WO2001067542A1 - Vorrichtung zum aussenden hochfrequenter signale - Google Patents

Vorrichtung zum aussenden hochfrequenter signale Download PDF

Info

Publication number
WO2001067542A1
WO2001067542A1 PCT/EP2001/001441 EP0101441W WO0167542A1 WO 2001067542 A1 WO2001067542 A1 WO 2001067542A1 EP 0101441 W EP0101441 W EP 0101441W WO 0167542 A1 WO0167542 A1 WO 0167542A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
transmission wire
frequency signals
rear wall
transmission
Prior art date
Application number
PCT/EP2001/001441
Other languages
English (en)
French (fr)
Inventor
Stefan Burger
Original Assignee
Endress + Hauser Gmbh + Co. Kg.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress + Hauser Gmbh + Co. Kg. filed Critical Endress + Hauser Gmbh + Co. Kg.
Priority to AU2001231725A priority Critical patent/AU2001231725A1/en
Priority to US10/204,450 priority patent/US6727845B2/en
Publication of WO2001067542A1 publication Critical patent/WO2001067542A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced with unbalanced lines or devices
    • H01P5/103Hollow-waveguide/coaxial-line transitions

Definitions

  • the invention relates to a device for transmitting high-frequency signals with a signal generation unit, a signal line, a transmission wire and an antenna designed as a circular waveguide, which is closed in one end region by a rear wall, the signal generation unit generating the high-frequency signals, the signal line producing the high-frequency signals Signals on the transmission wire of the antenna, and wherein the transmission wire protrudes into the circular waveguide and is arranged approximately parallel to the rear wall.
  • a device is already known from German utility model DE 93 12 251.9.
  • a device of the type described above is used, for example, in measuring devices which determine the filling level of a filling material in a container over the running time of high-frequency signals.
  • Runtime procedures take advantage of the physical laws, according to which the running distance is equal to the product of the running time and the speed of propagation. In the case of level measurement, the running distance corresponds to twice the distance between the antenna and the surface of the product.
  • the useful echo signal that is to say the signal reflected on the surface of the filling material, and its transit time are determined using the so-called echo function or using the digitized signal
  • the envelope representing the amplitudes of the echo signals as a function of the distance 'antenna - surface of the medium'.
  • the level itself then results from the difference between the known distance of the antenna from the bottom of the container and the distance of the surface of the medium to the antenna determined by the measurement.
  • the usual methods for determining the distance over the transit time of electromagnetic signals are the pulse radar method and the frequency modulation continuous wave radar method (FMCW method).
  • pulse radar method short microwave pulses are sent periodically.
  • FMCW method sends a continuous microwave that is periodically linear, for example after a sawtooth function, is frequency modulated.
  • the frequency of the received echo signal has a frequency difference compared to the frequency that the transmission signal has at the time of reception, which depends on the transit time of the echo signal.
  • the frequency difference between the transmitted signal and the received signal by mixing the two
  • Signals and evaluation of the Fourier spectrum of the mixed signal can thus be obtained corresponds to the distance of the reflector, e.g. the surface of the product, from the antenna. Furthermore, the amplitudes of the spectral lines of the frequency spectrum obtained by Fourier transformation correspond to the echo amplitudes, so that the Fourier spectrum represents the echo function.
  • the propagation of the electromagnetic waves in the signal line and in the antenna follows the physical laws of the propagation of electromagnetic waves.
  • the signal line is usually a coax line.
  • the electromagnetic waves are guided from the inner conductor of the coaxial cable to the transmission wire of the antenna via a coupling.
  • the antenna is designed either as a rectangular hollow conductor or as a round hollow conductor, with antennas with a circular cross section preferably being used in the area of the fill level measurement, since they are used for installation in e.g. B. the neck of a container (tank, silo, etc.) are more suitable than antennas with a rectangular cross-section.
  • the transverse electromagnetic mode In a coaxial line, the transverse electromagnetic mode (TEM mode) ideally spreads without dispersion. This TEM mode is therefore particularly well suited for the transport of wave packets or electromagnetic waves that have a certain bandwidth. Wave packets that spread in TEM mode are therefore not widened; a linearity deviation is largely avoided in the case of linear frequency-modulated microwaves.
  • a mode is preferably used for the directed transmission of electromagnetic waves by means of an antenna, the radiation characteristics of which have a pronounced forward lobe. This characteristic is exhibited by the transverse-electrical basic mode, which is capable of spreading in circular waveguides TE - fashion, on. In a rectangular waveguide, the corresponding basic mode is the 7E ] 0 mode.
  • the antenna designed as a waveguide there is a defined frequency range in which only this basic mode is capable of propagation. Above this frequency range, there are also higher modes that are less suitable for the directional transmission of microwaves, for example the: T 01 mode for the round waveguide or the TE 20 mode for the rectangular waveguide.
  • the range of ambiguity for a rectangular waveguide that is, the range in which only the basic mode can propagate
  • the range of ambiguity for a circular waveguide is relatively narrow.
  • the likelihood that undesired higher modes are excited in addition to the basic mode when broadband signals are coupled in is therefore much greater in the case of a round waveguide than in the case of a rectangular waveguide.
  • An undesirable consequence of the formation of different modes is the so-called ringing.
  • the ringing is caused by the fact that the individual modes that can propagate in a waveguide have different propagation speeds. This is shown by the fact that the transmit pulse does not drop abruptly, but slowly loses amplitude. This ringing flank can cover the echo signal in the measuring range or overlap with the echo signal in such a way that large measurement errors occur.
  • the invention is based on the object of proposing a device for emitting electromagnetic waves which is distinguished by an optimized radiation characteristic.
  • the distance between the transmission wire and the rear wall of the antenna is approximately ⁇ / 6, where ⁇ is the wavelength of the high-frequency signals carried in the waveguide.
  • the impedance matching between signal line and antenna can also be optimized over a large frequency range, wherein optimized matching means that as much energy as possible is transmitted from the signal line to the antenna; the proportion of electromagnetic signals that are reflected in the transmission path due to impedance jumps is consequently minimal.
  • the shortened construction of the antenna has several positive effects. This is made possible by the fact that, according to the invention, the transmission wire is at a shorter distance from the rear wall of the antenna than in the prior art: on the one hand, the shortening reduces the material costs; on the other hand, the shorter construction also reduces the ringing, since the different speeds of propagation of the individual modes - if they still occur - have an effect over a shortened running distance.
  • the transmission wire at least half as large as half the diameter of the antenna designed as a circular waveguide. This can be expressed mathematically by the following formula: L> D / 2, where D characterizes the diameter of the circular waveguide. This dimensioning of the transmission wire allows the impedance matching and the dispersion-free transmission of the electromagnetic waves to be further optimized.
  • the device according to the invention it is proposed to at least partially fill the interior of the antenna with a dielectric material. This makes a separation Process reached. Process separation is particularly necessary if there is a risk that the antenna, especially the transmission wire, will come into contact with aggressive materials. Of course, deposits are also prevented from forming on the transmission wire, which would lead to a change in the transmission characteristics of the antenna.
  • a preferred embodiment of the device according to the invention thus provides a recess in the dielectric material into which the transmission wire projects.
  • the dielectric material is preferably polytetrafluoroethylene (PTFE) or aluminum trioxide (Al 2 O 3 ). Of course, other dielectric materials can also be used.
  • PTFE polytetrafluoroethylene
  • Al 2 O 3 aluminum trioxide
  • the device according to the invention is preferably used in conjunction with a measuring device which determines the fill level over the transit time of electromagnetic waves.
  • Fig. 1 a schematic representation of a measuring device that determines the level over the transit time of electromagnetic waves
  • FIG. 2 shows a longitudinal section through a preferred embodiment of the device according to the invention for transmitting high-frequency signals.
  • FIG. 1 shows a schematic illustration of a fill level measuring device 1 which determines the fill level F over the transit time of electromagnetic waves.
  • the electromagnetic waves are preferably
  • a solid or liquid filling material 2 is stored in the container 4.
  • the level F is used to determine the level F, which is mounted in an opening 5 in the lid of the container 4.
  • the transmitted signals are partially reflected on the surface 3 as echo signals.
  • These echo signals are in the receiving / evaluation unit 8; 1 1 received and evaluated.
  • the transmission unit 6 and the reception unit 7 are decoupled from one another by means of the transmission / reception switch 9.
  • the evaluation unit 11 determines the filling level F of the filling material 2 in the container 4.
  • FIG. 2 shows a longitudinal section of a preferred embodiment of the device according to the invention for transmitting high-frequency signals.
  • the antenna 10 according to the invention is a circular waveguide, the end region of which is turned away from the process is closed off by the rear wall 15.
  • the signal line 12 is preferably a coaxial cable with an inner conductor 13 and an outer conductor 14.
  • the inner conductor 13 is connected to the transmission wire 16.
  • the transmission wire 16 is at a distance of approximately ⁇ / 6 from the rear wall 15, where ⁇ denotes the wavelength of the high-frequency waves carried in the antenna 10.
  • the transmission wire 16 has approximately a length L which is equal to or greater than D / 2, where D den
  • a transmitting mushroom 18 can be provided at the free end 17 of the transmitting wire 16.
  • At least a portion of the interior of the antenna 10 is filled with a dielectric material 19.
  • the transmission wire 16 protrudes into one
  • Recess 20 preferably a bore, which is provided in the dielectric material.

Abstract

Die Erfindung betrifft eine Vorrichtung zum Aussenden hochfrequenter Signale mit einer Signalerzeugungseinheit (6), einer Signalleitung (12), einem Sendedraht (16) und einer als Rundhohlleiter ausgebildeten Antenne (10), die in einem Endbereich durch eine Rückwand (15) abgeschlossen ist, wobei die Signalerzeugungseinheit (6) die hochfrequenten Signale erzeugt, wobei die Signalleitung (12) die hochfrequenten Signale auf den Sendedraht (16) leitet, und wobei der Sendedraht (16) in den Innenraum der Antenne (10) hineinragt und näherungsweise parallel zu der Rückwand (15) angeordnet ist. Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Aussenden von elektromagnetischen Wellen vorzuschlagen, die sich durch optimierte Übertragungseigenschaften auszeichnet. Die Aufgabe wird dadurch gelöst, dass der Abstand (Z) zwischen dem Sendedraht (16) und der Rückwand (15) der Antenne (10) näherungsweise μ/6 beträgt, wobei μ die Wellenlänge der in der Antenne (10) geführten hochfrequenten Signale ist.

Description

Vorrichtung zum Aussenden hochfrequenter Signale
Die Erfindung bezieht sich auf eine Vorrichtung zum Aussenden hochfrequenter Signale mit einer Signalerzeugungseinheit, einer Signalleitung, einem Sendedraht und einer als Rundhohlleiter ausgebildeten Antenne, die in einem Endbereich durch eine Rückwand abgeschlossen ist, wobei die Signalerzeugungseinheit die hochfrequenten Signale erzeugt, wobei die Signalleitung die hochfrequenten Signale auf den Sendedraht der Antenne führt, und wobei der Sendedraht in den Rundhohlleiter hineinragt und näherungsweise parallel zu der Rückwand angeordnet ist. Eine derartige Vorrichtung ist bereits aus dem deutschen Gebrauchsmuster DE 93 12 251.9 bekannt geworden.
Eine Vorrichtung der zuvor beschriebenen Art kommt beispielsweise in Meßgeräten zum Einsatz, die den Füllstand eines Füllguts in einem Behälter über die Laufzeit hochfrequenter Signale bestimmen. Laufzeitverfahren nutzen die physikalische Gesetzmäßigkeit aus, wonach die Laufstrecke gleich dem Produkt aus Laufzeit und Ausbreitungsgeschwindig-keit ist. Im Falle der Füllstandsmessung entspricht die Laufstrecke dem doppelten Abstand zwischen Antenne und Oberfläche des Füllguts. Das Nutzechosignal, also das an der Oberfläche des Füllguts reflektierte Signal, und dessen Laufzeit werden anhand der sog. Echofunktion bzw. anhand der digitalisierten
Hüllkurve bestimmt, wobei die Hüllkurve die Amplituden der Echosignale als Funkton des Abstandes 'Antenne - Oberfläche des Füllguts' wiedergibt. Der Füllstand selbst ergibt sich dann aus der Differenz zwischen dem bekannten Abstand der Antenne vom Boden des Behälters und dem durch die Messung bestimmten Abstand der Oberfläche des Füllguts zur Antenne.
Übliche Verfahren zur Entfernungsbestimmung über die Laufzeit von elektromagnetischen Signalen sind das Pulsradar-Verfahren und das Frequenz- modulations-Dauerstrichradar-Verfahren (FMCW- Verfahren). Beim Pulsradar- Verfahren werden periodisch kurze Mikrowellenpulse gesendet. Beim FMCW- Verfahren wird eine kontinuierliche Mikrowelle gesendet, die periodisch linear, beispielsweise nach einer Sägezahnfunktion, frequenzmoduliert ist. Die Frequenz des empfangenen Echosignals weist gegenüber der Frequenz, die das Sendesignal zum Zeitpunkt des Empfangs hat, eine Frequenzdifferenz auf, die von der Laufzeit des Echosignals abhängt. Die Frequenzdifferenz zwischen Sendesignal und Empfangssignal, die durch Mischung beider
Signale und Auswertung des Fourierspektrums des Mischsignals gewonnen werden kann, entspricht somit dem Abstand des Reflektors, z.B. der Oberfläche des Füllguts, von der Antenne. Ferner entsprechen die Amplituden der Spektrallinien des durch Fouriertransformation gewonnenen Frequenz- Spektrums den Echoamplituden, so daß das Fourierspektrum die Echofunktion darstellt.
Die Ausbreitung der elektromagnetischen Wellen folgt in der Signalleitung und in der Antenne den physikalischen Gesetzen der Ausbreitung elektro- magnetischer Wellen. Üblicherweise handelt es sich bei der Signalleitung um eine Koaxleitung. Über eine Einkopplung werden die elektromagnetischen Wellen von dem Innenleiter des Koaxialkabels auf den Sendedraht der Antenne geführt. Die Antenne ist entweder als Rechteckhohl-Ieiter oder als Rundhohlleiter ausgebildet, wobei im Bereich der Füllstands-messung bevorzugt Antennen mit kreisförmigem Querschnitt eingesetzt werden, da sie für den Einbau in z. B. den Stutzen eines Behälters (Tank, Silo, usw. ) besser geeignet sind als Antennen mit rechteckförmigem Querschnitt.
In einer Koaxleitung breitet sich der transversal-elektromagnetische Mode (TEM-Mode) im Idealfall dispersionsfrei aus. Dieser TEM-Mode eignet sich daher besonders gut zum Transport von Wellenpaketen oder elektromagnetischen Wellen, die eine gewisse Bandbreite aufweisen. Wellenpakete, die sich im TEM-Mode ausbreiten, erfahren also keine Verbreiterung; ebenso wird bei linear frequenzmodulierten Mikrowellen eine Linearitätsabweichung weitgehend vermieden.
Zum gerichteten Aussenden von elektromagnetischen Wellen mittels einer Antenne wird bevorzugt ein Mode eingesetzt, dessen Abstrahlcharakteristik eine ausgeprägte Vorwärtskeule aufweist. Diese Eigenschaft weist der in Rundhohlleitern ausbreitungsfähige transversal-elektrische Grundmode, der TE - Mode, auf. In einem Rechteckhohlleiter ist der entsprechende Grundmode der 7E]0 -Mode. In Abhängigkeit von den Abmessungen der als Hohlleiter ausgebildeten Antenne gibt es jeweils einen definierten Frequenzbereich, in dem ausschließlich dieser Grundmode ausbreitungsfähig ist. Ober- halb dieses Frequenzbereichs breiten sich auch höhere, für das gerichtete Senden von Mikrowellen weniger gut geeignete Moden aus, beispielsweise der :T 01 -Mode beim Rundhohlleiter bzw. der TE 20 -Mode beim Rechteckhohlleiter. Während bei einem Rechteckhohlleiter der Εindeutigkeitsbereich, also der Bereich, in dem jeweils nur der Grundmode ausbreitungsfähig ist, relativ groß ist, ist der Εindeutigkeitsbereich bei einem Rundhohlleiters relativ eng bemessen. Die Wahrscheinlichkeit, daß bei der Εinkopplung breitbandiger Signale neben dem Grundmode auch unerwünschte höhere Moden angeregt werden, ist daher bei einem Rundhohlleiter wesentlich größer als bei einem Rechteckhohlleiter. Eine unerwünschte Folge der Ausbildung von unter- schiedlichen Moden ist das sog. Klingeln. Verursacht wird das Klingeln dadurch, daß die einzelnen, in einem Hohlleiter ausbreitungsfähigen Moden unterschiedliche Ausbreitungsgeschwindigkeiten aufweisen. Dies zeigt sich darin, daß der Sendepuls nicht abrupt abfällt, sondern langsam an Amplitude verliert. Diese Klingelflanke kann das Echosignal im Meßbereich überdecken oder sich mit dem Echosignal so überlagern, daß es zu großen Meßwertfehlern kommt.
Der Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zum Aussenden von elektromagnetischen Wellen vorzuschlagen, die sich durch eine optimierte Abstrahlcharakteristik auszeichnet.
Die Aufgabe wird dadurch gelöst, daß der Abstand zwischen dem Sendedraht und der Rückwand der Antenne näherungsweise λ/6 beträgt, wobei λ die Wellenlänge der im Hohlleiter geführten hochfrequenten Signale ist. Während bislang in der Literatur durchweg die Meinung vertreten wird, daß der Sendedraht von der Rückwand der Antenne ungefähr λ/4 beabstandet sein muß, um eine optimale Anpassung und Ausbreitung der elektromagnetischen Wellen im Grundmode zu gewährleisten, hat es sich nun herausgestellt, daß sich bei der erfindungsgemäßen Anordnung des Sendedrahtes im Rundhohlleiter die Feldkomponenten des E ()1 -Mode weitgehend gegenseitig kompensieren. Es hat sich gezeigt, daß durch die erfindungsgemäße Vorrichtung der Frequenz- bereich, in dem nur der TEU - Mode angeregt wird, um mehrere 100 MHz vergrößert wird. Dadurch ist es möglich, Sendesignale mit einer Bandbreite, die größer als 2 GHz ist, in einen Rundhohlleiter einzuspeisen, ohne das störende Klingeln zu erzeugen. Mittels der erfindungsgemäßen Vorrichtung läßt sich darüber hinaus die Impedanzanpassung zwischen Signalleitung und Antenne über einen großen Frequenzbereich optimieren, wobei optimierte Anpassung bedeutet, daß möglichst viel Energie von der Signalleitung auf die Antenne übertragen wird; der Anteil der elektromagnetischen Signale, die aufgrund von Impedanzsprüngen im Übertragungsweg reflektiert werden, ist folglich minimal.
Mehrfach positiv wirkt sich natürlich die verkürzte Bauweise der Antenne aus. Diese wird dadurch möglich, daß sich der Sendedraht erfindungsgemäß in einem gegenüber dem Stand der Technik verkürzten Abstand zur Rückwand der Antenne befindet: Einerseits werden durch die Verkürzung die Materialkosten verringert; andererseits wird durch die kürzere Bauweise aber auch das Klingeln reduziert, da sich die unterschiedlichen Ausbreitungsgeschwindigkeiten der einzelnen Moden - falls sie überhaupt noch auftreten - über eine verkürzte Laufstrecke auswirken.
Weiterhin hat es sich als vorteilhaft erwiesen, den Sendedraht mindestens halb so groß wie den halben Durchmesser der als Rundhohlleiter ausgebildeten Antenne zu dimensionieren. Mathematisch läßt sich dies durch die folgende Formel ausdrücken: L > D/2 , wobei D den Durchmesser des Rundhohlleiters charakterisiert. Durch diese Dimensionierung des Sendedrahtes läßt sich die Impedanzanpassung und die dispersionsfreie Übertragung der elektromagnetischen Wellen weiter optimieren.
Eine zusätzliche Verbesserung des Übertragungsverhaltens wird dadurch erreicht, daß gemäße einer vorteilhaften Weiterbildung der erfindungsgemäßen Vorrichtung im Bereich des freien Endes des Sendedrahtes ein Sendepilz angeordnet ist.
Gemäß einer vorteilhaften Weiterbildung der erfindungsgemäßen Vorrichtung wird vorgeschlagen, den Innenraum der Antenne zumindest teilweise mit einem dielektrischen Material auszufüllen. Hierdurch wird eine Trennung zum Prozeß erreicht. Eine Prozeßtrennung ist insbesondere dann notwendig, wenn die Gefahr besteht, daß die Antenne, insbesondere der Sendedraht, mit aggressiven Materialien in Berührung kommt. Auch wird natürlich verhindert, daß sich Ablagerungen an dem Sendedraht bilden, was zu einer Änderung der Übertragungscharakteristik der Antenne führen würde.
So sieht eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung in dem dielektrischen Material eine Ausnehmung vor, in die der Sendedraht hineinragt.
Bevorzugt handelt es sich bei dem dielektrischen Material um Polytetra- fluorethylen (PTFE) oder um Aluminiumtrioxid (Al2 O3 ). Selbstverständlich können auch andere dielektrische Materialien eingesetzt werden.
Wie bereits mehrfach erwähnt, wird die erfindungsgemäße Vorrichtung bevorzugt in Verbindung mit einem Meßgerät eingesetzt, das den Füllstand über die Laufzeit elektromagnetischer Wellen ermittelt.
Die Erfindung wird anhand der nachfolgenden Zeichnungen näher erläutert. Es zeigt:
Fig. 1 : eine schematische Darstellung eines Meßgeräts, das den Füllstand über die Laufzeit von elektromagnetischen Wellen bestimmt, und
Fig. 2: einen Längsschnitt durch eine bevorzugte Ausgestaltung der erfindungsgemäßen Vorrichtung zum Aussenden von hochfrequenten Signalen.
Fig. 1 zeigt eine schematische Darstellung eines Füllstandsmeßgeräts 1 , das den Füllstand F über die Laufzeit von elektromagnetischen Wellen bestimmt.
Bevorzugt handelt es sich bei den elektromagnetischen Wellen um
Mikrowellen.
In dem Behälter 4 ist ein festes oder flüssiges Füllgut 2 gelagert. Zur
Bestimmung des Füllstandes F dient das Fülistandsmeßgerät 1 , das in einer Öffnung 5 im Deckel des Behälters 4 montiert ist. Über die Antenne 10 werden in der Signalerzeugungs-/Sendeeinheit 6; 7 erzeugte Sendesignale in Richtung der Oberfläche 3 des Füllguts 2 abgestrahlt. An der Oberfläche 3 werden die gesendeten Signale als Echosignale teilweise reflektiert. Diese Echosignale werden in der Empfangs-/Auswerteeinheit 8; 1 1 empfangen und ausgewertet. Mittels der Sende-/Empfangsweiche 9 werden im gezeigten Beispiel die Sendeeinheit 6 und die Empfangseinheit 7 voneinander entkoppelt. Bei Verwendung einer Sendeeinheit 6 und einer separaten Empfangseinheit 7 kann die Sende-/Empfangsweiche 9 selbstverständlich entfallen. Anhand der Laufzeit der Mikrowellen ermittelt die Auswerteeinheit 1 1 den Füllstand F des Füllguts 2 in dem Behälter 4.
In Fig. 2 ist ein Längsschnitt einer bevorzugten Ausgestaltung der erfindungsgemäßen Vorrichtung zum Aussenden von hochfrequenten Signalen dargestellt. Bei der erfindungsgemäßen Antenne 10 handelt es sich um einen Rundhohlleiter, dessen prozeßabgewandter Endbereich durch die Rückwand 15 abgeschlossen ist. Die hochfrequenten breitbandigen Signale, im
Normalfall handelt es sich um Mikrowellen, werden über die Signalleitung 12 von der Signalerzeugungseinheit 6 auf den Sendedraht 16 der Antenne 10 geführt. Bei der Signalleitung 12 handelt es sich bevorzugt um ein Koaxialkabel mit einem Innenleiter 13 und einem Außenleiter 14. Der Innenleiter 13 ist mit dem Sendedraht 16 verbunden.
Erfindungsgemäß hat der Sendedraht 16 einen Abstand ca. λ/6 von der Rückwand 15, wobei λ die Wellenlänge der in der Antenne 10 geführten hochfrequenten Wellen kennzeichnet. Der Sendedraht 16 besitzt näherungs- weise eine Länge L, die gleich oder größer ist als D/2, wobei D den
Innendurchmesser der Antenne 10 charakterisiert. Am freien Ende 17 des Sendedrahts 16 kann ein Sendepilz 18 vorgesehen sein.
Zumindest ein Teilbereich des Innenraums der Antenne 10 ist mit einem dielektrischen Material 19 ausgefüllt. Der Sendedraht 16 ragt in eine
Ausnehmung 20, bevorzugt eine Bohrung, die in dem dielektrischen Material vorgesehen ist. Bezugszeicheniiste
Füllstandsmeßgerät
Füllgut
Oberfläche des Füllguts
Behälterdeckel
Öffnung
Signalerzeugungseinheit
Sendeeinheit
Empfangseinheit
Sende-/Empfangsweiche
Antenne
Auswerteeinheit
Signalleitung, Koaxkabel
Innenleiter
Außenleiter
Rückwand
Sendedraht bzw. Erregerelement freies Ende
Sendepilz dielektrisches Material
Ausnehmung

Claims

Patentansprüche
1 . Vorrichtung zum Aussenden hochfrequenter Signale mit einer Signalerzeugungseinheit, einer Signalleitung, einem Sendedraht und einer als Rundhohlleiter ausgebildeten Antenne, die in einem Endbereich durch eine Rückwand abgeschlossen ist, wobei die Signalerzeugungseinheit die hochfrequenten Signale erzeugt, wobei die Signalleitung die hochfrequenten Signale auf den Sendedraht der Antenne führt, und wobei der Sendedraht in den Rundhohlleiter hineinragt und näherungsweise parallel zu der Rückwand angeordnet ist, dadurch gekennzeichnet, daß der Abstand (Z) zwischen dem Sendedraht (16) und der Rückwand (15) der Antenne (10) näherungsweise λ/6 beträgt, wobei λ die Wellenlänge der in der Antenne (10) geführten hochfrequenten Signale ist.
2. Vorrichtung nach Anspruch 1 , dadurch gekennzeichnet, daß der im Innenraum der Antenne (10) angeordnete Sendedraht (16) eine Länge (L) aufweist, wobei die Länge (L) des Sendedrahtes (16) die Bedingung L > D/2 erfüllt und wobei D den Innendurchmesser der als Rundhohlleiter ausgebildeten Antenne (10) charakterisiert.
3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß im Bereich des freien Endes (17) des Sendedrahtes (16) ein Sendepilz (18) angeordnet ist.
4. Vorrichtung nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, daß ein dielektrisches Material (19) vorgesehen ist, das zumindest den Innenraum der Antenne (10) im Bereich des Sendedrahtes (16) ausfüllt.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß in dem dielektrischen Material (19) eine Ausnehmung (20) vorgesehen ist, in die der Sendedraht (16) hineinragt.
6. Vorrichtung nach Anspruch 4 oder 5, dadurch gekennzeichnet, daß es sich bei dem dielektrischen Material (19) um Polytetrafluorethylen (PTFE) oder um Aluminiumtrioxid (Al2 03 ) handelt.
7. Vorrichtung nach einem oder mehreren der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß die Vorrichtung Teil eines Füllstandsmeßgeräts (1 ) ist.
PCT/EP2001/001441 2000-03-04 2001-02-09 Vorrichtung zum aussenden hochfrequenter signale WO2001067542A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001231725A AU2001231725A1 (en) 2000-03-04 2001-02-09 Device for emitting high-frequency signals
US10/204,450 US6727845B2 (en) 2000-03-04 2001-02-09 Device for emitting high-frequency signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10010713.3 2000-03-04
DE10010713A DE10010713B4 (de) 2000-03-04 2000-03-04 Füllstandmeßgerät zum Aussenden und Empfangen breitbandiger hochfrequenter Signale

Publications (1)

Publication Number Publication Date
WO2001067542A1 true WO2001067542A1 (de) 2001-09-13

Family

ID=7633582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/001441 WO2001067542A1 (de) 2000-03-04 2001-02-09 Vorrichtung zum aussenden hochfrequenter signale

Country Status (4)

Country Link
US (1) US6727845B2 (de)
AU (1) AU2001231725A1 (de)
DE (1) DE10010713B4 (de)
WO (1) WO2001067542A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7453393B2 (en) * 2005-01-18 2008-11-18 Siemens Milltronics Process Instruments Inc. Coupler with waveguide transition for an antenna in a radar-based level measurement system
US7479842B2 (en) * 2006-03-31 2009-01-20 International Business Machines Corporation Apparatus and methods for constructing and packaging waveguide to planar transmission line transitions for millimeter wave applications
DE102007026389A1 (de) * 2007-06-06 2008-12-18 Vega Grieshaber Kg Antenne für ein Füllstandsradar für Hochtemperatur- und/oder Hochdruckanwendungen
US8077103B1 (en) 2007-07-07 2011-12-13 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Cup waveguide antenna with integrated polarizer and OMT
EP3483569B1 (de) * 2017-11-14 2021-08-25 VEGA Grieshaber KG Füllstandmessgerät mit potentialtrennung im wellenleiter

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2433074A (en) * 1943-07-02 1947-12-23 Raytheon Mfg Co High-frequency coupling device
US2909735A (en) * 1955-12-08 1959-10-20 Itt Twin probe waveguide transition
US4287496A (en) * 1980-05-22 1981-09-01 Rca Corporation Assembly for positioning the coupling probe of a waveguide
JPS6096901A (ja) * 1983-10-31 1985-05-30 Nec Corp 導波管同軸変換器
EP0231473A2 (de) * 1986-02-05 1987-08-12 ANT Nachrichtentechnik GmbH Anordnung zum Ankoppeln von Hohlleiterwellen an ein Halbleiterbauelement
US5594449A (en) * 1993-10-26 1997-01-14 Endress + Hauser Gmbh + Co. Tank-contents level measuring assembly

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356493A (en) * 1979-12-14 1982-10-26 Bogner Richard D Disc-on-rod end-fire microwave antenna
SE441306B (sv) * 1984-04-25 1985-09-23 Saab Marine Electronics Sett och anordning for metning av nivan hos ett i en behallare forvarat flytande material
GB8816276D0 (en) * 1988-07-08 1988-08-10 Marconi Co Ltd Waveguide coupler
DE9312251U1 (de) * 1993-08-17 1993-12-09 Vega Grieshaber Gmbh & Co Meßeinrichtung zur Füllstands- bzw. Abstandsmessung mittels elektromagnetischer Wellen im Mikrowellenbereich
DE4405855A1 (de) * 1994-02-23 1995-08-24 Grieshaber Vega Kg Antenneneinrichtung für ein Füllstandmeßgerät
DE9412243U1 (de) * 1994-07-29 1994-09-29 Grieshaber Vega Kg Antenneneinrichtung für ein Füllstandmeßgerät
DE19617963C2 (de) * 1996-05-06 1998-03-26 Grieshaber Vega Kg Antenneneinrichtung für ein Füllstandmeß-Radargerät
DE19629593A1 (de) * 1996-07-23 1998-01-29 Endress Hauser Gmbh Co Anordnung zum Erzeugen und zum Senden von Mikrowellen, insb. für ein Füllstandsmeßgerät
US6155112A (en) * 1996-10-04 2000-12-05 Endress + Hauser Gmbh + Co. Filling level measuring device operating with microwaves
US5926080A (en) * 1996-10-04 1999-07-20 Rosemount, Inc. Level gage waveguide transitions and tuning method and apparatus
DE19752808C2 (de) * 1997-11-28 2001-12-06 Grieshaber Vega Kg Antenneneinrichtung für ein Füllstandmeß-Radargerät
EP0922942A1 (de) * 1997-12-10 1999-06-16 Endress + Hauser GmbH + Co. Mit Mikrowellen arbeitendes Füllstandsmessgerät mit einem Einsatz aus einem Dielektrikum und Verfahren zur Herstellung des Dielektrikums
DE19800306B4 (de) * 1998-01-07 2008-05-15 Vega Grieshaber Kg Antenneneinrichtung für ein Füllstandmeß-Radargerät
EP0947812A1 (de) * 1998-03-28 1999-10-06 Endress + Hauser GmbH + Co. Mit Mikrowellen arbeitendes Füllstandsmessgerät
DE19922606B4 (de) * 1999-05-17 2004-07-22 Vega Grieshaber Kg Anordnung aus einem Hohlleiter und einer Antenne
DE59914383D1 (de) * 1999-08-10 2007-08-02 Endress & Hauser Gmbh & Co Kg Antenne

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2433074A (en) * 1943-07-02 1947-12-23 Raytheon Mfg Co High-frequency coupling device
US2909735A (en) * 1955-12-08 1959-10-20 Itt Twin probe waveguide transition
US4287496A (en) * 1980-05-22 1981-09-01 Rca Corporation Assembly for positioning the coupling probe of a waveguide
JPS6096901A (ja) * 1983-10-31 1985-05-30 Nec Corp 導波管同軸変換器
EP0231473A2 (de) * 1986-02-05 1987-08-12 ANT Nachrichtentechnik GmbH Anordnung zum Ankoppeln von Hohlleiterwellen an ein Halbleiterbauelement
US5594449A (en) * 1993-10-26 1997-01-14 Endress + Hauser Gmbh + Co. Tank-contents level measuring assembly

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M.D. DESHPANDE ET AL.: "Input impedance of coaxial line to circular waveguide feed", IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES., vol. 25, no. 11, November 1977 (1977-11-01), IEEE INC. NEW YORK., US, pages 954 - 957, XP002164256, ISSN: 0018-9480 *
PATENT ABSTRACTS OF JAPAN vol. 009, no. 248 (E - 347) 4 October 1985 (1985-10-04) *

Also Published As

Publication number Publication date
AU2001231725A1 (en) 2001-09-17
DE10010713B4 (de) 2008-08-28
DE10010713A1 (de) 2001-09-06
US20030137447A1 (en) 2003-07-24
US6727845B2 (en) 2004-04-27

Similar Documents

Publication Publication Date Title
DE19641036C2 (de) Mit Mikrowellen arbeitendes Füllstandsmeßgerät
EP1076380B1 (de) Antenne
WO2002052888A2 (de) Vorrichtung zum aussenden hochfrequenter signale
EP2331916B1 (de) Mit mikrowellen arbeitendes füllstandsmessgerät
EP1285239B1 (de) Füllstandsmessgerät
EP0821431B1 (de) Anordnung zur Erzeugung und zum Senden von Mikrowellen, insb. für ein Füllstandsmessgerät
DE4404745C2 (de) Füllstandmeßvorrichtung
DE4345242A1 (de) Frequenzumsetzungsschaltung für ein Radar-Abstandsmeßgerät
WO2001020273A1 (de) Vorrichtung zur bestimmung des füllstandes eines füllguts in einem behälter
EP0947812A1 (de) Mit Mikrowellen arbeitendes Füllstandsmessgerät
DE202005008528U1 (de) Messgerät der Prozessmesstechnik mit einer Parabolantenne
DE10051297A1 (de) Füllstandsmeßgerät
DE102013104699A1 (de) Vorrichtung zur Bestimmung des Füllstandes mittels einer Helixantenne
EP1325351A1 (de) Vorrichtung zur bestimmung des füllstands eines füllguts in einem behälter
DE10010713B4 (de) Füllstandmeßgerät zum Aussenden und Empfangen breitbandiger hochfrequenter Signale
DE4331353C2 (de) Radar-Abstandsmeßgerät
EP1274973A2 (de) Vorrichtung zur bestimmung des füllstandes eines füllguts in einem behälter
EP1126251A2 (de) Anordnung zur Füllstandsmessung
DE10043838A1 (de) Füllstandsmeßvorrichtung
DE102004022516B4 (de) Hornantenne
DE10118009B4 (de) Vorrichtung zur Bestimmung und/oder Überwachung des Füllstands eines Füllguts in einem Behälter
DE10117642B4 (de) Vorrichtung zur Bestimmung des Füllstands eines Füllguts in einem Behälter

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10204450

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP