後段の蒸発器に送られるようになされており、 且つ、 各蒸発 器において発生した原水からの水蒸気が後段の蒸発器の加熱源として送られるよ うになされた多重効用関係に接続されてなる蒸発装置と、 該蒸発装置における最 後段の蒸発器で発生された水蒸気を受け入れて凝縮し淡水を生成する凝縮器と、 脱気室を大気圧以下に減圧し、 該脱気室での原水加熱により発生した不凝縮ガス を排出する真空装置とを具備することを特徴とする淡水化装置を提供する。 蒸発 器に供給される原水が、 脱気室で予め脱気されることにより、 淡水化装置内に不 凝縮ガスが滞留するのを低減し、それによつて原水と加熱源との熱伝達をよくし、 淡水化の効率を上げることができる。 Further, the present invention includes a heat source, a deaeration chamber for accommodating raw water, and a plurality of evaporators for accommodating raw water arranged in multiple stages following the deaeration chamber, and supplied from the heat source. An evaporator that heats and evaporates raw water by heat, in which raw water is introduced into a deaeration chamber, and the introduced raw water is sequentially sent to a subsequent evaporator, and is generated in each evaporator. Evaporator connected in a multiple-effect relationship so that the steam from the raw water is sent as a heating source for the subsequent evaporator, and receives and condenses the steam generated by the last evaporator in the evaporator A desalination system comprising: a condenser for producing fresh water; and a vacuum device for reducing the pressure of the deaeration chamber to below atmospheric pressure and discharging non-condensable gas generated by heating the raw water in the deaeration chamber. Provide equipment. The raw water supplied to the evaporator is degassed in the degassing chamber in advance to reduce the accumulation of non-condensable gas in the desalination unit, thereby improving the heat transfer between the raw water and the heating source. And increase the efficiency of desalination.
この装置においては、 真空装置によって、 凝縮器の凝縮空間、 該蒸発空間に連 通する凝縮空間、 及び、 蒸発器の蒸発空間を減圧するようにし、 この減圧と、 上 記脱気室の減圧とを切り換えて行うようにすることが好ましい。 この切換は、 減 圧する空間内部の圧力に大きな差があり、 同時に減圧することは効率的ではない からである。 In this apparatus, a vacuum device is used to reduce the pressure in the condensation space of the condenser, the condensation space communicating with the evaporation space, and the evaporation space of the evaporator. It is preferable to perform the switching. This switching is because there is a large difference in the pressure inside the space to be reduced, and it is not efficient to reduce the pressure at the same time.
また、 脱気室と凝縮器の水蒸気入口側とは絞りを経由して真空装置に接続する ようにするのが好ましい。 これも前述と同様に、 不凝縮ガスの滞留を防ぐためで ある。 Further, it is preferable that the deaeration chamber and the steam inlet side of the condenser be connected to a vacuum device via a throttle. This is also to prevent stagnation of non-condensable gas as described above.
具体的な例としては、 蒸発器は上下に重ねられ、 脱気室は、 最上段の蒸発器の 上に設定され、 脱気室及び蒸発器は原水を貯留する貯留槽を有し、 各貯留槽内に 貯留された原水は、 同貯留槽から溢水することにより、 その下段にある蒸発器の 貯留槽へ流下するようにされ、 脱気室の貯留槽から溢水した原水は、 U字管部分 を有する管路を通して、 最上段の蒸発器の貯留槽に流下されるようにされ、 該 U 字管部分は、 最上段の蒸発器における最高温度での飽和蒸気圧力と、 前記真空装
置によって前記脱気室にかけられる最高の減圧圧力との差圧に相当するへッドを 有するようにされる。 また、 熱源を、 太陽エネルギーにより熱媒を加熱する太陽 熱集熱器とし、 該太陽熱集熱器からの熱媒蒸気を加熱源として、 蒸発装置の脱気 室と最上段の蒸発器の熱交換器に供給し、 凝縮した凝縮熱媒を該太陽熱集熱器に 戻すようにすることができる。 As a specific example, the evaporator is stacked up and down, the deaeration chamber is set on the top evaporator, and the deaeration chamber and the evaporator have storage tanks for storing raw water. The raw water stored in the tank overflows from the storage tank and flows down to the storage tank of the evaporator at the lower stage, and the raw water that overflows from the storage tank in the degassing chamber is U-shaped The U-shaped pipe section is provided with a saturated steam pressure at the highest temperature in the uppermost evaporator and the vacuum device. The head has a head corresponding to the differential pressure from the highest reduced pressure applied to the degassing chamber. Also, the heat source is a solar heat collector that heats the heat medium by solar energy, and the heat medium vapor from the solar heat collector is used as a heat source to exchange heat between the degassing chamber of the evaporator and the uppermost evaporator. The condensed heat medium supplied to the solar collector may be returned to the solar heat collector.
更に、 本発明は、 太陽熱を集熱して熱媒を加熱し熱媒の蒸気を発生させる集熱 パネルを有する太陽熱集熱器と、 熱媒と原水との間で熱交換を行うための熱交換 器を有する蒸発装置と、 該蒸発装置へ原水を供給する原水供給装置と、 蒸発装置 内で発生した水蒸気を受け入れ凝縮させて蒸留水とするための凝縮装置と、 太陽 熱集熱器で蒸気とされた熱媒を前記蒸発器の熱交換器へ供給する熱媒供給管路、 及び、 熱交換器での原水との熱交換により凝縮した熱媒を前記太陽熱集熱器へ帰 還させる熱媒帰還管路を有し、 当該熱媒の太陽熱集熱器での蒸発, 及び、 熱交換 器での凝縮の繰り返しによるサ一モサイフォン方式で該熱媒の循環を行う熱媒循 環回路であって、 熱媒帰還管路内に設けられ、 同管路内の凝縮熱媒を太陽熱集熱 器に向けて送給するためのポンプを有する熱媒循環回路とを有することを特徴と する淡水化装置を提供する。 熱媒をポンプによって集熱パネルに供給することが できるので、 熱媒の集熱パネルに対するレベルを適正に維持することができ、 集 熱パネルでの、 熱媒への集熱を適正に行うことができる。 具体的には、 この装置 では、 熱媒帰還管路内における前記ポンプの上流側に凝縮熱媒を収容するバッフ ァタンクを設けることが好ましい。 また、 ポンプは少なくとも太陽熱集熱器が最 大日射時に蒸発する熱媒量を該太陽熱集熱器に供給できる容量を有するものとさ れる。 Further, the present invention provides a solar heat collector having a heat collecting panel that collects solar heat to heat a heat medium and generate steam of the heat medium, and a heat exchange for performing heat exchange between the heat medium and raw water. An evaporating device having a vessel, a raw water supply device for supplying raw water to the evaporating device, a condensing device for receiving and condensing water vapor generated in the evaporating device to form distilled water, A heat medium supply pipe for supplying the heat medium to the heat exchanger of the evaporator; and a heat medium for returning the heat medium condensed by heat exchange with raw water in the heat exchanger to the solar heat collector. A heat medium circulating circuit having a return line and circulating the heat medium in a thermosiphon system by repeating evaporation of the heat medium in a solar heat collector and condensation in a heat exchanger. Is provided in the heat medium return pipe and directs the condensed heat medium in the pipe to the solar heat collector. Having a heat medium circulation circuit having a pump for feeding Te provides a desalination apparatus according to claim. Since the heat medium can be supplied to the heat collecting panel by the pump, the level of the heat medium with respect to the heat collecting panel can be maintained at an appropriate level, and the heat collecting by the heat collecting panel to the heat medium can be performed properly. Can be. Specifically, in this apparatus, it is preferable to provide a buffer tank for containing the condensed heat medium in the heat medium return pipe upstream of the pump. Further, the pump has a capacity capable of supplying at least the amount of the heat medium which evaporates at the time of maximum solar radiation to the solar heat collector.
更にまた、 本発明では、 熱源と、 該熱源から供給される熱で原水を加熱し水蒸 気を発生する蒸発装置と、 該蒸発装置で発生した水蒸気を受け入れて冷却凝縮し て淡水を生成する凝縮器と、 蒸発装置内で水蒸気を発生して濃縮された原水を、 前記凝縮器に導入して冷却水として使用する冷却装置とを備えることを特徴とす る淡水化装置を提供する。 冷却装置は、 淡水化作用をより効率的に行うためのも のである。 この装置においては、 冷却装置が、 送風ファンを有し、 該送風ファン によって濃縮原水を冷却して、 凝縮器の冷却水として使用するようにすることが
できる。 更に、 蒸発装置が熱交換器を有し、 熱源供給装置が太陽エネルギーによ り熱媒を加熱する太陽熱集熱器とし、 熱交換器は加熱された熱媒蒸気を受け入れ て、 原水との間で熱交換を行うようにすることができる。 また、 蒸発装置は多段 に重ねられた複数の蒸発器を備え、 各蒸発器は前記熱交換器を有し、 これら蒸発 器が各蒸発器において発生した原水からの水蒸気を下段の蒸発器に加熱源として 送るようになされた多重効用関係に接続され、 冷却装置は、 最下段の蒸発器から 排出された濃縮原水を前記凝縮器に導入して冷却水として使用するようにするこ ともできる。 図面の簡単な説明 Still further, in the present invention, a heat source, an evaporator for heating raw water with heat supplied from the heat source to generate water vapor, and receiving and cooling and condensing water vapor generated by the evaporator to produce fresh water There is provided a desalination apparatus comprising: a condenser; and a cooling apparatus for introducing raw water, which is generated by generating steam in an evaporator and concentrated, into the condenser and uses it as cooling water. The cooling system is intended for more efficient desalination. In this device, the cooling device may have a blower fan, and the concentrated fan water may be cooled by the blower fan and used as cooling water for the condenser. it can. Furthermore, the evaporator has a heat exchanger, the heat source supply device is a solar heat collector that heats the heat medium by solar energy, and the heat exchanger receives the heated heat medium vapor and is connected to the raw water. Heat exchange can be performed. The evaporator includes a plurality of evaporators stacked in multiple stages, each evaporator having the heat exchanger, and these evaporators heat the steam from the raw water generated in each evaporator to the lower evaporator. The cooling device may be connected to a multiple-effect relationship adapted to be sent as a source, and the cooling device may introduce the concentrated raw water discharged from the lowermost evaporator into the condenser and use it as cooling water. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施例に係る淡水化装置の構成例を示す図である。 FIG. 1 is a diagram showing a configuration example of a desalination apparatus according to one embodiment of the present invention.
図 2は、 同淡水化装置の太陽熱集熱器と蒸発装置の一部の詳細構成例を示す図 である。 FIG. 2 is a diagram showing a detailed configuration example of a part of a solar heat collector and an evaporator of the desalination apparatus.
図 3は、 同淡水化装置の蒸発装置の一部と濃縮水夕ンク及び蒸留水タンクの詳 細構成例を示す図である。 FIG. 3 is a diagram showing a part of an evaporator of the desalination apparatus and a detailed configuration example of a concentrated water tank and a distilled water tank.
図 4は、 同淡水化装置の真空手段と冷却塔と蒸発装置の一部の詳細構成例を示 す図である。 FIG. 4 is a diagram showing a detailed configuration example of a part of a vacuum means, a cooling tower, and an evaporator of the desalination apparatus.
図 5は、 同淡水化装置の蒸留水タンクと濃縮水タンクと冷却塔の詳細構成例を 示す図でる。 FIG. 5 is a diagram showing a detailed configuration example of a distilled water tank, a concentrated water tank, and a cooling tower of the desalination apparatus.
図 6は、 他の実施例に係る淡水化装置の構成例を示す図である。 発明の好適な実施例 FIG. 6 is a diagram illustrating a configuration example of a desalination apparatus according to another embodiment. Preferred embodiments of the invention
以下、 本発明の実施の形態例を図面に基づいて説明する。 本実施の形態例では 熱源として太陽エネルギーを用いた淡水化装置を例に説明する。 図 1は本発明に 係る淡水化装置の構成例を示す図である。 本淡水化装置は太陽熱集熱器 1、 蒸発 装置 2、 冷却塔 3、 蒸留水タンク 4、 濃縮水タンク 5及び真空手段 6等から構成 される。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present embodiment, a desalination apparatus using solar energy as a heat source will be described as an example. FIG. 1 is a diagram showing a configuration example of a desalination apparatus according to the present invention. This desalination device is composed of a solar heat collector 1, an evaporator 2, a cooling tower 3, a distilled water tank 4, a concentrated water tank 5, a vacuum means 6, and the like.
太陽熱集熱器 1は太陽エネルギーにより熱媒を加熱する複数の太陽熱集熱パネ ル 1 一 1〜 1 一 6からなる。 該太陽熱集熱器 1で加熱された熱媒は配管 7を通つ
て蒸発装置 2に送られ、 蒸発装置 2からの熱媒は配管 8を通してバッファタンク 9に収容され、 更に該バッファタンク 9から熱媒循環ポンプ 2 6及び配管 1 0を 通して太陽熱集熱器 1に戻り循環するようになっている。 The solar heat collector 1 is composed of a plurality of solar heat collecting panels 11 to 11 to heat the heat medium by solar energy. The heat medium heated by the solar heat collector 1 passes through the pipe 7 The heat medium from the evaporator 2 is sent to the evaporator 2, and the heat medium from the evaporator 2 is stored in the buffer tank 9 through the pipe 8. It is designed to circulate back.
蒸発装置 2は最上部に脱気室 2— 1が配置され、 その下に複数台の蒸発器 (こ こでは第 1蒸発器 2— 2〜第 8蒸発器 2— 9の 8台) が配置されて構成されてい る。 原水 (ここでは海水) Wは、 (図 1の右下から延び)蒸発装置 2内を下から上 に順次配管された原水予熱管路 1 2を通された後、 同蒸発装置 2の最上位にある 脱気室 2 — 1に供給される。 脱気室 2 — 1に供給された原水は、 所定量だけ貯留 されるとオーバーフローして、 オーバ一フロー管 1 3を通して、 第 1蒸発器 2— 2に流下し、 同様にして、 第 2〜第 8蒸発器 2— 9の各蒸発器に所定量だけ貯留 しながら流下するとともに、 加熱蒸発されて次第に濃縮されて、 最後にオーバ一 フロー管 1 4を通って濃縮水タンク 5に収容されるようになっている。 The evaporator 2 has a degassing chamber 2-1 at the top, and a plurality of evaporators (here, eight evaporators 2 to 2 to 8 to 9) are located below it. It is configured. The raw water (in this case, seawater) W is passed through the evaporator 2 (from the lower right in Fig. 1), and is passed through the evaporator 2 in order from bottom to top. Supplied to degassing chamber 2 — 1 The raw water supplied to the deaeration chamber 2-1 overflows when a predetermined amount is stored, and flows down to the first evaporator 2-2 through the overflow pipe 13 and similarly to the second to second evaporators. While flowing down while storing a predetermined amount in each evaporator of the 8th evaporator 2-9, it is heated and evaporated and gradually concentrated, and finally stored in the concentrated water tank 5 through the overflow pipe 14 It has become.
太陽熱集熱器 1からの加熱された熱媒の一部は脱気室 2 — 1内に配置された熱 交換器 2 — 1 aを通され、 他は第 1蒸発器 2— 2内に配置された熱交換器 2— 2 aを通されて(図 2参照)、該脱気室 2— 1及び第 1蒸発器 2— 2内に貯留されて いる原水 Wとの間で熱交換が行われる。 第 1蒸発器 2— 2の原水の加熱で蒸発し た水蒸気は蒸気配管 1 5を通って第 2蒸発器 2— 3の熱交換器 2— 3 aに熱源と して送られ原水との間で熱交換が行われる。 また、 第 3蒸発器 2— 4〜第 7蒸発 器 2— 8の原水の加熱で蒸発した水蒸気も次段の蒸発器の熱交換器に熱源として 送られ原水との間で熱交換が行われ、 凝縮されて蒸留水となって最後に蒸留水タ ンク 4に収容される。 Part of the heated heat medium from the solar collector 1 is passed through the heat exchanger 2-1a located in the degassing chamber 2-1, and the other is located in the first evaporator 2-2 After passing through the heat exchanger 2-2a (see FIG. 2), heat exchange is performed between the deaeration chamber 2-1 and the raw water W stored in the first evaporator 2-2. Will be The water vapor evaporated by heating the raw water in the first evaporator 2-2 is sent as a heat source to the heat exchanger 2-3a in the second evaporator 2-3 through the steam pipe 15 and is sent to the raw water. The heat exchange takes place. Also, the steam evaporated by heating the raw water in the third evaporator 2-4 to the seventh evaporator 2-8 is sent to the heat exchanger of the next-stage evaporator as a heat source and exchanges heat with the raw water. Then, it is condensed and becomes distilled water, and is finally stored in the distilled water tank 4.
濃縮水タンク 5の濃縮原水は濃縮原水排出ポンプ 1 6により配管 2 7を通って 冷却塔 3の凝縮器 3— 1の下部タンク 3— 1 aに送られ、 更に濃縮原水循環ボン プ 1 7で散水ノズル 3— 1 cに供給され、 凝縮 (伝熱) パイプ 3— l b上に冷却 水として散水されるようになっている。 最終段の第 8蒸発器 2— 9での原水の加 熱で蒸発した水蒸気は配管 1 8を通って凝縮器 3— 1の凝縮パイプ 3— 1 bに送 られ、 上記散水された濃縮原水との間で熱交換が行われ、 凝縮して蒸留水となり 配管 1 9を通って蒸留水タンク 4に送られる。 下部タンク 3 - 1 aをオーバーフ ローした濃縮水は濃縮水排出管路 2 0を通って排水される。
真空手段 6は気液分離器 6 - 1及び該気液分離器 6 - 1に接続された真空ボン プ 6— 2を具備する。 気液分離器 6— 1は配管 2 1、 2 2、 2 3を介して太陽熱 集熱器 1からの熱媒が通る配管 7、 蒸発装置 2の脱気室 2— 1、 凝縮器 3— 1の ヘッダ一 3— 1 dに接続される。 これにより後に詳述するように、 蒸発装置 2の 蒸発空間及びこれに連通する凝縮空間及び蒸留水貯蔵空間を減圧状態にすること ができる。 The concentrated raw water in the concentrated water tank 5 is sent to the lower tank 3-1a of the condenser 3-1 of the cooling tower 3 through the pipe 27 by the concentrated raw water discharge pump 16 and then the concentrated raw water circulation pump 17 It is supplied to the sprinkling nozzle 3-1 c and is sprayed as cooling water on a 3-lb condensation (heat transfer) pipe. The water vapor evaporated by the heating of the raw water in the eighth evaporator 2-9 in the final stage is sent through the pipe 18 to the condensing pipe 3-1b of the condenser 3-1 to be condensed with the concentrated raw water sprinkled. Heat is exchanged between the two and condensed to form distilled water, which is sent to the distilled water tank 4 through the pipe 19. The concentrated water overflowing the lower tank 3-1a is discharged through the concentrated water discharge line 20. The vacuum means 6 includes a gas-liquid separator 6-1 and a vacuum pump 5-2 connected to the gas-liquid separator 6-1. The gas-liquid separator 6-1 is connected to the pipe 7 through which the heat medium from the solar heat collector 1 passes through the pipes 21, 22, 23. The degassing chamber 2-1 of the evaporator 2, the condenser 3-1 The header is connected to 3-1 d. As a result, as described later in detail, the evaporation space of the evaporator 2 and the condensing space and the distilled water storage space communicating therewith can be reduced in pressure.
また、 蒸留水タンク 4の蒸留水 W bは蒸留水ポンプ 2 5により排出するように なっている。 なお、 図 1において、 V 1〜V 8はパルプである。 Further, the distilled water Wb in the distilled water tank 4 is discharged by a distilled water pump 25. In FIG. 1, V1 to V8 are pulp.
図 2は上記淡水化装置の太陽熱集熱器 1と蒸発装置 2の一部の詳細を示す図で ある。 図示するように、 太陽熱集熱器 1の複数の太陽熱集熱パネル 1 — 1〜 1 一 6で加熱されて蒸気となった熱媒蒸気 Q 1は脱気室 2— 1の熱交換器 2— 1 a及 び第 1蒸発器 2 - 2の熱交換器 2 - 2 aを通って脱気室 2 - 1及び第 1蒸発器 2 一 2に貯留されている原水 Wとの間で熱交換が行なわれ、 凝縮し凝縮熱媒 Q 2と なってバッファタンク 9に収容される。 凝縮熱媒 Q 2は熱媒循環ポンプ 2 6を介 して太陽熱集熱器 1の各太陽熱集熱パネル 1 一 1〜 1— 6に送られる。 FIG. 2 is a view showing details of a part of the solar heat collector 1 and the evaporator 2 of the desalination apparatus. As shown in the figure, a plurality of solar thermal collector panels 1 of the solar thermal collector 1 — 1 to 1 The heat medium vapor Q 1 that has been heated and turned into steam is the heat exchanger 2— of the degassing chamber 2-1 1a and heat exchange between the deaeration chamber 2-1 and the raw water W stored in the first evaporator 221 through the heat exchanger 2-2a of the first evaporator 2-2. Then, it is condensed to be condensed as a heat medium Q 2 and stored in the buffer tank 9. The condensed heat medium Q 2 is sent to each solar heat collecting panel 11-1 to 1-6 of the solar heat collector 1 via the heat medium circulating pump 26.
図 3は上記淡水化装置の蒸発装置 2の一部、 濃縮水タンク 5及び蒸留水タンク 4の詳細を示す図である。 原水予熱管路 1 2は第 8蒸発器 2 - 9〜第 2蒸発器 2 一 3に貯留される原水 W内を通るように配管され、 該原水予熱管路 1 2内を通さ れる原水 Wが各蒸発器内の原水 (濃縮原水) Wとの間での熱交換により予熱され るようになっている。 原水予熱管路 1 2を通って予熱された原水 Wは脱気室 2— 1に供給され、 該脱気室 2— 1をオーバ一フローした原水 Wは、 出口部が U字状 に形成されたオーバーフロー管 1 3を通して第 1蒸発器 2— 2に供給される。 該 オーバ一フロー管 1 3の U字状部 1 3 aは、 最上段の蒸発器である第 1蒸発器 2 一 2の最高温度に相当する飽和蒸気圧力と真空手段 6の最高到達真空度との差圧 に相当するヘッドを有する。 また、 該第 1蒸発器 2 — 2をオーバ一フローした原 水 Wは、 オーバ一フロー管 1 3を通して第 2蒸発器 2— 3に供給され、 同様にし て、 最終段の第 8蒸発器 2— 9まで流下し、 各蒸発器には所定量の原水が貯留さ れる。 FIG. 3 is a diagram showing details of a part of the evaporator 2, the concentrated water tank 5 and the distilled water tank 4 of the desalination apparatus. The raw water preheating line 12 is piped so as to pass through the raw water W stored in the eighth evaporator 2-9 to the second evaporator 23, and the raw water W passing through the raw water preheating line 12 is It is preheated by heat exchange with raw water (concentrated raw water) W in each evaporator. The raw water W preheated through the raw water preheating line 12 is supplied to the degassing chamber 2-1. The raw water W overflowing the degassing chamber 2-1 has a U-shaped outlet portion. The first evaporator 2-2 is supplied to the first evaporator 2-2 through the overflow pipe 13. The U-shaped portion 13a of the overflow pipe 13 has a saturated steam pressure corresponding to the highest temperature of the first evaporator 22 which is the uppermost evaporator, the maximum ultimate vacuum degree of the vacuum means 6, and It has a head corresponding to the differential pressure of The raw water W that has overflowed the first evaporator 2-2 is supplied to the second evaporator 2-3 through the overflow pipe 13, and similarly, the eighth stage evaporator 2 in the final stage — Flow down to 9 and each evaporator stores a certain amount of raw water.
第 1蒸発器 2 - 2で蒸発した水蒸気 W aは第 2蒸発器 2— 3の熱交換器 2 - 3
aを通って原水 Wとの間で熱交換が行われ凝縮し、 蒸留水 W bとなって該第 2蒸 発器 2— 3で発生した水蒸気 W aとともに第 3蒸発器 2— 4の熱交換器 2— 4 a に送られ原水との間で熱交換が行われる。 そして凝縮し蒸留水 W bとなって第 3 蒸発器 2— 4で発生した水蒸気 W aとともに第 4蒸発器 2— 5の熱交換器 2— 5 aに送られる。 このように、 各蒸発器で順に蒸発,凝縮が繰返され、 最終段の第 8蒸発器 2— 9の熱交換器 2— 9 aで凝縮した蒸留水 W bは蒸留水タンク 4に供 給される。 The water vapor W a evaporated in the first evaporator 2-2 is the heat exchanger 2-3 in the second evaporator 2-3. a, heat exchange is performed between the raw water W and the raw water W, which condenses to become distilled water Wb, and the heat of the third evaporator 2-4 together with the steam Wa generated in the second evaporator 2-3. The heat is sent to exchanger 2-4a and exchanges with the raw water. Then, it condenses and becomes distilled water Wb and is sent to the heat exchanger 2-5a of the fourth evaporator 2-5 together with the water vapor Wa generated in the third evaporator 2-4. As described above, evaporation and condensation are repeated in each evaporator in order, and the distilled water Wb condensed in the heat exchanger 2-9a of the eighth evaporator 2-9 in the final stage is supplied to the distilled water tank 4. You.
図 4は上記淡水化装置の真空手段 6、 冷却塔 3及び蒸発装置 2の一部の詳細を 示す図である。 図示するように、 脱気室 2— 1、 熱媒が通る配管 7及び冷却塔 3 の凝縮器 3— 1が配管 2 1 、 2 2 、 2 3を通して真空ポンプ 6— 2に接続されて いる。 これにより、 脱気室 2— 1の内部空間、 配管 7及びこれに連通する第 1蒸 発器 2— 2の内部空間、 冷却塔 3のヘッダ一 3 - 1 dや凝縮パイプ 3— 1 b内の 凝縮空間を減圧できるようになつている。 なお、 第 2蒸発器 2— 3以降の各蒸発 器の蒸発空間及び凝縮空間は蒸気配管 1 5で連通されており、 同様に減圧できる ようになつている。 また、 排気は真空ポンプ 6— 2の吐出口に接続された排気パ ィプ 6— 3を通して行なわれる。 FIG. 4 is a diagram showing details of a part of the vacuum means 6, the cooling tower 3 and the evaporator 2 of the desalination apparatus. As shown in the figure, the deaeration chamber 2-1, the pipe 7 through which the heat medium passes, and the condenser 3-1 of the cooling tower 3 are connected to the vacuum pump 6-2 through the pipes 21, 22, 23. As a result, the internal space of the deaeration chamber 2-1, the pipe 7 and the internal space of the first evaporator 2-2 communicating therewith, the header 1-3-1d of the cooling tower 3, and the condensing pipe 3-1b The condensing space can be decompressed. In addition, the evaporation space and the condensation space of each evaporator after the second evaporator 2-3 are communicated with the steam pipe 15 so that the pressure can be similarly reduced. In addition, exhaust is performed through an exhaust pipe 6-3 connected to a discharge port of the vacuum pump 6-2.
図 5は上記淡水化装置の蒸留水タンク 4、 濃縮水タンク 5及び冷却塔 3の詳細 を示す図である。 蒸発装置 2の第 8蒸発器 2— 9で蒸発した水蒸気 W aは配管 1 8を通って凝縮器 3— 1に送られ、 凝縮パイプ 3— 1 bを通る間に散水ノズル 3 — 1 cから散布される濃縮原水 W及びファン 3 - 2から送られる空気との間で熱 交換によって冷却が行なわれ、 凝縮水 W bとなって蒸留水タンク 4に送られる。 このとき散水ノズル 3— 1 cから散布される濃縮原水 Wは、 ファン 3— 2から送 られた空気で冷却されるから、 水蒸気 W aは効率良く凝縮される。 FIG. 5 is a diagram showing details of the distilled water tank 4, the concentrated water tank 5, and the cooling tower 3 of the desalination apparatus. The steam W a evaporated in the eighth evaporator 2-9 of the evaporator 2 is sent to the condenser 3-1 through the pipe 18 and from the watering nozzle 3-1c while passing through the condensation pipe 3-1b. Cooling is performed by heat exchange between the concentrated raw water W to be sprayed and the air sent from the fan 3-2, and the condensed water W b is sent to the distilled water tank 4. At this time, the concentrated raw water W sprayed from the watering nozzle 3-1 c is cooled by the air sent from the fan 2-2, so that the water vapor Wa is efficiently condensed.
上記構成の淡水化装置には、大気圧以上で常に原水を供給できる原水タンク(図 示せず) を設置する。 淡水化装置の設置初期は、 蒸発装置 2等の運転時に真空状 態が要求される系 (蒸発装置 2の各蒸発器の蒸発空間及び蒸発空間に連通する凝 縮空間、 冷却塔 3の凝縮器 3— 1の凝縮空間、 蒸留水タンク 4及び濃縮水タンク A raw water tank (not shown) that can always supply raw water at atmospheric pressure or higher will be installed in the desalination apparatus with the above configuration. In the initial stage of installation of the desalination unit, a system that requires a vacuum state during operation of the evaporator 2 etc. 3-1 Condensing space, distilled water tank 4 and concentrated water tank
5の蒸留水及び濃縮水貯蔵空間) の減圧を行う。 そしてバルブ V 8を開くことに より、 真空圧を利用して原水を規定量投入する。 当該淡水化装置は、 運転開始後、
常時減圧状態であるため、 蒸発量に応じて第 1蒸発器 2— 2の原水 Wの液面を維 持するように自動的にバルブ V 8を開閉制御することで、 原水 Wを当該淡水化装 置内に供給することができる。 なお、 原水 Wの供給は原水供給ポンプ 1 1を用い て供給してもよい。 (Distilled water and concentrated water storage space of 5). Then, by opening the valve V8, a specified amount of raw water is introduced using vacuum pressure. After the desalination unit starts operation, Since the pressure is constantly reduced, the valve V8 is automatically opened and closed so as to maintain the level of the raw water W of the first evaporator 2-2 according to the amount of evaporation. It can be supplied in the room. The raw water W may be supplied using a raw water supply pump 11.
太陽熱集熱器 1は太陽エネルギーを吸収し、 内部の熱媒を加熱する。 内部が減 圧されている太陽熱集熱器 1内で加熱された熱媒は蒸発し熱媒蒸気 Q 1となり、 脱気室 2— 1の熱交換器 2 - 1 a及び第 1蒸発器 2— 2の熱交換器 2 - 2 aに導 入され、 これらに貯留されている原水 Wとの間で熱交換が行われ、 原水 Wは加熱 され、 熱媒蒸気 Q 1は凝縮して凝縮熱媒 Q 2となる。 このように熱媒は蒸発 '凝 縮を繰り返すことにより自然循環、 即ちサーモサイフォンにより循環されるが、 ここでは更に、 熱循環ポンプ 8により凝縮熱媒 Q 2を太陽熱集熱器の集熱パネル 1 一 1〜 1 一 nに強制的に送給できるようにしてあり、 太陽熱集熱器内での熱媒 のレベルを一定に保つことができるようにしている。 Solar heat collector 1 absorbs solar energy and heats the internal heating medium. The heat medium heated in the solar heat collector 1 whose inside is depressurized evaporates to become heat medium vapor Q1, and the heat exchanger 2-1a of the deaeration chamber 2-1 and the first evaporator 2 The heat is exchanged with the raw water W that is introduced into the heat exchangers 2-2 a and is stored therein.The raw water W is heated, and the heat medium vapor Q 1 is condensed and condensed heat medium Q2. As described above, the heat medium is naturally circulated by repeating evaporation and condensation, that is, circulated by a thermosiphon. In this case, the heat circulating pump 8 further condenses the condensed heat medium Q 2 to the heat collecting panel 1 of the solar heat collector. It is designed to be able to forcibly supply power to 11 to 11 n so that the level of the heat medium in the solar collector can be kept constant.
第 1蒸発器 2— 2の原水 Wは、 熱媒蒸気 Q 1により加熱されると蒸発して水蒸 気 W aを発生する。 この水蒸気 W aは第 2蒸発器 2— 3の熱交換器 2— 3 aに送 給され、 該第 2蒸発器 2— 3に貯留されている原水 Wとの間で熱交換が行われ、 原水 Wを加熱すると同時に熱を奪われ凝縮して蒸留水 W bとなる。 該原水 Wの加 熱で発生した水蒸気 W aは第 3蒸発器 2— 4の熱交換器 2— 4 aに移送され、 該 第 3蒸発器 2— 4に貯留されている原水 Wとの間で熱交換が行われ、 原水 Wを加 熱すると同時に熱を奪われ凝縮して蒸留水 W bとなる。 このように同じプロセス を繰り返す。 The raw water W of the first evaporator 2-2 evaporates and generates water vapor Wa when heated by the heat medium vapor Q1. This water vapor Wa is supplied to the heat exchanger 2-3a of the second evaporator 2-3, and heat exchange is performed with the raw water W stored in the second evaporator 2-3. At the same time as the raw water W is heated, the heat is deprived and condensed to become distilled water Wb. The water vapor Wa generated by the heating of the raw water W is transferred to the heat exchanger 2-4a of the third evaporator 2-4, and is separated from the raw water W stored in the third evaporator 2-4. Heat is exchanged in the raw water, and at the same time heat is taken away and condensed to form distilled water Wb. The same process is repeated in this way.
第 8蒸発器 2— 9の前段の第 7蒸発器 2— 8で蒸発した水蒸気 W aは第 8蒸発 器 2— 9の熱交換器 2— 9 aに移送され、 原水 Wとの間で熱交換が行われ、 原水 The water vapor W a evaporated in the seventh evaporator 2-8 preceding the eighth evaporator 2-9 is transferred to the heat exchanger 2-9a of the eighth evaporator 2-9, where heat is transferred to the raw water W. Exchange is done, raw water
Wを加熱すると同時に熱を奪われ凝縮して蒸留水となり蒸留水タンク 4に移送さ れる。 また、 最終段の第 8蒸発器 2— 9で蒸発した水蒸気 W aは、 冷却塔 3内の 凝縮器 3— 1へ移送され、 ここで散水ノズル 3— 1 cから散布される濃縮原水 W とファン 3— 2から送られる空気により、 熱を奪われ凝縮し蒸留水となる。 そし て蒸留水タンク 4へと移送される。 At the same time as W is heated, it is deprived of heat and condensed to become distilled water, which is transferred to the distilled water tank 4. Further, the water vapor W a evaporated in the final stage of the eighth evaporator 2-9 is transferred to the condenser 3-1 in the cooling tower 3, where the concentrated raw water W sprayed from the water spray nozzle 3-1c and The air sent from fan 3-2 removes heat and condenses into distilled water. Then, it is transferred to the distilled water tank 4.
蒸発装置 2に供給される原水 Wは第 8蒸発器 2— 9〜第 2蒸発器 2— 3内の原
水 W内を通る原水予熱管路 1 2内を通る。 第 8蒸発器 2— 9〜第 2蒸発器 2— 3 内に貯留されている原水 Wは熱を保有しており、 原水予熱管路 1 2を通る原水 W との間で熱交換が行われ、 該原水予熱管路 1 2を通る原水 Wは予熱される。 これ により第 8蒸発器 2— 9〜第 2蒸発器 2— 3内の濃縮原水 Wが保有する熱を有効 に使用する。 The raw water W supplied to the evaporator 2 is the raw water in the eighth evaporator 2-9 to the second evaporator 2-3. It passes through the raw water preheating line 12 that passes through the water W. The raw water W stored in the eighth evaporator 2-9 to the second evaporator 2-3 holds heat, and heat exchange is performed with the raw water W passing through the raw water preheating pipeline 12. The raw water W passing through the raw water preheating line 12 is preheated. As a result, the heat of the concentrated raw water W in the eighth evaporator 2-9 to the second evaporator 2-3 is effectively used.
更に、 原水 W中に含まれる不凝縮ガスを第 1蒸発器 2— 2〜第 8蒸発器 2— 9 の各蒸発器に供給する前に脱気室 2— 1で脱気されることになる。 不凝縮ガスを 脱気しない場合は、 蒸発器において原水の加熱蒸発を行った際に水蒸気内に、 こ の不凝縮ガスも入り込み、 各蒸発器内の熱交換器における水蒸気と原水 W aとの 間の伝熱を阻害することになるので、 この点、 上記不凝縮ガスの脱気は、 蒸留性 能を向上させることになる。 Further, the non-condensable gas contained in the raw water W is degassed in the deaeration chamber 2-1 before being supplied to each of the first evaporator 2-2 to the eighth evaporator 2-9. . If the non-condensable gas is not degassed, the non-condensable gas also enters the steam when the raw water is heated and evaporated in the evaporator, and the steam and the raw water Wa in the heat exchanger in each evaporator are mixed. In this respect, the degassing of the non-condensable gas will improve the distillation performance, since the heat transfer between them will be hindered.
第 1蒸発器 2— 2〜第 7蒸発器 2— 8の各蒸発器で発生した水蒸気 W aは、 後 段の蒸発器の原水 Wを加熱して凝縮され蒸留水となり、 当該後段の蒸発器での原 水 Wの加熱により発生した水蒸気 W aと一緒になつて、 更に後段の蒸発器の熱交 換器に導入される。 つまり第 1蒸発器 2— 2〜第 7蒸発器 2— 8の各蒸発器は、 蒸気配管 1 5、 及び、 水蒸気が凝縮されて生成された蒸留水 W bが通る絞り付き 蒸留水流路 2 8により、 互いに連通されている。 これにより、 水蒸気 W aの凝縮 潜熱だけでなく蒸留水 W bの顕熱も有効に利用することができる。 また、 蒸留水 流路 2 8を絞り (オリフィス) 付きとすることにより、 当該蒸留水流路 2 8が連 通する前段の蒸発器の水蒸気凝縮空間と後段の蒸発器の水蒸気凝縮空間との間に 圧力差を生じ、 このため、 不凝縮ガスが同前段の凝縮器内にとどまらずに凝縮水 と共に後段側の蒸発器へ流下されるようになる。 不凝縮ガスの蒸発器内での滞留 は、 各蒸発器内の熱交換器における水蒸気と原水 Waとの間の伝熱を阻害するが、 これを防止することができる。 The water vapor Wa generated in each evaporator of the first evaporator 2-2 to the seventh evaporator 2-8 is heated and condensed into the distilled water by heating the raw water W of the latter evaporator. Along with the steam W a generated by heating the raw water W in the above, it is further introduced into the heat exchanger of the subsequent evaporator. In other words, each evaporator of the first evaporator 2-2 to the seventh evaporator 2-8 is provided with a steam pipe 15 and a distilled water flow path 28 with a throttle through which distilled water Wb generated by condensing steam passes. Are communicated with each other. Thereby, not only the latent heat of condensation of the steam W a but also the sensible heat of the distilled water W b can be effectively used. Also, by providing the distilled water flow path 28 with a restrictor (orifice), the distilled water flow path 28 communicates with the steam condensing space of the upstream evaporator and the steam condensing space of the downstream evaporator. A pressure difference is generated, so that the non-condensable gas flows down to the downstream evaporator together with the condensed water without staying in the upstream condenser. The accumulation of the non-condensable gas in the evaporator impedes the heat transfer between the steam and the raw water Wa in the heat exchanger in each evaporator, but can prevent this.
第 1蒸発器 2— 2〜第 8蒸発器 2— 9の各蒸発器は、 供給される原水 Wが常時 規定量を維持するように各蒸発器内にオーバーフロー管 1 3が配置されており、 該ォ一バーフロー管 1 3を通しオーバ一フローした濃縮原水 Wは後段の蒸発器に 原水 Wとして導入されている。 つまり、 各蒸発器は前段の蒸発器から濃縮原水を 順次供給されるようになっている。 これにより、 前段の蒸発器の温度レベルの高
い原水が、 次段の蒸発器の原水の熱源となり、 より効率がよくなる。 このように各段の蒸発器が互いに連通しているので、 原水 wを連続的に供給す ることができ、また蒸留水 W b及び濃縮原水 Wを連続的に排水することができる。 よって第 1蒸発器 2— 2〜第 8蒸発器 2— 9の各段の蒸発器の原水 Wの保有量が 少なくて済むので、 淡水化装置がコンパクトになる上、 保有原水 Wの熱量も少な くて済む。 これにより、 少ない熱供給量で多くの蒸留水 W bが得られ、 効率のよ い運転が可能となる。 そして原水 wの保有量が少ないことから、 日射変動による 応答性が速く効率のよい運転が可能となる。 In each evaporator of the first evaporator 2-2 to the eighth evaporator 2-9, an overflow pipe 13 is arranged in each evaporator so that the supplied raw water W always maintains a specified amount. The concentrated raw water W that has overflowed through the overflow pipe 13 is introduced as raw water W into a downstream evaporator. In other words, each evaporator is supplied with concentrated raw water in sequence from the previous evaporator. This makes it possible to increase the temperature The raw water becomes the heat source of the raw water for the next stage evaporator, and the efficiency becomes higher. Since the evaporators at each stage are in communication with each other, raw water w can be continuously supplied, and distilled water Wb and concentrated raw water W can be continuously discharged. Therefore, the amount of raw water W retained in the evaporators of each stage from the first evaporator 2-2 to the eighth evaporator 2-9 can be reduced, so that the desalination apparatus becomes compact and the amount of heat of the retained raw water W is also small. I just need to. As a result, a large amount of distilled water Wb can be obtained with a small heat supply amount, and efficient operation can be performed. And since the amount of raw water w is small, quick response and efficient operation due to solar radiation fluctuations are possible.
第 1蒸発器 2— 2〜第 8蒸発器 2— 9の各段の蒸発器で蒸発 ·凝縮した蒸留水 は蒸留水タンク 4で一緒になる。 そして、 蒸留水タンク 4内の蒸留水量が規定量 に達したら、 又は連続的に、 蒸留水ポンプ 2 5で大気圧である系外に排出 ·回収 される。 The distilled water evaporated and condensed in the evaporators at each stage of the first evaporator 2-2 to the eighth evaporator 2-9 is collected in the distilled water tank 4. Then, when the amount of distilled water in the distilled water tank 4 reaches a specified amount, or continuously, the distilled water is discharged and recovered outside the system at atmospheric pressure by the distilled water pump 25.
第 1蒸発器 2— 2〜第 8蒸発器 2 - 9の各段の蒸発器で蒸発せず通過した濃縮 原水 Wは濃縮水タンク 5にたどり着く。 そして濃縮水タンク 5内の濃縮原水量が 規定量に達したら又は連続的に濃縮原水排出ポンプ 1 6で冷却塔 3の凝縮器 3— 1の下部タンク 3— 1 aに移送され、 該下部タンク 3— 1 aの濃縮原水は冷却用 水として濃縮原水循環ポンプ 1 7により散水ノズル 3— 1 cに供給され、 凝縮パ ィプ 3— 1 b上に散水される。 The concentrated raw water W that has passed through the first evaporator 2-2 to the eighth evaporator 2-9 without being evaporated in each stage evaporator reaches the concentrated water tank 5. Then, when the amount of concentrated raw water in the concentrated water tank 5 reaches a specified amount or continuously, the concentrated raw water discharge pump 16 is transferred to the lower tank 3-1 a of the condenser 3-1 of the cooling tower 3 by the concentrated raw water discharge pump 16. The concentrated raw water of 3-1a is supplied as cooling water to the sprinkling nozzle 3-1c by the concentrated raw water circulating pump 17 and sprinkled on the condensing pipe 3-1b.
第 1蒸発器 2— 2への原水 Wの供給量は、 各蒸発器でのスケ一リングを防ぎ、 メンテナンス性を向上させ、 且つ耐久性を向上させるため、 各蒸発器 2— 2〜2 一 9の蒸発器内の熱交換器 2— 2 a〜 2— 9 aが原水から常時ドライアップしな いようにしており、 また各蒸発器を通過して濃縮水タンク 5から移送 ·排出され る濃縮原水 Wの濃縮倍率をスケールの析出倍率 (例えば海水の場合 1 . 5 ) 以下 になるように設定している。 The supply amount of the raw water W to the first evaporator 2-2 is adjusted to prevent evacuation in each evaporator, improve maintainability, and improve durability. The heat exchangers 2-2 a to 2-9 a in the evaporator 9 do not always dry up from the raw water, and are transferred and discharged from the concentrated water tank 5 through each evaporator. The concentration ratio of the concentrated raw water W is set to be less than the scale deposition ratio (for example, 1.5 for seawater).
冷却塔 3を設置して最終段の濃縮原水 Wの温度を外気温付近に一定に保つこと で、 例えば冷却タンクを有するバッチ方式の淡水化装置で問題となる冷却タンク の冷却水温度上昇 (淡水化装置全体の保有熱量の増大) による午後の蒸留性能の 低下を防ぐことができ、 高い蒸留水の収量を確保できる。 また、 最終段の第 8蒸 発器 2— 9で蒸発した水蒸気 W aの冷却を連続的に行えるため連続的な蒸発 ·凝
縮が可能となり、 太陽熱集熱器 1以外に熱源を確保できれば 2 4時間連続して運 転をすることもできる。 By installing the cooling tower 3 and keeping the temperature of the concentrated raw water W at the final stage constant around the outside air temperature, for example, a rise in the cooling water temperature of the cooling tank (fresh water This can prevent a drop in distillation performance in the afternoon due to an increase in the amount of heat possessed by the entire liquefier, and secure a high yield of distilled water. In addition, since the water vapor Wa evaporated in the final stage of the eighth evaporator 2-9 can be continuously cooled, continuous evaporation and condensation are performed. If it is possible to secure a heat source other than the solar heat collector 1, it can be operated continuously for 24 hours.
このように原水 Wの保有量及び保有熱量が少ないこと、 冷却塔 3を設置して最 終段の凝縮水 Wの温度をほぼ外気温度 (例えば外気温 3 0 ° C ) に一定に保てる こと、 すなわち、 凝縮水の温度上昇を防ぐこと、 及び、 連続運転を行うことで、 例えば通常の太陽熱集熱パネル 1 一 1〜 1 一 6で集められる集熱温度 (例えば熱 媒蒸気入口温度 6 5 ° C ) と原水入口温度 (例えば原水入口温度 3 2 ° C ) から、 本実施例では蒸発装置 2を第 1蒸発器 2— 2〜第 8蒸発器 2— 9の八重効用とし た。 これにより、 エネルギー密度の薄い太陽エネルギーを八回繰返し有効に使用 することができる。 In this way, the amount of raw water W and the amount of heat retained are small, and the cooling tower 3 is installed to maintain the temperature of the final stage condensed water W at almost the outside air temperature (for example, the outside air temperature of 30 ° C). That is, by preventing the temperature of the condensed water from rising, and by performing continuous operation, for example, the heat collection temperature collected by the normal solar heat collection panels 11 to 16 (for example, the heat medium vapor inlet temperature 65 °) C) and the raw water inlet temperature (for example, the raw water inlet temperature of 32 ° C.), in this embodiment, the evaporator 2 was used as the double evaporator for the first evaporator 2-2 to the eighth evaporator 2-9. This makes it possible to effectively use solar energy with a low energy density eight times repeatedly.
バッチ式淡水化装置では、 原水を入れ替える毎に、 当該装置の大気圧からの真 空引きが必要となり、 非常に大きい電力消費を必要とするが、 上述した本発明に 係る淡水化装置では、 最初の段階で大気圧からの真空引きを行い装置全体を減圧 状態にした後は、 原水を連続的に供給して運転を行い、 それに伴なつて生じる不 凝縮ガスの排出が必要となるだけで、 大気圧からの真空引きは必要がないので、 大幅なエネルギー削減を行うことができる。 In the batch type desalination apparatus, every time the raw water is replaced, it is necessary to evacuate the apparatus from the atmospheric pressure, which requires an extremely large power consumption. However, in the desalination apparatus according to the present invention described above, After evacuation from the atmospheric pressure in step (2) to reduce the pressure in the entire system, the operation is performed by continuously supplying raw water, and only the noncondensable gas generated as a result is required. Since there is no need to evacuate from atmospheric pressure, significant energy savings can be achieved.
太陽が沈み日射がなくなると、 蒸発が終了し原水の供給が停止する。 つまり、 淡水化運転が停止する。 そして翌日、 太陽が昇り、 蒸発装置 2内での蒸発が始ま ると蒸発した分だけ原水 Wが新たに供給され淡水化サイクルが回り始める。 この ことから、 熱が供給されているときのみポンプ等を駆動すれば淡水化運転は可能 である。 つまり、 太陽の日射があって太陽熱集熱器 1から蒸発装置 2に熱源が供 給されているときは同時に発電ができ、 必要な電力が供給できる太陽光発電シス テムを備えることで自立型の淡水化装置になる。 When the sun goes down and there is no solar radiation, evaporation stops and the supply of raw water stops. That is, the desalination operation stops. Then, the next day, when the sun rises and evaporation in the evaporator 2 starts, raw water W is newly supplied by the amount of evaporation and the desalination cycle starts to rotate. For this reason, desalination operation is possible by driving a pump etc. only when heat is supplied. In other words, when solar heat is being supplied from the solar heat collector 1 to the evaporator 2 due to the solar radiation, the solar power generation system that can supply the necessary power can be generated at the same time. It becomes a desalination unit.
また、 連続運転が可能であれば太陽熱集熱器 1から蒸発装置 2に熱源が供給さ れているときのみポンプ等を駆動すればよい。 つまり、 太陽光発電設備を装備し ていれば、 太陽の日射があって熱源が供給されているときは同時に発電ができ必 要な電力を供給できる。 If continuous operation is possible, the pump or the like may be driven only when the heat source is supplied from the solar heat collector 1 to the evaporator 2. In other words, if a solar power generation facility is installed, power can be generated at the same time when the sun is shining and a heat source is being supplied, and the necessary power can be supplied.
また、 ポンプ等の電動機器は間欠 ·時差運転とすることで太陽光発電システム のピーク時の必要容量を抑えることができ、 更に A C負荷機器運転に必要な太陽
光発電システムの直流の電気を交流に変換するィンバ一夕の容量を小さくするこ とができるため、 コンパクトな太陽光発電システムを構築できる。 そして、 シス テムと運転フローの最適化ができれば蓄電設備は不要となり、 より一層のコンパ クトで安全でメンテナンスフリーの電力供給システムを構築することができる。 真空ポンプは、エネルギー密度の薄い太陽エネルギーを繰返し使用するために、 ある程度の高真空(例えば外気温 3 0 ° Cのときの飽和蒸気圧 3 1 . 8 mmH g ) を必要とするため、 今までの淡水化装置では真空手段として油回転型の真空ボン プを使用したが、 運転時には水蒸気を吸引してしまうため、 油に水が混入してし まい油の劣化による真空到達度の低下及びポンプの故障に悩まされてきた。 ここ では、 油水分離タンクを設置し又油水分離に必要な時間装置を停止する (例えば 一日一回夜間等の 8時間) ことで油から水を分離できるようになった。 これによ り、 毎日の運転が可能となった。 更に、 油を使わないスクロール型の真空ポンプ 等を使うことで油のメンテナンスが不要となり 2 4時間連続運転も可能となる。 蒸発装置 2を構成する第 1蒸発器 2 - 2〜第 8蒸発器 2— 9の各蒸発器は伝熱 管を水平方向に長く設置した横型蒸発器とすることで十分に広い蒸発面積を確保 でき、 蒸気速度を抑えられるので、 水蒸気 W aに同伴するミスト (すなわち、 塩 分を含んだ原水の微少液滴) の量を低下させることができる。 また、 蒸発器内の 水蒸気の蒸発面から同蒸発器の蒸気出口までの高さを十分にとること及び蒸発器 と蒸気出口までの流路に水蒸気と一緒に同伴するミストを捕集するためのバッフ ル板を備えることで、 高品質の蒸留水を得ることができた (本実施例では 5 ^ S / c m)。 In addition, pumps and other electric equipment can be operated intermittently or staggered to reduce the required capacity of the solar power generation system during peak hours. Since the capacity of the solar power generation system, which converts DC power into AC power, can be reduced, a compact solar power generation system can be constructed. If the system and operation flow can be optimized, power storage equipment will not be required, and a more compact, safe and maintenance-free power supply system can be constructed. Since vacuum pumps require a certain degree of high vacuum (for example, a saturated vapor pressure of 31.8 mmHg at an ambient temperature of 30 ° C) to repeatedly use solar energy with a low energy density, In the desalination equipment, an oil rotary type vacuum pump was used as a vacuum means.However, water vapor was sucked during operation, so water was mixed into the oil. Has been troubled by Here, oil-water separation tanks were installed, and the equipment required for oil-water separation was shut down (for example, once a day for 8 hours at night, etc.) to separate water from oil. This enabled daily operation. Furthermore, using a scroll-type vacuum pump that does not use oil eliminates the need for oil maintenance and enables continuous operation for 24 hours. The first evaporator 2-2 to the eighth evaporator 2-9 that constitute the evaporator 2 have a sufficiently wide evaporation area by using horizontal evaporators with long heat transfer tubes installed in the horizontal direction. As a result, the steam velocity can be suppressed, so that the amount of mist (ie, small droplets of raw water containing salt) accompanying the water vapor Wa can be reduced. In addition, the height from the evaporation surface of the water vapor in the evaporator to the vapor outlet of the evaporator must be sufficient, and the mist accompanying the vapor along with the vapor in the flow path from the evaporator to the vapor outlet must be collected. By providing a baffle plate, high-quality distilled water could be obtained (5 ^ S / cm in this example).
また、 第 1蒸発器 2— 2〜第 8蒸発器 2— 9のように、 蒸発器を多重効用とす る場合は、 縦型一体構造とすることでコンパクト化し、 また水蒸気 W a、 蒸留水 W b及び濃縮原水 Wを自然流下とすることで余計な動力を不要にする。 また、 現 地搬入 '工事は本体設置と架台及びパネル類の組立てだけであり、 作業が容易と なる。 If the evaporator has multiple effects, such as the first evaporator 2-2 to the eighth evaporator 2-9, the evaporator can be made compact by using a vertical integrated structure, and the steam Wa, distilled water By making Wb and concentrated raw water W flow naturally, unnecessary power is not required. In addition, the on-site transportation work is only the installation of the main body and the assembling of the gantry and panels, making the work easier.
図 6は本発明に係る淡水化装置の他の構成例を示す図である。 本淡水化装置が 図 1に示す淡水化装置と異なる点は、 脱気室 2— 1と凝縮器 3— 1の水蒸気入口 側、 即ち第 8蒸発器 2— 9から水蒸気を凝縮器 3— 1に導入する配管 1 8とをォ
リフィス等の絞り 3 0を経由して連通させている点である。 これは、 絞り 3 0の 前後に圧力差を設けることにより、 脱気室 2 — 1で脱気された不凝縮ガスが脱気 室内に留まらず、 配管 2 9内を流下し、 凝縮器 3— 1、 配管 2 3、 バルブ V 3、 及び、 真空手段 6を介して外部へ流出しやすくするためである。 FIG. 6 is a diagram showing another configuration example of the desalination apparatus according to the present invention. This desalination unit differs from the desalination unit shown in Fig. 1 in that steam is condensed from the deaeration chamber 2-1 and the condenser 3-1 on the steam inlet side, that is, from the eighth evaporator 2-9. Pipes 1 and 8 The point is that they communicate with each other via a diaphragm 30 such as a orifice. This is because, by providing a pressure difference before and after the throttle 30, the uncondensed gas degassed in the degassing chamber 2-1 does not stay in the degassing chamber, but flows down in the pipe 29 to form the condenser 3- This is to make it easier to flow out through the pipe 1, the pipe 23, the valve V3, and the vacuum means 6.
以上で述べた実施例では、 熱源として太陽熱集熱器 1を用いる例を示したが、 熱源はこれに限定するものではなく、 外部熱源を蒸発装置 2に直接又は間接的に 供給できるものであればよい。 In the above-described embodiment, an example in which the solar heat collector 1 is used as the heat source is described.However, the heat source is not limited to this, and any heat source that can directly or indirectly supply an external heat source to the evaporator 2 is used. I just need.
上述した実施例に係る淡水化装置では、 次のような効果を得ることが可能とな る。 In the desalination apparatus according to the above-described embodiment, the following effects can be obtained.
( 1 ) 真空手段で蒸発装置の各蒸発器の蒸発空間及び該蒸発空間に連通する凝 縮空間及び蒸留水貯蔵空間を減圧し、 前段の蒸発器で発生した水蒸気を当該蒸発 器の熱交換器に熱源として導入し、 発生した水蒸気と凝縮した蒸留水を熱源とし て次段の蒸発器の熱交換器に供給するようにし、 複数個の蒸発器を多重効用とし たので、 太陽エネルギー等の低いエネルギー密度の熱源を利用して効率よく原水 から淡水が得られる。 (1) Reduce the pressure in the evaporation space of each evaporator of the evaporator and the condensing space and the distilled water storage space communicating with the evaporation space by vacuum means, and use the steam generated in the evaporator in the preceding stage to heat exchanger the evaporator. As a heat source, the generated steam and condensed distilled water are supplied to the heat exchanger of the next evaporator as a heat source, and multiple evaporators are used for multiple effects. Fresh water can be obtained from raw water efficiently using a heat source with energy density.
( 2 ) また、 各段の蒸発器で発生する水蒸気、 蒸留水及び所定量を超える原水 を次段の蒸発器に供給するように、 各蒸発器を互いに連通させているので、 連続 的に原水が供給でき、 蒸留水及び濃縮原水を連続的に排出する連続運転が可能と なる。 また、 各段の蒸発器が保有する原水量が少なくて済み装置がコンパクトに なる上、 保有熱量も少なくて済むから、 少ない供給熱量で多くの蒸留水が得られ る効率の良い淡水化運転が可能となる。 また、 連続運転が可能となることから、 淡水化装置で最も電力を必要とする蒸発器の蒸発空間、それに連通する凝縮空間、 蒸留水貯蔵空間等の大気圧からの真空引きが、 運転開始後は不要となる。 (2) Since the evaporators are connected to each other so that the steam, distilled water and raw water exceeding a predetermined amount generated in each evaporator are supplied to the next evaporator, the raw water is continuously supplied. Can be supplied, and continuous operation of continuously discharging distilled water and concentrated raw water becomes possible. In addition, since the amount of raw water held by each stage evaporator is small and the equipment is compact, and the amount of heat retained is small, efficient desalination operation that can obtain a large amount of distilled water with a small amount of supplied heat is required. It becomes possible. In addition, since continuous operation is possible, the evacuation space of the evaporator, which requires the most power in the desalination unit, the condensing space connected to it, and the evacuation from the atmospheric pressure of the distilled water storage space, etc. Becomes unnecessary.
( 3 ) また、 最終段の蒸発器で発生した水蒸気を冷却塔の凝縮器に供給し、 該 凝縮器では濃縮水タンクの濃縮原水を冷却水として使用するので、 最終段の濃縮 水温度を外気温度付近に保つことができ、 例えば冷却タンクを有するバッチ方式 の淡水化装置で問題となる冷却タンクの冷却水温度上昇 (装置全体の保有熱量の 増大) による午後の蒸留性能の低下を防ぐことができる。 また、 最終段の蒸発器 で蒸発した水蒸気の凝縮を凝縮器で連続的に行えるため連続的な蒸発 ·凝縮が可
能になり、 熱源が確保できれば、 2 4時間連続して淡水化運転ができる。 (3) In addition, since the steam generated in the last-stage evaporator is supplied to the condenser of the cooling tower and the concentrated raw water in the concentrated water tank is used as the cooling water in the condenser, the temperature of the concentrated water in the final stage is reduced to outside air. The temperature can be kept close to the temperature. For example, it is possible to prevent a decrease in the distillation performance in the afternoon due to a rise in the cooling water temperature of the cooling tank (increase in the amount of heat held by the entire apparatus), which is a problem in batch type desalination equipment with a cooling tank. it can. In addition, since the water vapor evaporated in the last stage evaporator can be continuously condensed in the condenser, continuous evaporation and condensation are possible. If the heat source can be secured, desalination operation can be performed continuously for 24 hours.
( 4 ) また、 前段の蒸発器で発生した水蒸気と凝縮水を当該蒸発器の熱交換器 に熱源として導入し、 発生した水蒸気と凝縮した蒸留水を熱源として次段の蒸発 器の熱交換器に供給するようにするので、 水蒸気 W aの凝縮潜熱だけでなく蒸留 水の顕熱も有効に利用することができる。 (4) In addition, the steam and condensed water generated in the previous evaporator are introduced into the heat exchanger of the evaporator as a heat source, and the generated steam and condensed distilled water are used as heat sources in the heat exchanger of the next evaporator. The sensible heat of distilled water as well as the latent heat of condensation of water vapor Wa can be used effectively.
( 5 ) また、 各蒸発器は所定量を超える原水を次段の蒸発器に供給するように したので、 前段の蒸発器の温度レベルの高い原水が次段の蒸発器の原水の熱源と なり、 より効率がよくなる。 (5) In addition, since each evaporator supplies more than a predetermined amount of raw water to the next-stage evaporator, the raw water with a high temperature level in the previous-stage evaporator becomes the heat source of the raw water for the next-stage evaporator. , More efficient.
( 6 ) 凝縮器と協働する冷却塔を設けたので、 凝縮器に冷却水として供給され る濃縮原水を冷却塔が具備するファンから送られる空気により強制的に冷却する ことが可能となり、 凝縮器の凝縮効率を高く、 安定的に維持することができ、 高 効率の淡水化運転が可能となる。 (6) Since a cooling tower cooperating with the condenser is provided, the concentrated raw water supplied as cooling water to the condenser can be forcibly cooled by air sent from a fan provided in the cooling tower. The condensing efficiency of the vessel is high and can be maintained stably, enabling highly efficient desalination operation.
( 7 ) 冷却塔を用いることにより、 凝縮温度を低く保つことができることによ つて太陽熱集熱器での集熱温度が下がるから、 集熱効率上昇及び集熱量増が可能 となり、 淡水収量の増大が期待できる。 (7) By using a cooling tower, the condensing temperature can be kept low, and the heat collecting temperature of the solar heat collector decreases, so it is possible to increase the heat collecting efficiency and increase the amount of heat collected, and increase the freshwater yield. Can be expected.
( 8 ) 蒸発装置の蒸発器に供給される原水を原水予熱管路を通して少なくとも 一部の蒸発器の原水 (既に蒸発装置内に供給され加熱を受けている原水) の保有 する熱で予熱するので、 蒸発装置内の熱を有効に利用することができる。 (8) The raw water supplied to the evaporator of the evaporator is preheated through the raw water preheating pipe with the heat retained in the raw water of at least a part of the evaporator (raw water already supplied to the evaporator and heated). The heat in the evaporator can be used effectively.
( 9 ) 蒸発装置は、 最前段の蒸発器の前段に脱気室を配置するので、 伝熱を阻 害する不凝縮ガスを取り除くことができ、 蒸留性能を向上させることができ、 ま た、 淡水化操作をバッチ式でなく連続的に行うことができる。 (9) Since the evaporator has a deaeration chamber in front of the foremost evaporator, it can remove non-condensable gas that hinders heat transfer, improve distillation performance, and improve fresh water. Can be performed continuously instead of batchwise.
( 1 0 ) 脱気室と凝縮器の水蒸気入口側とを絞りを経由して連通させることに より、 該脱気室で発生した不凝縮ガスを該凝縮器の凝縮空間から真空手段を介し て脱気排出するのが容易となる。 また、 絞りを、 蒸発器と蒸発器との間の凝縮水 通路にも設けることにより、 不凝縮ガスの排出を容易にし、 該ガスが蒸発器内に 滞留することによる熱交換の阻害を防止することができる。 (10) By communicating the deaeration chamber with the steam inlet side of the condenser via a throttle, the non-condensable gas generated in the deaeration chamber is removed from the condensation space of the condenser via a vacuum means. Degassing and discharging becomes easy. In addition, by providing a restrictor also in the condensed water passage between the evaporators, discharge of non-condensable gas is facilitated, and obstruction of heat exchange due to the gas remaining in the evaporator is prevented. be able to.
( 1 1 ) 熱媒循環回路における凝縮熱媒流路に、 凝縮熱媒を循環させる熱媒循 環手段を設けることにより、 集熱器の集熱パネルを最も集熱量の多い角度に設置 しても、 また日の出時の初期蒸発時でも、 また太陽熱集熱器全体の液溜り等の問
題から熱媒液面が変動しても、 集熱パネルの伝熱面を熱媒体によつて満たすこと ができ、 一日の全日射量を有効に使え、 且つ日射の間欠性 (日射変動) に対して 熱煤の蒸発までの追従性をよくすることができるという優れた効果が得られる。 発明の利用可能性 (11) By providing a heat medium circulating means for circulating the condensed heat medium in the condensed heat medium flow path in the heat medium circulation circuit, the heat collecting panel of the heat Even during the initial evaporation at sunrise, there are also problems such as liquid pools in the entire solar collector. Even if the liquid level of the heat medium fluctuates, the heat transfer surface of the heat collecting panel can be filled with the heat medium, the total amount of solar radiation can be used effectively, and intermittent solar radiation (variation of solar radiation) Therefore, an excellent effect that the followability up to the evaporation of the heat soot can be improved. Applicability of the invention
本発明に係る淡水化装置は、 化石燃料や電力を熱源とする従来装置のように、 その熱源設備が得られるような限られた場所でのみ使用できるのとは異なり、 都 市などから離れたどのような所にも設置可能であり、 太陽エネルギー等の低密度 のエネルギーを効率的に利用し、 淡水化を行うことが可能である。
The desalination apparatus according to the present invention is different from a conventional apparatus using a fossil fuel or electric power as a heat source, unlike a device that can be used only in a limited place where the heat source equipment can be obtained. It can be installed anywhere, and can efficiently use low-density energy such as solar energy to desalinate water.