WO2001065094A1 - Kurbelwelle mit hoher schwingungsdämpfung - Google Patents

Kurbelwelle mit hoher schwingungsdämpfung Download PDF

Info

Publication number
WO2001065094A1
WO2001065094A1 PCT/EP2000/011422 EP0011422W WO0165094A1 WO 2001065094 A1 WO2001065094 A1 WO 2001065094A1 EP 0011422 W EP0011422 W EP 0011422W WO 0165094 A1 WO0165094 A1 WO 0165094A1
Authority
WO
WIPO (PCT)
Prior art keywords
crankshaft
speed
flywheel
damper
starter generator
Prior art date
Application number
PCT/EP2000/011422
Other languages
English (en)
French (fr)
Inventor
Hans-Gerd Eckel
Volker Hirsch
Original Assignee
Carl Freudenberg Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Freudenberg Kg filed Critical Carl Freudenberg Kg
Priority to AU2001217024A priority Critical patent/AU2001217024A1/en
Publication of WO2001065094A1 publication Critical patent/WO2001065094A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/06Engines with means for equalising torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/12Suppression of vibrations in rotating systems by making use of members moving with the system using elastic members or friction-damping members, e.g. between a rotating shaft and a gyratory mass mounted thereon

Definitions

  • crankshafts of internal combustion engines are excited to vibrate by gas and mass forces, which reduce the durability of the crankshaft. This can also result in considerable noise, which reduce driving comfort.
  • Various measures are known to achieve improvements here.
  • crankshafts are equipped with flywheels which are rigidly attached to the crankshaft between engine and transmission in crankshafts for the internal combustion engines customary for motor vehicles today.
  • the use of torsional vibration dampers which reduce the torsional natural vibrations of crankshafts by damping or eradication, is also widespread.
  • the durability of the crankshaft is guaranteed and possible overloading of the shaft is avoided.
  • the torsional vibration dampers are usually formed from a hub to which a flywheel is attached via an elastomer layer.
  • the elastomer layer is designed as an elastomer spring and designed so that there is an absorber effect and by reducing the torsional vibrations of the crankshaft, for example in the higher-frequency range, there is a reduction in noise.
  • the arrangement of the torsional vibration damper at the free end of the crankshaft, that is to say at the crankshaft end opposite the flywheel, is customary.
  • Another way to reduce vibrations on the crankshaft is to use speed-adaptive dampers. Instead of the damping effect, which is based on the fact that the amplitudes are reduced by energy dissipation, the energy supplied to them is temporarily stored in absorbers and is used to reduce vibration by a phase-shifted feedback to the oscillating system.
  • the speed-adaptive dampers have a natural frequency proportional to the speed.
  • a rigid body vibration proportional to the crankshaft speed (rotational nonuniformity), such as occurs, for example, due to the temporally discontinuous torque division caused by the combustion process and the conditions in the crank mechanism, can be eliminated in the entire speed range.
  • One area of application for the speed-adaptive damper is the connection of the damper to the flywheel, which is attached to the gear-side end of the crankshaft.
  • crankshaft starter generators are designed and arranged in such a way that the rotors serve as torsional vibration dampers. These electric crankshaft starter generators have the advantage that the transmission of the starting energy takes place without contact and thus without wear. In addition, the starting process does not cause any additional noise, so that an automatic start-stop system with frequently required starting processes can be implemented.
  • the invention has for its object to achieve a high vibration damping on a crankshaft and at the same time to reduce the mass forces caused by the means used to a minimum. Both the torsional vibrations and the rotational irregularities of the crankshaft should be reduced to a minimum.
  • the object is achieved in that the crankshaft is provided with a flywheel, a crankshaft starter generator, the rotor of which is designed as a torsional vibration damper, and a speed-adaptive damper, which is arranged on the crankshaft and coordinated with one another in terms of its damping and damper effect are that there is a minimal vibration amplitude over the entire speed range of the crankshaft.
  • the rotor of the crankshaft starter generator designed as a torsional vibration damper is matched to the dominant order of the rotational nonuniformity at a specific speed and supports a speed-adaptive damper in its effect.
  • the rotation angle amplitudes of the crankshaft are greatest in the idling range, so that a particularly strong reduction is advantageous here.
  • the speed-adaptive damper can then be made smaller and lighter.
  • the optimal solution is achieved if the speed-adaptive damper is also matched to the dominant order of the speed uniformity of the engine.
  • the flywheel and the crankshaft starter generator can be on the lift end of the crankshaft and the speed-adaptive damper on free end of the crankshaft. This arrangement enables a not inconsiderable reduction in weight on the flywheel. Without affecting the rotational irregularity of the crankshaft.
  • the particularly favorable embodiment provides that the flywheel and the speed-adaptive damper are arranged on the transmission-side end of the crankshaft and the crankshaft starter generator is arranged on the free end of the crankshaft.
  • a conventional type of torsional vibration damper is no longer required, since this task can be performed by the rotor of the crankshaft starter generator.
  • the speed-adaptive damper can be made smaller if the rotor is tuned as a torsional vibration damper against the rotational irregularity in the idling range of the engine.
  • Fig. 1 is a diagram with the amplitude curve of the
  • FIG. 2 is a schematic representation of a crankshaft
  • crankshaft 3 a crankshaft, also schematically with a different arrangement of the damping devices
  • Curve X shows the vibration profile of a crankshaft with a flywheel.
  • a crankshaft starter generator with a rotor as a torsional vibration damper, which is tuned to the idling range L of the engine
  • an oscillation curve is produced according to curve Y.
  • the crankshaft starter generator first reduces the vibration amplitudes A strongly, so that, for example, at a a minimum is reached at idle speed N of 1000 revolutions / min. With increasing speed, however, curve Y rises again in order to drop again after reaching a maximum at, for example, 2000 revolutions / min.
  • Curve Z shows the course of the vibration when using the speed-adaptive damper. The absorber reduces the rotational irregularity evenly over the entire speed range.
  • the best overall reduction in vibration amplitude according to curve R is achieved by using a speed-adaptive damper in combination with a crankshaft starter generator used as a torsional vibration damper.
  • the speed-adaptive damper causes a curve that is clearly below curve Y and in which a minimum occurs in the idling range or a maximum after leaving the idling range to higher speeds.
  • the dampers or absorbers attached to the shaft can be reduced to a minimum in terms of weight. This also applies to the flywheel used.
  • Fig. 2 an embodiment for the arrangement of the vibration-damping or amortizing parts is shown schematically.
  • the crankshaft 1 is provided at its transmission end 2 with the flywheel 3 and the crankshaft starter generator 4.
  • the crankshaft starter generator 4 is provided with a rotor 5 which is designed as a torsional vibration damper.
  • the flywheel 6 is connected to the hub 8 in a suitable manner via the rubber spring element 7.
  • the stator 11 of the starter generator 4 is attached to the motor housing, not shown in detail.
  • the speed-adaptive damper 10 is fastened, which is of a type known per se. Such an absorber is dealt with in DE 196 04 160 C1, for example.
  • the rotor 5 of the crankshaft starter generator 4 is designed as a torsional vibration damper.
  • the speed-adaptive damper 10 is tuned at the free end 9 of the crankshaft 1 so that, as shown in FIG. 1, the further reduction in the amplitudes A described there is achieved over the entire speed range.
  • Fig. 3 shows the embodiment of the He induction with which the greatest possible weight reduction with the greatest possible damping or eradication of the amplitudes A is possible.
  • the transmission end 2 of the crankshaft 1 is provided with the flywheel 3 and the speed-adaptive damper 20.
  • the flywheel 3 and the absorber 20 can be combined here, for example, into one unit.
  • the crankshaft starter generator 4 is arranged at the free end 9 of the crankshaft 1.
  • the rotor 5 is designed as a torsional vibration damper with the flywheel 6, the rubber spring 7 and the hub 8 attached to the shaft end 9.
  • the stator 21 is located on the motor housing.
  • crankshaft starter generator 4 shows an arrangement in which the flywheel 3, the speed-adaptive damper 10 and the crankshaft starter generator 4 are attached to the end 2 of the crankshaft 1 on the transmission side. This is advantageous if there is no installation space for the crankshaft starter generator 4 or the speed-adaptive damper 10 at the free crankshaft end 9. In addition, the stress on the crankshaft due to the torsional resonance is reduced in this arrangement.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)

Abstract

Kurbelwelle mit hoher Schwingungsdämpfung, wobei die Kurbelwelle (1) mit einem Schwungrad (3), einem Kurbelwellen-Startergenerator (4), dessen Rotor (5) als Torsionsschwingungsdämpfer ausgebildet ist, und einem drehzahladaptiven Tilger (10) versehen ist, die so an der Kurbelwelle (1) angeordnet und aufeinander in ihrer Dämpf- und Tilgerwirkung abgestimmt sind, sodaß über den gesamten Drehzahlbereich (N) der Kurbelwelle (1) eine minimale Schwingungsamplitude (A) an der Kurbelwelle (1) gegeben ist.

Description

Kurbelwelle mit hoher Schwingungsdämpfung
Beschreibung
Technisches Gebiet
Kurbelwellen von Verbrennungsmotoren werden durch Gas- und Massenkräfte zu Schwingungen angeregt, die die Dauerhaltbarkeit der Kurbelwelle herabsetzen. Außerdem können dadurch erhebliche Geräusche entstehen, die den Fahrkomfort mindern. Verschiedene Maßnahmen sind bekannt, um hier Verbesserungen zu erreichen.
Um Drehzahlschwankungen auszugleichen, werden Kurbelwellen mit Schwungrädern ausgestattet, die bei Kurbelwellen für die heute üblichen Verbrennungsmotoren für Kraftfahrzeuge zwischen Motor und Getriebe starr an der Kurbelwelle befestigt sind.
Weit verbreitet ist auch der Einsatz von Torsionsschwingungsdämpfern, die eine Reduzierung der Torsionseigenschwingungen von Kurbelwellen durch Dämpfung oder Tilgung erreichen. Die Dauerhaltbarkeit der Kurbelwelle wird gewährleistet und eventuelle Überbeanspruchungen der Welle vermieden. Die Torsionsschwingungsdämpfer sind in der Regel aus einer Nabe gebildet, an der über eine Elastomerschicht eine Schwungmasse befestigt ist. Die Elastomerschicht ist als Elastomerfeder ausgebildet und so ausgelegt, daß sich eine Tilgerwirkung einstellt und durch die Reduktion der Torsionseigenschwingungen der Kurbelwelle, zum Beispiel im höherfrequenten Bereich, eine Reduzierung von Geräuschen stattfindet. Üblich ist die Anordnung des Torsionsschwingungsdämpfers am freien Ende der Kurbelwelle, das heißt am dem Schwungrad gegenüberliegenden Kurbelwellenende.
Eine andere Möglichkeit Schwingungen an der Kurbelwelle zu reduzieren, besteht im Einsatz von drehzahladaptiven Tilgern. An Stelle der Dämpfungswirkung, die darin beruht, daß die Amplituden durch Energiedissipation reduziert werden, wird bei Tilgern die ihnen zugeführte Energie zwischengespeichert und durch eine phasenversetzte Rückspeisung an das schwingende System zur Schwingungsreduktion ausgenutzt. Die drehzahladaptiven Tilger haben eine der Drehzahl proportionale Eigenfrequenz. Somit ist eine zur Kurbelwellendrehzahl proportionale Starrkörperschwingung (Drehungleichförmigkeit), wie sie zum Beispiel aufgrund der durch den Verbrennungsprozeß und die Verhältnisse im Kurbeltrieb verursachten zeitlich diskontinuierlichen Momenteneinteilung entsteht, im gesamten Drehzahlbereich tilgbar. Ein Anwendungsbereich der drehzahladaptiven Tilger besteht in der Verbindung des Tilgers mit dem Schwungrad, das am getriebeseitigen Ende der Kurbelwelle befestigt ist.
Eine neuere Entwicklung geht dahin, daß Kurbelwellen-Startergeneratoren so ausgebildet und angeordnet werden, daß die Rotoren als Torsionsschwingungsdämpfer dienen. Diese elektrischen Kurbelwellen- Startergeneratoren haben den Vorteil, daß die Übertragung der Startenergie berührungslos und somit verschleißfrei erfolgt. Außerdem verursacht der Startvorgang keine zusätzlichen Geräusche, so daß eine Start-Stopp- Automatik mit häufig notwendigen Startvorgängen realisiert werden kann. Jede der obigen Maßnahmen hat eine Reihe von Vorteilen und erfüllt für das betreffende Einsatzgebiet die gestellten Anforderungen. Der Erfindung liegt die Aufgabe zugrunde, eine hohe Schwingungsdämpfung an einer Kurbelwelle zu erreichen und gleichzeitig die durch die eingesetzten Mittel verursachte Massenkräfte auf ein Mindestmaß zu reduzieren. Sowohl die Torsionsschwingungen als auch die Drehungleichförmigkeiten der Kurbelwelle sollen auf ein Mindestmaß reduziert werden.
Die Lösung der gestellten Aufgabe erfolgt erfindungsgemäß dadurch, daß die Kurbelwelle mit einem Schwungrad, einem Kurbelwellen-Startergenerator, dessen Rotor als Torsionsschwingungsdämpfer ausgebildet ist, und einem drehzahladaptiven Tilger versehen ist, die so an der Kurbelwelle angeordnet und aufeinander in ihrer Dämpf- und Tilgerwirkung abgestimmt sind, daß über den gesamten Drehzahlbereich der Kurbelwelle eine minimale Schwingungsamplitude gegeben ist.
Eine vorteilhafte Maßnahme hierfür besteht darin, daß der als Torsionsschwingungsdämpfer ausgebildete Rotor des Kurbelwellen- Startergenerators auf die dominante Ordnung der Drehungleichförmigkeit bei einer bestimmten Drehzahl abgestimmt ist und hier einen drehzahladaptiven Tilger in seiner Wirkung unterstützt. Im Leerlaufbereich sind die Drehwinkel- Amplituden der Kurbelwelle am größten, so daß hier eine besonders starke Absenkung vorteilhaft ist. Der drehzahladaptive Tilger kann dann kleiner und leichter ausgebildet werden.
Die optimale Lösung wird dann erreicht, wenn auch der drehzahladaptive Tilger auf die dominante Ordnung der Drehzahlungleichförmigkeit des Motors abgestimmt ist.
Das Schwungrad und der Kurbelwellen-Startergenerator können am gethebeseitigen Ende der Kurbelwelle und der drehzahladaptive Tilger am freien Ende der Kurbelwelle angeordnet sein. Diese Anordnung ermöglicht eine nicht unerhebliche Gewichtsreduzierung an dem Schwungrad. Ohne daß die Drehungleichförmigkeit der Kurbelwelle dadurch beeinträchtigt werden würde.
Die besonders günstige Ausführungsform sieht jedoch vor, daß das Schwungrad und der drehzahladaptive Tilger am getriebeseitigen Ende der Kurbelwelle und der Kurbelwellen-Startergenerator am freien Ende der Kurbelwelle angeordnet sind. Ein Torsionsschwingungsdämpfer üblicher Bauart wird nicht mehr benötigt, da diese Aufgabe vom Rotor des Kurbelwellen-Startergenerators übernommen werden kann. Alternativ dazu kann der drehzahladaptive Tilger kleiner gemacht werden, wenn der Rotor als Torsionsschwingungsdämpfer gegen die Drehungleichförmigkeit im Leerlaufbereich des Motors abgestimmt ist.
Kurzbeschreibung der Zeichnungen
Es zeigt
Fig. 1 ein Diagramm mit dem Amplitudenverlauf der
Drehungleichförmigkeit über der Frequenz, Fig. 2 eine schematische Darstellung einer Kurbelwelle mit
Schwingungsdämpfern, Fig. 3 eine Kurbelwelle, ebenfalls schematisch mit einer anderen Anordnung der Dämpfungseinrichtungen,
Fig. 4 eine Kurbelwelle mit den Schwingungsdämpfern am getriebeseitigen Kurbelwellenende und Fig. 5 eine Kurbelwelle mit drehzahladaptivem Tilger und Starter- Generator am freien und Schwungrad am getriebeseitigen Ende der Kurbelwelle. Ausführung der Erfindung
In dem Diagramm der Fig. 1 ist im Koordinatensystem der Schwingungsverlauf als Abhängigkeit der Drehungleichförmigkeitsamplitude von der Drehzahl eingezeichnet. Die Kurve X gibt den Schwingungsverlauf einer Kurbelwelle mit Schwungrad wieder. Bei Einsatz eines Kurbelwellen- Startergenerators mit einem Rotor als Torsionsschwingungsdämpfer, der auf den Leerlaufbereich L des Motors abgestimmt ist, entsteht ein Schwingungsverlauf gemäß der Kurve Y. Durch den Kurbelwellen- Startergenerator findet zunächst eine starke Herabsetzung der Schwingungsamplituden A statt, so daß beispielsweise bei einer im Leerlauf üblichen Drehzahl N von 1000 Umdrehungen /min ein Minimum erreicht wird. Mit zunehmender Drehzahl steigt die Kurve Y jedoch wieder an, um nach Erreichen eines Maximums bei beispielsweise 2000 Umdrehungen/min wieder abzufallen. Die Kurve Z zeigt den Schwingungsverlauf bei Einsatz des drehzahladaptiven Tilgers. Der Tilger reduziert die Drehungleichförmigkeit gleichmäßig über den gesamten Drehzahlbereich.
Die insgesamt beste Reduktion der Schwingungsamplitude gemäß der Kurve R wird durch den Einsatz eines drehzahladaptiven Tilgers im Kombination mit einem als Torsionsschwingungsdämpfer genutzten Kurbelwellen- Startergenerators erzielt. Der drehzahladaptive Tilger bewirkt im Zusammenwirken mit dem Kurbelwellen-Startergenerator einen Kurvenverlauf der deutlich unterhalb der Kurve Y liegt und bei der ein Minimum im Leerlaufbereich bzw. ein Maximum nach Verlassen des Leerlaufbereichs zu höheren Drehzahlen hin erheblich vermindert auftritt. Die an der Welle angebrachten Dämpfer bzw. Tilger können vom Gewichtsumfang auf ein Minimum reduziert werden. Dies trifft auch auf das eingesetzte Schwungrad zu. In der Fig. 2 ist ein Ausführungsbeispiel für die Anordnung der schwingungsdämpfenden bzw. tilgenden Teile schematisch dargestellt. Die Kurbelwelle 1 ist an ihrem getriebeseitigen Ende 2 mit dem Schwungrad 3 und dem Kurbelwellen-Startergenerator 4 versehen. Der Kurbelwellen- Startergenerator 4 ist mit einem Rotor 5 versehen, der als Torsionsschwingungsdämpfer ausgebildet ist. Die Schwungmasse 6 ist über das Gummifederelement 7 in geeigneter Weise mit der Nabe 8 verbunden. Der Stator 11 des Startergenerators 4 ist an dem nicht näher gezeigten Motorgehäuse befestigt. Am freien Ende 9 der Kurbelwelle 1 ist der drehzahladaptive Tilger 10 befestigt, der an sich bekannter Bauart ist. In der DE 196 04 160 C1 ist beispielsweise ein solcher Tilger behandelt. Der Rotor 5 des Kurbelwellen-Startergenerators 4 ist als Torsionsschwingungsdämpfer ausgebildet.
Ergänzend zu obigen Maßnahmen wird der drehzahladaptive Tilger 10 am freien Ende 9 der Kurbelwelle 1 so abgestimmt, daß mit ihm wie in Fig. 1 gezeigt, die dort beschriebene weitere Verringerung der Amplituden A über den gesamten Drehzahlbereich erzielt wird.
Die Fig. 3 zeigt die Ausführungsform der Er indung, mit der eine höchstmögliche Gewichtsreduzierung bei gleichzeitiger größtmöglicher Dämpfung bzw. Tilgung der Amplituden A möglich ist. In diesem Fall ist das getriebeseitige Ende 2 der Kurbelwelle 1 mit dem Schwungrad 3 und dem drehzahladaptiven Tilger 20 versehen. Das Schwungrad 3 und der Tilger 20 können hier beispielsweise zu einer Einheit zusammengefaßt werden. Der Kurbelwellen-Startergenerator 4 ist am freien Ende 9 der Kurbelwelle 1 angeordnet. Der Rotor 5 ist als Torsionsschwingungsdämpfer ausgebildet mit der Schwungmasse 6, der Gummifeder 7 und der auf dem Wellenende 9 angebrachten Nabe 8. Der Stator 21 befindet sich am Motorgehäuse. Die Fig. 4 zeigt eine Anordnung, bei der Schwungrad 3, drehzahladaptiver Tilger 10 und Kurbelwellen-Startergenerator 4 am getriebeseitigen Ende 2 der Kurbelwelle 1 aufgesetzt sind. Dieses ist von Vorteil, wenn am freien Kurbelwellenende 9 kein Bauraum für den Kurbelwellen-Startergenerator 4 oder den drehzahladaptiven Tilger 10 vorhanden ist. Außerdem reduziert sich bei dieser Anordnung die Beanspruchung der Kurbelwelle durch Torsionseigenresonanz.
In der Fig. 5 ist schließlich eine Lösung gezeigt, bei der das Schwungrad 3 am getriebeseitigen Ende 2 der Kurbeiwelle 1 und der drehzahladaptive Tilger 10 mit dem Startergenerator 4 am freien Ende 9 der Kurbelwelle 1 angebracht sind. Diese Anordnung wird bevorzugt bei wenig Bauraum am dem getriebeseitigen Ende 2 der Kurbelwelle 1.

Claims

Patentansprüche
1. Kurbelwelle mit hoher Schwingungsdämpfung, dadurch gekennzeichnet, daß die Kurbelwelle (1 ) mit einem Schwungrad (3), einem Kurbelwellen-Startergenerator (4), dessen Rotor (5) als Torsionsschwingungsdämpfer ausgebildet ist, und einem drehzahladaptiven Tilger (10) versehen ist, die so an der Kurbelwelle (1 ) angeordnet und aufeinander in ihrer Dämpf- und Tilgerwirkung abgestimmt sind, das über den gesamten Drehzahlbereich (N) der
Kurbelwelle (1 ) eine minimale Schwingungsamplitude (A) an der Kurbelwelle (1 ) gegeben ist.
2. Kurbelwelle nach Anspruch 1 , dadurch gekennzeichnet, daß der als Torsionsschwingungsdämpfer ausgebildete Rotor (5) des Kurbelwellen- Startergenerators (4) auf die dominante Ordnung der Drehungleichförmigkeit im Leerlaufbereich (L) des Motors abgestimmt ist.
3. Kurbelwelle nach Anspruch 1 und 2, dadurch gekennzeichnet, daß der drehzahladaptive Tilger (10) auf die dominante Ordnung der Drehungleichförmigkeit des Motors abgestimmt ist.
4. Kurbeiwelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Schwungrad (3) und der Kurbelwelien-
Startergenerator (4) am getriebeseitigen Ende (2) der Kurbelwelle (1 ) und der drehzahladaptive Tilger (10) am freien Ende (9) der Kurbelwelle
(1 ) angeordnet sind.
5. Kurbelwelle nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Schwungrad (3) und der drehzahladaptive Tilger (10) am getriebeseitigen Ende (2) der Kurbelwelle (1 ) und der Kurbelwellen-Startergenerator (4) am freien Ende (9) der Kurbelwelle
(1 ) angeordnet sind.
6. Kurbelwelle nach einem der Ansprüche nach 1 bis 3, dadurch gekennzeichnet, daß das Schwungrad (3) am getriebeseitigen Ende (2) und der Kurbelwellen-Startergenerator (4) mit dem drehzahladaptiven Tilger (10) am freien Ende (9) der Kurbelwelle (1 ) angeordnet sind.
7. Kurbelwelle nach einem der Ansprüche nach 1 bis 3, dadurch gekennzeichnet, daß das Schwungrad (3), der drehzahladaptive Tilger
(10) und der Kurbelwellen-Startergenerator (4) am getriebeseitigen Ende (2) der Kurbelwelle (1 ) angebracht sind.
PCT/EP2000/011422 2000-03-02 2000-11-17 Kurbelwelle mit hoher schwingungsdämpfung WO2001065094A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001217024A AU2001217024A1 (en) 2000-03-02 2000-11-17 Highly vibration-damped crankshaft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2000110095 DE10010095B4 (de) 2000-03-02 2000-03-02 Kurbelwelle mit hoher Schwingungsdämpfung
DE10010095.3 2000-03-02

Publications (1)

Publication Number Publication Date
WO2001065094A1 true WO2001065094A1 (de) 2001-09-07

Family

ID=7633188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/011422 WO2001065094A1 (de) 2000-03-02 2000-11-17 Kurbelwelle mit hoher schwingungsdämpfung

Country Status (3)

Country Link
AU (1) AU2001217024A1 (de)
DE (1) DE10010095B4 (de)
WO (1) WO2001065094A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867625A1 (fr) * 2005-01-18 2005-09-16 Valeo Equip Electr Moteur Montage de machine electrique tournante pour vehicule automobile
AT501165B1 (de) * 2005-02-03 2006-07-15 Avl List Gmbh Brennkraftmaschine mit mehreren zylindern
DE102013100880A1 (de) 2012-02-01 2013-08-01 Avl List Gmbh Antriebstrang für ein Fahrzeug
WO2021005122A1 (de) * 2019-07-10 2021-01-14 Zf Friedrichshafen Ag Antriebsstrang für ein kraftfahrzeug

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE932334C (de) * 1953-03-28 1955-08-29 Edmond Uher Schwungmassenanlasser fuer Brennkraftmaschinen
US2880626A (en) * 1953-09-24 1959-04-07 Daimler Benz Ag Crankshaft, particularly six-throw crankshaft for an internal combustion engine
US5231893A (en) * 1991-12-10 1993-08-03 Simpson Industries, Inc. Dual mode damper
DE19604160C1 (de) * 1996-02-06 1997-05-28 Freudenberg Carl Fa Drehzahladaptiver Tilger
DE19631384C1 (de) * 1996-08-02 1997-10-16 Clouth Gummiwerke Ag Elektrische Maschine in einem Antriebsstrang, z. B. eines Kraftfahrzeuges
US5875752A (en) * 1996-11-13 1999-03-02 Cummins Engine Company, Inc. Engine drive train having a front gear train with improved torsional dynamics
DE19748665A1 (de) * 1997-11-04 1999-05-06 Isad Electronic Sys Gmbh & Co Vorrichtung zur Schwingungsisolierung und Verfahren zu deren Betreiben
DE19937545A1 (de) * 1998-08-21 2000-02-24 Luk Lamellen & Kupplungsbau Antriebsstrang

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4406481C3 (de) * 1994-02-28 2002-04-25 Isad Electronic Sys Gmbh & Co Anlasser für Antriebsaggregate, insbesondere Verbrennungsmotoren
US5725456A (en) * 1994-10-29 1998-03-10 Luk Getriebe Systeme Gmbh Method of regulating the operation of a torque transmission apparatus
DE19831159B4 (de) * 1998-07-11 2004-06-03 Carl Freudenberg Kg Drehzahladaptiver Schwingungstilger
DE19831153A1 (de) * 1998-07-11 2000-01-13 Freudenberg Carl Fa Drehzahladaptiver Schwingungstilger
DE19842928C1 (de) * 1998-09-18 2000-02-10 Siemens Ag Starter-Generator für ein Kraftfahrzeug

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE932334C (de) * 1953-03-28 1955-08-29 Edmond Uher Schwungmassenanlasser fuer Brennkraftmaschinen
US2880626A (en) * 1953-09-24 1959-04-07 Daimler Benz Ag Crankshaft, particularly six-throw crankshaft for an internal combustion engine
US5231893A (en) * 1991-12-10 1993-08-03 Simpson Industries, Inc. Dual mode damper
DE19604160C1 (de) * 1996-02-06 1997-05-28 Freudenberg Carl Fa Drehzahladaptiver Tilger
DE19631384C1 (de) * 1996-08-02 1997-10-16 Clouth Gummiwerke Ag Elektrische Maschine in einem Antriebsstrang, z. B. eines Kraftfahrzeuges
US5875752A (en) * 1996-11-13 1999-03-02 Cummins Engine Company, Inc. Engine drive train having a front gear train with improved torsional dynamics
DE19748665A1 (de) * 1997-11-04 1999-05-06 Isad Electronic Sys Gmbh & Co Vorrichtung zur Schwingungsisolierung und Verfahren zu deren Betreiben
DE19937545A1 (de) * 1998-08-21 2000-02-24 Luk Lamellen & Kupplungsbau Antriebsstrang

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAUER, HORST [RED]; ROBERT BOSCH GMBH: "KRAFTFAHRTECHNISCHES TASCHENBUCH", September 1995, VDI-VERLAG, DÜSSELDORF, DE, XP002162020 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867625A1 (fr) * 2005-01-18 2005-09-16 Valeo Equip Electr Moteur Montage de machine electrique tournante pour vehicule automobile
AT501165B1 (de) * 2005-02-03 2006-07-15 Avl List Gmbh Brennkraftmaschine mit mehreren zylindern
DE102013100880A1 (de) 2012-02-01 2013-08-01 Avl List Gmbh Antriebstrang für ein Fahrzeug
DE102013100883A1 (de) 2012-02-01 2013-08-01 Avl List Gmbh Antriebstrang für ein Fahrzeug
WO2021005122A1 (de) * 2019-07-10 2021-01-14 Zf Friedrichshafen Ag Antriebsstrang für ein kraftfahrzeug

Also Published As

Publication number Publication date
DE10010095A1 (de) 2001-11-29
DE10010095B4 (de) 2004-03-11
AU2001217024A1 (en) 2001-09-12

Similar Documents

Publication Publication Date Title
DE102006009093B4 (de) Kolbenbrennkraftmaschine für ein Motorrad
DE3608402A1 (de) Daempfungsvorrichtung an einer riemenscheibe einer kurbelwelle einer brennkraftmaschine eines fahrzeugs
EP2911928B1 (de) Verfahren zur drehschwingungsberuhigung in einem antriebsstrang
DE2358516A1 (de) Schwingungsdaempfer, insbesondere fuer verbrennungskraftmaschinen
DE102009037000B4 (de) Antrieb für einen Verbrennungsmotor
DE102011080602A1 (de) Brennkraftmaschine mit Massenausgleich und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102012200028B4 (de) Verfahren zum Ausgleich der Massenmomente einer Antriebseinheit und Antriebseinheit zur Durchführung eines derartigen Verfahrens
WO2017158131A2 (de) Kurbelwellenanordnung mit drehschwingungsdämpfer
DE10010095B4 (de) Kurbelwelle mit hoher Schwingungsdämpfung
DE102018207574A1 (de) Zweimassenschwungrad und Verwendung eines derartigen Zweimassenschwungrades
DE102011000585A1 (de) Mehrzylinder-Reihen-Brennkraftmaschine für ein Kraftfahrzeug, sowie Verfahren zum Betreiben derselben
DE102015013541B4 (de) Verfahren zum Betrieb einer Elektromaschine
WO2020147874A1 (de) Verfahren zur aktiven dämpfung einer startresonanz eines torsionsdämpfers beim start eines verbrennungsmotors
DE102016214620A1 (de) Drehmomentübertragungssystem mit torsionsschwingungsabsorption für einen antriebsstrang
DE102016213483B4 (de) Vorrichtung zum Ausgleich freier Massenkräfte einer Hubkolbenbrennkraftmaschine
DE102014111953B4 (de) Kurbelwellenanordnung mit Drehschwingungsdämpfer
DE102011080601A1 (de) Verfahren zum Ausgleich der Massenkräfte einer Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
DE10010096B4 (de) Kurbelwellen-Starter-Generator
EP1241377B1 (de) Verfahren zur Abstimmung eines Maschinenlagers
DE102006023568A1 (de) Schwingungstilger
DE10038281B4 (de) Verfahren und Vorrichtung zur Reduktion von Schwingungen in einem Antriebssystem
EP3019770B1 (de) Antrieb mit einer kolbenmaschine und eine für einen solchen antrieb bestimmte einrichtung sowie die verwendung einer solchen einrichtung zum ausgleich von wechselmomenten
DE102013210428A1 (de) Antriebsstrang mit Zweimassenschwungrad
DE102018202316A1 (de) Kurbelwellen-Anordnung mit Torsionsschwingungsdämpfung
DE102006041891A1 (de) Startergenerator für eine Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase