WO2001061295A1 - Thermopile sensor, and method of measuring temperature with infrared radiation - Google Patents

Thermopile sensor, and method of measuring temperature with infrared radiation Download PDF

Info

Publication number
WO2001061295A1
WO2001061295A1 PCT/JP2000/000893 JP0000893W WO0161295A1 WO 2001061295 A1 WO2001061295 A1 WO 2001061295A1 JP 0000893 W JP0000893 W JP 0000893W WO 0161295 A1 WO0161295 A1 WO 0161295A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cold junction
thermopile
self
heating element
Prior art date
Application number
PCT/JP2000/000893
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhito Sakano
Original Assignee
Kazuhito Sakano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuhito Sakano filed Critical Kazuhito Sakano
Priority to AU2000225727A priority Critical patent/AU2000225727A1/en
Priority to PCT/JP2000/000893 priority patent/WO2001061295A1/en
Publication of WO2001061295A1 publication Critical patent/WO2001061295A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • G01J5/16Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/81Structural details of the junction
    • H10N10/817Structural details of the junction the junction being non-separable, e.g. being cemented, sintered or soldered

Definitions

  • the present invention relates to a thermopile sensor and a temperature measurement method using infrared rays, and more particularly, to a thermopile sensor configured by arranging a large number of thermocouple elements on a substrate, and sensing infrared rays radiated from a measurement target, and The present invention relates to a method for measuring temperature by infrared light using the thermopile sensor.
  • thermometer has been used to detect infrared rays emitted from a measurement target and measure the temperature of the measurement target in a non-contact manner.
  • thermometers emit more from the eardrum and surrounding tissues than contact-type thermometers such as the sublingual thermometer that measures the temperature in the oral cavity and the axillary thermometer that measures the temperature in the axilla for hygiene reasons.
  • contact-type thermometers such as the sublingual thermometer that measures the temperature in the oral cavity and the axillary thermometer that measures the temperature in the axilla for hygiene reasons.
  • the demand for non-contact ear thermometers that measure body temperature by detecting infrared radiation is increasing.
  • Ear-type thermometers are also attracting attention because the eardrum is located deep in the human body and is less affected by the temperature of the outside world, so it can measure body temperature more accurately than other parts of the human body such as the oral cavity and axilla. That is one of the reasons.
  • Non-contact type thermometers generally use a pyroelectric sensor or a thermopile sensor as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured.
  • a pyroelectric sensor is a sensor that detects, as an output, a change in surface charge of a pyroelectric body due to a temperature change when absorbing infrared energy radiated from an object to be measured. Impatience In order to output only when the temperature of the pyroelectric body changes, the electric sensor continually intercepts and cuts off the incident infrared rays by shoving.
  • Thermopile sensors deposit thermocouples using integrated circuit technology and use a number of directly connected thermocouples to provide a continuous output for the temperature difference between the hot and cold junctions. This is the sensor to be taken out.
  • thermopile sensor As a conventional thermopile sensor, for example, there is a thermopile sensor shown in FIG. As shown in Fig. 11, a heat sink 2 having a thickness of several hundred micron is provided with a pit 3 at the center, and a heat sink 2 having a few micron on the upper surface. The thickness of the hot junction supporting film 4 is formed on the lower surface, and the insulating thin film 12 is formed on the lower surface. As shown in FIG. 11, a large number of first thermocouple materials 5 and second thermocouple materials 6 are alternately wired by vapor deposition or the like from the upper surface of the heat sink 2 to the upper surface of the hot junction supporting film 4.
  • thermopile 9 is formed by connecting thermocouples in series. Further, output terminals 10 are provided at both ends of the thermopile 9. Note that the upper surface of the thermal bonding section 8 is covered with an infrared absorber (not shown).
  • thermopile sensor 1 is fixed to the sensor stem 13 by die bonding the thermopile sensor 1 to the sensor stem 13 as described above.
  • thermopile sensor The principle of the temperature measurement in the above-mentioned thermopile sensor is explained below based on the block diagram of Fig. 12 with the example of the radiation thermometer shown in Japanese Patent Application Laid-Open No. 3-27131. I do.
  • the infrared radiation emitted from the measurement target is absorbed by an infrared absorber (not shown) formed on the hot junction 8 so that a temperature difference between the hot junction 8 and the cold junction 7 occurs. Then, an electromotive force is generated between the output terminals 10 of the thermopile 9 for temperature measurement.
  • the amplifier 14 connected to the output terminal 10 amplifies the weak output of the thermopile sensor 1 to a predetermined magnitude.
  • the differential power amplifier 15 connected to the amplifier 14 is an amplifier
  • thermometer 17 and the thermometer 16 are housed together with the thermopile sensor 1 in the sensor stem 13.
  • Information processor 18 is a thermistor 17
  • the temperature of the thermopile sensor 1, that is, the temperature of the cold junction 7, is calculated from the resistance of the thermopile sensor 1 and displayed by the display means 19.
  • V output of the mono Mopairusensa 1 the temperature T of the measurement target (temperature junction 8), mono Mopairusensa 1 the temperature of the (cold junction 7)
  • T Q the output V of the thermopile sensor 1 Is, according to Stefan-Boltzmann's law
  • V k (T-T 0) where k is a constant (1)
  • thermopile sensor 1 the temperature of the thermopile sensor 1 that is, the temperature of the cold junction 7 is controlled by the output of the thermopile sensor 1.
  • the temperature T of the object to be measured can be known by detecting the temperature at the thermistor 17.
  • the radiation thermometer disclosed in Japanese Unexamined Patent Application Publication No. 3-273112 is not affected by the sensitivity of the thermopile sensor or the amplification circuit, and thus has the advantage that measurement errors can be reduced.
  • the radiation thermometer disclosed in Japanese Patent Application Laid-Open No. 3-27331 uses a control means for performing feedback control so that the output V of the thermopile sensor 1 becomes zero.
  • Such feedback control is a closed loop control, that is, a method of adjusting the temperature of the cold junction 7 by heating the cold junction 7 via the heater 16 with the amount of heat corresponding to the output of the thermo sensor 1. It is.
  • the heating amount 1 hour graph in Fig. 13 the heating amount of the heater 16 changes every moment and the output V of the thermopile sensor 1 decreases toward 0 according to the feedback result. It has the characteristic.
  • thermopile sensor 1 As the output of the thermopile sensor 1 is close to 0, the amount of heating becomes small as shown in the heating amount-one-hour graph in FIG. 13, so the output of the thermopile sensor 1 is The time ti required to achieve the state where V is 0 is long.
  • thermopile sensor inserted into the ear canal when measuring the temperature of the eardrum
  • the amount of infrared light incident on the thermopile sensor 1 changes during temperature measurement due to disturbance factors such as changes in the insertion angle of 1 and the influence of the ear canal temperature
  • the output of the thermopile sensor 1 also changes. . Therefore, the amount of heating to the cold junction 7 is successively adjusted by the differential power amplifier 15, and the frequency of the fine adjustment increases particularly when the output of the thermopile sensor 1 is near 0, so that the measurement time ti is long. Time.
  • the feedback control circuit usually has a propagation delay coefficient.
  • a transmission delay coefficient cannot be treated as a fixed constant when the heating state changes every moment by the feedback control. Therefore, it is impossible to set a coefficient for compensating the propagation delay, and it is necessary to control the output change of the above-mentioned thermopile sensor 1 while maintaining a large propagation delay coefficient. Therefore, the heating adjustment cannot follow the output change of the thermopile sensor 1. Since the transmission delay causes a mismatch between the feedback command value and the control result, the heating adjustment of the cold junction 7 is frequently performed and is finely controlled.
  • thermopile sensor 1 Such fine adjustment causes a pulsation phenomenon in the vicinity of 0 of the output of the thermopile sensor 1 in combination with a change in the amount of infrared rays incident on the thermopile sensor 1.
  • t becomes a long time as shown in the output-time graph of FIG.
  • thermopile sensor and an infrared temperature measuring method which can solve the above-mentioned problems in the prior art, improve the measurement accuracy, and shorten the measurement time. .
  • the invention according to the first aspect of the present invention which is provided to solve the above-described problem, is to directly connect a heating element to a cold junction region of a thermopile by thermally connecting the heating element. Temperature measuring elements in the cold junction area so as to be structurally synchronized with the temperature change in the cold junction area, and the heating element is heated to generate a certain amount of heat for the cold junction area. The temperature of the thermopile output voltage value is reduced linearly and linearly with a constant gradient to the heating element heating time, thereby forcibly passing the zero point of the thermopile output voltage.
  • the phase inversion between the positive and negative voltage values is detected, and the cold junction measurement is performed in synchronization with the phase inversion detection.
  • the temperature of the cold junction area is controlled by the temperature element. This is a method of measuring temperature by infrared light, characterized by measuring the temperature of a measurement target by detecting.
  • the temperature of the cold junction area is not feedback-controlled so that the thermopile output voltage coincides with the zero point as in the prior art, but the thermopile output voltage value Since the zero point is controlled so as to pass through at a constant gradient, the measurement time can be greatly reduced.
  • the heating element heats the cold junction area and the cold junction temperature measuring element to a predetermined bias temperature in advance, and the resistance change of the cold junction temperature measuring element is determined by the infrared energy from the measurement target. Since only the temperature rise in the region is obtained, the thermal response speed becomes extremely fast, and it can be synchronized as much as possible with the temperature change in the cold junction region.
  • the feedback control performed in the conventional thermopile sensor relates to the temperature measurement itself at the time of the measurement, whereas the feedback control referred to here merely controls the bias temperature. It is for applying. Therefore, it does not require strict control like the feedback control performed in the conventional thermopile sensor. At least, if the heating is performed within a certain temperature range centered on the bias temperature, the effect can be obtained, and the above-described problem does not occur.
  • the invention according to the second claim of the present application provides a cold junction region of a thermopile such that the heating element is thermally directly coupled to the cold junction region, and the heating element is thermally directly coupled to the cold junction region.
  • Each of the cold junction temperature measuring elements is incorporated so as to synchronize with the temperature change in the joint area, and the heating element is heated to apply a constant amount of heat unilaterally and forcibly to the cold junction area.
  • the thermopile output voltage value is reduced linearly with a constant gradient with respect to the heating element heating time, and the thermopile output voltage value is set with respect to a voltage threshold value that is set in advance and becomes a reference voltage value.
  • the temperature of the measurement target A temperature measuring method according to the infrared radiation, wherein the measuring child.
  • the zero point of the thermopile output voltage value is forcibly passed at a constant gradient without being affected by changes in the surrounding temperature, and the measurement time is greatly reduced.
  • the resistance of the cold junction temperature measuring element changes from the measurement target by heating the cold junction area and the cold junction temperature measuring element to a constant bias temperature by the heating element in advance. Since only the temperature rise in the hot junction region due to the infrared energy is obtained, the thermal response speed becomes extremely fast, and the temperature can be synchronized as much as possible with the temperature change in the cold junction region. That is, it is possible to simultaneously shorten the measurement time and improve the measurement accuracy.
  • the invention according to claim 3 of the present application is the temperature measurement method using infrared light according to claim 1, wherein the output voltage value of the thermopile when the temperature of the cold junction region is changed is a voltage value.
  • the phase detector determines whether or not the phase has been reversed between the positive and negative regions, and generates a 2-bit digital signal indicating whether the phase has been inverted (“Yes” or “No”), and synchronized with the 2-bit digital signal.
  • This is a temperature measurement method using infrared rays, which directly detects the temperature of the cold junction area by detecting the temperature of the junction temperature measuring element.
  • the output voltage of the thermopile when the temperature of the cold junction region is changed is changed to the reference voltage.
  • the phase detector determines whether or not phase inversion has occurred with respect to the voltage threshold, which is a value, and generates a two-bit digital signal indicating whether phase inversion is present or absent.
  • This is a temperature measurement method using infrared rays, wherein the temperature of the cold junction area is directly detected by detecting the temperature of the cold junction temperature measuring element in synchronization. With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
  • the voltage threshold is set to one for each of a positive region and a negative region of a thermopile output voltage value, This is a temperature measurement method using infrared rays, which is characterized by forming a pair of voltage thresholds.
  • thermopile output voltage value With respect to the voltage threshold.
  • the temperature of the measurement target is obtained by performing arithmetic processing during the period.
  • the voltage threshold is set to one for each of a positive region and a negative region of a thermopile output voltage value.
  • This is a temperature measurement method using infrared rays, characterized by providing a plurality of pairs of voltage thresholds.
  • the number of measuring points can be further increased, so that the measuring accuracy is improved.
  • a seventh aspect of the present invention in the temperature measurement method using infrared light according to the fifth aspect of the present invention, in the voltage threshold pair, a pair of a positive region voltage threshold and a negative region voltage threshold This is a temperature measurement method using infrared light, characterized by making the absolute value of the temperature equal.
  • the measured value obtained in synchronization with the phase inversion with respect to the voltage threshold in the positive region and the measurement value obtained in synchronization with the phase inversion with respect to the voltage threshold in the negative region can be obtained as the temperature of the measurement target.
  • high-precision measurement can be performed by simple arithmetic processing.
  • a positive region voltage threshold and a negative region voltage threshold are paired. This is a temperature measurement method using infrared rays, characterized by making the absolute value of the temperature equal.
  • the measured value obtained in synchronization with the phase inversion with respect to the voltage threshold in the positive region and the phase inversion with respect to the voltage threshold in the negative region are compared.
  • the average value of the measured values obtained in synchronization with each other is obtained, and the temperature of the measurement target can be measured with higher accuracy based on the plurality of values.
  • the heating element is configured to generate heat and maintain a constant temperature;
  • the system is separated into a variable temperature system that makes the temperature variable in the temperature range, the cold junction region is maintained at a constant temperature before the temperature measurement is started by the steady temperature system, and the variable temperature system is started after the temperature measurement starts.
  • the cold junction area and the cold junction temperature measuring element can be heated in advance to a constant bias temperature by a steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the temperature rise of the hot junction due to infrared energy from the measurement target, so that its thermal response speed becomes extremely fast, and the temperature of the cold junction region Synchronize as much as possible with change.
  • the measurement time can be greatly reduced.
  • the heating element in the temperature measurement method using infrared rays according to the second aspect of the present invention, it is preferable that the heating element generates heat and is maintained at a constant temperature. And a variable temperature system that makes the temperature variable in the temperature range Separately, the cold junction region is maintained at a constant temperature in advance before the start of temperature measurement by the steady temperature system, and the variable temperature system unilaterally and forcibly changes the temperature of the cold junction region after the start of temperature measurement. This is a method of measuring temperature using infrared rays, which is characterized by this.
  • the cold junction area and the cold junction temperature measuring element can be heated in advance to a constant bias temperature by a steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 11 of the present application is directed to the temperature measurement method using infrared light according to claim 1 of the present application, wherein at least one of the heating element and the cold junction temperature measuring element is a self-control type.
  • This is a temperature measurement method using infrared rays, characterized by using a resistor having a positive temperature coefficient characteristic.
  • a resistor with a self-controlling positive temperature coefficient characteristic has the property that the resistance of the heating element increases as the temperature of the heating element rises due to energization. It has the feature of being maintained at a constant temperature. Therefore, an overheating accident can be prevented without adding a safety device.
  • the invention according to claim 12 of the present application is directed to the temperature measurement method using infrared light according to claim 2 of the present application, wherein at least one of the heating element and the cold junction temperature measuring element is a self-control type.
  • This is a temperature measurement method using infrared rays, characterized by using a resistor having a positive temperature coefficient characteristic.
  • a plurality of elements having the same resistance characteristic electrically insulated between elements are provided.
  • a plurality of systems composed of a resistor having a self-controlling positive temperature coefficient characteristic are produced, and these are incorporated as heating elements so as to be thermally directly connected to the cold junction region, respectively.
  • This is a temperature measurement method using infrared rays, which generates different heat generation temperatures for each system by applying different voltages from outside the mopile. With this configuration, it is possible to separate these systems into a steady temperature system and a variable temperature system.
  • the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise of the hot junction area due to the infrared energy from the measurement target, the thermal response speed becomes extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 14 of the present application is the temperature measurement method using infrared light according to claim 10 of the present application, wherein the self-controlling positive temperature coefficient characteristic of a plurality of identical resistance characteristics electrically insulated between elements is provided.
  • a plurality of systems composed of a resistor including the following are manufactured, and these are each formed as a heat generating element so as to be thermally connected directly to the cold junction region, and different voltages are respectively applied from outside the thermopile.
  • This is a temperature measurement method using infrared rays, which generates a different heat generation temperature for each system by applying the temperature.
  • these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change. On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region using a variable temperature system.
  • the invention according to claim 15 of the present application is the temperature measuring method using infrared light according to claim 9 of the present application, wherein the self-control positive temperature coefficient characteristic of different resistance characteristics electrically insulated between elements is provided.
  • a plurality of systems consisting of two resistors are manufactured, and these are incorporated as heat-generating elements so as to be thermally connected directly to the cold junction region, and the same voltage is applied from outside the thermopile.
  • This is a method of measuring temperature by infrared rays, characterized in that different heating temperatures are generated for each system by applying a temperature.
  • the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region using a variable temperature system.
  • the invention according to claim 16 of the present application is directed to the temperature measurement method using infrared light according to claim 10 of the present application, wherein the method includes a self-controlling positive temperature coefficient characteristic having different resistance characteristics electrically insulated between elements.
  • a plurality of systems composed of two resistors are manufactured, and these are used as heat-generating elements, each of which is thermally connected directly to the cold junction region, and the same voltage is applied from outside the thermopile.
  • This is a temperature measurement method using infrared rays, which generates a different heat generation temperature for each system by applying voltage. With this configuration, it is possible to separate these systems into a steady temperature system and a variable temperature system.
  • the cold-join The temperature measurement element can be heated to a constant bias temperature by heating the temperature measuring element of the region and the cold junction to shorten the measurement time. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so its thermal response speed is extremely fast, and the temperature change in the cold junction area Can be synchronized as much as possible.
  • the measurement time can be significantly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 17 of the present application is the temperature measurement method using infrared light according to claim 9 of the present application, wherein the self-control type positive temperature coefficient characteristic of different resistance characteristics electrically insulated between elements is provided.
  • a plurality of systems composed of a plurality of pairs each including two resistors are manufactured, and these are used as heat generating elements and incorporated so as to be thermally directly connected to the cold junction region, respectively.
  • This is a method of measuring temperature using infrared rays, which generates different heat generation temperatures for each system by applying the same voltage from the same.
  • these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 18 of the present application is directed to the temperature measurement method using infrared light according to claim 10 of the present application, wherein the self-insulating element having different resistance characteristics electrically insulated between elements is provided.
  • a plurality of systems formed by combining a plurality of pairs of two resistors including a control-type positive temperature coefficient characteristic are produced, and these are used as heating elements, and each of them is thermally directly connected to the cold junction region.
  • This is a temperature measurement method using infrared rays, characterized in that different heat generation temperatures are generated for each system by incorporating the same and applying the same voltage from outside the thermopile.
  • these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so its thermal response speed is extremely fast, and the temperature change in the cold junction area Can be synchronized as much as possible.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 19 of the present application is the temperature measurement method using infrared light according to claim 9 of the present application, wherein the heating element system has two types of self-control type positive electrodes having different self-saturation stable temperatures.
  • Use a resistor with a temperature coefficient characteristic and apply a specified current to a resistor with a self-stable positive temperature coefficient characteristic, which has a lower self-saturation stability temperature, at a constant self-saturation stable temperature.
  • Temperature measurement using infrared light characterized in that the resistor with a self-regulating positive temperature coefficient characteristic with a higher self-saturation stable temperature is changed to an arbitrary temperature below the self-saturation stable temperature. It is a method.
  • the self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C).
  • the temperature of the area and the cold junction temperature measuring element must be set in advance to a constant bias temperature (3
  • the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C).
  • the temperature of the eardrum can be measured by performing variable heating at 42 ° C).
  • the resistor with a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is close to the eardrum temperature is maintained at a constant self-saturation stable temperature (34 V) regardless of ambient temperature changes. Therefore, an overheating accident of the thermopile sensor is prevented.
  • the self-saturation stable temperature is higher than the eardrum temperature.
  • the resistor with the self-regulating positive temperature coefficient characteristic is variable-heated, but even if it malfunctions or fails, the variable-heating temperature control is impossible. Even if the temperature rises, it will not be heated above the self-saturation stable temperature (50 ° C), thereby preventing the thermopile sensor from overheating.
  • the saturation self-stabilizing temperature is maintained at a constant temperature, so that the number of parts can be reduced, which leads to cost reduction and product reduction. Contributes to improvement in strength.
  • a resistor having coefficient characteristics is used, and a predetermined current is applied to the resistor having a self-regulating positive temperature coefficient characteristic, which has a lower self-saturation stable temperature, to stabilize at a constant self-saturation stable temperature.
  • a resistor having a self-stable positive temperature coefficient characteristic with a higher self-saturation stable temperature is a temperature measurement method using infrared rays, which is characterized by changing the temperature to an arbitrary temperature below the self-saturation stable temperature.
  • the one with a low self-saturation stable temperature is stabilized at a constant temperature of a bias temperature as a steady temperature system, and the one with a high self-saturation temperature is a variable temperature system as a variable temperature system.
  • overheating of the thermopile sensor can be prevented without adding a safety device.
  • the self-saturation stable temperature is maintained at a constant temperature without feedback control, so that the number of parts can be reduced, which leads to cost reduction and product reduction. Contributes to improvement in strength.
  • the invention according to claim 21 of the present application is directed to the temperature measurement method using infrared light according to any one of claims 1 to 20, wherein a blackbody furnace having a plurality of different temperatures as a reference temperature is provided.
  • a thermopile sensor is installed for different temperatures of the above black body furnace. Temperature measurement based on the individual difference of the thermopile sensor, and at least one of the inside of the thermopile sensor and the inside of the device incorporating the thermopile sensor is provided.
  • the black body furnace reference temperature stored in the storage device is stored in the storage device by a program stored in at least one of the thermopile sensor and the device incorporating the thermopile sensor. Creates unique temperature measurement data based on the data as discrete plot temperature characteristics, and plots using multiple plot data before and after each plot.
  • thermopile sensor The curve characteristics are sequentially processed, and the free-curve temperature characteristics obtained by continuously connecting these plot-to-plot curve characteristics are unique to the thermopile sensor.
  • the individual differences between the thermopile devices can be automatically set. This is a temperature measurement method using infrared rays, which is characterized by calibration.
  • thermopile sensor With this configuration, it is possible to perform high-accuracy measurement with few errors regardless of the inherent characteristics of the thermopile sensor and the inherent characteristics of the device incorporating the thermopile sensor. .
  • the invention according to claim 22 of the present application is characterized in that a heating element incorporated so as to be thermally directly connected to the cold junction region, and a heating element which is thermally directly connected to the cold junction region and structurally
  • a heating element which is thermally directly connected to the cold junction region and structurally
  • a phase detector for detecting the presence / absence of inversion of the positive / negative voltage value region of the thermopile output, and a converter for converting the presence / absence of the phase inversion into a 2-bit digital signal. This is a sample sensor that detects the temperature of the cold junction temperature measuring element.
  • the temperature of the cold junction is not feedback-controlled so that the output voltage of the thermopile coincides with the zero point as in the prior art, Since control is performed so that the zero point of the output voltage value is forcibly passed at a constant gradient, the measurement time can be significantly reduced.
  • the cold junction area and the cold junction temperature measuring element are pre- By heating to the bias temperature, the change in resistance of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, so the thermal response speed is extremely high. It is faster and can be synchronized as much as possible with temperature changes in the cold junction area.
  • the invention according to claim 23 of the present application is characterized in that the heating element incorporated so as to be thermally directly connected to the cold junction region, and the heating element is thermally connected to the cold junction region.
  • the temperature of the cold-junction region was integrated so as to be synchronized with the temperature change of the cold-junction region and the thermal response speed, and the cold-junction region was unilaterally and forcibly heated by the heating element.
  • a phase detector that detects whether the output voltage value of the thermopile is inverted with respect to a voltage threshold that is set in advance and is a reference voltage value, and a 2-bit digital signal indicating whether the phase inversion is present.
  • a thermopile sensor having a converter for converting to an output and detecting the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
  • the temperature of the cold junction region is not feedback-controlled so that the output voltage of the thermopile coincides with the zero point as in the related art, but the output voltage of the thermopile is not changed. Since the zero point is controlled so that it passes through at a constant gradient, the measurement time can be greatly reduced.
  • the resistance change of the cold junction temperature measuring element can be measured from the measurement target. Since only the temperature rise of the hot junction region due to the infrared energy is obtained, the thermal response speed is extremely fast, and the temperature can be synchronized as much as possible with the temperature change of the cold junction region.
  • the invention according to claim 24 of the present application is the temperature measurement method using infrared light according to claim 22 of the present application, wherein the heating element generates heat and is maintained at a constant temperature;
  • This is a thermopile sensor characterized by comprising a variable temperature system that makes the temperature variable in a temperature range.
  • the cold junction region and the cold junction area are previously determined by the steady temperature system.
  • the junction temperature measuring element can be heated to a constant bias temperature to reduce the measurement time. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, the thermal response speed becomes extremely fast, and the temperature of the cold junction area is extremely high. It can be synchronized as much as possible with temperature changes. On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 25 of the present application is the temperature measurement method using infrared rays according to claim 23 of the present application, wherein the heating element generates heat and is maintained at a constant temperature;
  • a thermopile sensor comprising a variable temperature system that is variable in temperature within a temperature range.
  • the cold junction region and the cold junction temperature measuring element can be preliminarily heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, so that the thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change. On the other hand, the measurement time can be significantly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 26 of the present application is directed to the method for measuring temperature by infrared light according to claim 22 of the present application, wherein at least one of the heating element and the cold junction temperature measuring element is self-controlled.
  • This is a thermopile sensor characterized by using a resistor having a positive temperature coefficient characteristic.
  • the invention according to claim 27 of the present application is directed to the temperature measurement method using infrared light according to claim 23 of the present application, wherein at least at least one of the heating element and the cold junction temperature measuring element is used.
  • This is a thermopile sensor characterized by using a resistor having a self-control type positive temperature coefficient characteristic for one of them.
  • thermo-pile sensor having a structure in which at least one system composed of a resistor body including: is incorporated as a heating element system so as to be thermally directly connected to the cold junction region. It is.
  • the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise of the hot junction area due to the infrared energy from the measurement target, the thermal response speed becomes extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
  • the measurement time can be significantly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • thermo-pile sensor having a structure in which at least one system composed of a resistor including the following is incorporated as a heating element system so as to be thermally directly connected to the cold junction region. is there.
  • these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced.
  • the change in resistance of the cold junction Since only the temperature rise in the hot junction region due to infrared energy is obtained, the thermal response speed is extremely fast, and the temperature can be synchronized as much as possible with the temperature change in the cold junction region.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 30 of the present application is directed to the temperature measurement method using infrared light according to claim 24 of the present application, wherein the method includes a self-controlling positive temperature coefficient characteristic having different resistance characteristics electrically insulated between elements.
  • a thermopile sensor having a structure in which one or more systems composed of two resistors are incorporated as a heating element system so as to be thermally directly connected to the cold junction region. is there.
  • these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 31 of the present application is the temperature measurement method using infrared light according to claim 25 of the present application, wherein the method includes a self-controlling positive temperature coefficient characteristic of different resistance characteristics electrically insulated between elements.
  • a thermopile sensor having a structure in which one or more systems composed of two resistors are incorporated as a heating element system so as to be thermally connected directly to the cold junction region. is there.
  • these systems can be used as a steady temperature system and a variable temperature system.
  • System can be separated. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction region due to infrared energy from the measurement target, so that the thermal response speed is extremely fast, and the temperature of the cold junction region is low. Synchronize as much as possible with changes.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 32 of the present application is directed to the temperature measurement method using infrared light according to claim 24 of the present application, wherein the method includes a self-control positive temperature coefficient characteristic of different resistance characteristics electrically insulated between elements. It has a structure in which at least one system composed of a plurality of pairs of two resistors is combined as a heating element system so as to be thermally directly connected to the cold junction region. This is a sample sensor characterized by this.
  • these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so the thermal response speed is extremely fast, and the cold junction It can be synchronized as much as possible with temperature changes.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 33 of the present application is directed to the temperature measurement method using infrared light according to claim 25 of the present application, wherein the self-insulating elements having different resistance characteristics are electrically insulated between elements.
  • the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so the thermal response speed is extremely fast, and the cold junction It can be synchronized as much as possible with temperature changes.
  • the measurement time can be significantly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
  • the invention according to claim 34 of the present application is the temperature measurement method using infrared light according to claim 24 of the present application, wherein the heating element system has two types of self-control having different self-saturation stable temperatures.
  • This is a thermopile sensor in which a resistor having a positive temperature coefficient characteristic is arranged.
  • the self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C).
  • the temperature of the area and the cold junction temperature measuring element must be set in advance to a constant bias temperature (3
  • the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C).
  • the temperature of the eardrum can be measured by performing variable heating at 42 ° C). At this time, a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is near the eardrum temperature has a constant self-saturation stable temperature (3) regardless of ambient temperature changes.
  • thermopile sensor 4 ° C to prevent overheating of the thermopile sensor.
  • self-stable saturation temperature is higher than eardrum temperature.
  • the variable resistor is heated by variable heating, but even if the temperature control of variable heating becomes impossible due to malfunction or failure, it will not be heated above the self-saturation stable temperature (50 ° C). Therefore, the overheat accident of the thermopile sensor is prevented.
  • the invention according to claim 35 of the present application is the temperature measurement method using infrared light according to claim 25 of the present application, wherein the heating element system has two types of self-control having different self-saturation stable temperatures.
  • This is a thermopile sensor in which a resistor having a positive temperature coefficient characteristic is arranged.
  • the one with a low self-saturation stable temperature is stabilized at a constant temperature of the bias temperature as a steady temperature system, and the one with a high self-saturation temperature is a variable temperature system as a variable temperature system.
  • the area can be heated. At this time, it is possible to prevent the thermopile sensor from overheating without adding a safety device.
  • the saturation self-stabilizing temperature is maintained at a constant temperature without feedback control, so that the number of parts can be reduced, which leads to cost reduction and product reduction. Contributes to improvement in strength.
  • the invention according to claim 36 of the present application is the temperature measurement method using infrared light according to any one of claims 26 to 35, wherein the self-controlling positive temperature coefficient characteristic of the heating element system is At least one of a resistor including a self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element system and a resistor including the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element system is formed by vapor deposition on the substrate surface. Is a thermopile sensor.
  • Thermopile sensors are generally formed on the surface of a silicon pellet, silicon chip, or silicon wafer using semiconductor lamination technology. Therefore, even when forming a resistor having a self-controlling positive temperature coefficient characteristic, it is possible to form the resistor using the vapor deposition technique, which is one of the semiconductor lamination techniques, to achieve the thermopile sensor of the present invention. It is possible to increase the degree of integration and efficiently produce this. Also, it is easy to thermally connect the resistor including the self-control type positive temperature coefficient characteristic and the cold junction region of the thermopile thermally.
  • the invention according to claim 37 of the present application is the method for measuring temperature by infrared light according to any one of claims 26 to 35, wherein the self-controlling positive temperature coefficient of the heating element system is A resistor including characteristics, and a self-connection of the cold junction temperature measuring element system A thermopile sensor characterized in that at least one of the resistors having a controlled positive temperature coefficient characteristic is formed on a substrate surface by paste baking.
  • thermopile sensor of the present invention can be efficiently manufactured.
  • the invention according to claim 38 of the present application is the temperature measurement method using infrared light according to any one of claims 26 to 35, wherein the heating element system has a self-controlling positive temperature coefficient. At least one of the resistor having the characteristic and the resistor having the self-controllable positive temperature coefficient characteristic of the cold junction temperature measuring element system is printed on the surface of the substrate in a planar manner. This is a characteristic thermopile sensor.
  • thermopile sensor of the present invention can be efficiently manufactured.
  • the invention according to claim 39 of the present application is the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measurement.
  • the cold junction temperature measurement element area where the element system is located is located outside the cold junction area with the hot junction area as the center, on the substrate where the cold junction area is located, and with each other. This is a thermopile sensor that is arranged so as to be aligned in a direction.
  • thermopile sensor of the present invention With this configuration, the arrangement of the hot junction region and the cold junction region, which are applied in the conventional thermopile sensor, can be applied to the thermopile sensor of the present invention.
  • the invention according to claim 40 of the present application is the temperature measuring method using infrared rays according to claim 22 or 23 of the present application, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measurement.
  • the cold junction temperature measuring element area where the element system is arranged is arranged outside the cold junction with the hot junction as the center, on the substrate where the cold junction is arranged, and in a vertical direction to each other
  • the thermopile sensor is characterized by being arranged as described above.
  • thermopile sensor of the present invention can be added to the thermopile sensor of the present invention. Can also be applied.
  • the invention according to claim 41 of the present application is directed to the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measurement.
  • the cold junction temperature measuring element area in which the element system is arranged is arranged outside the cold junction with the hot junction as the center, outside the substrate on which the cold junction is arranged, and mutually vertically
  • the thermopile sensor is characterized by being arranged as described above.
  • the invention according to claim 42 of the present application is the temperature measurement method using infrared light according to claim 22 or 23, wherein the temperature of the heating element region in which the heating element system is arranged and the temperature of the cold junction are measured.
  • the thermopile sensor is characterized in that the shape with the cold junction temperature measuring element region in which the element system is arranged is a continuous square.
  • thermopile sensor of the present invention With this configuration, the arrangement of the hot junction region and the cold junction region, which have been applied in the conventional thermopile sensor, can be applied to the thermopile sensor of the present invention. .
  • the invention according to claim 43 of the present application is the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the temperature of the heating element region in which the heating element system is arranged and the temperature of the cold junction are measured.
  • the thermopile sensor is characterized in that the shape with the cold junction temperature measuring element region in which the element system is arranged is a discontinuous polygon separated by a certain angle.
  • thermopile sensor of the present invention With this configuration, the arrangement of the hot junction region and the cold junction region, which are applied in the conventional thermopile sensor, can be applied to the thermopile sensor of the present invention. .
  • the invention according to claim 44 of the present application is the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the temperature of the heating element region in which the heating element system is arranged and the temperature of the cold junction are measured.
  • the thermopile sensor is characterized in that the shape of the cold junction temperature measuring element region in which the element system is arranged is a continuous circle.
  • thermopile sensor the arrangement of the hot junction region and the cold junction region, which has been applied in the conventional thermopile sensor, can be applied to the thermopile sensor of the present invention.
  • the invention according to claim 45 of the present application is the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the temperature of the heating element region where the heating element system is arranged and the temperature of the cold junction are measured.
  • the thermopile sensor is characterized in that the shape with the cold junction temperature measuring element region in which the element system is arranged is a discontinuous circle separated by a certain angle.
  • the arrangement of the hot junction region and the cold junction region applied in the conventional thermopile sensor can be applied to the thermopile sensor of the present invention.
  • the invention according to claim 46 of the present application is directed to the temperature measurement method using infrared rays according to any one of claims 22 to 35 of the present application, wherein a plurality of different temperatures as reference temperatures are provided. It has a storage device for storing temperature measurement data when the temperature measurement is performed sequentially on the black body furnace, and the unique temperature measurement data stored in the storage device is a discontinuous plot. It is created as a plot temperature characteristic, and furthermore, the plot-to-plot curve characteristic processing is sequentially performed for each plot using a plurality of plot data before and after the plot, and these plot-to-plot curves are connected.
  • a storage medium storing a program incorporated in the storage device using a free curve temperature characteristic as a reference of a unique temperature characteristic, and an information processing device for executing the program. Thermopa characterized by Is Rusensa.
  • thermopile sensor product has its own unique temperature characteristics in advance, and high-precision measurement with little error is performed regardless of the thermopile sensor's specific characteristics. Becomes possible.
  • FIG. 1 is a top view and a sectional view showing the structure of a thermopile sensor according to a first embodiment of the present invention.
  • FIG. 2 is a top view showing a thermopile structure of the thermopile sensor according to the first embodiment of the present invention.
  • FIG. 3 is a top view showing a thermopile structure of the thermopile sensor according to the first embodiment of the present invention.
  • FIG. 4 is a diagram showing a resistance-temperature characteristic of the self-control type positive temperature coefficient heating element in the thermopile sensor according to the first embodiment of the present invention.
  • FIG. 5 is a block diagram showing a temperature measuring circuit in the thermopile sensor according to the first embodiment of the present invention.
  • FIG. 6 is a flowchart showing a temperature measurement procedure in the thermopile sensor according to the first embodiment of the present invention.
  • FIG. 7 is a diagram showing the relationship between the temperature and the temperature when the bias temperature is applied in the thermopile sensor according to the first embodiment of the present invention.
  • FIG. 8 is a diagram showing a relationship between one hour of temperature and one hour of thermopile output at the time of temperature measurement in the thermopile sensor according to the first embodiment of the present invention.
  • FIG. 9 is a top view and a sectional view showing the structure of a thermopile sensor according to a second embodiment of the present invention.
  • FIG. 10 is a top view and a sectional view showing the structure of a thermopile sensor according to a third embodiment of the present invention.
  • FIG. 11 is a sectional view showing the structure of a conventional thermopile sensor.
  • FIG. 12 is a block diagram showing a temperature measuring circuit in a conventional thermopile sensor.
  • FIG. 13 is a diagram showing the relationship between one hour of temperature and one hour of thermopile output at the time of temperature measurement in a conventional thermopile sensor.
  • FIGS. 1 and 2 show a thermopile sensor according to an embodiment of the present invention.
  • a number of pits 3 are opened at the center of a silicon.
  • the heat sink 2 having a thickness of about 100 micrometer is formed with a hot junction supporting film 4 having electrical insulation on the upper surface and an insulating thin film 12 on the lower surface.
  • the hot junction support film 4 and the insulating thin film 12 are made of silicon oxide or silicon nitride, and their thickness is about several microns in order to reduce the heat capacity. .
  • thermopile 9 is formed by connecting thermocouples in series.
  • Output terminals 10 are provided at both ends of the thermopile 9.
  • the upper surface of the thermal junction 8 is covered with the infrared ray absorber 11.
  • the thermopile 9 may be formed in a shape as shown in FIG. 3, and the thermal junction 8 may not be covered with the infrared absorber.
  • the area where the cold junction 7 is formed is the cold junction area 20, and the area where the hot junction 8 is formed is the hot junction area 21. This name will be used where necessary.
  • a heating element 22 composed of a self-controlled positive temperature coefficient heating element and a cold junction temperature measuring element composed of a self-controlled positive temperature coefficient heating element 23 are arranged outside the four sides of the cold junction region 20 when viewed from the center of the diaphragm 24, in the order of the cold junction temperature measuring element 23 and the heating element 22.
  • the heating elements 22 and the cold junction temperature measuring element 23 are electrically connected to each other, and electrodes 25 and 26 made of Au or the like are formed at both ends.
  • the area where the heating element 22 is formed is the heating element area 27, and the area where the cold junction temperature measuring element 23 is formed is the cold junction temperature measurement. This is referred to as an element region 28, and this name will be used as needed hereinafter.
  • thermopile sensor 1 is fixed to the sensor stem 13 by die-bonding the thermopile sensor 1 to the sensor stem 13 as described above.
  • thermopile sensor 1 First, using a CVD device, etc., heat bonding consisting of silicon oxide or silicon nitride on both sides of the silicon pellet, silicon chip, or silicon wafer that becomes the heat sink 2
  • the support film 4 and the insulating thin film 12 are formed to a thickness of several microns.
  • the surface of the heat sink 2 is made of a dissimilar metal (the first thermocouple material 5 and the second thermocouple material 6) and connected in series to form a thermopile having a cold junction 7 and a hot junction 8.
  • the combination of the first thermocouple material 5 and the second thermocouple material 6 forming the thermopile 9 include, for example, polysilicon and aluminum, or bismuth and antimony.
  • a self-controlling positive temperature coefficient heating element of the heating element 22 and a self-controlling positive temperature coefficient heating element of the cold junction temperature measuring element 23 are formed on the surface of the heat sink 2 by vapor deposition. They can also be formed by paste baking. Alternatively, it may be formed by planar printing.
  • thermo-mobile sensor 1 is completed.
  • thermopile sensor Accordingly, details of the self-control type positive temperature coefficient heating element in the thermopile sensor according to the embodiment of the present invention and a temperature measurement method using such a thermopile sensor will be described.
  • the self-control type positive temperature coefficient heating element is a heating element having the property that its electrical resistance increases as the temperature of the heating element rises due to energization.
  • the self-control type positive temperature coefficient heating element suddenly has an electric resistance at a certain temperature (self-saturation stable temperature).
  • self-saturation stable temperature Has the property of increasing.
  • the self-control type positive temperature coefficient heating element rapidly increases its electrical resistance at a self-saturation stable temperature.
  • the positive temperature coefficient heating element is maintained at a constant self-saturation stable temperature.
  • the self-control positive temperature coefficient heating element is a heating element that can control the heating temperature by itself.
  • the self-controlling positive temperature coefficient heating element of the heating element 22 performs different temperature control before the start of temperature measurement and after the start of temperature measurement.
  • a voltage is applied to generate heat, and the cold junction 7 is controlled to be maintained at a constant bias temperature.
  • the temperature is further increased from the bias temperature to unilaterally and forcibly heat the cold junction 7.
  • the temperature rise is naturally suppressed at the self-saturation stable temperature. Therefore, when heating the self-controlling positive temperature coefficient heating element of the heating element 22, there is no possibility of overheating more than necessary, so that it is safe.
  • the self-controlling positive temperature coefficient heating element of the cold junction temperature measuring element 23 does not flow an electric current from the outside in particular, and the heating element 22 includes the self-controlling positive temperature coefficient heating element having the positive temperature coefficient characteristic.
  • the temperature is changed in synchronization with the cold junction 7 (at the same change rate) by the forced heating, and the temperature of the cold junction 7 is detected by the change in the internal resistance at that time.
  • the self-control positive temperature coefficient heating elements of the heating element 22 and the cold junction temperature measuring element 23 are shown in Fig.
  • the shape may be a frame, or may be a concentric circle, a regular polygon, or a shape obtained by dividing such a circle or regular polygon at a certain angle according to the shape of the thermopile 9. .
  • thermopile sensor 1 Next, how the temperature is measured by the thermopile sensor 1 will be described with reference to the block circuit diagram of FIG.
  • thermopile sensor 1 outputs a voltage that depends on the infrared dose radiated from the measurement target and the temperature of the cold junction region 20. That is, the thermopile sensor 1 outputs a voltage corresponding to the difference between the temperature of the measurement target, that is, the temperature of the hot junction 8 and the temperature of the cold junction region 20.
  • Region 2 If the temperature of 1 is higher than the temperature of the cold junction region 20, it is output as a positive voltage value, and the temperature of the hot junction region 21 is lower than the temperature of the cold junction region 20. When it is low, it is output as a negative voltage value. When the temperature of the hot junction area 21 is equal to the temperature of the cold junction area 20, the output of the thermopile sensor 1 becomes 0.
  • the amplifier 14 connected to the thermopile sensor 1 amplifies the minute voltage output from the thermopile sensor 1 to a predetermined magnitude.
  • the phase detector 29 connected to the amplifier 14 determines whether or not the output voltage value of the thermopile sensor 1 amplified by the amplifier 14 has reversed the phase between the positive and negative voltage values. Inverted Send to the information processing device 18 as a 2-bit digital signal of “Yes” or “No”.
  • the self-control type positive temperature coefficient heating element of the cold junction temperature measuring element 23 is a temperature measuring element for measuring the temperature of the cold junction area 20 and converts a change in self resistance value into a voltage value. This voltage value is amplified by an amplifier 30 connected to the self-control positive temperature coefficient heating element of the cold junction temperature measuring element 22.
  • the information processing device 18 has a built-in A / D converter, and the information processing device 18 outputs the output signal from the amplifier 30 in synchronization with the output signal of the phase inversion “yes” from the phase detector 29.
  • the temperature value of the measurement target is obtained by performing detection and arithmetic processing, and this is displayed on the display device 19.
  • thermopile sensor 1 As an example in the flow chart of Fig. 6. This will be described in more detail with reference to FIG.
  • the procedure is roughly divided into a measurement preparation stage and a measurement stage.
  • the measurement preparation stage will be described.
  • the information processing device 18 operates (1), the output of the cold junction temperature measuring element 23 is input via the amplifier 30, and the temperature is converted by the built-in A / D converter. Then, the temperature of the cold junction region 20 is obtained (2).
  • the drive IC 31 is driven by the information processing device 18 to heat the heating element 22, and the cold junction area 20 and the cold junction temperature measuring element area 28 are kept at a constant bias temperature.
  • This bias temperature is appropriately determined, for example, when the thermopile sensor is applied to an ear thermometer and is set at 34 ° C which is near the eardrum temperature. You.
  • the heating element 22 is feedback-controlled by the so-called “pendulum type temperature control” as shown in FIG.
  • the thermopile sensor such feedback control is performed in order to reduce the thermopile output voltage to zero when measuring the temperature of the measurement target. It has been a problem that it takes a long time to reduce to zero, and that the measurement accuracy decreases due to temperature disturbance.
  • the feedback control performed here is intended only to reduce the measurement time by applying a bias temperature. Therefore, if the temperature of the cold junction region 20 and the temperature of the cold junction temperature measuring element region 28 are within the specified threshold region around the set bias temperature, the effect can be sufficiently obtained. However, it is not required to be as strict as the feedback control performed in the conventional thermopile sensor. That is, the time required to reach the bias temperature is a short time, and there is no particular problem even if there is a disturbance factor in the temperature unless the influence is very large.
  • the information processing device 18 determines whether the temperature of the cold junction region 20 is within the specified threshold region by the output of the cold junction element 23, It is determined whether the temperature gradient is within the specified rate (that is, the temperature disturbance is within the allowable range) (3), and the temperature and its rate of change are determined.
  • the internal storage device of the information processing device 18 has a temperature gradient of “Pendular temperature control” in advance. For, the change rate within the specified threshold is stored as a change rate table. Then, the information processing device 18 reads this rate-of-change table (5), compares it with the measured rate of temperature change in the cold junction region 20 and, if there is a coincident numerical value (6), uses the numerical value. The degree of influence of temperature disturbance is determined (7), and the degree of correction in the measured temperature value is then determined (8) and displayed on the display means 19 (9). As a display method at this time, for example, it is conceivable to rank the degree of the correction in advance and display the rank. At this stage, the preparation for measurement is completed, and it is desirable that the display means 19 simultaneously indicate that fact.
  • thermometer a thermometer is inserted into the ear canal (10), and the temperature is measured by infrared rays emitted from the eardrum.
  • the measurer performs a measurement start operation, for example, when the measurement start switch is pressed.
  • the output of the cold junction temperature measuring element 23 is input to the information processing device 18 via the amplifier 30, and the temperature is converted by the built-in A / D converter to calculate the temperature of the cold junction region 20. obtain
  • the drive IC 31 is driven by the information processing device 18 to rapidly heat the heating element 22, thereby forcing the cold junction area 20 and the cold junction temperature measuring element area 28.
  • the temperature is increased from a bias temperature of 34 ° C to 42 ° C.
  • the thermopile output voltage value is reduced linearly with a constant gradient with respect to the heating element heating time so that the zero point of the thermopile output voltage is forcibly passed.
  • Positive and negative voltage range reversal is unilaterally and forcibly generated with respect to the mopile output.
  • the phase inversion between the positive and negative voltage values is detected by the phase detector 29, and the two-bit digital signal of the phase inversion “Yes” and “No” is detected.
  • the information is sent to the information processing device 18 as a signal.
  • the information processing device 18 determines whether the phase inversion is “present” or “absent” based on the 2-bit digital signal (16). A signal is sent to stop the heating of the heating element 22 by. At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the heating element 22. However, in this embodiment, a resistor having a self-controlling positive temperature coefficient characteristic is used as the heating element 22, and is maintained at a constant temperature of the self-saturation stable temperature, and is not overheated. .
  • the use of a resistor with a self-regulating positive temperature coefficient characteristic with a self-saturation stable temperature of 50 ° C can be used to prevent overheating without using a special safety device. Is prevented.
  • the output of the cold junction temperature measuring element 23 is input to the information processing device 18 via the amplifier 30 in synchronization with the signal of “presence” of phase inversion, and is output by the built-in AZD converter. Temperature conversion is performed. Further, the temperature disturbance is corrected to obtain the temperature of the cold junction region 20 (17), and this temperature value is displayed on the display device 19 (18), and the temperature measurement is completed.
  • the temperature of the cold junction region 20 obtained in this way is nothing less than the temperature of the hot junction region 21, that is, the temperature of the measurement target, and also the phase inversion of the positive / negative voltage value region of the thermopile output voltage value. Synchronous measurement enables highly accurate measurement with less error. In addition, measurement time can be significantly reduced.
  • the cold junction temperature measuring element region 28 and the heating element region 27 are arranged outside the cold junction region 20 when viewed from the center of the diaphragm 23. May be the heating element area 27 and the cold junction temperature measuring element area 28.In this case, when the bias temperature is applied to the cold junction area 20, the constant temperature is shortened in a shorter time. Can be reached.
  • FIG. 9 shows a thermopile sensor according to this embodiment.
  • the present embodiment is characterized in that the heating element 22 is further divided into a steady-temperature heating element 32 and a variable-temperature heating element 33.
  • the steady temperature system heating element According to 32, the cold junction region 20 is maintained at a constant bias temperature before the temperature measurement starts, and the variable temperature system heating element 33 unilaterally controls the temperature of the cold junction region 20 after the temperature measurement starts. And forcibly change it. That is, the heating to the bias temperature in the measurement preparation stage and the forcible heating of the cold junction region 20 in the measurement stage, which were performed by the single heating element 22 in the first embodiment, are performed in a steady state. Roles are assigned to the temperature system heating element 32 and the variable temperature system heating element 33.
  • Each of these heating elements is composed of a resistor that includes a self-control type positive temperature coefficient characteristic, and the self-saturation stable temperature is variable as a resistance element that includes the self-control type positive temperature coefficient characteristic of the constant temperature system heating element 32.
  • the temperature system heating element 33 uses a temperature lower than the resistance of the resistance element including the self-control type positive temperature coefficient characteristic.
  • an ear thermometer uses a variable temperature system heating element that uses a self-regulating positive temperature coefficient characteristic with a self-saturation stable temperature of 34 ° C, which is the bias temperature, as the steady temperature system heating element 32.
  • a self-regulating positive temperature coefficient heating element having a self-saturation stable temperature of 50 ° C is used as the body element 33.
  • the heating element 32 of the steady-state temperature system is heated to 34 ° C by applying a specified voltage value in the measurement preparation stage, and then further heated. It is maintained at a constant temperature. In addition, even when there is a disturbance factor in the temperature such as a sudden change in the ambient temperature, the temperature is adjusted and maintained at this temperature. Therefore, the feedback control as performed in the first embodiment is not required, and the apparatus configuration can be simplified, the cost can be reduced, and the strength can be improved.
  • no voltage is applied to the variable system heating element 33 in the measurement preparation stage, and the bias temperature is maintained at 34 ° C. following the heating by the steady temperature system heating element 32. Then, voltage is applied for the first time in the measurement stage, and it is forcibly heated from 34 to 42 ° C.
  • the information processing device 18 determines whether the reversal is “present” or “absent” based on the 2-bit digital signal.
  • variable system heating element 33 Send a signal to stop heating. At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the variable system heating element 33. However, also in this case, the resistance of the variable system heating element 33 including the self-control type positive temperature coefficient characteristic is maintained at a constant temperature of 50 ° C which is a self-saturation stable temperature, and the temperature rises more. No overheating accident without special safety equipment Is prevented.
  • the cold junction temperature measuring element area 28 and the heating element area 27 are arranged outside the cold junction area 20 as viewed from the center of the diaphragm 24 in the order of the heating element area. 27, the cold junction temperature measuring element area 28 may be used.In this case, when a bias temperature is applied to the cold junction area 20, it is possible to reach a constant temperature in a shorter time. Is the same as in the first embodiment.
  • thermopile sensor according to this embodiment is shown in FIG.
  • a cold junction temperature measuring element 23 As shown in FIG. 10, a cold junction temperature measuring element 23, a steady temperature system heating element 32, and a variable temperature system heating element 33 are arranged in a stacked manner.
  • thermopile sensor 1 The manufacturing process of the thermopile sensor 1 will be described. First, using a CVD device or the like, a silicon carbide or silicon chip to become the heat sink 2 or a silicon chip, or a thermal junction supporting film made of silicon oxide or silicon nitride on both sides of a silicon wafer 4 is formed to a thickness of several microns. Next, the self-control type of the cold junction temperature measuring element 23 is deposited on the thermal junction supporting film 4 on the upper surface side of the heat sink 2 by vapor deposition, paste baking, or sheet printing. A resistor with temperature coefficient characteristics is formed, and a thermal junction support film 4 made of silicon oxide or silicon nitride is formed to a thickness of several microns again by CVD equipment or the like. I do.
  • thermopile 9 a resistor including the self-controlling positive temperature coefficient characteristic of the variable temperature system heating element 33 is formed on the surface of the heat sink 2 by vapor deposition, paste baking, or sheet printing. Form.
  • the thermal bonding support film 4 made of silicon oxide or silicon nitride is formed again to a thickness of several microns by the CVD device or the like.
  • a steady temperature system heating element 32 is formed by a deposition method, a paste baking method, a sheet printing method, or the like, including a resistor having a self-control type positive temperature coefficient characteristic. I do. More heat After covering the upper surface of the sink 2 with the thermal bonding support film 4 by using a CVD device or the like and depositing and covering the insulating thin film 12 on the lower surface, the region below the thermopile 9 is removed by wet etching. Thereafter, when the oxide film is removed by wet etching, a thermopile sensor 1 is formed.
  • the cold junction temperature measuring element 23, the constant temperature system heating element 32, and the variable temperature system heating element 33 are arranged in a stacked manner, and an insulating thermal junction is provided between them.
  • the partial support film 4 By interposing the partial support film 4, they are electrically insulated from each other, and exhibit exactly the same operation as the second embodiment when measuring the temperature.
  • the device configuration is compact.
  • thermopile output voltage is forcibly set so that the serpile output voltage value decreases linearly with a constant gradient with respect to the heating element heating time.
  • Phase detector detects phase inversion between positive and negative voltage values when passing
  • thermopile sensors shown in the first to third embodiments a voltage threshold value serving as a reference voltage value is set, and the thermopile output voltage is set with respect to this voltage threshold value.
  • the value is forcibly passed so that the value temporarily decreases with a constant gradient, and the phase inversion of the thermopile output voltage value with respect to the voltage threshold is detected by the phase detector 29.
  • Information processing device as a 2-bit digital signal
  • This voltage threshold is set near the zero point in the positive region or the negative region of the voltage value of the thermopile output voltage. In particular, it may be provided in both the positive region and the negative region to form a pair of voltage thresholds. I like it. The reason is described below.
  • the phase detector 29 sends to the information processing device 18 as a 2-bit digital signal of “presence” and “absence” of the phase inversion with respect to the voltage threshold.
  • the output of the cold junction temperature measuring element 23 is input to the information processing device 18 via the amplifier 30 in synchronization with the signal of the reversal “presence”, and is sent to the built-in A / D converter.
  • the temperature is further converted to obtain the temperature of the cold junction region 20.
  • the storage device built in the information processing device 18 has a thermopile output voltage value. A relational expression between the temperature corresponding to the zero point of the above and the temperature corresponding to the voltage threshold is input in advance, and the temperature data of the cold junction region 20 is input to this relational expression.
  • the temperature of the thermal junction region 21, that is, the temperature of the measurement target can be obtained by calculation. If the voltage threshold is set in both the positive and negative regions of the thermopile voltage output value, the above operation can be performed twice, and therefore, measurement with less error and high accuracy can be performed. .
  • the average value of the temperature obtained for each of the voltage thresholds in the positive region and the negative region is obtained.
  • the temperature of the thermal junction region 21, that is, the temperature of the measurement target is obtained. Therefore, it is preferable because the arithmetic processing can be simplified and the measurement efficiency can be increased.
  • thermopile sensor according to the present embodiment is obtained by adding a self-calibration function that configures a measurement error caused by a temperature characteristic inherent to the device to the thermopile sensor described in the first to fourth embodiments.
  • thermopile sensor When the thermopile sensor is completed as a product, the temperature of a blackbody furnace with multiple reference temperatures is measured for each device. For example, in an ear thermometer, several reference temperatures are determined in the range of 34 ° C to 42 ° C, which is the above-mentioned bias temperature, and the temperature is measured sequentially for the blackbody furnace at each of these temperatures.
  • the result of the temperature measurement is stored in a storage device built in the information processing device 18 and graduated with respect to the reference temperature. Further, the information processing device 18 has a built-in program for interpolating each data graduated in this way using a curve between the data, and this program is used to execute each of the above-mentioned data. The evening is converted into a continuous curve and stored in the storage device described above, and the product is shipped when the processing up to this point is completed. In other words, at this stage, a thermopile sensor or an ear thermometer incorporating the thermopile sensor, etc. The device has a built-in reference continuous curve corresponding to each temperature characteristic.
  • the information processing device 18 detects the temperature value of the measurement target based on the above reference continuous curve. By directly deriving, the inherent error between devices is self-calibrated, and high-precision measurement can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

A thermopile sensor and a method of measuring temperature with infrared radiation. In order to measure the temperature of a measurement target in a short time with high precision in safety, the temperature of the cold junction of a thermopile is maintained before the measurement at a constant bias temperature and unidirectionally and forcedly changed during measurement. The thermopile output voltage is reduced at a constant gradient linearly and made to pass through the zero point thereby to cause a phase inversion between positive and negative voltage regions. Thus, the temperature of the cold junction is measured in synchronism with the phase inversion. Alternatively, the temperature of the cold junction is measured in synchronism with the phase inversion of the thermopile output voltage with respect to a preset voltage threshold value.

Description

明細  Statement
サ一モパイルセンサ及び赤外線による温度測定方法 Thermopile sensor and infrared temperature measurement method
技術分野 本発明はサーモパイルセンサ及び赤外線による温度測定方法に関し、 詳し く は 基板上に多数の熱電対素子を配列して構成され、 測定ターゲッ トから放射される 赤外線を感知するサ一モパイ ルセンサ及び、 このサ一モパイルセ ンサを用いる赤 外線による温度測定方法に関するものである。 TECHNICAL FIELD The present invention relates to a thermopile sensor and a temperature measurement method using infrared rays, and more particularly, to a thermopile sensor configured by arranging a large number of thermocouple elements on a substrate, and sensing infrared rays radiated from a measurement target, and The present invention relates to a method for measuring temperature by infrared light using the thermopile sensor.
背景技術 従来から、 放射温度計を用いるこ とによ り測定夕一ゲッ トから放射される赤外 線を検知して測定夕ーゲッ トの温度を非接触で測定するこ とが行われている。 例 えば、 体温計では近年、 衛生上の理由から口腔内の温度を測定する舌下型体温計 や腋窩の温度を測定する腋窩型体温計等の接触型体温計よ り も、 鼓膜や周辺組織 から放射される赤外線を検知するこ とで体温を測定する非接触型の耳式体温計の 需要が増大している。 BACKGROUND ART Conventionally, a radiation thermometer has been used to detect infrared rays emitted from a measurement target and measure the temperature of the measurement target in a non-contact manner. . For example, in recent years, thermometers emit more from the eardrum and surrounding tissues than contact-type thermometers such as the sublingual thermometer that measures the temperature in the oral cavity and the axillary thermometer that measures the temperature in the axilla for hygiene reasons. The demand for non-contact ear thermometers that measure body temperature by detecting infrared radiation is increasing.
鼓膜は人体の深部に位置し、 外界の温度の影響を受けに く いため、 口腔内ゃ腋 窩等の人体の他の部位に比べて体温を正確に測定できるこ とも耳式体温計が注目 されている理由の一つである。  Ear-type thermometers are also attracting attention because the eardrum is located deep in the human body and is less affected by the temperature of the outside world, so it can measure body temperature more accurately than other parts of the human body such as the oral cavity and axilla. That is one of the reasons.
非接触型体温計には、 一般に測定対象から放射される赤外線を検知するための 非接触型温度センサと して、 焦電型センサ又はサ一モパイルセンサが使用されて いる。 焦電型センサは測定対象から放射される赤外線エネルギを吸収したときの 温度変化による焦電体の表面電荷の変化を出力と して検出するセンサである。 焦 電型センサは焦電体の温度が変化したときのみに出力を出すため、 入射赤外線を チヨ ッビングして断続的に遮断し連続的な出力を取り 出している。 一方、 サ一モ パイルセンサは熱電対を集積回路技術を用いて堆積し、 直接接続された多数の熱 電対によ り、 温接合部と冷接合部との温度差に対する連続的な出力を取り 出すセ ンサである。 Non-contact type thermometers generally use a pyroelectric sensor or a thermopile sensor as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured. A pyroelectric sensor is a sensor that detects, as an output, a change in surface charge of a pyroelectric body due to a temperature change when absorbing infrared energy radiated from an object to be measured. Impatience In order to output only when the temperature of the pyroelectric body changes, the electric sensor continually intercepts and cuts off the incident infrared rays by shoving. Thermopile sensors, on the other hand, deposit thermocouples using integrated circuit technology and use a number of directly connected thermocouples to provide a continuous output for the temperature difference between the hot and cold junctions. This is the sensor to be taken out.
従来のサーモパイルセンサと して、 例えば第 1 1 図に示されたサ一モパイルセ ンサがある。 第 1 1 図に示すように、 数百ミ クロ ン厚さのヒー ト シンク 2 の中央 にはピッ ト部 3 が設けられ、 ヒート シンク 2 の上面には電気的な絶縁性を有する 数ミ クロン厚さの温接合部支持膜 4が、下面には絶縁薄膜 1 2 が形成されている。 第 1 1 図に示すように、 ヒー トシンク 2上面から温接合部支持膜 4上面にかけ て第一熱電対材料 5及び第二熱電対材料 6が蒸着等によ り交互に多数配線されて いる。 これら両金属をヒー ト シンク 2上面で接合する こ とによ り冷接合部 7、 温 接合部支持膜 4上面で接合することによ り温接合部 8がそれぞれ形成されてお り、 このように して熱電対を直列に接続するこ とによ りサ一モパイル 9が形成されて いる。 さらにサーモパイル 9 の両端には出力端子 1 0が設けられている。 なお温 接合部 8の上面は図示しない赤外線吸収体によって覆われている。  As a conventional thermopile sensor, for example, there is a thermopile sensor shown in FIG. As shown in Fig. 11, a heat sink 2 having a thickness of several hundred micron is provided with a pit 3 at the center, and a heat sink 2 having a few micron on the upper surface. The thickness of the hot junction supporting film 4 is formed on the lower surface, and the insulating thin film 12 is formed on the lower surface. As shown in FIG. 11, a large number of first thermocouple materials 5 and second thermocouple materials 6 are alternately wired by vapor deposition or the like from the upper surface of the heat sink 2 to the upper surface of the hot junction supporting film 4. By joining these two metals on the upper surface of the heat sink 2, the cold junction 7 is formed by joining the upper surface of the hot junction supporting film 4, thereby forming the hot junction 8. The thermopile 9 is formed by connecting thermocouples in series. Further, output terminals 10 are provided at both ends of the thermopile 9. Note that the upper surface of the thermal bonding section 8 is covered with an infrared absorber (not shown).
以上のようなサ一モパイルセンサ 1 をセンサステム 1 3 にダイボン ドするこ と によ り、 サ一モパイルセンサ 1 がセンサステム 1 3 に固定される。  The thermopile sensor 1 is fixed to the sensor stem 13 by die bonding the thermopile sensor 1 to the sensor stem 13 as described above.
以上のサ一モパイルセ ンサにおける温度測定の原理について、 特閧平 3 — 2 7 3 1 2 1 に示された放射体温計を例に、 第 1 2図のブロ ックダイアグラムに基づ いて以下に説明する。  The principle of the temperature measurement in the above-mentioned thermopile sensor is explained below based on the block diagram of Fig. 12 with the example of the radiation thermometer shown in Japanese Patent Application Laid-Open No. 3-27131. I do.
測定タ一ゲッ トから放射された赤外線が温接合部 8上に形成された図示 しない 赤外線吸収体によ り吸収されることによって温接合部 8 と冷接合部 7 との間に温 度差が生じ、 温度測定用サ一モパイル 9 の出力端子 1 0間に起電力が生じる。 出 力端子 1 0 に接続された増幅器 1 4は、 サ一モパイルセンサ 1 の微弱な出力を所 定の大きさに増幅する。 増幅器 1 4に接続された差動電力増幅器 1 5は、 増幅器 The infrared radiation emitted from the measurement target is absorbed by an infrared absorber (not shown) formed on the hot junction 8 so that a temperature difference between the hot junction 8 and the cold junction 7 occurs. Then, an electromotive force is generated between the output terminals 10 of the thermopile 9 for temperature measurement. The amplifier 14 connected to the output terminal 10 amplifies the weak output of the thermopile sensor 1 to a predetermined magnitude. The differential power amplifier 15 connected to the amplifier 14 is an amplifier
1 4の出力と基準電圧 (例えば 0 Vに設定する) との差に比例した出力をヒータ14 Output proportional to the difference between the output of 4 and the reference voltage (for example, set to 0 V)
1 6 に加える。 サ一ミス夕 1 7及びヒ一夕 1 6は、 サーモパイルセンサ 1 ととも にセンサステム 1 3の中に収納されている。 情報処理装置 1 8 はサ一ミスタ 1 7 の抵抗からサ一モパイルセンサ 1 の温度すなわち冷接合部 7の温度を算出し、 表 示手段 1 9 によって表示する。 1 Add to 6. The thermometer 17 and the thermometer 16 are housed together with the thermopile sensor 1 in the sensor stem 13. Information processor 18 is a thermistor 17 The temperature of the thermopile sensor 1, that is, the temperature of the cold junction 7, is calculated from the resistance of the thermopile sensor 1 and displayed by the display means 19.
ここで、 サ一モパイルセンサ 1 の出力を V、 測定対象 (温接合部 8 ) の温度を T、 サ一モパイルセンサ 1 (冷接合部 7 ) の温度を T Q とする と、 サーモパイル センサ 1 の出力 Vはステフアン一ボルツマンの法則によ り、 Here, V output of the mono Mopairusensa 1, the temperature T of the measurement target (temperature junction 8), mono Mopairusensa 1 the temperature of the (cold junction 7) When T Q, the output V of the thermopile sensor 1 Is, according to Stefan-Boltzmann's law,
V = k ( T - T 0 ) kは定数 ( 1 )  V = k (T-T 0) where k is a constant (1)
と表される。 特開平 3 — 2 7 3 1 2 1 に示された放射体温計では、 サーモパイル センサ 1 すなわち冷接合部 7の温度はサ一モパイルセンサ 1 の出力によ り制御さ れるので、 サ一モパイルセンサ 1 の出力 Vが 0 になるよう にフ ィ ー ドバック制御 を行う こ とによ り、 ( 1 ) 式は、 It is expressed as In the radiation thermometer disclosed in Japanese Patent Laid-Open Publication No. Hei 3 — 2 7 3 1 2 1, the temperature of the thermopile sensor 1, that is, the temperature of the cold junction 7 is controlled by the output of the thermopile sensor 1. By performing the feedback control so that the value becomes 0, the expression (1) becomes
T二 T 0 T two T 0
となる。 従って、 サ一モパイルセンサ 1 の出力 Vが 0 になるよ うにフィ ー ドバッ ク制御されたと きの冷接合部 7の温度 T。をサーミ ス夕 1 7 にて検出するこ とに よ り、 測定対象の温度 Tを知るこ とができる。 Becomes Therefore, the temperature T of the cold junction 7 when the feedback control is performed so that the output V of the thermopile sensor 1 becomes 0. The temperature T of the object to be measured can be known by detecting the temperature at the thermistor 17.
以上の特開平 3— 2 7 3 1 2 1 に示された放射体温計はサーモパイルセンサの 感度や増幅回路等の影響を受けないため、 測定誤差を減少させるこ とができる と いう利点を有していたものの、 以下に示す問題があった。  The radiation thermometer disclosed in Japanese Unexamined Patent Application Publication No. 3-273112 is not affected by the sensitivity of the thermopile sensor or the amplification circuit, and thus has the advantage that measurement errors can be reduced. However, there were the following problems.
特開平 3 — 2 7 3 1 2 1 に示された放射体温計は上述のよう に、 サ一モパイル センサ 1 の出力 Vが 0 になる ようにフ ィ ー ドバック制御する制御手段を使用 して いる。 かかるフ ィー ドバック制御はクローズ ドループ制御、 すなわちサ一モパイ ルセンサ 1 の出力に応じた熱量がヒータ 1 6 を介して冷接合部 7 を加熱するこ と で冷接合部 7 の温度を調整するものである。 第 1 3図の加熱量一時間グラフで示 すようにフ ィー ドバックの結果によ り ヒータ 1 6 の加熱量は時々刻々変化し、 サ —モパイルセンサ 1 の出力 Vは 0 に向かって減少する という特性を有している。 以上のようなフ ィー ドバッグ制御はサ一モパイルセンサ 1 の出力が 0近傍である ほど第 1 3 図の加熱量一時間グラフで示すよう に加熱量も微量となるため、 サー モパイルセ ンサ 1 の出力 Vが 0である状態を達成するために必要な時間 t iは長 時間となる。  As described above, the radiation thermometer disclosed in Japanese Patent Application Laid-Open No. 3-27331 uses a control means for performing feedback control so that the output V of the thermopile sensor 1 becomes zero. Such feedback control is a closed loop control, that is, a method of adjusting the temperature of the cold junction 7 by heating the cold junction 7 via the heater 16 with the amount of heat corresponding to the output of the thermo sensor 1. It is. As shown in the heating amount 1 hour graph in Fig. 13, the heating amount of the heater 16 changes every moment and the output V of the thermopile sensor 1 decreases toward 0 according to the feedback result. It has the characteristic. In the feed bag control as described above, as the output of the thermopile sensor 1 is close to 0, the amount of heating becomes small as shown in the heating amount-one-hour graph in FIG. 13, so the output of the thermopile sensor 1 is The time ti required to achieve the state where V is 0 is long.
また、 例えば鼓膜の温度を測定する際に耳孔内に挿入するサ一モパイルセンサ 1 の挿入角度の変化や、 外耳道の温度の影響などの外乱要因によって温度測定中 にサ一モパイルセンサ 1 に入射する赤外線量が変化するこ とによ り、 サ一モパイ ルセンサ 1 の出力も変化する。 従って、 冷接合部 7への加熱量は差動電力増幅器 1 5 によ り逐次調整され、 特にサ一モパイルセンサ 1 の出力が 0近傍では微調整 の頻度が多 く なるため、 測定時間 t iは長時間となる。 Also, for example, a thermopile sensor inserted into the ear canal when measuring the temperature of the eardrum When the amount of infrared light incident on the thermopile sensor 1 changes during temperature measurement due to disturbance factors such as changes in the insertion angle of 1 and the influence of the ear canal temperature, the output of the thermopile sensor 1 also changes. . Therefore, the amount of heating to the cold junction 7 is successively adjusted by the differential power amplifier 15, and the frequency of the fine adjustment increases particularly when the output of the thermopile sensor 1 is near 0, so that the measurement time ti is long. Time.
さ らに、 フ ィ ー ドバック制御回路は通常、 伝達遅延係数を有 している。 かかる 伝達遅延係数は加熱状態がフ ィ一ドバック制御によ り時々刻々 と変化する場合、 固定定数と して扱う こ とができない。 従って、 伝達遅延を補正するための係数を 設定する こ とができず、 上述のサ一モパイ ルセンサ 1 の出力変化に対しては大き な伝達遅延係数を有 した状態のまま制御する こ とにな り、 加熱調整はサーモパイ ルセンサ 1 の出力変化に追随するこ とができない。 この伝達遅延によ り フ ィ一ド バック指令数値と制御結果に不一致が発生するため、 冷接合部 7 の加熱調整は頻 繁に行われ、 かつ、 微小に制御される。 このような微調整は、 サーモパイルセン サ 1 の出力の 0近傍において、 サ一モパイルセンサ 1 に入射する赤外線量の変化 と相まって脈流現象を発生させる原因となる。 かかる脈流現象を修正し、 かつ、 サ一モパイルセンサ 1 の出力が 0である状態を達成するには第 1 3図の出力—時 間グラフで示すよう に t は長時間となる。  Moreover, the feedback control circuit usually has a propagation delay coefficient. Such a transmission delay coefficient cannot be treated as a fixed constant when the heating state changes every moment by the feedback control. Therefore, it is impossible to set a coefficient for compensating the propagation delay, and it is necessary to control the output change of the above-mentioned thermopile sensor 1 while maintaining a large propagation delay coefficient. Therefore, the heating adjustment cannot follow the output change of the thermopile sensor 1. Since the transmission delay causes a mismatch between the feedback command value and the control result, the heating adjustment of the cold junction 7 is frequently performed and is finely controlled. Such fine adjustment causes a pulsation phenomenon in the vicinity of 0 of the output of the thermopile sensor 1 in combination with a change in the amount of infrared rays incident on the thermopile sensor 1. In order to correct such a pulsating phenomenon and to achieve a state where the output of the thermopile sensor 1 is 0, t becomes a long time as shown in the output-time graph of FIG.
以上のように、 特開平 3— 2 7 3 1 2 1 に示された放射体温計では、 従来から の課題である測定精度の向上を図るためにフ ィ ー ドバック制御に要する時間 t ! をあらかじめ長く設定する必要があった。 他方、 非接触型体温計の特長である、 瞬間又は極めて短時間に測定対象の温度を測定するこ とを優先させた場合には測 定精度の低下は避けられなかった。  As described above, in the radiation thermometer disclosed in Japanese Patent Application Laid-Open No. 3-2731 121, the time t! Required for feedback control in order to improve measurement accuracy, which is a conventional problem, is taken. Had to be set long beforehand. On the other hand, when priority was given to measuring the temperature of the measurement target instantaneously or in a very short time, which is a feature of the non-contact thermometer, a decrease in measurement accuracy was inevitable.
本発明は上記従来技術における問題点を解決し、 測定精度の向上を図り、 かつ 測定時間の短縮を図るこ とができるサ一モパイルセンサ及び赤外線による温度測 定方法を提供するこ とを目的とする。  SUMMARY OF THE INVENTION It is an object of the present invention to provide a thermopile sensor and an infrared temperature measuring method which can solve the above-mentioned problems in the prior art, improve the measurement accuracy, and shorten the measurement time. .
発明の開示 以上の課題を解決するため提供する本願第 1 の請求項にかかる発明は、 サ一モ パイルの冷接合部領域に対して、 熱的に直結するよう に して発熱素子を、 熱的に 直結するようにかつ構造的に冷接合部領域の温度変化と同期させるように して冷 接合部測温素子をそれそれ組込み、 前記発熱素子を加熱して冷接合部領域に対し て一定熱量を一方的かつ強制的に加えるこ とによ り、 前記発熱素子加熱時間に対 してサ一モパイル出力電圧値を一定勾配で一次間数的に減少せ しめてサ一モパイ ル出力電圧の零点を強制通過させ、 サーモパイル出力に対して正負の電圧値領域 反転を一方的かつ強制的に発生させながら、 この電圧値正負領域間の相反転を検 出し、 この相反転検出に同期して前記冷接合部測温素子によ り 冷接合部領域の温 度を検知するこ とによ り、 測定タ一ゲッ トの温度を測定するこ とを特徴とする赤 外線による温度測定方法である。 Disclosure of the invention The invention according to the first aspect of the present invention, which is provided to solve the above-described problem, is to directly connect a heating element to a cold junction region of a thermopile by thermally connecting the heating element. Temperature measuring elements in the cold junction area so as to be structurally synchronized with the temperature change in the cold junction area, and the heating element is heated to generate a certain amount of heat for the cold junction area. The temperature of the thermopile output voltage value is reduced linearly and linearly with a constant gradient to the heating element heating time, thereby forcibly passing the zero point of the thermopile output voltage. In addition, while positively and negatively inverting the positive and negative voltage values with respect to the thermopile output, the phase inversion between the positive and negative voltage values is detected, and the cold junction measurement is performed in synchronization with the phase inversion detection. The temperature of the cold junction area is controlled by the temperature element. This is a method of measuring temperature by infrared light, characterized by measuring the temperature of a measurement target by detecting.
かかる温度測定方法とする こ とによ り、 従来のようにサーモパイル出力電圧を 零点に一致させるように冷接合部領域の温度をフ ィ 一 ドバック制御するのではな く、 サ一モパイル出力電圧値の零点を強制的に一定勾配で通過せしめるように制 御するので、 測定時間を大幅に短縮するこ とができる。  By adopting such a temperature measurement method, the temperature of the cold junction area is not feedback-controlled so that the thermopile output voltage coincides with the zero point as in the prior art, but the thermopile output voltage value Since the zero point is controlled so as to pass through at a constant gradient, the measurement time can be greatly reduced.
また発熱素子によって予め冷接合部領域及び冷接合部測温素子は一定温度のバ ィァス温度まで加熱され、 冷接合部測温素子の抵抗変化は測定タ一ゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く な り、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。  The heating element heats the cold junction area and the cold junction temperature measuring element to a predetermined bias temperature in advance, and the resistance change of the cold junction temperature measuring element is determined by the infrared energy from the measurement target. Since only the temperature rise in the region is obtained, the thermal response speed becomes extremely fast, and it can be synchronized as much as possible with the temperature change in the cold junction region.
ところでこのようにバイアス温度の一定温度を実現する場合には、 従来のサー モパイルセンサにおいて行われていたのと同様にフィー ドバック制御を行う必要 がある。 フィー ドバック制御において、 一定温度に達するまでの時間が長い点や 温度の外乱要因に影響を受けやすい点等が問題となっていたこ とは上述のとお り である。 しかし、 従来のサ一モパイルセンサにおいて行われていたフ ィー ドバッ ク制御は測定夕一ゲッ 卜の温度測定そのものに関するものであつたのに対し、 こ こでいうフ ィードバック制御はあく までバイアス温度を印加するためのものであ る。 従って従来のサーモパイルセンサにおいて行われていたフ ィ一 ドバック制御 のような厳密な制御を要する ものではな く、 たとえバイアス温度に完全に一致し なく とも、 バイアス温度を中心と したある一定の温度範囲に加熱されていればそ の効果を得るこ とが可能であって、 上述のような問題は発生しない。 To realize a constant bias temperature in this way, it is necessary to perform feedback control as in the conventional thermopile sensor. As described above, feedback control has been problematic in that it takes a long time to reach a certain temperature and is susceptible to temperature disturbances. However, the feedback control performed in the conventional thermopile sensor relates to the temperature measurement itself at the time of the measurement, whereas the feedback control referred to here merely controls the bias temperature. It is for applying. Therefore, it does not require strict control like the feedback control performed in the conventional thermopile sensor. At least, if the heating is performed within a certain temperature range centered on the bias temperature, the effect can be obtained, and the above-described problem does not occur.
すなわち、測定時間の短縮と測定精度の向上とを同時に実現するこ とができる。 また本願第 2 の請求項にかかる発明は、サ一モパイルの冷接合部領域に対して、 熱的に直結するように して発熱素子を、 熱的に直結するようにかつ構造的に冷接 合部領域の温度変化と同期させるように して冷接合部測温素子をそれそれ組込み、 前記発熱素子を加熱して冷接合部領域に対して一定熱量を一方的かつ強制的に加 えるこ とによ り、 前記発熱素子加熱時間に対してサーモパイル出力電圧値を一定 勾配で一次間数的に減少せしめて、 予め設定されかつ基準電圧値となる電圧閾値 に対してサ一モパイル出力電圧値を強制通過させ、 前記電圧閾値に対するサ一モ パイル出力電圧値の相反転を検出し、 この相反転検出に同期して前記冷接合部測 温素子によ り冷接合部領域の温度を検知するこ とによ り、 測定ターゲッ トの温度 を測定するこ とを特徴とする赤外線による温度測定方法である。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy. Further, the invention according to the second claim of the present application provides a cold junction region of a thermopile such that the heating element is thermally directly coupled to the cold junction region, and the heating element is thermally directly coupled to the cold junction region. Each of the cold junction temperature measuring elements is incorporated so as to synchronize with the temperature change in the joint area, and the heating element is heated to apply a constant amount of heat unilaterally and forcibly to the cold junction area. With this, the thermopile output voltage value is reduced linearly with a constant gradient with respect to the heating element heating time, and the thermopile output voltage value is set with respect to a voltage threshold value that is set in advance and becomes a reference voltage value. Is forced to pass through, and the phase inversion of the thermopile output voltage value with respect to the voltage threshold is detected, and the temperature of the cold junction area is detected by the cold junction temperature measuring element in synchronization with the phase inversion detection. As a result, the temperature of the measurement target A temperature measuring method according to the infrared radiation, wherein the measuring child.
かかる温度測定方法とすることによ り、 周囲の温度変化に左右されるこ とな く サ一モパイル出力電圧値の零点を強制的に一定勾配で通過せしめ、 測定時間を大 幅に短縮するこ とができる。 また発熱素子によって予め冷接合部領域及び冷接合 部測温素子は一定温度のバイ アス温度まで加熱してお く こ とによ り、 冷接合部測 温素子の抵抗変化は、 測定ターゲッ トからの赤外線エネルギーによる温接合部領 域の温度上昇分だけとなるのでその熱応答速度は極めて早 く な り、 冷接合部領域 の温度変化に対して可及的に同期させるこ とができる。 すなわち、 測定時間の短 縮と測定精度の向上とを同時に実現するこ とが可能となる。  By adopting such a temperature measurement method, the zero point of the thermopile output voltage value is forcibly passed at a constant gradient without being affected by changes in the surrounding temperature, and the measurement time is greatly reduced. Can be. In addition, the resistance of the cold junction temperature measuring element changes from the measurement target by heating the cold junction area and the cold junction temperature measuring element to a constant bias temperature by the heating element in advance. Since only the temperature rise in the hot junction region due to the infrared energy is obtained, the thermal response speed becomes extremely fast, and the temperature can be synchronized as much as possible with the temperature change in the cold junction region. That is, it is possible to simultaneously shorten the measurement time and improve the measurement accuracy.
また本願第 3 の請求項にかかる発明は、 本願第 1 の請求項にかかる赤外線によ る温度測定方法において、 冷接合部領域の温度を変化させたときのサ一モパイル 出力電圧値が電圧値正負領域間で相反転したか否かを相検出器によ り判定して相 反転 「有」 か 「無」 かの 2 ビッ トデジタル信号と し、 この 2 ビッ トデジタル信号 に同期して冷接合部測温素子温度を検出するこ とによ り、 冷接合部領域の温度を 直接検出するこ とを特徴とする赤外線による温度測定方法である。  The invention according to claim 3 of the present application is the temperature measurement method using infrared light according to claim 1, wherein the output voltage value of the thermopile when the temperature of the cold junction region is changed is a voltage value. The phase detector determines whether or not the phase has been reversed between the positive and negative regions, and generates a 2-bit digital signal indicating whether the phase has been inverted (“Yes” or “No”), and synchronized with the 2-bit digital signal. This is a temperature measurement method using infrared rays, which directly detects the temperature of the cold junction area by detecting the temperature of the junction temperature measuring element.
かかる構成とする こ とによ り、 測定時間の短縮と測定精度の向上とを同時に実 現するこ とが可能となる。 また本願第 4の請求項にかかる発明は、 本願第 2 の請求項にかかる赤外線によ る温度測定方法において、 冷接合部領域の温度を変化させたと きのサ一モパイル 出力電圧値が基準電圧値となる電圧閾値に対して相反転したか否かを相検出器に よ り判定して相反転 「有」 か 「無」 かの 2 ビッ トデジタル信号と し、 この 2 ビッ トデジタル信号に同期して冷接合部測温素子温度を検出するこ とによ り、 冷接合 部領域の温度を直接検出する こ とを特徴とする赤外線による温度測定方法である。 かかる構成とする こ とによ り、 測定時間の短縮と測定精度の向上とを同時に実 現するこ とが可能となる。 With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy. According to a fourth aspect of the present invention, in the temperature measurement method using infrared light according to the second aspect of the present invention, the output voltage of the thermopile when the temperature of the cold junction region is changed is changed to the reference voltage. The phase detector determines whether or not phase inversion has occurred with respect to the voltage threshold, which is a value, and generates a two-bit digital signal indicating whether phase inversion is present or absent. This is a temperature measurement method using infrared rays, wherein the temperature of the cold junction area is directly detected by detecting the temperature of the cold junction temperature measuring element in synchronization. With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 5 の請求項にかかる発明は、 本願第 2 の請求項にかかる赤外線によ る温度測定方法において、 前記電圧閾値をサーモパイル出力電圧値の正領域と負 領域とに一ずつ設定し、 一対の電圧閾値対となすこ とを特徴とする赤外線による 温度測定方法である。  According to a fifth aspect of the present invention, in the temperature measurement method using infrared rays according to the second aspect of the present invention, the voltage threshold is set to one for each of a positive region and a negative region of a thermopile output voltage value, This is a temperature measurement method using infrared rays, which is characterized by forming a pair of voltage thresholds.
かかる温度測定方法とする こ とによ り、 サーモパイル出力電圧値の電圧閾値に 対する相反転に同期して冷接合部領域の温度を 2度検出するこ とが可能とな り、 これらの測定値の間にを演算処理するこ とによって測定ターゲッ トの温度を得る。 このように測定点を複数とするこ とによ り、 測定精度をさ らに向上するこ とがで きる  By adopting such a temperature measurement method, it becomes possible to detect the temperature of the cold junction region twice in synchronization with the phase inversion of the thermopile output voltage value with respect to the voltage threshold. The temperature of the measurement target is obtained by performing arithmetic processing during the period. By using a plurality of measurement points in this way, measurement accuracy can be further improved
また本願第 6 の請求項にかかる発明は、 本願第 2の請求項にかかる赤外線によ る温度測定方法において、 前記電圧閾値をサーモパイル出力電圧値の正領域と負 領域とに一ずつ設定してなる電圧閾値対を、 複数対設けるこ とを特徴とする赤外 線による温度測定方法である。  According to a sixth aspect of the present invention, in the temperature measurement method using infrared light according to the second aspect of the present invention, the voltage threshold is set to one for each of a positive region and a negative region of a thermopile output voltage value. This is a temperature measurement method using infrared rays, characterized by providing a plurality of pairs of voltage thresholds.
かかる温度測定方法とする こ とによ り、 測定点をさ らに増加するこ とができる ので、 測定精度が向上する。  By adopting such a temperature measuring method, the number of measuring points can be further increased, so that the measuring accuracy is improved.
また本願第 7 の請求項にかかる発明は、 本願第 5の請求項にかかる赤外線によ る温度測定方法において、 前記電圧閾値対において、 対となる正領域の電圧閾値 と負領域の電圧閾値との絶対値を等しく するこ とを特徴とする赤外線による温度 測定方法である。  According to a seventh aspect of the present invention, in the temperature measurement method using infrared light according to the fifth aspect of the present invention, in the voltage threshold pair, a pair of a positive region voltage threshold and a negative region voltage threshold This is a temperature measurement method using infrared light, characterized by making the absolute value of the temperature equal.
かかる温度測定方法とするこ とによ り、 正領域の電圧閾値に対する相反転に同 期して得られた測定値と、 負領域の電圧閾値に対する相反転に同期して得られた 測定値との平均値を、 測定ターゲッ トの温度と して求めるこ とが可能となる。 す なわち簡単な演算処理によ り、 高い精度の測定を行う こ とができる。 With this temperature measurement method, the measured value obtained in synchronization with the phase inversion with respect to the voltage threshold in the positive region and the measurement value obtained in synchronization with the phase inversion with respect to the voltage threshold in the negative region The average value with the measured value can be obtained as the temperature of the measurement target. In other words, high-precision measurement can be performed by simple arithmetic processing.
また本願第 8 の請求項にかかる発明は、 本願第 6 の請求項にかかる赤外線によ る温度測定方法において、 前記電圧閾値対において、 対となる正領域の電圧閾値 と負領域の電圧閾値との絶対値を等しく する こ とを特徴とする赤外線による温度 測定方法である。  According to an eighth aspect of the present invention, in the temperature measurement method using infrared light according to the sixth aspect of the present invention, in the voltage threshold pair, a positive region voltage threshold and a negative region voltage threshold are paired. This is a temperature measurement method using infrared rays, characterized by making the absolute value of the temperature equal.
かかる温度測定方法とするこ とによ り、 それそれの電圧閾値対において、 正領 域の電圧閾値に対する相反転に同期して得られた測定値と、 負領域の電圧閾値に 対する相反転に同期して得られた測定値との平均値を求め、 これら複数の値をも とにさ らに高精度に測定ターゲッ トの温度測定を行う こ とができる。  By adopting such a temperature measurement method, in each voltage threshold pair, the measured value obtained in synchronization with the phase inversion with respect to the voltage threshold in the positive region and the phase inversion with respect to the voltage threshold in the negative region are compared. The average value of the measured values obtained in synchronization with each other is obtained, and the temperature of the measurement target can be measured with higher accuracy based on the plurality of values.
また本願第 9 の請求項にかかる発明は、 本願第 1 の請求項にかかる赤外線によ る温度測定方法において、 前記発熱素子を、 発熱して一定温度に維持される定常 温度系統と、 一定の温度範囲において温度可変とする可変温度系統とに系統分離 し、 前記定常温度系統によ り温度測定開始前に予め冷接合部領域を一定温度に維 持し、 前記可変温度系統は温度測定開始後に冷接合部領域の温度を一方的かつ強 制的に変化させるこ とを特徴とする赤外線による温度測定方法である。  According to a ninth aspect of the present invention, in the temperature measurement method using infrared light according to the first aspect of the present invention, the heating element is configured to generate heat and maintain a constant temperature; The system is separated into a variable temperature system that makes the temperature variable in the temperature range, the cold junction region is maintained at a constant temperature before the temperature measurement is started by the steady temperature system, and the variable temperature system is started after the temperature measurement starts. This is a method for measuring temperature by infrared rays, characterized by unilaterally and forcibly changing the temperature of the cold junction region.
かかる温度測定方法とするこ とによ り、 定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る ことができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部の温度上昇分だけとなるのでその熱応答速度は 極めて早く な り、 冷接合部領域の温度変化に対して可及的に同期させるこ とがで さる。  By adopting such a temperature measuring method, the cold junction area and the cold junction temperature measuring element can be heated in advance to a constant bias temperature by a steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the temperature rise of the hot junction due to infrared energy from the measurement target, so that its thermal response speed becomes extremely fast, and the temperature of the cold junction region Synchronize as much as possible with change.
一方可変系統によ り冷接合部領域の温度を一方的かつ強制的に変化させるこ と によ り、 測定時間を大幅に短縮する こ とができる。  On the other hand, by changing the temperature of the cold junction region unilaterally and forcibly by the variable system, the measurement time can be greatly reduced.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 0の請求項にかかる発明は、 本願第 2 の請求項にかかる赤外線に よる温度測定方法において、 前記発熱素子を、 発熱して一定温度に維持される定 常温度系統と、 一定の温度範囲において温度可変とする可変温度系統とに系統分 離し、 前記定常温度系統によ り温度測定開始前に予め冷接合部領域を一定温度に 維持し、 前記可変温度系統は温度測定開始後に冷接合部領域の温度を一方的かつ 強制的に変化させる こ とを特徴とする赤外線による温度測定方法である。 According to a tenth aspect of the present invention, in the temperature measurement method using infrared rays according to the second aspect of the present invention, it is preferable that the heating element generates heat and is maintained at a constant temperature. And a variable temperature system that makes the temperature variable in the temperature range Separately, the cold junction region is maintained at a constant temperature in advance before the start of temperature measurement by the steady temperature system, and the variable temperature system unilaterally and forcibly changes the temperature of the cold junction region after the start of temperature measurement. This is a method of measuring temperature using infrared rays, which is characterized by this.
かかる温度測定方法とする こ とによ り、 定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイ ァス温度に加熱し、 測定時間の短縮を図る こ とができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く な り、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。  By adopting such a temperature measurement method, the cold junction area and the cold junction temperature measuring element can be heated in advance to a constant bias temperature by a steady temperature system, and the measurement time can be reduced. . Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 1 の請求項にかかる発明は、 本願第 1 の請求項にかかる赤外線に よる温度測定方法において、 発熱素子と冷接合部測温素子との少な く ともいずれ か一方に自己制御型正温度係数特性を含む抵抗体を用いる こ とを特徴とする赤外 線による温度測定方法である。  The invention according to claim 11 of the present application is directed to the temperature measurement method using infrared light according to claim 1 of the present application, wherein at least one of the heating element and the cold junction temperature measuring element is a self-control type. This is a temperature measurement method using infrared rays, characterized by using a resistor having a positive temperature coefficient characteristic.
自己制御型正温度係数特性を含む抵抗体は、 通電によって発熱体の温度が上昇 するに伴い発熱体の抵抗が増大する性質を有 しているため、 電流が抑制されて飽 和自己安定温度の一定温度に維持される特徴を有する。 従って、 安全装置を付加 するこ とな く過熱事故が防がれる。  A resistor with a self-controlling positive temperature coefficient characteristic has the property that the resistance of the heating element increases as the temperature of the heating element rises due to energization. It has the feature of being maintained at a constant temperature. Therefore, an overheating accident can be prevented without adding a safety device.
また本願第 1 2の請求項にかかる発明は、 本願第 2 の請求項にかかる赤外線に よる温度測定方法において、 発熱素子と冷接合部測温素子との少な く ともいずれ か一方に自己制御型正温度係数特性を含む抵抗体を用いるこ とを特徴とする赤外 線による温度測定方法である。  The invention according to claim 12 of the present application is directed to the temperature measurement method using infrared light according to claim 2 of the present application, wherein at least one of the heating element and the cold junction temperature measuring element is a self-control type. This is a temperature measurement method using infrared rays, characterized by using a resistor having a positive temperature coefficient characteristic.
かかる構成とする こ とによ り、 安全装置を付加するこ とな く過熱事故が防がれ る。  With this configuration, an overheating accident can be prevented without adding a safety device.
また本願第 1 3の請求項にかかる発明は、 本願第 9 の請求項にかかる赤外線に よる温度測定方法において、 電気的に素子間絶縁された複数の同一抵抗特性の自 己制御型正温度係数特性を含む抵抗体からなる系統を複数作製し、 これらを発熱 素子と してそれぞれ前記冷接合部領域に対して熱的に直結する ように して組み込 み、 サ一モパイル外部からそれそれ異なる電圧を印加する こ とによ り、 系統別に 異なる発熱温度を発生させる こ とを特徴とする赤外線による温度測定方法である。 かかる構成とする こ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る ことができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く な り 、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。 According to a thirteenth aspect of the present invention, in the temperature measurement method using infrared light according to the ninth aspect of the present invention, a plurality of elements having the same resistance characteristic electrically insulated between elements are provided. A plurality of systems composed of a resistor having a self-controlling positive temperature coefficient characteristic are produced, and these are incorporated as heating elements so as to be thermally directly connected to the cold junction region, respectively. This is a temperature measurement method using infrared rays, which generates different heat generation temperatures for each system by applying different voltages from outside the mopile. With this configuration, it is possible to separate these systems into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise of the hot junction area due to the infrared energy from the measurement target, the thermal response speed becomes extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 4の請求項にかかる発明は、 本願第 1 0の請求項にかかる赤外線 による温度測定方法において、 電気的に素子間絶縁された複数の同一抵抗特性の 自己制御型正温度係数特性を含む抵抗体からなる系統を複数作製し、 これらを発 熱素子と してそれそれ前記冷接合部領域に対して熱的に直結するようにして組み 込み、 サ一モパイル外部からそれぞれ異なる電圧を印加するこ とによ り、 系統別 に異なる発熱温度を発生させるこ とを特徴とする赤外線による温度測定方法であ る。  The invention according to claim 14 of the present application is the temperature measurement method using infrared light according to claim 10 of the present application, wherein the self-controlling positive temperature coefficient characteristic of a plurality of identical resistance characteristics electrically insulated between elements is provided. A plurality of systems composed of a resistor including the following are manufactured, and these are each formed as a heat generating element so as to be thermally connected directly to the cold junction region, and different voltages are respectively applied from outside the thermopile. This is a temperature measurement method using infrared rays, which generates a different heat generation temperature for each system by applying the temperature.
かかる構成とするこ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る ことができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く な り、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。 一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮する こ とができる。 With such a configuration, these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change. On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現する こ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 5 の請求項にかかる発明は、 本願第 9 の請求項にかかる赤外線に よる温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性の自己制 御型正温度係数特性を含む抵抗体 2個からなる系統を複数作製し、 これらを発熱 素子と してそれぞれ前記冷接合部領域に対して熱的に直結する よう に して組み込 み、 サ一モパイル外部から同一の電圧を印加する こ とによ り、 系統別に異なる発 熱温度を発生させる こ とを特徴とする赤外線による温度測定方法である。  The invention according to claim 15 of the present application is the temperature measuring method using infrared light according to claim 9 of the present application, wherein the self-control positive temperature coefficient characteristic of different resistance characteristics electrically insulated between elements is provided. A plurality of systems consisting of two resistors are manufactured, and these are incorporated as heat-generating elements so as to be thermally connected directly to the cold junction region, and the same voltage is applied from outside the thermopile. This is a method of measuring temperature by infrared rays, characterized in that different heating temperatures are generated for each system by applying a temperature.
かかる構成とする こ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る こ とができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く な り、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。  With this configuration, it is possible to separate these systems into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮する こ とができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 6の請求項にかかる発明は、 本願第 1 0の請求項にかかる赤外線 による温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性の自己 制御型正温度係数特性を含む抵抗体 2個からなる系統を複数作製し、 これらを発 熱素子と してそれそれ前記冷接合部領域に対して熱的に直結するようにして組み 込み、 サ一モパイル外部から同一の電圧を印加するこ とによ り、 系統別に異なる 発熱温度を発生させるこ とを特徴とする赤外線による温度測定方法である。 かかる構成とする こ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイアス温度に加熱し、 測定時間の短縮を図る ことができる。 さらに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く なり、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。 The invention according to claim 16 of the present application is directed to the temperature measurement method using infrared light according to claim 10 of the present application, wherein the method includes a self-controlling positive temperature coefficient characteristic having different resistance characteristics electrically insulated between elements. A plurality of systems composed of two resistors are manufactured, and these are used as heat-generating elements, each of which is thermally connected directly to the cold junction region, and the same voltage is applied from outside the thermopile. This is a temperature measurement method using infrared rays, which generates a different heat generation temperature for each system by applying voltage. With this configuration, it is possible to separate these systems into a steady temperature system and a variable temperature system. In other words, the cold-join The temperature measurement element can be heated to a constant bias temperature by heating the temperature measuring element of the region and the cold junction to shorten the measurement time. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so its thermal response speed is extremely fast, and the temperature change in the cold junction area Can be synchronized as much as possible.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる ことによ り、 測定時間を大幅に短縮する こ とができる。  On the other hand, the measurement time can be significantly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 7の請求項にかかる発明は、 本願第 9 の請求項にかかる赤外線に よる温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性の自己制 御型正温度係数特性を含む抵抗体 2個からなる対を複数対組み合わせてなる系統 を複数作製し、 これらを発熱素子と してそれぞれ前記冷接合部領域に対して熱的 に直結するよう にして組み込み、 サ一モパイル外部から同一の電圧を印加するこ とによ り、 系統別に異なる発熱温度を発生させるこ とを特徴とする赤外線による 温度測定方法である。  The invention according to claim 17 of the present application is the temperature measurement method using infrared light according to claim 9 of the present application, wherein the self-control type positive temperature coefficient characteristic of different resistance characteristics electrically insulated between elements is provided. A plurality of systems composed of a plurality of pairs each including two resistors are manufactured, and these are used as heat generating elements and incorporated so as to be thermally directly connected to the cold junction region, respectively. This is a method of measuring temperature using infrared rays, which generates different heat generation temperatures for each system by applying the same voltage from the same.
かかる構成とするこ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイアス温度に加熱し、 測定時間の短縮を図る こ とができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く な り、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。  With such a configuration, these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 8の請求項にかかる発明は、 本願第 1 0の請求項にかかる赤外線 による温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性の自己 制御型正温度係数特性を含む抵抗体 2個からなる対を複数対組み合わせてなる系 統を複数作製し、 これらを発熱素子と してそれそれ前記冷接合部領域に対して熱 的に直結するように して組み込み、 サーモパイル外部から同一の電圧を印加する こ とによ り、 系統別に異なる発熱温度を発生させるこ とを特徴とする赤外線によ る温度測定方法である。 The invention according to claim 18 of the present application is directed to the temperature measurement method using infrared light according to claim 10 of the present application, wherein the self-insulating element having different resistance characteristics electrically insulated between elements is provided. A plurality of systems formed by combining a plurality of pairs of two resistors including a control-type positive temperature coefficient characteristic are produced, and these are used as heating elements, and each of them is thermally directly connected to the cold junction region. This is a temperature measurement method using infrared rays, characterized in that different heat generation temperatures are generated for each system by incorporating the same and applying the same voltage from outside the thermopile.
かかる構成とするこ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る こ とができる。 さらに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く なり、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。  With such a configuration, these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so its thermal response speed is extremely fast, and the temperature change in the cold junction area Can be synchronized as much as possible.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 9の請求項にかかる発明は、 本願第 9の請求項にかかる赤外線に よる温度測定方法において、 前記発熱素子系統において、 異なる 自己飽和安定温 度を有する 2種類の自己制御型正温度係数特性を含む抵抗体を用い、 自己飽和安 定温度が低温であるほうの自己制御型正温度係数特性を含む抵抗体に対しては所 定電流を流して自己飽和安定温度の一定温度で安定させ、 一方、 自己飽和安定温 度が高温であるほうの自己制御型正温度係数特性を含む抵抗体は自己飽和安定温 度以下において任意温度に変化させるこ とを特徴とする赤外線による温度測定方 法である。  The invention according to claim 19 of the present application is the temperature measurement method using infrared light according to claim 9 of the present application, wherein the heating element system has two types of self-control type positive electrodes having different self-saturation stable temperatures. Use a resistor with a temperature coefficient characteristic, and apply a specified current to a resistor with a self-stable positive temperature coefficient characteristic, which has a lower self-saturation stability temperature, at a constant self-saturation stable temperature. Temperature measurement using infrared light, characterized in that the resistor with a self-regulating positive temperature coefficient characteristic with a higher self-saturation stable temperature is changed to an arbitrary temperature below the self-saturation stable temperature. It is a method.
かかる構成とするこ とによ り、 例えば耳式体温計において、 自己飽和安定温度 が鼓膜温度付近 (例えば 3 4 °C ) である 自己制御型正温度係数特性を含む抵抗体 によ り 冷接合部領域及び冷接合部測温素子を予め一定温度のバイ アス温度 ( 3 With such a configuration, for example, in an ear thermometer, the self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C). The temperature of the area and the cold junction temperature measuring element must be set in advance to a constant bias temperature (3
4 °C ) に加熱し、 一方自己飽和安定温度が鼓膜温度よ り も高温 (例えば 5 0 °C ) である 自己制御型正温度係数特性を含む抵抗体を一定温度範囲内 (例えば 3 4〜 4 2 °C ) において可変加熱するこ とによ り鼓膜の温度を測定するこ とが可能とな る。 この際に、 自己飽和安定温度が鼓膜温度付近である 自己制御型正温度係数特 性を含む抵抗体は、周囲の温度変化にかかわらず自己飽和安定温度の一定温度( 3 4 V ) にみずから維持されるので、 サ一モパイルセンサの過熱事故が防がれる。 また、 自己飽和安定温度が鼓膜温度よ り も高温である 自己制御型正温度係数特性 を含む抵抗体は可変加熱されるが、 たとえ誤作動や故障によ り可変加熱の温度制 御が不可能になったと しても 自己飽和安定温度 ( 5 0 °C ) 以上には加熱されない ため、 サ一モパイルセンサの過熱事故が防止される。 4 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C). The temperature of the eardrum can be measured by performing variable heating at 42 ° C). At this time, the resistor with a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is close to the eardrum temperature is maintained at a constant self-saturation stable temperature (34 V) regardless of ambient temperature changes. Therefore, an overheating accident of the thermopile sensor is prevented. Also, the self-saturation stable temperature is higher than the eardrum temperature.The resistor with the self-regulating positive temperature coefficient characteristic is variable-heated, but even if it malfunctions or fails, the variable-heating temperature control is impossible. Even if the temperature rises, it will not be heated above the self-saturation stable temperature (50 ° C), thereby preventing the thermopile sensor from overheating.
また特に定常温度系統においては、 フ ィー ドバック制御を行わな くても飽和自 己安定温度の一定温度に維持されるこ とから、 部品点数を減らすこ とができ、 コ ス ト削減及び製品強度の向上に寄与する。  In particular, in a steady-state temperature system, even if feedback control is not performed, the saturation self-stabilizing temperature is maintained at a constant temperature, so that the number of parts can be reduced, which leads to cost reduction and product reduction. Contributes to improvement in strength.
また本願第 2 0の請求項にかかる発明は、 本願第 1 0 の請求項にかかる赤外線 による温度測定方法において、 前記発熱素子系統において、 異なる 自己飽和安定 温度を有する 2種類の自己制御型正温度係数特性を含む抵抗体を用い、 前記自己 飽和安定温度が低温であるほうの自己制御型正温度係数特性を含む抵抗体に対し ては所定電流を流して自己飽和安定温度の一定温度で安定させ、 一方、 自己飽和 安定温度が高温であるほうの自己制御型正温度係数特性を含む抵抗体は自己飽和 安定温度以下において任意温度に変化させるこ とを特徴とする赤外線による温度 測定方法である。  According to a twenty-first aspect of the present invention, in the temperature measurement method using infrared light according to the tenth aspect of the present invention, in the heating element system, two kinds of self-control type positive temperatures having different self-saturation stable temperatures are provided. A resistor having coefficient characteristics is used, and a predetermined current is applied to the resistor having a self-regulating positive temperature coefficient characteristic, which has a lower self-saturation stable temperature, to stabilize at a constant self-saturation stable temperature. On the other hand, a resistor having a self-stable positive temperature coefficient characteristic with a higher self-saturation stable temperature is a temperature measurement method using infrared rays, which is characterized by changing the temperature to an arbitrary temperature below the self-saturation stable temperature.
かかる構成とする こ とによ り、 自己飽和安定温度が低温であるほうを定常温度 系統と してバイアス温度の一定温度で安定させ、 高温であるほうを可変温度系統 と して冷接合部領域を加熱するものであるが、 このときそれそれ安全装置を付加 するこ とな くサ一モパイルセンサの過熱を防ぐこ とができる。  With this configuration, the one with a low self-saturation stable temperature is stabilized at a constant temperature of a bias temperature as a steady temperature system, and the one with a high self-saturation temperature is a variable temperature system as a variable temperature system. In this case, overheating of the thermopile sensor can be prevented without adding a safety device.
また特に定常温度系統においては、 フ ィー ドバック制御を行わな くても 自己飽 和安定温度の一定温度に維持されるこ とから、 部品点数を減らすこ とができ、 コ ス ト削減及び製品強度の向上に寄与する。  In particular, especially in a steady temperature system, the self-saturation stable temperature is maintained at a constant temperature without feedback control, so that the number of parts can be reduced, which leads to cost reduction and product reduction. Contributes to improvement in strength.
また本願第 2 1 の請求項にかかる発明は、 本願第 1 乃至第 2 0のいずれか一の 請求項にかかる赤外線による温度測定方法において、 基準温度と して複数の異な る温度の黒体炉を設置し、 サ一モパイルセンサを上記黒体炉の異なる温度に対し て順次温度測定をさせ、 サーモパイルセンサの個体差に基づ く 固有の温度測定結 果を、 少な く ともサーモパイ ルセンサ内部とサーモパイルセンサを組込んだ装置 内部との少な く ともいずれか一方において設けられた記憶装置に記憶させ、 しか る後に少な く ともサーモパイルセンサとサ一モパイルセンサを組込んだ装置との いずれか一方に内蔵されるプログラムによ り、 前記記憶装置に格納された黒体炉 基準温度データを基に した固有の温度測定データを不連続のプロ ッ ト温度特性と して作成し、 更にそれそれのプロ ッ ト間每にその前後の複数プロ ッ トデータを使 用してプロ ッ ト間曲線特性処理を順次行い、 これらプロ ッ ト間曲線特性どう しを 連続的に繋いだ自由曲線温度特性をサ一モパイルセンサの固有の温度特性基準と し、 これを少な く ともサ一モパイルセンサとサーモパイルセンサを組込んだ装置 とのいずれか一方に設けられた記憶装置に内蔵させるこ とによ り、 サ一モパイル の装置間個体差を自動校正するこ とを特徴とする赤外線による温度測定方法であ る。 The invention according to claim 21 of the present application is directed to the temperature measurement method using infrared light according to any one of claims 1 to 20, wherein a blackbody furnace having a plurality of different temperatures as a reference temperature is provided. A thermopile sensor is installed for different temperatures of the above black body furnace. Temperature measurement based on the individual difference of the thermopile sensor, and at least one of the inside of the thermopile sensor and the inside of the device incorporating the thermopile sensor is provided. The black body furnace reference temperature stored in the storage device is stored in the storage device by a program stored in at least one of the thermopile sensor and the device incorporating the thermopile sensor. Creates unique temperature measurement data based on the data as discrete plot temperature characteristics, and plots using multiple plot data before and after each plot. The curve characteristics are sequentially processed, and the free-curve temperature characteristics obtained by continuously connecting these plot-to-plot curve characteristics are unique to the thermopile sensor. By incorporating this into a storage device provided in at least one of the thermopile sensor and the device incorporating the thermopile sensor, the individual differences between the thermopile devices can be automatically set. This is a temperature measurement method using infrared rays, which is characterized by calibration.
かかる構成とするこ とによ り、 サ一モパイルセンサの固有特性やサ一モパイル センサを組込んだ装置の装置固有特性に関係な く 、 誤差の少ない高精度な測定を 行う こ とが可能となる。  With this configuration, it is possible to perform high-accuracy measurement with few errors regardless of the inherent characteristics of the thermopile sensor and the inherent characteristics of the device incorporating the thermopile sensor. .
また本願第 2 2の請求項にかかる発明は、 冷接合部領域と熱的に直結するよう にして組込んだ発熱素子と、 前記冷接合部領域と熱的に直結するようにしてかつ 構造的に冷接合部領域の温度変化と熱応答速度において同期するようにして組込 んだ冷接合部測温素子と、 前記発熱素子によ り冷接合部領域を一方的かつ強制的 に加熱したときのサ一モパイル出力の正負電圧値領域反転の有無を検出する相検 出器と、 前記相反転の有無を 2 ビッ トデジタル信号に変換する変換器とを有し、 このデジタル信号に同期して冷接合部測温素子温度を検出するこ とを特徴とする サ一モパイ ルセンサである。  The invention according to claim 22 of the present application is characterized in that a heating element incorporated so as to be thermally directly connected to the cold junction region, and a heating element which is thermally directly connected to the cold junction region and structurally When the temperature of the cold-junction region is incorporated so as to synchronize with the temperature change of the cold-junction region and the thermal response speed, and the cold-junction region is unilaterally and forcibly heated by the heating element. A phase detector for detecting the presence / absence of inversion of the positive / negative voltage value region of the thermopile output, and a converter for converting the presence / absence of the phase inversion into a 2-bit digital signal. This is a sample sensor that detects the temperature of the cold junction temperature measuring element.
かかる構成とする こ とによ り、 従来のよう にサ一モパイル出力電圧を零点に一 致させるよう に冷接合部の温度をフ ィー ドバック制御するのではな く、 サ一モパ ィル出力電圧値の零点を強制的に一定勾配で通過せしめるように制御するので、 測定時間を大幅に短縮するこ とができる。  With this configuration, the temperature of the cold junction is not feedback-controlled so that the output voltage of the thermopile coincides with the zero point as in the prior art, Since control is performed so that the zero point of the output voltage value is forcibly passed at a constant gradient, the measurement time can be significantly reduced.
また発熱素子によって予め冷接合部領域及び冷接合部測温素子は一定温度のバ ィァス温度まで加熱しておく こ とによ り、 冷接合部測温素子の抵抗変化は、 測定 ターゲッ トからの赤外線エネルギーによる温接合部領域の温度上昇分だけとなる のでその熱応答速度は極めて早く な り、 冷接合部領域の温度変化に対して可及的 に同期させるこ とができる。 In addition, the cold junction area and the cold junction temperature measuring element are pre- By heating to the bias temperature, the change in resistance of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, so the thermal response speed is extremely high. It is faster and can be synchronized as much as possible with temperature changes in the cold junction area.
すなわち、測定時間の短縮と測定精度の向上とを同時に実現する こ とができる。 また本願第 2 3の請求項にかかる発明は、 冷接合部領域と熱的に直結するよう にして組込んだ発熱素子と、 前記冷接合部領域と熱的に直結するように してかつ 構造的に冷接合部領域の温度変化と熱応答速度において同期するようにして組込 んだ冷接合部測温素子と、 前記発熱素子によ り冷接合部領域を一方的かつ強制的 に加熱したときのサ一モパイルの出力電圧値が、 予め設定されかつ基準電圧値と なる電圧閾値に対して相反転したか否かを検出する相検出器と、 前記相反転の有 無を 2 ビッ トデジタル出力に変換する変換器とを有し、 このデジタル信号に同期 して冷接合部測温素子の温度を検出する こ とを特徴とするサ一モパイルセンサで ある。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy. The invention according to claim 23 of the present application is characterized in that the heating element incorporated so as to be thermally directly connected to the cold junction region, and the heating element is thermally connected to the cold junction region. The temperature of the cold-junction region was integrated so as to be synchronized with the temperature change of the cold-junction region and the thermal response speed, and the cold-junction region was unilaterally and forcibly heated by the heating element. A phase detector that detects whether the output voltage value of the thermopile is inverted with respect to a voltage threshold that is set in advance and is a reference voltage value, and a 2-bit digital signal indicating whether the phase inversion is present. A thermopile sensor having a converter for converting to an output and detecting the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
かかる構成とすることによ り、 従来のよう にサ一モパイル出力電圧を零点に一 致させるように冷接合部領域の温度をフ ィー ドバック制御するのではな く、 サ一 モパイル出力電圧値の零点を強制的に一定勾配で通過せしめるよう に制御するの で、 測定時間を大幅に短縮するこ とができる。  With such a configuration, the temperature of the cold junction region is not feedback-controlled so that the output voltage of the thermopile coincides with the zero point as in the related art, but the output voltage of the thermopile is not changed. Since the zero point is controlled so that it passes through at a constant gradient, the measurement time can be greatly reduced.
また発熱素子によって予め冷接合部領域及び冷接合部測温素子は一定温度のバ ィァス温度まで加熱してお く こ とによ り 、 冷接合部測温素子の抵抗変化は、 測定 ターゲッ トからの赤外線エネルギーによる温接合部領域の温度上昇分だけとなる のでその熱応答速度は極めて早くな り、 冷接合部領域の温度変化に対して可及的 に同期させるこ とができる。  In addition, since the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the heating element, the resistance change of the cold junction temperature measuring element can be measured from the measurement target. Since only the temperature rise of the hot junction region due to the infrared energy is obtained, the thermal response speed is extremely fast, and the temperature can be synchronized as much as possible with the temperature change of the cold junction region.
すなわち、測定時間の短縮と測定精度の向上とを同時に実現する こ とができる。 また本願第 2 4の請求項にかかる発明は、 本願第 2 2の請求項にかかる赤外線 による温度測定方法において、 前記発熱素子が、 発熱して一定温度に維持される 定常温度系統と、 一定の温度範囲において温度可変とする可変温度系統とからな るこ とを特徴とするサ一モパイルセンサである。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy. The invention according to claim 24 of the present application is the temperature measurement method using infrared light according to claim 22 of the present application, wherein the heating element generates heat and is maintained at a constant temperature; This is a thermopile sensor characterized by comprising a variable temperature system that makes the temperature variable in a temperature range.
かかる構成とすることによ り、 定常温度系統によって予め冷接合部領域及び冷 接合部測温素子を一定のバイ ァス温度に加熱し、 測定時間の短縮を図るこ とがで きる。 さらに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの赤外線ェ ネルギ一による温接合部領域の温度上昇分だけとなるのでその熱応答速度は極め て早く なり、冷接合部領域の温度変化に対して可及的に同期させるこ とができる。 一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。 By adopting such a configuration, the cold junction region and the cold junction area are previously determined by the steady temperature system. The junction temperature measuring element can be heated to a constant bias temperature to reduce the measurement time. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, the thermal response speed becomes extremely fast, and the temperature of the cold junction area is extremely high. It can be synchronized as much as possible with temperature changes. On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 2 5の請求項にかかる発明は、 本願第 2 3の請求項にかかる赤外線 による温度測定方法において、 前記発熱素子が、 発熱して一定温度に維持される 定常温度系統と、 一定の温度範囲において温度可変である可変温度系統とからな ることを特徴とするサ一モパイルセンサである。  The invention according to claim 25 of the present application is the temperature measurement method using infrared rays according to claim 23 of the present application, wherein the heating element generates heat and is maintained at a constant temperature; A thermopile sensor comprising a variable temperature system that is variable in temperature within a temperature range.
かかる構成とするこ とによ り、 定常温度系統によって予め冷接合部領域及び冷 接合部測温素子を一定のバイ アス温度に加熱し、 測定時間の短縮を図るこ とがで きる。 さらに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの赤外線ェ ネルギ一による温接合部領域の温度上昇分だけとなるのでその熱応答速度は極め て早く な り、冷接合部領域の温度変化に対して可及的に同期させるこ とができる。 一方可変温度系統によ り冷接合部領域の温度を一方的'かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。  With this configuration, the cold junction region and the cold junction temperature measuring element can be preliminarily heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, so that the thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change. On the other hand, the measurement time can be significantly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 2 6の請求項にかかる発明は、 本願第 2 2の請求項にかかる赤外線 による温度測定方法において、 発熱素子と冷接合部測温素子との少な く ともいず れか一方に自己制御型正温度係数特性を含む抵抗体を用いてなるこ とを特徴とす るサ一モパイルセンサである。  The invention according to claim 26 of the present application is directed to the method for measuring temperature by infrared light according to claim 22 of the present application, wherein at least one of the heating element and the cold junction temperature measuring element is self-controlled. This is a thermopile sensor characterized by using a resistor having a positive temperature coefficient characteristic.
かかる構成とするこ とによ り、 安全装置を付加するこ とな く過熱事故が防がれ る。  With this configuration, an overheating accident can be prevented without adding a safety device.
また本願第 2 7の請求項にかかる発明は、 本願第 2 3 の請求項にかかる赤外線 による温度測定方法において、 発熱素子と冷接合部測温素子との少な く ともいず れか一方に自己制御型正温度係数特性を含む抵抗体を用いてなるこ とを特徴とす るサ一モパイルセンサである。 The invention according to claim 27 of the present application is directed to the temperature measurement method using infrared light according to claim 23 of the present application, wherein at least at least one of the heating element and the cold junction temperature measuring element is used. This is a thermopile sensor characterized by using a resistor having a self-control type positive temperature coefficient characteristic for one of them.
かかる構成とする こ とによ り、 安全装置を付加する こ とな く過熱事故が防がれ る。  With this configuration, an overheating accident can be prevented without adding a safety device.
また本願第 2 8の請求項にかかる発明は、 本願第 2 4の請求項にかかる赤外線 による温度測定方法において、 電気的に素子間絶縁された複数の同一抵抗特性の 自己制御型正温度係数特性を含む抵抗体からなる系統の一系統以上を、 発熱素子 系統と して前記冷接合部領域に対して熱的に直結するよう に して組み込んだ構造 を有するこ とを特徴とするサ一モパイルセンサである。  The invention according to claim 28 of the present application is the temperature measurement method using infrared light according to claim 24 of the present application, wherein the self-controlling positive temperature coefficient characteristic of a plurality of identical resistance characteristics electrically insulated between elements is provided. A thermo-pile sensor having a structure in which at least one system composed of a resistor body including: is incorporated as a heating element system so as to be thermally directly connected to the cold junction region. It is.
かかる構成とする こ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイアス温度に加熱し、 測定時間の短縮を図る こ とができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く な り 、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。  With this configuration, it is possible to separate these systems into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise of the hot junction area due to the infrared energy from the measurement target, the thermal response speed becomes extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる ことによ り、 測定時間を大幅に短縮するこ とができる。  On the other hand, the measurement time can be significantly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 2 9の請求項にかかる発明は、 本願第 2 5の請求項にかかる赤外線 による温度測定方法において、 電気的に素子間絶縁された複数の同一抵抗特性の 自己制御型正温度係数特性を含む抵抗体からなる系統の一系統以上を、 発熱素子 系統と して前記冷接合部領域に対して熱的に直結するよう にして組み込んだ構造 を有するこ とを特徴とするサ一モパイルセンサである。  The invention according to claim 29 of the present application is the temperature measurement method using infrared light according to claim 25 of the present application, wherein the self-controlled positive temperature coefficient characteristic of a plurality of identical resistance characteristics electrically insulated between elements is provided. A thermo-pile sensor having a structure in which at least one system composed of a resistor including the following is incorporated as a heating element system so as to be thermally directly connected to the cold junction region. is there.
かかる構成とするこ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る ことができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早 く な り、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。 With such a configuration, these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. In addition, the change in resistance of the cold junction Since only the temperature rise in the hot junction region due to infrared energy is obtained, the thermal response speed is extremely fast, and the temperature can be synchronized as much as possible with the temperature change in the cold junction region.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 3 0 の請求項にかかる発明は、 本願第 2 4の請求項にかかる赤外線 による温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性の自己 制御型正温度係数特性を含む抵抗体 2個からなる系統の一系統以上を、 発熱素子 系統と して前記冷接合部領域に対して熱的に直結する よう に して組み込んだ構造 を有するこ とを特徴とするサーモパイルセンサである。  The invention according to claim 30 of the present application is directed to the temperature measurement method using infrared light according to claim 24 of the present application, wherein the method includes a self-controlling positive temperature coefficient characteristic having different resistance characteristics electrically insulated between elements. A thermopile sensor having a structure in which one or more systems composed of two resistors are incorporated as a heating element system so as to be thermally directly connected to the cold junction region. is there.
かかる構成とするこ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る ことができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く な り、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。  With such a configuration, these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the change in resistance of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so that its thermal response speed is extremely fast, and the cold junction area It can be synchronized as much as possible with respect to the temperature change.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 3 1 の請求項にかかる発明は、 本願第 2 5の請求項にかかる赤外線 による温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性の自己 制御型正温度係数特性を含む抵抗体 2個からなる系統の一系統以上を、 発熱素子 系統と して前記冷接合部領域に対して熱的に直結するよう にして組み込んだ構造 を有するこ とを特徴とするサ一モパイルセンサである。  The invention according to claim 31 of the present application is the temperature measurement method using infrared light according to claim 25 of the present application, wherein the method includes a self-controlling positive temperature coefficient characteristic of different resistance characteristics electrically insulated between elements. A thermopile sensor having a structure in which one or more systems composed of two resistors are incorporated as a heating element system so as to be thermally connected directly to the cold junction region. is there.
かかる構成とするこ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る こ とができる。 さらに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く な り 、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。 With this configuration, these systems can be used as a steady temperature system and a variable temperature system. System can be separated. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction region due to infrared energy from the measurement target, so that the thermal response speed is extremely fast, and the temperature of the cold junction region is low. Synchronize as much as possible with changes.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 3 2の請求項にかかる発明は、 本願第 2 4の請求項にかかる赤外線 による温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性の自己 制御型正温度係数特性を含む抵抗体 2個からなる対を複数対組み合わせてなる系 統のー系統以上を、 発熱素子系統と して前記冷接合部領域に対して熱的に直結す るように して組み込んだ構造を有するこ とを特徴とするサ一モパイ ルセンサであ る。  The invention according to claim 32 of the present application is directed to the temperature measurement method using infrared light according to claim 24 of the present application, wherein the method includes a self-control positive temperature coefficient characteristic of different resistance characteristics electrically insulated between elements. It has a structure in which at least one system composed of a plurality of pairs of two resistors is combined as a heating element system so as to be thermally directly connected to the cold junction region. This is a sample sensor characterized by this.
かかる構成とするこ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る ことができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く なり、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。  With such a configuration, these systems can be separated into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so the thermal response speed is extremely fast, and the cold junction It can be synchronized as much as possible with temperature changes.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる こ とによ り、 測定時間を大幅に短縮するこ とができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 3 3の請求項にかかる発明は、 本願第 2 5の請求項にかかる赤外線 による温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性の自己 制御型正温度係数特性を含む抵抗体 2個からなる対を複数対組み合わせてなる系 銃の一系統以上を、 発熱素子系統と して前記冷接合部領域に対して熱的に直結す るように して組み込んだ構造を有するこ とを特徴とする請求項 2 5 に記載のサ一 モパイルセンサである。 The invention according to claim 33 of the present application is directed to the temperature measurement method using infrared light according to claim 25 of the present application, wherein the self-insulating elements having different resistance characteristics are electrically insulated between elements. A system in which a plurality of pairs of two resistors each having a controlled positive temperature coefficient characteristic are combined, and at least one of the system guns is thermally connected directly to the cold junction region as a heating element system. The thermopile sensor according to claim 25, wherein the thermopile sensor has a structure incorporated therein.
かかる構成とする こ とによ り、 これらの系統を定常温度系統と可変温度系統と に系統分離させるこ とができる。 すなわち定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短縮を図る こ とができる。 さ らに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの 赤外線エネルギーによる温接合部領域の温度上昇分だけとなるのでその熱応答速 度は極めて早く なり、 冷接合部領域の温度変化に対して可及的に同期させるこ と ができる。  With this configuration, it is possible to separate these systems into a steady temperature system and a variable temperature system. That is, the cold junction area and the cold junction temperature measuring element are previously heated to a constant bias temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, the resistance change of the cold junction temperature measuring element is only the amount of temperature rise in the hot junction area due to infrared energy from the measurement target, so the thermal response speed is extremely fast, and the cold junction It can be synchronized as much as possible with temperature changes.
一方可変温度系統によ り冷接合部領域の温度を一方的かつ強制的に変化させる ことによ り、 測定時間を大幅に短縮することができる。  On the other hand, the measurement time can be significantly reduced by unilaterally and forcibly changing the temperature of the cold junction region by using a variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能とな る。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 3 4の請求項にかかる発明は、 本願第 2 4の請求項にかかる赤外線 による温度測定方法において、 前記発熱素子系統と して、 異なる 自己飽和安定温 度を有する 2種類の自己制御型正温度係数特性を含む抵抗体を配置してなるこ と を特徴とするサ一モパイルセンサである。  The invention according to claim 34 of the present application is the temperature measurement method using infrared light according to claim 24 of the present application, wherein the heating element system has two types of self-control having different self-saturation stable temperatures. This is a thermopile sensor in which a resistor having a positive temperature coefficient characteristic is arranged.
かかる構成とするこ とによ り、 例えば耳式体温計において、 自己飽和安定温度 が鼓膜温度付近 (例えば 3 4 °C ) である 自己制御型正温度係数特性を含む抵抗体 によ り冷接合部領域及び冷接合部測温素子を予め一定温度のバイ アス温度 ( 3 With this configuration, for example, in an ear-type thermometer, the self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C). The temperature of the area and the cold junction temperature measuring element must be set in advance to a constant bias temperature (3
4 °C ) に加熱し、 一方自己飽和安定温度が鼓膜温度よ り も高温 (例えば 5 0 °C ) である 自己制御型正温度係数特性を含む抵抗体を一定温度範囲内 (例えば 3 4 〜4 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C).
4 2 °C ) において可変加熱するこ とによ り鼓膜の温度を測定するこ とが可能とな る。 この際に、 自己飽和安定温度が鼓膜温度付近である 自己制御型正温度係数特 性を含む抵抗体は、周囲の温度変化にかかわらず自己飽和安定温度の一定温度( 3The temperature of the eardrum can be measured by performing variable heating at 42 ° C). At this time, a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is near the eardrum temperature has a constant self-saturation stable temperature (3) regardless of ambient temperature changes.
4 °C ) にみずから維持されるので、 サーモパイルセンサの過熱事故が防がれる。 また、 自己安定飽和温度が鼓膜温度よ り も高温である 自己制御型正温度係数特性 を含む抵抗体は可変加熱されるが、 たとえ誤作動や故障によ り可変加熱の温度制 御が不可能になつたと しても 自己飽和安定温度 ( 5 0 °C ) 以上には加熱されない ため、 サ一モパイルセンサの過熱事故が防止される。 4 ° C) to prevent overheating of the thermopile sensor. In addition, self-stable saturation temperature is higher than eardrum temperature. The variable resistor is heated by variable heating, but even if the temperature control of variable heating becomes impossible due to malfunction or failure, it will not be heated above the self-saturation stable temperature (50 ° C). Therefore, the overheat accident of the thermopile sensor is prevented.
また本願第 3 5の請求項にかかる発明は、 本願第 2 5 の請求項にかかる赤外線 による温度測定方法において、 前記発熱素子系統と して、 異なる 自己飽和安定温 度を有する 2種類の自己制御型正温度係数特性を含む抵抗体を配置してなるこ と を特徴とするサ一モパイルセンサである。  The invention according to claim 35 of the present application is the temperature measurement method using infrared light according to claim 25 of the present application, wherein the heating element system has two types of self-control having different self-saturation stable temperatures. This is a thermopile sensor in which a resistor having a positive temperature coefficient characteristic is arranged.
かかる構成とする こ とによ り、 自己飽和安定温度が低温であるほうを定常温度 系統と してバイ アス温度の一定温度で安定させ、 高温であるほう を可変温度系統 と して冷接合部領域を加熱する こ とができる。 またこのとき、 それそれ安全装置 を付加するこ とな く サーモパイ ルセンサの過熱を防ぐ こ とができる。  With this configuration, the one with a low self-saturation stable temperature is stabilized at a constant temperature of the bias temperature as a steady temperature system, and the one with a high self-saturation temperature is a variable temperature system as a variable temperature system. The area can be heated. At this time, it is possible to prevent the thermopile sensor from overheating without adding a safety device.
また特に定常温度系統においては、 フ ィー ドバック制御を行わな く ても飽和自 己安定温度の一定温度に維持されるこ とから、 部品点数を減らすこ とができ、 コ ス ト削減及び製品強度の向上に寄与する。  In particular, in a steady-state temperature system, the saturation self-stabilizing temperature is maintained at a constant temperature without feedback control, so that the number of parts can be reduced, which leads to cost reduction and product reduction. Contributes to improvement in strength.
また本願第 3 6の請求項にかかる発明は、 本願第 2 6乃至第 3 5 のいずれか一 の請求項にかかる赤外線による温度測定方法において、 前記発熱素子系統の自己 制御型正温度係数特性を含む抵抗体と、 前記冷接合部測温素子系統の自己制御型 正温度係数特性を含む抵抗体のうち少な く ともいずれか一方が、 基板表面に蒸着 によ り組成されてなるこ とを特徴とするサ一モパイルセンサである。  The invention according to claim 36 of the present application is the temperature measurement method using infrared light according to any one of claims 26 to 35, wherein the self-controlling positive temperature coefficient characteristic of the heating element system is At least one of a resistor including a self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element system and a resistor including the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element system is formed by vapor deposition on the substrate surface. Is a thermopile sensor.
サ一モパイルセンサは一般的に、 シリ コンペレ ツ トあるいはシ リ コンチップあ るいはシリ コンウェハの表面上に、 半導体積層技術を用いて形成されたものであ る。 従って、 自己制御型正温度係数特性を含む抵抗体を形成する際にもこのよう な半導体積層技術の一手法である蒸着技術を用いて形成するこ とによ り、 本願発 明のサーモパイルセンサの集積度を高め、 しかもこれを効率的に生産するこ とが 可能となる。 また構造上、 自己制御型正温度係数特性を含む抵抗体とサーモパイ ルの冷接合部領域とを、 熱的に直結させるこ とが容易である。  Thermopile sensors are generally formed on the surface of a silicon pellet, silicon chip, or silicon wafer using semiconductor lamination technology. Therefore, even when forming a resistor having a self-controlling positive temperature coefficient characteristic, it is possible to form the resistor using the vapor deposition technique, which is one of the semiconductor lamination techniques, to achieve the thermopile sensor of the present invention. It is possible to increase the degree of integration and efficiently produce this. Also, it is easy to thermally connect the resistor including the self-control type positive temperature coefficient characteristic and the cold junction region of the thermopile thermally.
また本願第 3 7の請求項にかかる発明は、 本願第 2 6乃至第 3 5 のいずれか一 に記載の請求項にかかる赤外線による温度測定方法において、 前記発熱素子系統 の自己制御型正温度係数特性を含む抵抗体と、 前記冷接合部測温素子系統の自己 制御型正温度係数特性を含む抵抗体のう ち少な く ともいずれか一方が、 基板表面 にペース ト焼き付けによ り形成されてなるこ とを特徴とするサ一モパイルセンサ である。 The invention according to claim 37 of the present application is the method for measuring temperature by infrared light according to any one of claims 26 to 35, wherein the self-controlling positive temperature coefficient of the heating element system is A resistor including characteristics, and a self-connection of the cold junction temperature measuring element system A thermopile sensor characterized in that at least one of the resistors having a controlled positive temperature coefficient characteristic is formed on a substrate surface by paste baking.
かかる構成とする こ とによ り、 本願発明のサ一モパイルセンサを効率よ く作製 するこ とができる。  With this configuration, the thermopile sensor of the present invention can be efficiently manufactured.
また本願第 3 8の請求項にかかる発明は、 本願第 2 6乃至第 3 5 のいずれか一 に記載の請求項にかかる赤外線による温度測定方法において、 前記発熱素子系統 の自己制御型正温度係数特性を含む抵抗体と、 前記冷接合部測温素子系統の自己 制御型正温度係数特性を含む抵抗体のう ち少な く ともいずれか一方が、 基板表面 に面状印刷されてなるこ とを特徴とするサ一モパイルセンサである。  The invention according to claim 38 of the present application is the temperature measurement method using infrared light according to any one of claims 26 to 35, wherein the heating element system has a self-controlling positive temperature coefficient. At least one of the resistor having the characteristic and the resistor having the self-controllable positive temperature coefficient characteristic of the cold junction temperature measuring element system is printed on the surface of the substrate in a planar manner. This is a characteristic thermopile sensor.
かかる構成とする こ とによ り、 本願発明のサ一モパイルセンサを効率よ く作製 するこ とができる。  With this configuration, the thermopile sensor of the present invention can be efficiently manufactured.
また本願第 3 9 の請求項にかかる発明は、 本願第 2 2又は第 2 3 の請求項にか かる赤外線による温度測定方法において、 前記発熱素子系統を配置した発熱素子 領域と冷接合部測温素子系統を配置した冷接合部測温素子領域とが、 温接合部領 域を中心と して冷接合部領域の外側に、かつ冷接合部領域が配置された基板上に、 かつお互いが水平方向に並ぶように して配置されてなる こ とを特徴とするサーモ パイルセンサである。  The invention according to claim 39 of the present application is the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measurement. The cold junction temperature measurement element area where the element system is located is located outside the cold junction area with the hot junction area as the center, on the substrate where the cold junction area is located, and with each other. This is a thermopile sensor that is arranged so as to be aligned in a direction.
かかる構成とする こ とによ り、 従来のサーモパイルセンサにおいて適用されて きた温接合部領域と冷接合部領域との配置を、 本願発明のサ一モパイルセンサに おいても適用するこ とができる。  With this configuration, the arrangement of the hot junction region and the cold junction region, which are applied in the conventional thermopile sensor, can be applied to the thermopile sensor of the present invention.
また本願第 4 0 の請求項にかかる発明は、 本願第 2 2又は第 2 3の請求項にか かる赤外線による温度測定方法において、 前記発熱素子系統を配置した発熱素子 領域と冷接合部測温素子系統を配置した冷接合部測温素子領域とが、 温接合部を 中心と して冷接合部の外側に、 かっかつ冷接合部が配置された基板上に、 かつお 互いが垂直方向に並ぶように して配置されてなる こ とを特徴とするサ一モパイル センサである。  The invention according to claim 40 of the present application is the temperature measuring method using infrared rays according to claim 22 or 23 of the present application, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measurement. The cold junction temperature measuring element area where the element system is arranged is arranged outside the cold junction with the hot junction as the center, on the substrate where the cold junction is arranged, and in a vertical direction to each other The thermopile sensor is characterized by being arranged as described above.
かかる構成とするこ とによ り、 従来のサ一モパイルセンサにおいて適用されて きた温接合部領域と冷接合部領域との配置を、 本願発明のサ一モパイルセンサに おいても適用する こ とができる。 With this configuration, the arrangement of the hot junction region and the cold junction region, which are applied in the conventional thermopile sensor, can be added to the thermopile sensor of the present invention. Can also be applied.
また本願第 4 1 の請求項にかかる発明は、 本願第 2 2又は第 2 3 の請求項にか かる赤外線による温度測定方法において、 前記発熱素子系統を配置した発熱素子 領域と冷接合部測温素子系統を配置 した冷接合部測温素子領域とが、 温接合部を 中心と して冷接合部の外側に、 かつ冷接合部が配置された基板の外部に、 かつお 互いが垂直方向に並ぶように して配置されてなる こ とを特徴とするサーモパイル センサである。  The invention according to claim 41 of the present application is directed to the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measurement. The cold junction temperature measuring element area in which the element system is arranged is arranged outside the cold junction with the hot junction as the center, outside the substrate on which the cold junction is arranged, and mutually vertically The thermopile sensor is characterized by being arranged as described above.
また本願第 4 2 の請求項にかかる発明は、 本願第 2 2 又は第 2 3 の請求項にか かる赤外線による温度測定方法において、 前記発熱素子系統を配置 した発熱素子 領域と冷接合部測温素子系統を配置 した冷接合部測温素子領域との形状が、 連続 する角形である こ とを特徴とするサーモパイルセ ンサである。  The invention according to claim 42 of the present application is the temperature measurement method using infrared light according to claim 22 or 23, wherein the temperature of the heating element region in which the heating element system is arranged and the temperature of the cold junction are measured. The thermopile sensor is characterized in that the shape with the cold junction temperature measuring element region in which the element system is arranged is a continuous square.
かかる構成とする こ とによ り、 従来のサ一モパイルセンサにおいて適用されて きた温接合部領域と冷接合部領域との配置を、 本願発明のサ一モパイルセンサに おいても適用するこ とができる。  With this configuration, the arrangement of the hot junction region and the cold junction region, which have been applied in the conventional thermopile sensor, can be applied to the thermopile sensor of the present invention. .
また本願第 4 3 の請求項にかかる発明は、 本願第 2 2又は第 2 3 の請求項にか かる赤外線による温度測定方法において、 前記発熱素子系統を配置した発熱素子 領域と冷接合部測温素子系統を配置した冷接合部測温素子領域との形状が、 一定 角度で区切られた不連続の多角形であるこ とを特徴とするサ一モパイルセンサで ある。  The invention according to claim 43 of the present application is the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the temperature of the heating element region in which the heating element system is arranged and the temperature of the cold junction are measured. The thermopile sensor is characterized in that the shape with the cold junction temperature measuring element region in which the element system is arranged is a discontinuous polygon separated by a certain angle.
かかる構成とするこ とによ り、 従来のサ一モパイルセンサにおいて適用されて きた温接合部領域と冷接合部領域との配置を、 本願発明のサ一モパイルセンサに おいても適用するこ とができる。  With this configuration, the arrangement of the hot junction region and the cold junction region, which are applied in the conventional thermopile sensor, can be applied to the thermopile sensor of the present invention. .
また本願第 4 4の請求項にかかる発明は、 本願第 2 2又は第 2 3 の請求項にか かる赤外線による温度測定方法において、 前記発熱素子系統を配置した発熱素子 領域と冷接合部測温素子系統を配置した冷接合部測温素子領域との形状が、 連続 する円であるこ とを特徴とするサ一モパイルセンサである。  The invention according to claim 44 of the present application is the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the temperature of the heating element region in which the heating element system is arranged and the temperature of the cold junction are measured. The thermopile sensor is characterized in that the shape of the cold junction temperature measuring element region in which the element system is arranged is a continuous circle.
かかる構成とするこ とによ り、 従来のサ一モパィルセンサにおいて適用されて きた温接合部領域と冷接合部領域との配置を、 本願発明のサーモパイルセンサに おいても適用するこ とができる。 また本願第 4 5の請求項にかかる発明は、 本願第 2 2又は第 2 3 の請求項にか かる赤外線による温度測定方法において、 前記発熱素子系統を配置 した発熱素子 領域と冷接合部測温素子系統を配置 した冷接合部測温素子領域との形状が、 一定 角度で区切られた不連続の円である こ とを特徴とするサ一モパイルセンサである かかる構成とするこ とによ り、 従来のサ一モパイルセンサにおいて適用されて きた温接合部領域と冷接合部領域との配置を、 本願発明のサ一モパイルセ ンサに おいても適用するこ とができる。 With this configuration, the arrangement of the hot junction region and the cold junction region, which has been applied in the conventional thermopile sensor, can be applied to the thermopile sensor of the present invention. The invention according to claim 45 of the present application is the temperature measurement method using infrared rays according to claim 22 or 23 of the present application, wherein the temperature of the heating element region where the heating element system is arranged and the temperature of the cold junction are measured. The thermopile sensor is characterized in that the shape with the cold junction temperature measuring element region in which the element system is arranged is a discontinuous circle separated by a certain angle. The arrangement of the hot junction region and the cold junction region applied in the conventional thermopile sensor can be applied to the thermopile sensor of the present invention.
また本願第 4 6の請求項にかかる発明は、 本願第 2 2乃至第 3 5 のいずれか一 に記載の請求項にかかる赤外線による温度測定方法において、 基準温度と しての 複数の異なる温度の黒体炉に対して順次温度測定を行ったときの温度測定データ を格納するための記憶装置を有し、 かつ前記記憶装置に格納された固有の温度測 定デ一夕を不連続のプロ ッ ト温度特性と して作成し、 更にそれそれのプロ ッ ト間 毎にその前後の複数プロ ッ トデータを使用 してプロ ッ ト間曲線特性処理を順次行 い、 これらプロ ッ ト間曲線どう しを連続的に繋いだ自由曲線温度特性を固有の温 度特性基準と して前記記憶装置に内蔵するプログラムを記録した記録媒体と、 前 記プログラムを実行するための情報処理装置とを有するこ とを特徴とするサーモ パイルセンサである。  The invention according to claim 46 of the present application is directed to the temperature measurement method using infrared rays according to any one of claims 22 to 35 of the present application, wherein a plurality of different temperatures as reference temperatures are provided. It has a storage device for storing temperature measurement data when the temperature measurement is performed sequentially on the black body furnace, and the unique temperature measurement data stored in the storage device is a discontinuous plot. It is created as a plot temperature characteristic, and furthermore, the plot-to-plot curve characteristic processing is sequentially performed for each plot using a plurality of plot data before and after the plot, and these plot-to-plot curves are connected. A storage medium storing a program incorporated in the storage device using a free curve temperature characteristic as a reference of a unique temperature characteristic, and an information processing device for executing the program. Thermopa characterized by Is Rusensa.
かかる構成とするこ とによ り、 サーモパイルセンサの製品個々についてそれぞ れ固有の温度特性を予め保有させ、 サ一モパイルセンサの固有特性に関係な く 、 誤差の少ない高精度な測定を行う こ とが可能となる。  With this configuration, each thermopile sensor product has its own unique temperature characteristics in advance, and high-precision measurement with little error is performed regardless of the thermopile sensor's specific characteristics. Becomes possible.
図面の簡単な説明 第 1 図は本発明第一の実施形態にかかるサ一モパイルセンサの構造を示す上面 図及び断面図である。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a top view and a sectional view showing the structure of a thermopile sensor according to a first embodiment of the present invention.
第 2 図は本発明の第一の実施形態にかかるサーモパイルセンサのサ一モパイル 構造を示す上面図である。 第 3図は本発明の第一の実施形態にかかるサ一モパイルセンサのサ一モパイル 構造を示す上面図である。 FIG. 2 is a top view showing a thermopile structure of the thermopile sensor according to the first embodiment of the present invention. FIG. 3 is a top view showing a thermopile structure of the thermopile sensor according to the first embodiment of the present invention.
第 4図は本発明第一の実施形態にかかるサ一モパイルセンサにおける自己制御 型正温度係数発熱体の抵抗一温度特性を示す図である。  FIG. 4 is a diagram showing a resistance-temperature characteristic of the self-control type positive temperature coefficient heating element in the thermopile sensor according to the first embodiment of the present invention.
第 5図は本発明第一の実施形態にかかるサ一モパイルセンサにおける温度測定 回路を示すプロ ック図である。  FIG. 5 is a block diagram showing a temperature measuring circuit in the thermopile sensor according to the first embodiment of the present invention.
第 6図は本発明第一の実施形態にかかるサ一モパイルセンサにおける温度測定 手順を示すフローチヤ一トである。  FIG. 6 is a flowchart showing a temperature measurement procedure in the thermopile sensor according to the first embodiment of the present invention.
第 7図は本発明第一の実施形態にかかるサ一モパイルセンサにおけるバイアス 温度印加時の温度一時間の関係を示す図である。  FIG. 7 is a diagram showing the relationship between the temperature and the temperature when the bias temperature is applied in the thermopile sensor according to the first embodiment of the present invention.
第 8図は本発明第一の実施形態にかかるサ一モパイルセンサにおける温度測定 時の温度一時間及びサーモパイル出力一時間の関係を示す図である。  FIG. 8 is a diagram showing a relationship between one hour of temperature and one hour of thermopile output at the time of temperature measurement in the thermopile sensor according to the first embodiment of the present invention.
第 9図は本発明第二の実施形態にかかるサ一モパイルセンサの構造を示す上面 図及び断面図である。  FIG. 9 is a top view and a sectional view showing the structure of a thermopile sensor according to a second embodiment of the present invention.
第 1 0図は本発明第三の実施形態にかかるサ一モパイルセンサの構造を示す上 面図及び断面図である。  FIG. 10 is a top view and a sectional view showing the structure of a thermopile sensor according to a third embodiment of the present invention.
第 1 1 図は従来のサーモパイルセンサの構造を示す断面図である。  FIG. 11 is a sectional view showing the structure of a conventional thermopile sensor.
第 1 2図は従来のサ一モパイルセンサにおける温度測定回路を示すブロ ック図 である。  FIG. 12 is a block diagram showing a temperature measuring circuit in a conventional thermopile sensor.
第 1 3図は従来のサーモパイルセンサにおける温度測定時の温度一時間及びサ —モパイル出力一時間の関係を示す図である。  FIG. 13 is a diagram showing the relationship between one hour of temperature and one hour of thermopile output at the time of temperature measurement in a conventional thermopile sensor.
符号の説明 Explanation of reference numerals
1 サ一モパイ ルセンサ 1 Thermopile sensor
2 ヒー ト シンク  2 Heat sink
3 ピッ ト部  3 pit
4 温接合部支持膜 第一熱電対材料 4 Thermal joint support membrane First thermocouple material
第二熱電対材料 Second thermocouple material
冷接合部 Cold junction
温接合部 Warm joint
サ一モパイ ル SAMPLE
出力端子 Output terminal
赤外線吸収体 Infrared absorber
絶縁薄膜 Insulating thin film
センサステム Sensor stem
増幅器 Amplifier
差動電力増幅器 Differential power amplifier
ヒ一夕 Night
サー ミ ス夕 Therm evening
情報処理装置 Information processing device
表示手段 Display means
冷接合部領域 Cold joint area
温接合部領域 Warm joint area
発熱素子 Heating element
冷接合部測温素子 Cold junction temperature measuring element
ダイ アフ ラム Die aphram
発熱素子の電極 Heating element electrode
冷接合部測温素子の電極 発熱素子領域  Electrode of cold junction temperature measuring element Heating element area
冷接合部測温素子領域 相検出器  Cold junction temperature measuring element area Phase detector
冷接合部測温素子のオペアンプ ドライ ブ I C  Operational amplifier drive IC for cold junction temperature sensor
定常温度系統発熱素子 可変温度系統発熱素子 発明を実施するための最良の形態 以下、 本発明の一実施の形態を図面を参照して説明する。 Steady temperature system heating element Variable temperature system heating element BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
本発明の一実施の形態にかかるサ一モパイ ルセンサを第 1 図及び第 2図に示す < 第 1 図に示すよう に、 シ リ コ ンからな り 中央にピッ ト部 3が開口された数百 ミ ク口 ン程度の厚さを持つヒー ト シンク 2 は上面に電気的な絶縁性を有する温接合 部支持膜 4が、 下面には絶縁薄膜 1 2 が形成されている。 温接合部支持膜 4及び 絶縁薄膜 1 2は、 酸化シ リ コ ンあるいは窒化シ リ コ ン等によって形成され、 また その厚さは熱容量を小さ く する 目的から数ミ クロ ン程度となっている。  FIGS. 1 and 2 show a thermopile sensor according to an embodiment of the present invention. As shown in FIG. 1, a number of pits 3 are opened at the center of a silicon. The heat sink 2 having a thickness of about 100 micrometer is formed with a hot junction supporting film 4 having electrical insulation on the upper surface and an insulating thin film 12 on the lower surface. The hot junction support film 4 and the insulating thin film 12 are made of silicon oxide or silicon nitride, and their thickness is about several microns in order to reduce the heat capacity. .
第 2 図に示すように、 ヒー ト シンク 2上面から温接合部支持膜 4上面にかけて 第一熱電対材料 5及び第二熱電対材料 6 が交互に多数配線されている。 これら両 金属をヒー トシンク 2上面で接合するこ とによ り冷接合部 7、 温接合部支持膜 4 上面で接合するこ とによ り温接合部 8がそれそれ形成されてお り、 このように し て熱電対を直列に接続するこ とによ りサ一モパイル 9が形成されている。 サ一モ パイル 9の両端には出力端子 1 0が設けられている。 温接合部 8は、 上面を赤外 線吸収体 1 1 によって覆われている。 あるいはサ一モパイル 9 を第 3図に示すよ うな形状で構成し、 温接合部 8 を赤外線吸収体で覆わない構造と してもよい。 な おここで、 本明細書において、 第 2図に示すよう に冷接合部 7 が形成された領域 を冷接合部領域 2 0、 温接合部 8が形成された領域を温接合部領域 2 1 と称し、 以下必要に応じてこの名称を用いる。  As shown in FIG. 2, a large number of first thermocouple materials 5 and second thermocouple materials 6 are alternately wired from the upper surface of the heat sink 2 to the upper surface of the hot junction supporting film 4. By joining these two metals on the upper surface of the heat sink 2, the cold junction 7 is formed on the upper surface of the hot junction support film 4, and the hot junction 8 is formed on the upper surface of the hot junction support film 4. Thus, the thermopile 9 is formed by connecting thermocouples in series. Output terminals 10 are provided at both ends of the thermopile 9. The upper surface of the thermal junction 8 is covered with the infrared ray absorber 11. Alternatively, the thermopile 9 may be formed in a shape as shown in FIG. 3, and the thermal junction 8 may not be covered with the infrared absorber. Here, in this specification, as shown in FIG. 2, the area where the cold junction 7 is formed is the cold junction area 20, and the area where the hot junction 8 is formed is the hot junction area 21. This name will be used where necessary.
第 1 図に示すよう にヒー ト シンク 2上面には、 自己制御型正温度係数発熱体か らなる発熱素子 2 2 と、 同じ く 自己制御型正温度係数発熱体からなる冷接合部測 温素子 2 3 とが、 ダイアフラム 2 4の中心部から見て冷接合部領域 2 0の四辺の 外側に、 冷接合部測温素子 2 3、 発熱素子 2 2の順に配置されている。 また発熱 素子 2 2相互間、 及び冷接合部測温素子 2 3相互間は電気的に接続されており、 両端には A u等からなる電極 2 5及び 2 6が形成されている。 なおここで本明細書において、 第 1 図に示すよう に発熱素子 2 2 が形成された 領域を発熱素子領域 2 7 、 冷接合部測温素子 2 3 が形成された領域を冷接合部測 温素子領域 2 8 と称し、 以下必要に応じてこの名称を用いる。 As shown in Fig. 1, on the upper surface of the heat sink 2, a heating element 22 composed of a self-controlled positive temperature coefficient heating element and a cold junction temperature measuring element composed of a self-controlled positive temperature coefficient heating element 23 are arranged outside the four sides of the cold junction region 20 when viewed from the center of the diaphragm 24, in the order of the cold junction temperature measuring element 23 and the heating element 22. The heating elements 22 and the cold junction temperature measuring element 23 are electrically connected to each other, and electrodes 25 and 26 made of Au or the like are formed at both ends. In this specification, as shown in FIG. 1, the area where the heating element 22 is formed is the heating element area 27, and the area where the cold junction temperature measuring element 23 is formed is the cold junction temperature measurement. This is referred to as an element region 28, and this name will be used as needed hereinafter.
以上のようなサーモパイルセンサ 1 をセンサステム 1 3 にダイボン ドするこ と によ り、 サ一モパイルセンサ 1 がセンサステム 1 3 に固定される。  The thermopile sensor 1 is fixed to the sensor stem 13 by die-bonding the thermopile sensor 1 to the sensor stem 13 as described above.
次に上記サ一モパイルセンサ 1 の製造プロセスについて説明する。 まず C V D 装置等によ り、 ヒー ト シンク 2 となるシ リ コ ンペレ ッ ト、 又はシ リ コ ンチップ、 又はシ リ コ ンウェハの両面に酸化シ リ コ ンあるいは窒化シ リ コ ンからなる温接合 部支持膜 4及び絶縁薄膜 1 2 を数ミ クロ ンの厚さに形成する。 次にヒー ト シンク 2の表面に異種金属 (第一熱電対材料 5及び第二熱電対材料 6 ) からな り これら を直列に接続して冷接合部 7及び温接合部 8 を有するサ一モパイル 9 を形成する。 サ一モパイル 9 を形成する第一熱電対材料 5及び第二熱電対材料 6 の組み合わせ と しては、 例えばポリ シ リ コ ンとアルミ ニウム、 あるいはビスマス とアンチモン 等が挙げられる。  Next, a manufacturing process of the thermopile sensor 1 will be described. First, using a CVD device, etc., heat bonding consisting of silicon oxide or silicon nitride on both sides of the silicon pellet, silicon chip, or silicon wafer that becomes the heat sink 2 The support film 4 and the insulating thin film 12 are formed to a thickness of several microns. Next, the surface of the heat sink 2 is made of a dissimilar metal (the first thermocouple material 5 and the second thermocouple material 6) and connected in series to form a thermopile having a cold junction 7 and a hot junction 8. Form 9. Examples of the combination of the first thermocouple material 5 and the second thermocouple material 6 forming the thermopile 9 include, for example, polysilicon and aluminum, or bismuth and antimony.
次にヒー ト シンク 2の表面に発熱素子 2 2の自己制御型正温度係数発熱体、 及び 冷接合部測温素子 2 3の自己制御型正温度係数発熱体を蒸着法によ り形成する。 またこれらは、 ペース ト焼き付けによ り形成するこ ともできる。 あるいは、 面状 印刷によ り形成してもよい。 Next, a self-controlling positive temperature coefficient heating element of the heating element 22 and a self-controlling positive temperature coefficient heating element of the cold junction temperature measuring element 23 are formed on the surface of the heat sink 2 by vapor deposition. They can also be formed by paste baking. Alternatively, it may be formed by planar printing.
さ らにヒー ト シンク 2 の両面に C V D装置等によ り絶縁薄膜 1 2 を堆積させて 覆った後、サ一モパイル 9 の下の領域をゥエツ トエッチングによ り一部除去する。 その後、 酸化膜をフ ッ酸等によ り ウエッ トエッチングして除去する と、 サ一モパ ィルセンサ 1 が完成する。  Further, after the insulating thin film 12 is deposited and covered on both surfaces of the heat sink 2 by a CVD device or the like, a region under the thermopile 9 is partially removed by wet etching. Thereafter, the oxide film is removed by wet etching with hydrofluoric acid or the like, whereby the thermo-mobile sensor 1 is completed.
次に上記本発明の一実施の形態にかかるサ一モパイルセンサにおける 自己制御 型正温度係数発熱体についての詳細、 及びこのようなサ一モパイルセンサを用い た温度測定方法について説明する。  Next, details of the self-control type positive temperature coefficient heating element in the thermopile sensor according to the embodiment of the present invention and a temperature measurement method using such a thermopile sensor will be described.
最初に自己制御型正温度係数発熱体について説明する。 自己制御型正温度係数 発熱体は第 4図の抵抗一温度特性グラフに示すように、 通電によって発熱体の温 度が上昇するに伴い、 その電気抵抗が増大する性質を有する発熱体である。 特に 自己制御型正温度係数発熱体はある温度 (自己飽和安定温度) で急激に電気抵抗 が増加する性質を有 している。 一般に抵抗体に電流を流すと発熱するが、 自己制 御型正温度係数発熱体は前記のよう に自己飽和安定温度で急激に電気抵抗が増加 するため、 流れる電流が制御され、 その結果自己制御型正温度係数発熱体は自己 飽和安定温度の一定温度に維持される。 すなわち、 自己制御型正温度係数発熱体 は自分自身で発熱温度を制御するこ とができる発熱体である。 First, a self-control type positive temperature coefficient heating element will be described. As shown in the resistance-temperature characteristic graph of FIG. 4, the self-control type positive temperature coefficient heating element is a heating element having the property that its electrical resistance increases as the temperature of the heating element rises due to energization. In particular, the self-control type positive temperature coefficient heating element suddenly has an electric resistance at a certain temperature (self-saturation stable temperature). Has the property of increasing. Generally, when a current is passed through a resistor, heat is generated.However, as described above, the self-control type positive temperature coefficient heating element rapidly increases its electrical resistance at a self-saturation stable temperature. The positive temperature coefficient heating element is maintained at a constant self-saturation stable temperature. In other words, the self-control positive temperature coefficient heating element is a heating element that can control the heating temperature by itself.
本実施の形態にかかるサ一モパイルセンサ 1 において、 発熱素子 2 2 の自己制 御型正温度係数発熱体は、 温度測定開始前と温度測定開始後で異なる温度制御を 行われる。 まず温度測定開始前においては、 電圧を印加するこ とによ り発熱せし め、 冷接合部 7 を一定温度のバイアス温度において維持するよう に制御される。 また温度測定が開始される と、 前記バイ アス温度からさ らに温度上昇するこ とに よ り、 冷接合 7部を一方的かつ強制的に加熱する。 このように一方的に加熱され た場合においても、 自己飽和安定温度においては温度上昇が自ずと抑制される。 従って、 発熱素子 2 2の自己制御型正温度係数発熱体を加熱する際には、 必要以 上に過熱されるおそれがないので安全である。  In the thermopile sensor 1 according to the present embodiment, the self-controlling positive temperature coefficient heating element of the heating element 22 performs different temperature control before the start of temperature measurement and after the start of temperature measurement. First, before the start of temperature measurement, a voltage is applied to generate heat, and the cold junction 7 is controlled to be maintained at a constant bias temperature. When the temperature measurement is started, the temperature is further increased from the bias temperature to unilaterally and forcibly heat the cold junction 7. Even in the case of unidirectional heating as described above, the temperature rise is naturally suppressed at the self-saturation stable temperature. Therefore, when heating the self-controlling positive temperature coefficient heating element of the heating element 22, there is no possibility of overheating more than necessary, so that it is safe.
一方、 冷接合部測温素子 2 3の自己制御型正温度係数発熱体に対しては特に外 部から電流を流さず、 発熱素子 2 2 の自己制御型正温度係数特性を含む抵抗体に よる強制的な加熱によって冷接合部 7 に同期して (同 じ変化速度で) 温度変化さ れ、 そのときの内部抵抗の変化によ り冷接合部 7 の温度を検出する。  On the other hand, the self-controlling positive temperature coefficient heating element of the cold junction temperature measuring element 23 does not flow an electric current from the outside in particular, and the heating element 22 includes the self-controlling positive temperature coefficient heating element having the positive temperature coefficient characteristic. The temperature is changed in synchronization with the cold junction 7 (at the same change rate) by the forced heating, and the temperature of the cold junction 7 is detected by the change in the internal resistance at that time.
発熱素子 2 2及び冷接合部測温素子 2 3の自己制御型正温度係数発熱体は、 図 The self-control positive temperature coefficient heating elements of the heating element 22 and the cold junction temperature measuring element 23 are shown in Fig.
1 に示されるように冷接合部領域 2 0の四辺に配置されるが、 その配置は以上に 示したものに限らない。 例えば、 枠状と してもよ く、 またサ一モパイル 9の形状 に応じて、 同心円、 あるいは正多角形、 あるいはそのような円や正多角形を一定 角度で区切った形状と しても よい。 As shown in FIG. 1, they are arranged on the four sides of the cold junction region 20, but the arrangement is not limited to the above. For example, the shape may be a frame, or may be a concentric circle, a regular polygon, or a shape obtained by dividing such a circle or regular polygon at a certain angle according to the shape of the thermopile 9. .
次に上記サ一モパイルセンサ 1 によ り、 どのように温度が測定されるかを第 5 図のブロ ック回路図を参照して説明する。  Next, how the temperature is measured by the thermopile sensor 1 will be described with reference to the block circuit diagram of FIG.
第 5図において、 サーモパイルセンサ 1 は測定ターゲッ トから放射される赤外 線量及び冷接合部領域 2 0 の温度に依存する電圧を出力する。 すなわち、 サ一モ パイルセンサ 1 は測定ターゲッ トの温度すなわち温接合部 8の温度と冷接合部領 域 2 0 の温度との差に応じた電圧を出力 し、 かかる出力電圧値は温接合部領域 2 1 の温度が冷接合部領域 2 0 の温度よ り も高い場合には正の電圧値と して出力さ れ、 温接合部領域 2 1 の温度が冷接合部領域 2 0 の温度よ り も低い場合には負の 電圧値と して出力される。 また、 温接合部領域 2 1 の温度と冷接合部領域 2 0 の 温度が等しい場合にはサ一モパイルセンサ 1 の出力が 0 となる。 In FIG. 5, the thermopile sensor 1 outputs a voltage that depends on the infrared dose radiated from the measurement target and the temperature of the cold junction region 20. That is, the thermopile sensor 1 outputs a voltage corresponding to the difference between the temperature of the measurement target, that is, the temperature of the hot junction 8 and the temperature of the cold junction region 20. Region 2 If the temperature of 1 is higher than the temperature of the cold junction region 20, it is output as a positive voltage value, and the temperature of the hot junction region 21 is lower than the temperature of the cold junction region 20. When it is low, it is output as a negative voltage value. When the temperature of the hot junction area 21 is equal to the temperature of the cold junction area 20, the output of the thermopile sensor 1 becomes 0.
サ一モパイルセンサ 1 に接続された増幅器 1 4は、 サーモパイルセンサ 1 から 出力される微小電圧を所定の大きさに増幅する。 増幅器 1 4に接続された相検出 器 2 9は、 増幅器 1 4 によ り増幅されたサ一モパイルセンサ 1 の出力電圧値が電 圧値正負領域間で相反転したか否かを判定して相反転 「有」 か 「無」 かの 2 ビッ トデジタル信号と して情報処理装置 1 8 に送る。  The amplifier 14 connected to the thermopile sensor 1 amplifies the minute voltage output from the thermopile sensor 1 to a predetermined magnitude. The phase detector 29 connected to the amplifier 14 determines whether or not the output voltage value of the thermopile sensor 1 amplified by the amplifier 14 has reversed the phase between the positive and negative voltage values. Inverted Send to the information processing device 18 as a 2-bit digital signal of “Yes” or “No”.
冷接合部測温素子 2 3 の自己制御型正温度係数発熱体は冷接合部領域 2 0の温 度を測定するための測温素子であり、 自己抵抗値の変化を電圧値に変換し、 この 電圧値は冷接合部測温素子 2 2の自己制御型正温度係数発熱体に接続された増幅 器 3 0 によ り増幅される。  The self-control type positive temperature coefficient heating element of the cold junction temperature measuring element 23 is a temperature measuring element for measuring the temperature of the cold junction area 20 and converts a change in self resistance value into a voltage value. This voltage value is amplified by an amplifier 30 connected to the self-control positive temperature coefficient heating element of the cold junction temperature measuring element 22.
情報処理装置 1 8 には A / D変換器が内蔵され、 かかる情報処理装置 1 8は相 検出器 2 9からの相反転 「有」 の出力信号に同期 して増幅器 3 0からの出力信号 を検出 し、 演算処理を行って測定ターゲッ トの温度値を得、 これを表示装置 1 9 に表示する。  The information processing device 18 has a built-in A / D converter, and the information processing device 18 outputs the output signal from the amplifier 30 in synchronization with the output signal of the phase inversion “yes” from the phase detector 29. The temperature value of the measurement target is obtained by performing detection and arithmetic processing, and this is displayed on the display device 19.
以上に示した温度測定回路により、 どのように測定夕一ゲッ トの温度が測定さ れるかを、 このようなサ一モパイルセンサ 1 を搭載した耳式体温計を例に、 第 6 図のフローチャー ト を参照してより詳細に説明する。  The temperature measurement circuit described above is used to explain how the temperature of the measurement target is measured using the ear thermometer equipped with such a thermopile sensor 1 as an example in the flow chart of Fig. 6. This will be described in more detail with reference to FIG.
本実施の形態にかかるサ一モパイルセンサを用いて温度測定を行う場合、 その 手順は測定準備段階と測定段階とに大き く分けられるが、 まず測定準備段階につ いて説明する。 電源 O Nによ り情報処理装置 1 8が作動し (1 )、 増幅器 3 0 を介 して冷接合部測温素子 2 3の出力が入力され、 内蔵の A / D変換器によ り温度換 算されて冷接合部領域 2 0の温度を得る (2 )。  When the temperature is measured using the thermopile sensor according to the present embodiment, the procedure is roughly divided into a measurement preparation stage and a measurement stage. First, the measurement preparation stage will be described. When the power is turned on, the information processing device 18 operates (1), the output of the cold junction temperature measuring element 23 is input via the amplifier 30, and the temperature is converted by the built-in A / D converter. Then, the temperature of the cold junction region 20 is obtained (2).
次いで情報処理装置 1 8 によ り ドライ ブ I C 3 1 が駆動されて発熱素子 2 2が 加熱され、 冷接合部領域 2 0及び冷接合部測温素子領域 2 8を一定温度のバイァ ス温度とする。 このバイアス温度は、 例えばサ一モパイルセンサを耳式体温計に 適用して用いる場合には鼓膜温度近傍である 3 4 °Cに設定する等、 適宜決定され る。 またこのとき、 発熱素子 2 2 は第 7 図において示されるようないわゆる 「振 り子式温度制御」 によ り フ ィ ー ドバッ ク制御される。 上述のように従来のサ一モ パイルセンサにおいては、 測定ターゲッ 卜の温度測定に際してサーモパイ ル出力 電圧を零とするためにこのようなフ ィ ー ドバック制御を行ってお り 、 サ一モパイ ル出力を零とするまでに長時間を要する点、 及び温度の外乱によ り測定精度が低 下する点が問題となっていた。 しかしこ こで行う フ ィ ー ドバック制御はあ く まで バイアス温度を印加 して測定時間短縮を図る こ とを目的と したものである。 従つ て、 冷接合部領域 2 0及び冷接合部測温素子領域 2 8 の温度が、 設定されたバイ ァス温度を中心と して規定閾値領域内にあればその効果は十分に得られる もので あって、 従来のサ一モパイルセンサにおいて行われていたフ ィ ー ドバック制御ほ ど厳密な制御は必要ではない。 すなわちバイ アス温度に達するまでの時間は短時 間であ り、 また温度の外乱要因があった場合にもその影響がよほど大でない限り は特に問題とはならない。 Next, the drive IC 31 is driven by the information processing device 18 to heat the heating element 22, and the cold junction area 20 and the cold junction temperature measuring element area 28 are kept at a constant bias temperature. I do. This bias temperature is appropriately determined, for example, when the thermopile sensor is applied to an ear thermometer and is set at 34 ° C which is near the eardrum temperature. You. At this time, the heating element 22 is feedback-controlled by the so-called “pendulum type temperature control” as shown in FIG. As described above, in the conventional thermopile sensor, such feedback control is performed in order to reduce the thermopile output voltage to zero when measuring the temperature of the measurement target. It has been a problem that it takes a long time to reduce to zero, and that the measurement accuracy decreases due to temperature disturbance. However, the feedback control performed here is intended only to reduce the measurement time by applying a bias temperature. Therefore, if the temperature of the cold junction region 20 and the temperature of the cold junction temperature measuring element region 28 are within the specified threshold region around the set bias temperature, the effect can be sufficiently obtained. However, it is not required to be as strict as the feedback control performed in the conventional thermopile sensor. That is, the time required to reach the bias temperature is a short time, and there is no particular problem even if there is a disturbance factor in the temperature unless the influence is very large.
情報処理装置 1 8は、 このように して冷接合部素子 2 3 の出力によ り冷接合部 領域 2 0 の温度が規定閾値領域内にあるか否か、 またその 「振り子式温度制御」 の温度勾配が規定内の変化率である (すなわち温度の外乱が許容範囲内である) か否かを判断し (3 )、 温度及びその変化率  In this way, the information processing device 18 determines whether the temperature of the cold junction region 20 is within the specified threshold region by the output of the cold junction element 23, It is determined whether the temperature gradient is within the specified rate (that is, the temperature disturbance is within the allowable range) (3), and the temperature and its rate of change are determined.
がともに領域内の値であれば、 さ らにそのような規定内の変化率が規定時間以上 継続した (一定時間以上外乱の少ない安定状態が継続しているか) か否かを判断 する (4 )。  If both values are within the range, it is further determined whether or not such a rate of change within the specification has continued for the specified time or longer (whether or not a stable state with little disturbance has continued for a certain time or more) (4). ).
ここで規定内の変化率が規定時間以上継続したと判断された場合には直ちに測 定ターゲッ トの温度測定を行う こ とが可能である。 しかし、 このように冷接合部 領域 2 0がバイアス温度で安定している と判断されたと しても、 その判断に際し て規定閾値を設けている以上、 その範囲内においては外乱による若干の影響を受 けている可能性がある。 その結果と して、 測定ターゲッ トの温度測定値において 微小ながらそのような外乱による測定誤差を生じるこ とが避けられない。そこで、 温度の外乱による測定値の測定精度の変動をある程度予測して補正を行う こ とが 望ま しい。 以下にその手順を説明する。  If it is determined that the rate of change within the regulation has continued for the prescribed time or more, it is possible to immediately measure the temperature of the measurement target. However, even if it is determined that the cold junction region 20 is stable at the bias temperature in this way, a certain threshold value is set in the determination, and within this range, the influence of the disturbance is slightly affected. It may have been received. As a result, it is inevitable that a small measurement error in the measured temperature of the measurement target due to such a disturbance occurs. Therefore, it is desirable to make a correction by predicting to some extent fluctuations in the measurement accuracy of the measured values due to temperature disturbances. The procedure will be described below.
情報処理装置 1 8の内部記憶装置には、 予め 「振り子式温度制御」 の温度勾配 に関して、 規定閾値内における変化率が変化率表と して格納されている。 そこで、 情報処理装置 1 8はこの変化率表を読み込み (5 )、 実測された冷接合部領域 2 0 の温度変化率と比較を行い、 一致する数値があれば (6 )、 その数値によ り温度の 外乱による影響度合いを判断し (7 )、 その後測定される温度値における補正の度 合を判断し (8 )、 表示手段 1 9 に表示する (9)。 このときの表示方法と しては、 例えば前記補正の多寡に関してその度合を予めランク設定しておき、 そのラ ンク を表示する こ と等が考え られる。 またこの段階で測定準備が完了するので、 表示 手段 1 9 において同時にその旨を示すこ とが望ま しい。 The internal storage device of the information processing device 18 has a temperature gradient of “Pendular temperature control” in advance. For, the change rate within the specified threshold is stored as a change rate table. Then, the information processing device 18 reads this rate-of-change table (5), compares it with the measured rate of temperature change in the cold junction region 20 and, if there is a coincident numerical value (6), uses the numerical value. The degree of influence of temperature disturbance is determined (7), and the degree of correction in the measured temperature value is then determined (8) and displayed on the display means 19 (9). As a display method at this time, for example, it is conceivable to rank the degree of the correction in advance and display the rank. At this stage, the preparation for measurement is completed, and it is desirable that the display means 19 simultaneously indicate that fact.
次に測定夕一ゲッ トの温度測定段階に進む。 例えば耳式体温計においては体温 計を外耳道に挿入して (10 ) 鼓膜から放射される赤外線によ り温度測定を行う。 このとき、 鼓膜から放射される赤外線の温接合部 8への入射量が一定量以上とな るよう に最適な角度で挿入するこ とが重要である。 そこで、 測定者が耳指揮体温 計を外耳道に挿入してその角度を調整する際 (1 1 ) に、 最適な角度がわかりやす いよう に示されるようにする こ とが望ま しい。 例えば鼓膜から放射される赤外線 のピーク値を探索し、 ピーク値近傍において告知音 (ブザー等) を発するよう に する ( 12 )。  Next, proceed to the temperature measurement stage of the first measurement. For example, in an ear thermometer, a thermometer is inserted into the ear canal (10), and the temperature is measured by infrared rays emitted from the eardrum. At this time, it is important to insert the infrared ray radiated from the eardrum at an optimum angle so that the amount of incidence on the hot junction 8 becomes a certain amount or more. Therefore, when the measurer inserts the ear conductor thermometer into the ear canal and adjusts its angle (11), it is desirable that the optimum angle be displayed so that it is easy to understand. For example, a search is made for the peak value of infrared radiation emitted from the eardrum, and a notification sound (buzzer, etc.) is emitted near the peak value (12).
この段階で測定者が測定開始操作と して、 例えば測定開始スィ ツチを押すと At this stage, the measurer performs a measurement start operation, for example, when the measurement start switch is pressed.
( 13 ) 温度測定が開始される。 (13) Temperature measurement starts.
情報処理装置 1 8 には増幅器 3 0 を介して冷接合部測温素子 2 3 の出力が入力 され、 内蔵の A / D変換器によ り温度換算されて冷接合部領域 2 0 の温度を得る The output of the cold junction temperature measuring element 23 is input to the information processing device 18 via the amplifier 30, and the temperature is converted by the built-in A / D converter to calculate the temperature of the cold junction region 20. obtain
( 14 )。 ( 14 ).
次いで情報処理装置 1 8 によ り ドライ ブ I C 3 1 が駆動されて発熱素子 2 2が 急速に加熱され、 これによ り 冷接合部領域 2 0及び冷接合部測温素子領域 2 8 を 強制的に加熱する ( 15 )。 例えば耳式温度計においては、 バイアス温度の 3 4 °C から 4 2 °Cに加熱する。 このとき、 第 8図に示すよう に発熱素子加熱時間に対し てサ一モパイル出力電圧値が一定勾配で一次間数的に減少するよう にしてサーモ パイル出力電圧の零点を強制通過させ、 サ一モパイル出力に対して正負の電圧値 領域反転を一方的かつ強制的に発生させる。 そしてこの電圧値正負領域間の相反 転を相検出器 2 9 によ り検出 し、 相反転 「有」 と 「無 j との 2 ビッ トデジタル信 号と して情報処理装置 1 8 に送る。 Next, the drive IC 31 is driven by the information processing device 18 to rapidly heat the heating element 22, thereby forcing the cold junction area 20 and the cold junction temperature measuring element area 28. (15). For example, in an ear thermometer, the temperature is increased from a bias temperature of 34 ° C to 42 ° C. At this time, as shown in Fig. 8, the thermopile output voltage value is reduced linearly with a constant gradient with respect to the heating element heating time so that the zero point of the thermopile output voltage is forcibly passed. Positive and negative voltage range reversal is unilaterally and forcibly generated with respect to the mopile output. The phase inversion between the positive and negative voltage values is detected by the phase detector 29, and the two-bit digital signal of the phase inversion “Yes” and “No” is detected. The information is sent to the information processing device 18 as a signal.
情報処理装置 1 8 は前記 2 ビッ トデジ夕ル信号によ り、 相反転が 「有」 か 「無」 かを判断し (16 )、 「有」 と判断された場合には ドライ ブ I C 3 1 による発熱素子 2 2の加熱を停止する信号を送る。 このとき装置の動作不良等何らかの理由によ り、 加熱停止信号が送られなかった場合には、 発熱素子 2 2 に対して電圧が印加 され続ける。 しかし本実施形態においては発熱素子 2 2 と して 自己制御型正温度 係数特性を含む抵抗体を用いており、 自己飽和安定温度の一定温度に維持され、 それ以上に過熱されるこ とはない。 そこで例えば耳式体温計において、 5 0 °Cの 自己飽和安定温度を有する自己制御型正温度係数特性を含む抵抗体をもちいる こ とによ り、 特別な安全装置を用いな くても過熱事故が防がれる。  The information processing device 18 determines whether the phase inversion is “present” or “absent” based on the 2-bit digital signal (16). A signal is sent to stop the heating of the heating element 22 by. At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the heating element 22. However, in this embodiment, a resistor having a self-controlling positive temperature coefficient characteristic is used as the heating element 22, and is maintained at a constant temperature of the self-saturation stable temperature, and is not overheated. . Therefore, for example, in an ear thermometer, the use of a resistor with a self-regulating positive temperature coefficient characteristic with a self-saturation stable temperature of 50 ° C can be used to prevent overheating without using a special safety device. Is prevented.
また、 情報処理装置 1 8 には、 相反転 「有」 の信号に同期して冷接合部測温素 子 2 3の出力が増幅器 3 0 を介して入力され、 内蔵の A Z D変換器によ り温度換 算が行われる。 さ らに前記の温度外乱に対する補正が行われて冷接合部領域 2 0 の温度を得 (17 )、 この温度値が表示装置 1 9 に表示されて (1 8 ) 温度測定が終 了する。 このようにして得られる冷接合部領域 2 0の温度とは温接合部領域 2 1 の温度、 すなわち測定ターゲッ トの温度に他ならず、 サ一モパイル出力電圧値の 正負電圧値領域相反転に同期して測定するこ とによ り、 誤差が少な く精度の高い 測定を行う こ とができる。 また測定時間を大幅に短縮する こ とができる。  In addition, the output of the cold junction temperature measuring element 23 is input to the information processing device 18 via the amplifier 30 in synchronization with the signal of “presence” of phase inversion, and is output by the built-in AZD converter. Temperature conversion is performed. Further, the temperature disturbance is corrected to obtain the temperature of the cold junction region 20 (17), and this temperature value is displayed on the display device 19 (18), and the temperature measurement is completed. The temperature of the cold junction region 20 obtained in this way is nothing less than the temperature of the hot junction region 21, that is, the temperature of the measurement target, and also the phase inversion of the positive / negative voltage value region of the thermopile output voltage value. Synchronous measurement enables highly accurate measurement with less error. In addition, measurement time can be significantly reduced.
なお本実施形態においては、 ダイァフラム 2 3 の中心部から見て冷接合部領域 2 0の外側に、 冷接合部測温素子領域 2 8、 発熱素子領域 2 7 の順に配置したが、 これらの順序を発熱素子領域 2 7、 冷接合部測温素子領域 2 8 と してもよ く、 こ の場合には冷接合部領域 2 0 に対してバイアス温度を与える場合においてよ り短 時間に一定温度に到達せしめるこ とが可能となる。  In the present embodiment, the cold junction temperature measuring element region 28 and the heating element region 27 are arranged outside the cold junction region 20 when viewed from the center of the diaphragm 23. May be the heating element area 27 and the cold junction temperature measuring element area 28.In this case, when the bias temperature is applied to the cold junction area 20, the constant temperature is shortened in a shorter time. Can be reached.
次に本願発明の第二の実施形態を図を参照して説明する。 但し、 上述した実施 の形態と重複する部分については説明を省略し、 相違する部分についてのみ説明 する。  Next, a second embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
本実施形態にかかるサ一モパイルセンサを第 9 図に示す。 本実施形態は第 9図 に示すよう に、 発熱素子 2 2 をさ らに定常温度系統発熱素子 3 2 と可変温度系統 発熱素子 3 3 とに系統分離する点に特徴を有する。 そ して定常温度系統発熱素子 3 2 によ り温度測定開始前に予め冷接合部領域 2 0 を一定温度のバイアス温度に 維持し、 可変温度系統発熱素子 3 3 は温度測定開始後に冷接合部領域 2 0 の温度 を一方的かつ強制的に変化させる。 すなわち第一の実施形態において単一の発熱 素子 2 2 によ り行っていた、 測定準備段階のバイ アス温度への加熱と、 測定段階 における冷接合部領域 2 0の強制的な加熱とを定常温度系統発熱素子 3 2 と可変 温度系統発熱素子 3 3 とに役割分担させている。 FIG. 9 shows a thermopile sensor according to this embodiment. As shown in FIG. 9, the present embodiment is characterized in that the heating element 22 is further divided into a steady-temperature heating element 32 and a variable-temperature heating element 33. And the steady temperature system heating element According to 32, the cold junction region 20 is maintained at a constant bias temperature before the temperature measurement starts, and the variable temperature system heating element 33 unilaterally controls the temperature of the cold junction region 20 after the temperature measurement starts. And forcibly change it. That is, the heating to the bias temperature in the measurement preparation stage and the forcible heating of the cold junction region 20 in the measurement stage, which were performed by the single heating element 22 in the first embodiment, are performed in a steady state. Roles are assigned to the temperature system heating element 32 and the variable temperature system heating element 33.
これら発熱素子はともに自己制御型正温度係数特性を含む抵抗体からな り、 定 常温度系統発熱素子 3 2 の自己制御型正温度係数特性を含む抵抗体と して、 自己 飽和安定温度が可変温度系統発熱素子 3 3の自己制御型正温度係数特性を含む抵 抗体よ り も低温であるものを用いる。 例えば耳式体温計においては、 定常温度系 統発熱素子 3 2 と して自己飽和安定温度がバイァス温度の 3 4 °Cである自己制御 型正温度係数特性を含む抵抗体を用い、 可変温度系統発熱体素子 3 3 と して自己 飽和安定温度が 5 0 °Cである 自己制御型正温度係数発熱体を用いる。  Each of these heating elements is composed of a resistor that includes a self-control type positive temperature coefficient characteristic, and the self-saturation stable temperature is variable as a resistance element that includes the self-control type positive temperature coefficient characteristic of the constant temperature system heating element 32. The temperature system heating element 33 uses a temperature lower than the resistance of the resistance element including the self-control type positive temperature coefficient characteristic. For example, an ear thermometer uses a variable temperature system heating element that uses a self-regulating positive temperature coefficient characteristic with a self-saturation stable temperature of 34 ° C, which is the bias temperature, as the steady temperature system heating element 32. A self-regulating positive temperature coefficient heating element having a self-saturation stable temperature of 50 ° C is used as the body element 33.
このような構成とするこ とによ り、 定常温度系統発熱素子 3 2は測定準備段階 において規定電圧値を印加されて 3 4 °Cまで加熱された後、 それ以上に過熱され るこ とな く 自 ら一定温度に維持される。 さ らに周囲温度の急激な変化等温度の外 乱要因があった場合においても、 自 ら温度調整されてこの温度に維持される。 従 つて第一の実施形態において行っていたようなフ ィー ドバック制御が不要であ り、 装置構成を簡略化してコス ト を削減する とともに強度を向上するこ とができる。 一方、 可変系統発熱素子 3 3は測定準備段階においては電圧を印加されるこ と な く、 定常温度系統発熱素子 3 2 による加熱に追随してバイアス温度の 3 4 °Cに 維持される。そ して測定段階において初めて電圧印加がなされ、 3 4 °Cから 4 2 °C に強制加熱される。 情報処理装置 1 8は前記 2 ビッ トデジタル信号によ り、 相反 転が 「有」 か 「無」 かを判断し、 「有」 と判断された場合には可変系統発熱素子 3 With this configuration, the heating element 32 of the steady-state temperature system is heated to 34 ° C by applying a specified voltage value in the measurement preparation stage, and then further heated. It is maintained at a constant temperature. In addition, even when there is a disturbance factor in the temperature such as a sudden change in the ambient temperature, the temperature is adjusted and maintained at this temperature. Therefore, the feedback control as performed in the first embodiment is not required, and the apparatus configuration can be simplified, the cost can be reduced, and the strength can be improved. On the other hand, no voltage is applied to the variable system heating element 33 in the measurement preparation stage, and the bias temperature is maintained at 34 ° C. following the heating by the steady temperature system heating element 32. Then, voltage is applied for the first time in the measurement stage, and it is forcibly heated from 34 to 42 ° C. The information processing device 18 determines whether the reversal is “present” or “absent” based on the 2-bit digital signal.
3の加熱を停止する信号を送る。このとき装置の動作不良等何らかの理由によ り、 加熱停止信号が送られなかった場合には、 可変系統発熱素子 3 3 に対して電圧が 印加され続ける。 しかしこのときも、 可変系統発熱素子 3 3の自己制御型正温度 係数特性を含む抵抗体は、 自己飽和安定温度である 5 0 °Cの一定温度に維持され てそれ以上に温度上昇するこ とはな く、 特別な安全装置を用いな くても過熱事故 が防がれる。 3. Send a signal to stop heating. At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the variable system heating element 33. However, also in this case, the resistance of the variable system heating element 33 including the self-control type positive temperature coefficient characteristic is maintained at a constant temperature of 50 ° C which is a self-saturation stable temperature, and the temperature rises more. No overheating accident without special safety equipment Is prevented.
なお、 ダイ アフラム 2 4の中心部から見て冷接合部領域 2 0 の外側に、 冷接合 部測温素子領域 2 8、 発熱素子領域 2 7 の順に配置したが、 これらの順序を発熱 素子領域 2 7、 冷接合部測温素子領域 2 8 と してもよ く、 この場合には冷接合部 領域 2 0 に対してバイアス温度を与える場合においてよ り短時間に一定温度に到 達せしめるこ とが可能となる点は第一の実施形態と同様である。  The cold junction temperature measuring element area 28 and the heating element area 27 are arranged outside the cold junction area 20 as viewed from the center of the diaphragm 24 in the order of the heating element area. 27, the cold junction temperature measuring element area 28 may be used.In this case, when a bias temperature is applied to the cold junction area 20, it is possible to reach a constant temperature in a shorter time. Is the same as in the first embodiment.
次に本願発明の第三の実施形態を図を参照して説明する。 但し、 上述した実施 の形態と重複する部分については説明を省略し、 相違する部分についてのみ説明 する。  Next, a third embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
本実施形態にかかるサ一モパイルセンサを第 1 0図に示す。 本実施形態は第 1 0図に示すよう に、 冷接合部測温素子 2 3、 定常温度系統発熱素子 3 2、 及び可 変温度系統発熱素子 3 3 が積層して配置される。  A thermopile sensor according to this embodiment is shown in FIG. In this embodiment, as shown in FIG. 10, a cold junction temperature measuring element 23, a steady temperature system heating element 32, and a variable temperature system heating element 33 are arranged in a stacked manner.
上記サ一モパイルセンサ 1 の製造プロセスについて説明する。 まず C V D装置 等によ り、 ヒー ト シンク 2 となるシ リ コ ンペレ ッ ト、 又はシリ コ ンチップ、 又は シリコ ンウェハの両面に酸化シ リ コ ンあるいは窒化シ リコ ンからなる温接合部支 持膜 4 を数ミ クロンの厚さに形成する。 次にヒー ト シンク 2上面側の温接合部支 持膜 4上に、 蒸着法、 あるいはペース ト焼付け法、 あるいは面状印刷法等によ り 冷接合部測温素子 2 3の自己制御型正温度係数特性を含む抵抗体を形成し、 その 上に再び C V D装置等によ り、 酸化シ リ コ ンあるいは窒化シリ コンからなる温接 合部支持膜 4 を数ミ クロ ンの厚さに形成する。  The manufacturing process of the thermopile sensor 1 will be described. First, using a CVD device or the like, a silicon carbide or silicon chip to become the heat sink 2 or a silicon chip, or a thermal junction supporting film made of silicon oxide or silicon nitride on both sides of a silicon wafer 4 is formed to a thickness of several microns. Next, the self-control type of the cold junction temperature measuring element 23 is deposited on the thermal junction supporting film 4 on the upper surface side of the heat sink 2 by vapor deposition, paste baking, or sheet printing. A resistor with temperature coefficient characteristics is formed, and a thermal junction support film 4 made of silicon oxide or silicon nitride is formed to a thickness of several microns again by CVD equipment or the like. I do.
次にヒー ト シンク 2の表面に異種金属 (第一熱電対材料 5及び第二熱電対材料 6 ) からな り これらを直列に接続するこ とによつて冷接合部 7及び温接合部 8が 形成されたサーモパイル 9 を形成する。 次にヒー ト シンク 2の表面に可変温度系 統発熱素子 3 3 の自己制御型正温度係数特性を含む抵抗体を蒸着法、 あるいはぺ ース ト焼付け法、 あるいは面状印刷法等によ り形成する。  Next, the surface of the heat sink 2 is made of a dissimilar metal (the first thermocouple material 5 and the second thermocouple material 6), and the cold junction 7 and the hot junction 8 are connected by connecting them in series. Form the formed thermopile 9. Next, a resistor including the self-controlling positive temperature coefficient characteristic of the variable temperature system heating element 33 is formed on the surface of the heat sink 2 by vapor deposition, paste baking, or sheet printing. Form.
次に再び C V D装置等によ り、 酸化シ リ コ ンあるいは窒化シ リ コ ンからなる温 接合部支持膜 4 を数ミ クロンの厚さに形成する。 そ してヒー ト シンク 2の表面に 定常温度系統発熱素子 3 2 自己制御型正温度係数特性を含む抵抗体を蒸着法、 あ るいはペース ト焼付け法、 あるいは面状印刷法等によ り形成する。 さ らにヒー ト シンク 2の上面に C V D装置等によ り温接合部支持膜 4を、 下面に絶縁薄膜 1 2 を堆積させて覆った後、 サーモパイ ル 9 の下の領域をゥエツ トエッチングによ り 除去する。 その後、 酸化膜をウエッ トエッチングによ り除去する とサ一モパイル センサ 1 が形成される。 Next, the thermal bonding support film 4 made of silicon oxide or silicon nitride is formed again to a thickness of several microns by the CVD device or the like. Then, on the surface of the heat sink 2, a steady temperature system heating element 32 is formed by a deposition method, a paste baking method, a sheet printing method, or the like, including a resistor having a self-control type positive temperature coefficient characteristic. I do. More heat After covering the upper surface of the sink 2 with the thermal bonding support film 4 by using a CVD device or the like and depositing and covering the insulating thin film 12 on the lower surface, the region below the thermopile 9 is removed by wet etching. Thereafter, when the oxide film is removed by wet etching, a thermopile sensor 1 is formed.
以上のように して冷接合部測温素子 2 3、 定常温度系統発熱素子 3 2、 及び可 変温度系統発熱素子 3 3 は積層配置されるが、 これらの間にそれそれ絶縁性の温 接合部支持膜 4 を介在させる こ とによ り、 お互いに電気的に絶縁され、 温度測定 に際しては第二の実施形態と全く 同様の動作を示す。 しかも装置構成がコ ンパク 卜になる という特長を有する。  As described above, the cold junction temperature measuring element 23, the constant temperature system heating element 32, and the variable temperature system heating element 33 are arranged in a stacked manner, and an insulating thermal junction is provided between them. By interposing the partial support film 4, they are electrically insulated from each other, and exhibit exactly the same operation as the second embodiment when measuring the temperature. Moreover, it has the advantage that the device configuration is compact.
次に本願発明の第四の実施形態について説明する。 但し、 上述した実施の形態 と重複する部分については説明を省略し、 相違する部分についてのみ説明する。 上述のとおり第一乃至第三の実施形態においては、 発熱素子加熱時間に対して サーパイル出力電圧値が一定勾配で一次間数的に減少する よう に してサ一モパイ ル出力電圧の零点を強制通過させたときの電圧値正負領域間の相反転を相検出器 Next, a fourth embodiment of the present invention will be described. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described. As described above, in the first to third embodiments, the zero point of the thermopile output voltage is forcibly set so that the serpile output voltage value decreases linearly with a constant gradient with respect to the heating element heating time. Phase detector detects phase inversion between positive and negative voltage values when passing
2 9 によ り検出し、 相反転 「有」 と 「無」 との 2 ビッ トデジタル信号と して情報 処理装置 1 8 に送る。 29, and sends it to the information processing device 18 as a 2-bit digital signal of phase inversion “present” and “absent”.
これに対して本実施形態は、 第一乃至第三の実施形態に示したサ一モパイルセ ンサにおいて、 基準電圧値となる電圧閾値を設定しておき、 この電圧閾値に対し てサ一モパイル出力電圧値が一定勾配で一時関数的に減少する よう にして強制通 過させ、 電圧閾値に対するサ一モパイル出力電圧値の相反転を相検出器 2 9 によ り検出 し、 相反転 「有」 と 「無」 との 2 ビッ トデジタル信号と して情報処理装置 On the other hand, in the present embodiment, in the thermopile sensors shown in the first to third embodiments, a voltage threshold value serving as a reference voltage value is set, and the thermopile output voltage is set with respect to this voltage threshold value. The value is forcibly passed so that the value temporarily decreases with a constant gradient, and the phase inversion of the thermopile output voltage value with respect to the voltage threshold is detected by the phase detector 29. Information processing device as a 2-bit digital signal
1 8に送る。 この電圧閾値は、 サ一モパイル出力電圧の電圧値正領域あるいは負 領域において、 零点近傍に設置されるが、 特に正領域と負領域の双方に設けて一 対の電圧閾値対とするこ とが好ま しい。 その理由を以下に述べる。 Send to 1 8 This voltage threshold is set near the zero point in the positive region or the negative region of the voltage value of the thermopile output voltage. In particular, it may be provided in both the positive region and the negative region to form a pair of voltage thresholds. I like it. The reason is described below.
相検出器 2 9は、 前記電圧閾値に対する相反転 「有」 と 「無」 との 2 ビッ トデ ジタル信号と して情報処理装置 1 8 に送る。 また、 情報処理装置 1 8 には、 相反 転 「有」 の信号に同期して冷接合部測温素子 2 3の出力が増幅器 3 0 を介して入 力され、 内蔵の A / D変換器によ り温度換算が行われて冷接合部領域 2 0 の温度 を得る。 情報処理装置 1 8 に内蔵された記憶装置には、 サ一モパイル出力電圧値 の零点に対応する温度と前記電圧閾値に対応する温度との関係式が予め入力され てお り、 この関係式に対して前記冷接合部領域 2 0の温度データを入力するこ と によ り、 温接合部領域 2 1 の温度すなわち測定ターゲッ 卜の温度を演算によ り求 めるこ とができる。 電圧閾値をサーモパイル電圧出力値の正領域と負領域の双方 に設けた場合には、 上記の操作を 2度にわたって行う こ とができ、 従って誤差が 少な く精度の高い測定を行う こ とができる。 The phase detector 29 sends to the information processing device 18 as a 2-bit digital signal of “presence” and “absence” of the phase inversion with respect to the voltage threshold. In addition, the output of the cold junction temperature measuring element 23 is input to the information processing device 18 via the amplifier 30 in synchronization with the signal of the reversal “presence”, and is sent to the built-in A / D converter. The temperature is further converted to obtain the temperature of the cold junction region 20. The storage device built in the information processing device 18 has a thermopile output voltage value. A relational expression between the temperature corresponding to the zero point of the above and the temperature corresponding to the voltage threshold is input in advance, and the temperature data of the cold junction region 20 is input to this relational expression. In addition, the temperature of the thermal junction region 21, that is, the temperature of the measurement target can be obtained by calculation. If the voltage threshold is set in both the positive and negative regions of the thermopile voltage output value, the above operation can be performed twice, and therefore, measurement with less error and high accuracy can be performed. .
さ らにこのような電圧閾値対を一対のみ設けるのではな く複数対設ければ、 測 定デ一夕が増加するのでさ ら に測定精度が向上し、 よ り好ま しい。  Furthermore, if a plurality of such voltage threshold pairs are provided instead of only a single pair, the measurement accuracy increases, and the measurement accuracy is further improved, which is more preferable.
またこれら電圧閾値対において、 一対の電圧閾値における電圧閾値間の絶対値 を等し く した場合には、 正領域及び負領域それぞれの電圧閾値に対応して得られ た温度の平均値を求めるこ とによ り、 温接合部領域 2 1 の温度すなわち測定夕一 ゲッ トの温度を得る。 従って、 演算処理を簡便なものと して測定の効率を上げる こ とができる点から好ま しい。  When the absolute value between the voltage thresholds in the pair of voltage thresholds is made equal in these voltage threshold pairs, the average value of the temperature obtained for each of the voltage thresholds in the positive region and the negative region is obtained. Thus, the temperature of the thermal junction region 21, that is, the temperature of the measurement target, is obtained. Therefore, it is preferable because the arithmetic processing can be simplified and the measurement efficiency can be increased.
次に本願発明の第五の実施形態を説明する。 但し、 上述した実施の形態と重複 する部分については説明を省略し、 相違する部分についてのみ説明する。  Next, a fifth embodiment of the present invention will be described. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
本実施形態にかかるサーモパイルセンサは、 第一乃至第四の実施形態において 示したサ一モパイルセンサに対して装置固有の温度特性に起因する測定誤差を構 成する 自己校正機能を付加したものである。  The thermopile sensor according to the present embodiment is obtained by adding a self-calibration function that configures a measurement error caused by a temperature characteristic inherent to the device to the thermopile sensor described in the first to fourth embodiments.
この自己校正機能について以下に説明する。 サ一モパイルセンサが製品と して 完成した段階において、 装置個々に対して複数の基準温度の黒体炉についての温 度測定を行う。例えば耳式体温計においては、先述したバイアス温度である 3 4 °C から 4 2 °C程度の範囲において数点の基準温度を決め、 これら各温度の黒体炉に ついて順に温度測定を行う。  This self-calibration function will be described below. When the thermopile sensor is completed as a product, the temperature of a blackbody furnace with multiple reference temperatures is measured for each device. For example, in an ear thermometer, several reference temperatures are determined in the range of 34 ° C to 42 ° C, which is the above-mentioned bias temperature, and the temperature is measured sequentially for the blackbody furnace at each of these temperatures.
温度測定の結果は情報処理装置 1 8 に内蔵の記憶装置内に格納し、 基準温度に 対して目盛付けを行う。 さ らに情報処理装置 1 8 には予めこのように して目盛付 けされた各データについてデータ間を曲線によ り補間処理するプログラムを内蔵 しておき、 このプログラムによ り上記各デ一夕を連続曲線化して上述の記憶装置 内に格納し、 ここまでの処理が終了 した段階で製品が出荷される。 ずなわちこの 段階で、 サ一モパイルセンサ又はサ一モパイルセンサを組み込んだ耳式体温計等 の装置は、 個々の温度特性に対応した基準連続曲線が内蔵される。 The result of the temperature measurement is stored in a storage device built in the information processing device 18 and graduated with respect to the reference temperature. Further, the information processing device 18 has a built-in program for interpolating each data graduated in this way using a curve between the data, and this program is used to execute each of the above-mentioned data. The evening is converted into a continuous curve and stored in the storage device described above, and the product is shipped when the processing up to this point is completed. In other words, at this stage, a thermopile sensor or an ear thermometer incorporating the thermopile sensor, etc. The device has a built-in reference continuous curve corresponding to each temperature characteristic.
これらサ一モパイ ルセンサ又はサ一モパイ ルセンサを組み込んだ耳式体温計等 の装置を用いて温度測定を行う と、 情報処理装置 1 8 が上記基準連続曲線に基づ いて測定夕一ゲッ トの温度値を直接的に導き出すこ とこ とによ り、 装置間の固有 誤差が自己校正され、 高精度な測定を行う こ とが可能となる。  When temperature measurement is performed using such a thermopile sensor or an ear thermometer or the like incorporating the thermopile sensor, the information processing device 18 detects the temperature value of the measurement target based on the above reference continuous curve. By directly deriving, the inherent error between devices is self-calibrated, and high-precision measurement can be performed.

Claims

請求の範囲 サーモパイルの冷接合部領域に対して、 熱的に直結するよう に して発熱 素子を、 熱的に直結する よう にかつ構造的に冷接合部領域の温度変化と同 期させるよう に して冷接合部測温素子をそれぞれ組込み、 前記発熱素子を 加熱して冷接合部領域に対して一定熱量を一方的かつ強制的に加える こ と によ り 、 前記発熱素子加熱時間に対してサーモパイル出力電圧値を一定勾 配で一次間数的に減少せ しめてサ一モパイル出力電圧の零点を強制通過さ せ、 サ一モパイル出力に対して正負の電圧値領域反転を一方的かつ強制的 に発生させながら、 この電圧値正負領域間の相反転を検出 し、 この相反転 検出に同期して前記冷接合部測温素子によ り冷接合部領域の温度を検知す るこ とによ り 、 測定夕一ゲッ 卜の温度を測定するこ とを特徴とする赤外線 による温度測定方法。 Claims In order to thermally directly connect the heat generating element to the cold junction region of the thermopile so as to thermally directly connect and structurally synchronize with the temperature change of the cold junction region. Then, a cold junction temperature measuring element is incorporated, and the heating element is heated to apply a certain amount of heat unilaterally and forcibly to the cold junction area, thereby reducing the heating element heating time. The thermopile output voltage value is reduced in a linear manner by a constant gradient to make it pass through the zero point of the thermopile output voltage, and the positive / negative voltage value inversion of the thermopile output is unilaterally and forcibly performed. While generating the voltage, the phase inversion between the positive and negative voltage values is detected, and the temperature of the cold junction area is detected by the cold junction temperature measuring element in synchronization with the phase inversion detection. , Measure the temperature of the sample one night Temperature measurement method using infrared, wherein the Turkey.
サーモパイルの冷接合部領域に対して、 熱的に直結するよう にして発熱 素子を、 熱的に直結するようにかつ構造的に冷接合部領域の温度変化と同 期させるよう に して冷接合部測温素子をそれぞれ組込み、 前記発熱素子を 加熱して冷接合部領域に対して一定熱量を一方的かつ強制的に加えるこ と によ り 、 前記発熱素子加熱時間に対してサーモパイル出力電圧値を一定勾 配で一次間数的に減少せしめて、 予め設定されかつ基準電圧値となる電圧 閾値に対してサーモパイル出力電圧値を強制通過させ、 前記電圧閾値に対 するサ一モパイル出力電圧値の相反転を検出し、 この相反転検出に同期し て前記冷接合部測温素子によ り冷接合部領域の温度を検知する こ とによ り 測定夕ーゲッ トの温度を測定する こ とを特徴とする赤外線による温度測定 方法。 冷接合部領域の温度を変化させたときのサ一モパイ ル出力電圧値が電圧 値正負領域間で相反転したか否かを相検出器によ り判定して相反転 「有」 か 「無」 かの 2 ビッ トデジタル信号と し、 この 2 ビッ トデジタル信号に同 期して冷接合部測温素子温度を検出する こ とによ り、 冷接合部領域の温度 を直接検出する こ とを特徴とする請求項 1 に記載の赤外線による温度測定 方法。 The cold junction area of the thermopile is thermally connected directly to the cold junction area so that the heating element is thermally connected directly and structurally synchronized with the temperature change of the cold junction area. A thermopile output voltage value with respect to the heating element heating time is obtained by incorporating the respective temperature measuring elements, heating the heating element, and unilaterally and forcibly applying a constant amount of heat to the cold junction region. Is reduced by a first order in a constant gradient, and the thermopile output voltage value is forcibly passed through a voltage threshold value that is set in advance and becomes a reference voltage value, and the thermopile output voltage value with respect to the voltage threshold value is forced to pass. The temperature of the measurement target is measured by detecting the phase inversion and detecting the temperature of the cold junction region by the cold junction temperature measuring element in synchronization with the phase inversion detection. In the characteristic infrared Temperature measuring how. The phase detector determines whether the sample output voltage value when the temperature of the cold junction region is changed has reversed between the positive and negative voltage values, and the phase inversion is “Yes” or “No”. By detecting the temperature of the cold junction temperature measuring element in synchronization with the two-bit digital signal and detecting the temperature of the cold junction temperature measuring element, it is possible to directly detect the temperature of the cold junction region. The method for measuring temperature by infrared rays according to claim 1, wherein
冷接合部領域の温度を変化させたときのサーモパイ ル出力電圧値が基準 電圧値となる電圧閾値に対して相反転したか否かを相検出器によ り 判定し て相反転 「有」 か 「無」 かの 2 ビッ トデジタル信号と し、 この 2 ビッ トデ ジタル信号に同期して冷接合部測温素子温度を検出するこ とによ り 、 冷接 合部領域の温度を直接検出するこ とを特徴とする請求項 2 に記載の赤外線 による温度測定方法。  The phase detector determines whether or not the thermopile output voltage value when the temperature of the cold junction region is changed is inverted with respect to the voltage threshold value that becomes the reference voltage value. The temperature of the cold junction area is directly detected by detecting the temperature of the cold junction temperature measuring element temperature in synchronization with the 2-bit digital signal of "absence" and synchronizing with the 2-bit digital signal. 3. The method for measuring temperature by infrared rays according to claim 2, wherein:
前記電圧閾値をサ一モパイル出力電圧値の正領域と負領域とに一ずっ設 定し、 一対の電圧閾値対となすこ とを特徴とする請求項 2 に記載の赤外線 による温度測定方法。  3. The temperature measurement method using infrared rays according to claim 2, wherein the voltage threshold is set to a positive region and a negative region of a thermopile output voltage value to form a pair of voltage thresholds.
前記電圧閾値をサ一モパイル出力電圧値の正領域と負領域とに一ずっ設 定してなる電圧閾値対を、 複数対設けるこ とを特徴とする請求項 2 に記載 の赤外線による温度測定方法。  The temperature measurement method using infrared rays according to claim 2, wherein a plurality of pairs of voltage thresholds are provided in which the voltage thresholds are set in a positive region and a negative region of a thermopile output voltage value. .
前記電圧閾値対において、 対となる正領域の電圧閾値と負領域の電圧閾 値との絶対値を等し く する こ とを特徴とする請求項 5 に記載の赤外線によ る温度測定方法。  6. The temperature measuring method using infrared rays according to claim 5, wherein in the pair of voltage thresholds, an absolute value of a pair of voltage thresholds in a positive region and a voltage threshold in a negative region is made equal.
前記電圧閾値対において、 対となる正領域の電圧閾値と負領域の電圧閾 値との絶対値を等し く する こ とを特徴とする請求項 6 に記載の赤外線によ る温度測定方法。 前記発熱素子を、 発熱して一定温度に維持される定常温度系統と、 一定 の温度範囲において温度可変とする可変温度系統とに系統分離し、 前記定 常温度系統によ り温度測定開始前に予め冷接合部を一定温度に維持し、 前 記可変温度系統は温度測定開始後に冷接合部領域の温度を一方的かつ強制 的に変化させる こ とを特徴とする請求項 1 に記載の赤外線による温度測定 方法。 7. The temperature measuring method using infrared rays according to claim 6, wherein in the pair of voltage thresholds, an absolute value of a pair of voltage thresholds in a positive region and a negative region is equalized. The heating element is separated into a steady temperature system that generates heat and is maintained at a constant temperature, and a variable temperature system that varies the temperature within a certain temperature range, and the temperature is measured by the constant temperature system before starting temperature measurement. The method according to claim 1, wherein the cold junction is maintained at a constant temperature in advance, and the variable temperature system unilaterally and forcibly changes the temperature of the cold junction after the temperature measurement is started. Temperature measurement method.
前記発熱素子を、 発熱して一定温度に維持される定常温度系統と、 一定 の温度範囲において温度可変とする可変温度系統とに系統分離し、 前記定 常温度系統によ り温度測定開始前に予め冷接合部を一定温度に維持し、 前 記可変温度系統は温度測定開始後に冷接合部領域の温度を一方的かつ強制 的に変化させるこ とを特徴とする請求項 2 に記載の赤外線による温度測定 方法。  The heating element is separated into a steady temperature system that generates heat and is maintained at a constant temperature, and a variable temperature system that varies the temperature within a certain temperature range, and the temperature is measured by the constant temperature system before starting temperature measurement. The infrared ray according to claim 2, wherein the cold junction is maintained at a constant temperature in advance, and the variable temperature system unilaterally and forcibly changes the temperature of the cold junction after the temperature measurement is started. Temperature measurement method.
発熱素子と冷接合部測温素子との少な く と もいずれか一方に自己制御 型正温度係数特性を含む抵抗体を用いる こ とを特徴とする請求項 9 に記載 の赤外線による温度測定方法。  10. The temperature measuring method using infrared rays according to claim 9, wherein a resistor having a self-controlling positive temperature coefficient characteristic is used for at least one of the heating element and the cold junction temperature measuring element.
発熱素子と冷接合部測温素子との少な く と もいずれか一方に自己制御 型正温度係数特性を含む抵抗体を用いる こ とを特徴とする請求項 1 0 に記 載の赤外線による温度測定方法。  10. The temperature measurement by infrared rays according to claim 10, wherein a resistor having a self-controlling positive temperature coefficient characteristic is used for at least one of the heating element and the cold junction temperature measuring element. Method.
電気的に素子間絶縁された複数の同一抵抗特性の自己制御型正温度係 数特性を含む抵抗体からなる系統を複数作製し、 これらを発熱素子と して それぞれ前記冷接合部領域に対して熱的に直結するように して組み込み、 サーモパイル外部からそれそれ異なる電圧を印加する こ とによ り、 系統別 に異なる発熱温度を発生させるこ とを特徴とする請求項 9 に記載の赤外線 による温度測定方法。 電気的に素子間絶縁された複数の同一抵抗特性の自己制御型正温度係 数特性を含む抵抗体からなる系統を複数作製 し、 これらを発熱素子と して それそれ前記冷接合部領域に対して熱的に直結するように して組み込み、 サ一モパイ ル外部からそれぞれ異なる電圧を印加する こ とによ り、 系統別 に異なる発熱温度を発生させるこ とを特徴とする請求項 1 0 に記載の赤外 線による温度測定方法。 A plurality of systems composed of a plurality of resistors including self-controlling positive temperature coefficient characteristics having the same resistance characteristics and electrically insulated between elements are produced, and these are used as heating elements for each of the cold junction regions. 10. The infrared radiation according to claim 9, wherein different heat generation temperatures are generated for the respective systems by applying different voltages from outside the thermopile so as to be directly connected to the thermopile. Temperature measurement method. A plurality of systems composed of a plurality of resistors including self-controlling positive temperature coefficient characteristics having the same resistance characteristics and electrically insulated between elements are produced, and these are used as heating elements, each of which is provided for the cold junction region. Claim 10 characterized by the fact that different heat generation temperatures are generated for each system by applying different voltages from outside of the thermopile to incorporate them so that they are thermally connected directly. Temperature measurement method using infrared rays as described.
電気的に素子間絶縁された異なる抵抗特性の自己制御型正温度係数特 性を含む抵抗体 2個からなる系統を複数作製 し、 これらを発熱素子と して それぞれ前記冷接合部領域に対して熱的に直結するよう に して組み込み、 サ一モパイル外部から同一の電圧を印加する こ とによ り、 系統別に異なる 発熱温度を発生させるこ とを特徴とする請求項 9 に記載の赤外線による温 度測定方法。  A plurality of systems consisting of two resistors having self-controlling positive temperature coefficient characteristics having different resistance characteristics electrically insulated from each other are produced, and these are used as heating elements for each of the cold junction regions. The infrared heating device according to claim 9, wherein a heat generation temperature different for each system is generated by applying the same voltage from the outside of the thermopile so as to be directly connected thermally and applying the same voltage from outside the thermopile. Temperature measurement method.
電気的に素子間絶縁された異なる抵抗特性の自己制御型正温度係数特 性を含む抵抗体 2個からなる系統を複数作製し、 これらを発熱素子と して それぞれ前記冷接合部領域に対して熱的に直結するように して組み込み、 サーモパイル外部から同一の電圧を印加する こ とによ り、 系統別に異なる 発熱温度を発生させるこ とを特徴とする請求項 1 0 に記載の赤外線による 温度測定方法。  A plurality of systems composed of two resistors including self-control type positive temperature coefficient characteristics having different resistance characteristics electrically insulated from each other are produced, and these are used as heating elements for each of the cold junction regions. 10. The temperature according to claim 10, wherein different heat generation temperatures are generated for each system by applying the same voltage from outside the thermopile so as to be directly connected to the thermopile. Measuring method.
電気的に素子間絶縁された異なる抵抗特性の自己制御型正温度係数特 性を含む抵抗体 2個からなる対を複数対組み合わせてなる系統を複数作製 し、 これらを発熱素子と してそれそれ前記冷接合部領域に対して熱的に直 結するよう に して組み込み、 サ一モパイル外部から同一の電圧を印加する こ とによ り 、 系統別に異なる発熱温度を発生させるこ とを特徴とする請求 項 9 に記載の赤外線による温度測定方法。 電気的に素子間絶縁された異なる抵抗特性の自己制御型正温度係数特 性を含む抵抗体 2個からなる対を複数対組み合わせてなる系統を複数作製 し、 これらを発熱素子と してそれぞれ前記冷接合部領域に対して熱的に直 結する よう に して組み込み、 サーモパイ ル外部から同一の電圧を印加する こ とによ り、 系統別に異なる発熱温度を発生させるこ とを特徴とする請求 項 1 0 に記載の赤外線による温度測定方法。 A plurality of pairs consisting of two pairs of resistors consisting of two self-controlling positive temperature coefficient characteristics with different resistance characteristics electrically insulated from each other are manufactured, and these are used as heating elements. It is characterized in that a different heat generation temperature is generated for each system by applying the same voltage from outside the thermopile by incorporating the cold junction region so as to be thermally connected directly thereto. The temperature measurement method using infrared rays according to claim 9. A plurality of systems composed of a plurality of pairs of two resistors each including a self-controlling positive temperature coefficient characteristic having different resistance characteristics electrically insulated from each other are produced, and these are used as heating elements. It is built so that it is thermally connected directly to the cold junction area, and the same voltage is applied from outside the thermopile to generate different heating temperatures for each system. Item 10. The temperature measurement method using infrared rays according to Item 10.
前記発熱素子系統において、異なる 自己飽和安定温度を有する 2種類の 自己制御型正温度係数特性を含む抵抗体を用い、 自己飽和安定温度が低温 であるほうの自己制御型正温度係数特性を含む抵抗体に対しては所定電流 を流して自己飽和安定温度の一定温度で安定させ、 一方、 自己飽和安定温 度が高温であるほうの自己制御型正温度係数特性を含む抵抗体は自己飽和 安定温度以下において任意温度に変化させる こ とを特徴とする請求項 9 に 記載の赤外線による温度測定方法。  In the heating element system, two types of resistors having different self-saturation stable temperatures and including self-control type positive temperature coefficient characteristics are used, and a resistor including a self-control type positive temperature coefficient characteristic having a lower self-saturation stable temperature is used. A predetermined current is applied to the body to stabilize at a constant self-saturation stable temperature, while the resistor with a higher self-saturation stable temperature has a self-stable stable temperature The method according to claim 9, wherein the temperature is changed to an arbitrary temperature.
前記発熱素子系統において、異なる 自己飽和安定温度を有する 2種類の 自己制御型正温度係数特性を含む抵抗体を用い、 前記自己飽和安定温度が 低温であるほうの自己制御型正温度係数特性を含む抵抗体に対しては所定 電流を流して自己飽和安定温度の一定温度で安定させ、 一方、 自己飽和安 定温度が高温であるほうの自己制御型正温度係数特性を含む抵抗体は自己 飽和安定温度以下において任意温度に変化させる こ とを特徴とする請求項 1 0 に記載の赤外線による温度測定方法。 In the heating element system, two types of resistors having different self-saturation stable temperatures and having self-control type positive temperature coefficient characteristics are used, and the self-control type positive temperature coefficient characteristics having the lower self-saturation stable temperature are included. A predetermined current is applied to the resistor to stabilize it at a constant self-saturation stable temperature.On the other hand, a resistor with a higher self-saturation stable temperature that has a self-controlled positive temperature coefficient characteristic is self-saturation stable. The temperature measurement method using infrared rays according to claim 10, wherein the temperature is changed to an arbitrary temperature below the temperature.
基準温度と して複数の異なる温度の黒体炉を設置し、 サ一モパイルセン サを上記黒体炉の異なる温度に対して順次温度測定をさせ、 サ一モパイル センサの個体差に基づく 固有の温度測定結果を、 少な く と もサ一モパイル センサ内部とサーモパイルセンサを組込んだ装置内部とのいずれか一方に おいて設けられた記憶装置に記憶させ、 しかる後に少な く ともサ一モパイ ルセンサとサ一モパイルセンサを組込んだ装置とのいずれか一方に内蔵さ れる C P Uプログラムによ り、 前記記憶装置に格納された黒体炉基準温度 データを基に した固有の温度測定データを不連続のプロ ッ ト温度特性と し て作成し、 更にそれぞれのプロ ヅ ト間毎にその前後の複数プロ ッ トデ一夕 を使用 してプロ ッ ト間曲線特性処理を順次行い、 これらプロ ッ ト間曲線特 性どう しを連続的に繋いだ自由曲線温度特性をサ一モパイ ルセンサの固有 の温度特性基準と し、 これを少な く ともサ一モパイルセンサとサ一モパイ ルセンサを組込んだ装置とのいずれか一方に設けられた記憶装置に内蔵さ せるこ とによ り、 サ一モパイルの装置間個体差を自動校正するこ とを特徴 とする請求項 1 乃至請求項 2 0のいずれか一に記載の赤外線による温度測 定方法。 A blackbody furnace with a plurality of different temperatures is installed as a reference temperature, and the thermopile sensor is sequentially measured at different temperatures of the above blackbody furnace, and a specific temperature based on individual differences of the thermopile sensor. The measurement result is stored in a storage device provided in at least one of the inside of the thermopile sensor and the inside of the device in which the thermopile sensor is incorporated. A discrete temperature measurement data based on the blackbody furnace reference temperature data stored in the storage device is discontinuously plotted by a CPU program incorporated in one of the devices in which the mopile sensor is incorporated. It is created as a plot temperature characteristic, and furthermore, the plot characteristic processing between plots is sequentially performed using a plurality of plot data before and after each plot for each plot. A free-curve temperature characteristic that continuously connects the curve characteristics between the cuts is used as the temperature characteristic reference unique to the thermopile sensor, and this is a device that incorporates at least a thermopile sensor and a thermopile sensor. 20. The method according to claim 1, wherein the internal differences are stored in a storage device provided in any one of the above, whereby individual differences between the devices of the thermopile are automatically calibrated. The temperature measurement method using infrared rays as described in 1.
冷接合部領域に対して熱的に直結するよう にして組込んだ発熱素子と、 前記冷接合部領域に対して熱的に直結するように してかつ構造的に冷接合 部領域の温度変化と熱応答速度において同期するよう に して組込んだ冷接 合部測温素子と、 前記発熱素子によ り冷接合部領域を一方的かつ強制的に 加熱したときのサ一モパイル出力の正負電圧値領域反転の有無を検出する 相検出器と、 前記相反転の有無を 2 ビッ トデジタル信号に変換する変換器 とを有 し、 このデジタル信号に同期して冷接合部測温素子温度を検出する こ とを特徴とするサ一モパイルセンサ。 冷接合部領域に対して熱的に直結する よう に して組込んだ発熱素子と、 前記冷接合部領域に対して熱的に直結するよう に してかつ構造的に冷接合 部領域の温度変化と熱応答速度において同期するよう に して組込んだ冷接 合部測温素子と、 前記発熱素子によ り冷接合部領域を一方的かつ強制的に 加熱したときのサ一モパイルの出力電圧値が、 予め設定されかつ基準電圧 値となる電圧閾値に対して相反転したか否かを検出する相検出器と、 前記 相反転の有無を 2 ビッ トデジタル出力に変換する変換器とを有 し、 このデ ジタル信号に同期して冷接合部測温素子の温度を検出する こ とを特徴とす るサ一モパイルセンサ。 A heating element incorporated so as to be thermally connected directly to the cold junction region, and a temperature change in the cold junction region so as to be thermally connected directly to the cold junction region Junction temperature measurement element incorporated in synchronization with the thermal response speed, and the positive and negative of the thermopile output when the cold junction area is unilaterally and forcibly heated by the heating element. It has a phase detector that detects the presence or absence of voltage value domain inversion, and a converter that converts the presence or absence of the phase inversion into a 2-bit digital signal. The temperature of the cold junction temperature measuring element is synchronized with this digital signal. A thermopile sensor characterized by detecting. A heating element incorporated so as to be thermally directly connected to the cold junction region; and a temperature of the cold junction region so as to be thermally directly connected to the cold junction region. The cold junction temperature measuring element incorporated in synchronization with the change and the thermal response speed, and the output of the thermopile when the cold junction area is unilaterally and forcibly heated by the heating element A phase detector for detecting whether or not the voltage value is inverted with respect to a voltage threshold value which is set in advance and is a reference voltage value, and a converter for converting the presence or absence of the phase inversion into a 2-bit digital output. And a thermopile sensor that detects the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
前記発熱素子が、 発熱して一定温度に維持される定常温度系統と、 一定 の温度範囲において温度可変とする可変温度系統とからなるこ とを特徴と する請求項 2 2 に記載のサ一モパイルセンサ。  The thermopile sensor according to claim 22, wherein the heating element comprises a steady temperature system that generates heat and is maintained at a constant temperature, and a variable temperature system that varies the temperature in a fixed temperature range. .
前記発熱素子が、 発熱して一定温度に維持される定常温度系統と、 一定 の温度範囲において温度可変である可変温度系統とからなるこ とを特徴と する請求項 2 3 に記載のサーモパイルセンサ。  24. The thermopile sensor according to claim 23, wherein the heating element comprises a steady temperature system that generates heat and is maintained at a constant temperature, and a variable temperature system that is variable in temperature within a fixed temperature range.
発熱素子と冷接合部測温素子との少な く ともいずれか一方に自己制御 型正温度係数特性を含む抵抗体を用いてなる こ とを特徴とする請求項 2 2 に記載のサ一モパイルセンサ。  23. The thermopile sensor according to claim 22, wherein at least one of the heating element and the cold junction temperature measuring element uses a resistor having a self-controlling positive temperature coefficient characteristic.
発熱素子と冷接合部測温素子との少な く ともいずれか一方に自己制御 型正温度係数特性を含む抵抗体を用いてなる こ とを特徴とする請求項 2 3 に記載のサ一モパイルセンサ。  24. The thermopile sensor according to claim 23, wherein at least one of the heating element and the cold junction temperature measuring element uses a resistor having a self-controlling positive temperature coefficient characteristic.
電気的に素子間絶縁された複数の同一抵抗特性の自己制御型正温度係 数特性を含む抵抗体からなる系統の一系統以上を、 発熱素子系統と して前 記冷接合部領域に対して熱的に直結する よう に して組み込んだ構造を有す るこ とを特徴とする請求項 2 4に記載のサ一モパィルセンサ。  One or more systems composed of a plurality of resistors including self-controllable positive temperature coefficient characteristics having the same resistance characteristics and electrically insulated from each other are used as heat-generating device systems for the cold junction region. 26. The thermopile sensor according to claim 24, wherein the thermopile sensor has a structure incorporated so as to be directly connected thermally.
電気的に素子間絶縁された複数の同一抵抗特性の自己制御型正温度係 数特性を含む抵抗体からなる系統の一系統以上を、 発熱素子系統と して前 記冷接合部領域に対して熱的に直結する よう に して組み込んだ構造を有す るこ とを特徴とする請求項 2 5 に記載のサ一モパイルセンサ。 電気的に素子間絶縁された異なる抵抗特性の自己制御型正温度係数特 性を含む抵抗体 2個からなる系統の一系統以上を、 発熱素子系統と して前 記冷接合部領域に対して熱的に直結する よう に して組み込んだ構造を有す るこ とを特徴とする請求項 2 4に記載のサ一モパイルセンサ。 One or more systems composed of a plurality of resistors including self-controllable positive temperature coefficient characteristics having the same resistance characteristics and electrically insulated from each other are used as heat-generating device systems for the cold junction region. 26. The thermopile sensor according to claim 25, wherein the thermopile sensor has a structure incorporated so as to be directly thermally connected. One or more systems composed of two resistors with self-controlling positive temperature coefficient characteristics with different resistance characteristics that are electrically insulated from each other are used as heating element systems for the cold junction region. 26. The thermopile sensor according to claim 24, wherein the sensor has a structure in which the thermopile sensor is directly connected thermally.
電気的に素子間絶縁された異なる抵抗特性の自己制御型正温度係数特 性を含む抵抗体 2個からなる系統の一系統以上を、 発熱素子系統と して前 記冷接合部領域に対して熱的に直結する よう に して組み込んだ構造を有す るこ とを特徴とする請求項 2 5 に記載のサ一モパイルセンサ。  One or more systems composed of two resistors with self-controlling positive temperature coefficient characteristics with different resistance characteristics that are electrically insulated from each other are used as heating element systems for the cold junction region. 26. The thermopile sensor according to claim 25, wherein the thermopile sensor has a structure incorporated so as to be directly thermally connected.
電気的に素子間絶縁された異なる抵抗特性の自己制御型正温度係数特 性を含む抵抗体 2個からなる対を複数対組み合わせてなる系統の一系統以 上を、 発熱素子系統と して前記冷接合部領域に対して熱的に直結するよう に して組み込んだ構造を有するこ とを特徴とする請求項 2 4に記載のサー モパイルセンサ。  One or more systems composed of a plurality of pairs of two resistors each including a self-controlling positive temperature coefficient characteristic having different resistance characteristics electrically insulated from one another and having a resistance characteristic are defined as a heating element system. 26. The thermopile sensor according to claim 24, wherein the thermopile sensor has a structure in which it is directly connected to the cold junction region so as to be thermally connected thereto.
電気的に素子間絶縁された異なる抵抗特性の自己制御型正温度係数特 性を含む抵抗体 2個からなる対を複数対組み合わせてなる系統の一系統以 上を、 発熱素子系統と して前記冷接合部領域に対して熱的に直結するよう にして組み込んだ構造を有するこ とを特徴とする請求項 2 5 に記載のサ一 モパイルセンサ。  One or more systems composed of a plurality of pairs of two resistors each including a self-controlling positive temperature coefficient characteristic having different resistance characteristics electrically insulated from one another and having a resistance characteristic are defined as a heating element system. 26. The thermopile sensor according to claim 25, wherein the thermopile sensor has a structure incorporated so as to be thermally directly connected to the cold junction region.
前記発熱素子系統と して、 異なる 自己飽和安定温度を有する 2種類の自 己制御型正温度係数特性を含む抵抗体を配置 してなる こ とを特徴とする請 求項 2 4に記載のサーモパイルセンサ。  The thermopile according to claim 24, wherein a resistor including two types of self-controlling positive temperature coefficient characteristics having different self-saturation stable temperatures is arranged as the heating element system. Sensor.
前記発熱素子系統と して、 異なる 自己飽和安定温度を有する 2種類の自 己制御型正温度係数特性を含む抵抗体を配置してなる こ とを特徴とする請 求項 2 5 に記載のサ一モパイルセンサ。  The service according to claim 25, wherein a resistor including two types of self-control type positive temperature coefficient characteristics having different self-saturation stable temperatures is arranged as the heating element system. One mopile sensor.
前記発熱素子系統の自己制御型正温度係数特性を含む抵抗体と、 前記冷 接合部測温素子系統の自己制御型正温度係数特性を含む抵抗体のう ち少な く ともいずれか一方が、 基板表面に蒸着によ り組成されてなるこ とを特徴 とする請求項 2 6乃至請求項 3 5 のいずれか一に記載のサ一モパイ ルセン サ。 前記発熱素子系統の自己制御型正温度係数特性を含む抵抗体と、 前記冷 接合部測温素子系統の自己制御型正温度係数特性を含む抵抗体のう ち少な く ともいずれか一方が、 基板表面にペース ト焼き付けによ り形成されてな るこ とを特徴とする請求項 2 6乃至請求項 3 5 のいずれか一に記載のサー モパイ ルセ ンサ。 At least one of a resistor including a self-controlling positive temperature coefficient characteristic of the heating element system and a resistor including a self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element system is provided on a substrate. 36. The thermopile sensor according to any one of claims 26 to 35, wherein the thermopile sensor is formed on the surface by vapor deposition. At least one of a resistor including a self-controlling positive temperature coefficient characteristic of the heating element system and a resistor including a self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element system is provided on a substrate. The thermopile sensor according to any one of claims 26 to 35, wherein the thermopile sensor is formed on the surface by paste baking.
前記発熱素子系統の自己制御型正温度係数特性を含む抵抗体と、 前記冷 接合部測温素子系統の自己制御型正温度係数特性を含む抵抗体のう ち少な く ともいずれか一方が、 基板表面に面状印刷されてなるこ とを特徴とする 請求項 2 6乃至請求項 3 5のいずれか一に記載のサ一モパイルセンサ。  At least one of a resistor including a self-controlling positive temperature coefficient characteristic of the heating element system and a resistor including a self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element system is provided on a substrate. The thermopile sensor according to any one of claims 26 to 35, wherein the thermopile sensor is printed on a surface of the thermopile.
前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域とが、 温接合部領域を中心と して冷接合部 領域の外側に、 かつ冷接合部領域が配置された基板上に、 かつお互いが水 平方向に並ぶように して配置されてなる こ とを特徴とする請求項 2 2又は 請求項 2 3 に記載のサ一モパイルセンサ。  The heating element area in which the heating element system is arranged and the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are located outside the cold junction area with the hot junction area as the center. The thermopile sensor according to claim 22 or 23, wherein the thermopile sensor is arranged on a substrate on which the joint region is arranged and arranged so as to be arranged in a horizontal direction.
前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域とが、 温接合部領域を中心と して冷接合部 領域の外側に、 かっかつ冷接合部領域が配置された基板上に、 かつお互い が垂直方向に並ぶように して配置されてなる こ とを特徴とする請求項 2 2 又は請求項 2 3 に記載のサ一モパイルセンサ。  The heating element region in which the heating element system is arranged and the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged are located outside the cold junction region with the hot junction region as the center. 24. The thermopile sensor according to claim 22 or 23, wherein the thermopile sensor is arranged on a substrate on which the cold junction region is arranged and arranged so as to be vertically aligned with each other.
前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域とが、 温接合部領域を中心と して冷接合部 領域の外側に、 かつ冷接合部領域が配置された基板の外部に、 かつお互い が垂直方向に並ぶように して配置されてなる こ とを特徴とする請求項 2 2 又は請求項 2 3 に記載のサ一モパイルセンサ。  The heating element area in which the heating element system is arranged and the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are located outside the cold junction area with the hot junction area as the center. The thermopile sensor according to claim 22 or 23, wherein the thermopile sensor is arranged outside the substrate on which the joint region is arranged, and arranged so as to be vertically aligned with each other.
前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域との形状が、 連続する角形であるこ とを特 徴とする請求項 2 2又は請求項 2 3 に記載のサ一モパイルセンサ。 前記発熱素子系統を配置 した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域との形状が、 一定角度で区切られた不連続 の多角形である こ とを特徴とする請求項 2 2又は請求項 2 3 に記載のサ一 モパイルセ ンサ。 22. The shape of the heating element region where the heating element system is arranged and the shape of the cold junction temperature measuring element region where the cold junction temperature measuring element system is arranged are continuous squares. A thermopile sensor according to item 23. The shape of the heating element area in which the heating element system is arranged and the temperature of the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are discontinuous polygons separated by a certain angle. The thermopile sensor according to claim 22 or claim 23.
前記発熱素子系統を配置 した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域との形状が、 連続する円である こ とを特徴 とする請求項 2 2又は請求項 2 3 に記載のサ一モパイルセ ンサ。  22. The shape of the heating element region where the heating element system is arranged and the shape of the cold junction temperature measuring element region where the cold junction temperature measuring element system is arranged are continuous circles. A thermopile sensor according to item 23.
前記発熱素子系統を配置 した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域との形状が、 一定角度で区切られた不連続 の円であるこ とを特徴とする請求項 2 2 又は請求項 2 3 に記載のサーモパ ィルセンサ。  The shape of the heating element region where the heating element system is arranged and the shape of the cold junction temperature measuring element region where the cold junction temperature measuring element system is arranged are discontinuous circles separated by a certain angle. A thermopile sensor according to claim 22 or claim 23.
基準温度と しての複数の異なる温度の黒体炉に対して順次温度測定を 行ったときの温度測定データを格納するための記憶装置を有 し、 かつ前記 記憶装置に格納された固有の温度測定データを不連続のプロ ッ ト温度特性 と して作成し、 更にそれぞれのプロ ッ ト間每にその前後の複数プロ ッ トデ 一夕を使用 してプロ ッ ト間曲線特性処理を順次行い、 これらプロ ッ ト間曲 線どう しを連続的に繋いだ自由曲線温度特性を固有の温度特性基準と して 前記記憶装置に内蔵するプログラムを記録した記録媒体と、 前記プログラ ムを実行するための情報処理装置とを有する こ とを特徴とする請求項 2 2 乃至請求項 3 5のいずれか一に記載のサ一モパイルセンサ。  It has a storage device for storing temperature measurement data when sequentially performing temperature measurement on a plurality of blackbody furnaces having different temperatures as a reference temperature, and has a unique temperature stored in the storage device. Measured data is created as discontinuous plot temperature characteristics, and between the plots, the plot characteristic processing between plots is performed sequentially using the multiple plot data before and after that plot. A recording medium storing a program incorporated in the storage device, using a free-curve temperature characteristic obtained by continuously connecting these inter-plot curves as a unique temperature characteristic reference, and a program for executing the program. The thermopile sensor according to any one of claims 22 to 35, comprising an information processing device.
PCT/JP2000/000893 2000-02-17 2000-02-17 Thermopile sensor, and method of measuring temperature with infrared radiation WO2001061295A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2000225727A AU2000225727A1 (en) 2000-02-17 2000-02-17 Thermopile sensor, and method of measuring temperature with infrared radiation
PCT/JP2000/000893 WO2001061295A1 (en) 2000-02-17 2000-02-17 Thermopile sensor, and method of measuring temperature with infrared radiation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/000893 WO2001061295A1 (en) 2000-02-17 2000-02-17 Thermopile sensor, and method of measuring temperature with infrared radiation

Publications (1)

Publication Number Publication Date
WO2001061295A1 true WO2001061295A1 (en) 2001-08-23

Family

ID=11735695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/000893 WO2001061295A1 (en) 2000-02-17 2000-02-17 Thermopile sensor, and method of measuring temperature with infrared radiation

Country Status (2)

Country Link
AU (1) AU2000225727A1 (en)
WO (1) WO2001061295A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127368U (en) * 1977-03-18 1978-10-09
JPH01123180A (en) * 1987-11-09 1989-05-16 New Japan Radio Co Ltd High frequency pulse forming circuit
US4900162A (en) * 1989-03-20 1990-02-13 Ivac Corporation Infrared thermometry system and method
US4904090A (en) * 1986-11-29 1990-02-27 Thorn Emi Plc Temperature sensing arrangement
JPH0417301A (en) * 1990-05-10 1992-01-22 Mitsui Toatsu Chem Inc Positive temperature coefficient thin-film thermistor
JPH0590646A (en) * 1991-03-05 1993-04-09 Citizen Watch Co Ltd Thermopile type infrared sensor and its manufacture
JPH09292283A (en) * 1996-04-26 1997-11-11 Nippon Avionics Co Ltd Automatic forming device for temperature table for infrared thermal image device
JPH11258055A (en) * 1998-03-12 1999-09-24 Omron Corp Thermopile type temperature sensor

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127368U (en) * 1977-03-18 1978-10-09
US4904090A (en) * 1986-11-29 1990-02-27 Thorn Emi Plc Temperature sensing arrangement
JPH01123180A (en) * 1987-11-09 1989-05-16 New Japan Radio Co Ltd High frequency pulse forming circuit
US4900162A (en) * 1989-03-20 1990-02-13 Ivac Corporation Infrared thermometry system and method
JPH0417301A (en) * 1990-05-10 1992-01-22 Mitsui Toatsu Chem Inc Positive temperature coefficient thin-film thermistor
JPH0590646A (en) * 1991-03-05 1993-04-09 Citizen Watch Co Ltd Thermopile type infrared sensor and its manufacture
JPH09292283A (en) * 1996-04-26 1997-11-11 Nippon Avionics Co Ltd Automatic forming device for temperature table for infrared thermal image device
JPH11258055A (en) * 1998-03-12 1999-09-24 Omron Corp Thermopile type temperature sensor

Also Published As

Publication number Publication date
AU2000225727A1 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
US10939827B2 (en) Measuring apparatus for the determination of a temperature of an object, the use thereof and method for the operation thereof, as well as thermotherapy device with such a measuring apparatus
US6152595A (en) Measuring tip for a radiation thermometer
EP1333504A3 (en) Monolithically-integrated infrared sensor
JPH09257587A (en) Non-contact type temperature meter
US20070227575A1 (en) Thermopile element and infrared sensor by using the same
JPH0666639A (en) Infrared thermometer
JP4580562B2 (en) Non-contact temperature sensor and infrared thermometer using the same
JP2016050825A (en) Gas sensor
WO2001061295A1 (en) Thermopile sensor, and method of measuring temperature with infrared radiation
JPH0345778B2 (en)
WO2001088495A1 (en) Infrared thermometer and method of measuring temperature with infrared thermometer
JP3303786B2 (en) Bolometer type infrared sensor
JP2003294526A (en) Laser power detection device
JPH03273121A (en) Radiation thermometer
CN210487079U (en) Infrared temperature sensor, probe comprising same and infrared thermometer
JP3338456B2 (en) Radiation thermometer and method of measuring temperature of radiation thermometer
JP3252375B2 (en) Flow sensor
WO2002055975A1 (en) Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer
JP3099470B2 (en) Non-contact temperature measurement system for centrifuge
JPH04299225A (en) Clinical thermometer
WO2001050102A1 (en) Thermopile sensor and temperature measuring method by infrared rays
JP4621363B2 (en) Infrared thermometer
CN112113664A (en) Infrared temperature sensor, probe comprising same and infrared thermometer
JP3176798B2 (en) Radiant heat sensor
JPH09257584A (en) Thermal type infrared ray detecting device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase