JP2003294526A - Laser power detection device - Google Patents

Laser power detection device

Info

Publication number
JP2003294526A
JP2003294526A JP2002098371A JP2002098371A JP2003294526A JP 2003294526 A JP2003294526 A JP 2003294526A JP 2002098371 A JP2002098371 A JP 2002098371A JP 2002098371 A JP2002098371 A JP 2002098371A JP 2003294526 A JP2003294526 A JP 2003294526A
Authority
JP
Japan
Prior art keywords
detecting means
temperature detecting
temperature
receiving plate
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002098371A
Other languages
Japanese (ja)
Inventor
Takuo Shimada
拓生 嶋田
Yoshiteru Cho
吉輝 猪
Fumio Sugata
文雄 菅田
Yasuo Shibata
泰夫 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2002098371A priority Critical patent/JP2003294526A/en
Publication of JP2003294526A publication Critical patent/JP2003294526A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To measure a power accurately over long hours just after reception of a laser beam in a laser power detection device for measuring the power of the laser beam mainly in an infrared region or of several W or more. <P>SOLUTION: This device is equipped with an operation means 5 for calculating the laser power based on the difference between the output of a first temperature detection means 2 and the output of a second temperature detection means 3 for detecting the temperatures of two points on a light receiving plate 1 in a noncontact way, to thereby compensate the influence of fluctuation of an ambient temperature. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、主として赤外線領
域あるいは数W以上のレーザ光のパワーを測定するレー
ザパワー検出装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention mainly relates to a laser power detecting device for measuring the power of laser light in the infrared region or several W or more.

【0002】[0002]

【従来の技術】近年、この種のレーザパワー検出装置と
しては、例えば特開平5−3353号公報に記載されて
いるようなものがあった。図4において、出力鏡41と
対向する部分透過鏡42の後に軸心に対して対称の4個
の素子43A〜43Dにより構成される出力検出用セン
サ43を平行に設け、加算増幅回路44で素子43A〜
43Dの出力電圧Va〜Vdの和を増幅してパワーメータ
48で表示し、差動増幅回路45の一方でY軸方向に配
設された素子43A、43Bの出力電圧Va、Vbの差
を、他方でX軸方向に配設された素子43C、43Dの
出力電圧Vc、Vdの差をそれぞれ増幅してポジション
メータ9でレーザ光の位置を表示するものである。
2. Description of the Related Art In recent years, as a laser power detecting device of this type, there has been one disclosed in, for example, Japanese Patent Application Laid-Open No. 5-3353. In FIG. 4, after the partial transmission mirror 42 facing the output mirror 41, an output detection sensor 43 composed of four elements 43A to 43D which are symmetrical with respect to the axis is provided in parallel, and an addition amplification circuit 44 is used to provide elements. 43A ~
The sum of the output voltages Va to Vd of 43D is amplified and displayed by the power meter 48, and the difference between the output voltages Va and Vb of the elements 43A and 43B arranged in the Y-axis direction on one side of the differential amplifier circuit 45 is On the other hand, the position meter 9 displays the position of the laser light by amplifying the difference between the output voltages Vc and Vd of the elements 43C and 43D arranged in the X-axis direction.

【0003】また特開平5−180694号公報に記載
されているものは、応答速度の遅いパワーセンサと応答
速度の速いパワーセンサの出力を合成することによって
レーザ光のパワー変動周波数が広帯域にわたっても測定
精度を均一に保つものである。
In Japanese Patent Laid-Open No. 5-180694, the power fluctuation frequency of laser light is measured over a wide band by combining the outputs of a power sensor having a slow response speed and a power sensor having a fast response speed. It keeps the accuracy uniform.

【0004】一般にレーザパワー検出装置において、大
きなパワーのレーザ光を検出する場合、内壁面積の広い
積分球にレーザ光を入射させた後に取り出すか、大きな
熱容量を有する受光部でレーザ光を吸収し熱に変換する
構成となっている。また、レーザパワー検出素子には熱
電対やサーモパイルなどレーザ光を一旦、熱に変換する
熱形センサと結晶温度変化に伴う焦電効果を利用した焦
電形センサがある。
Generally, in the case of detecting a laser beam having a large power in a laser power detector, the laser beam is made incident on an integrating sphere having a wide inner wall area and then taken out, or a laser beam having a large heat capacity is absorbed by the laser beam to generate heat. It is configured to be converted to. Further, laser power detection elements include a thermocouple sensor such as a thermocouple and a thermopile that temporarily converts laser light into heat, and a pyroelectric sensor that utilizes the pyroelectric effect due to a change in crystal temperature.

【0005】しかしながら、このような従来のレーザパ
ワー検出装置ではレーザパワー検出素子がレーザ光によ
って熱せられた場合や周囲温度が変化した場合、測定誤
差が生じる。そして、パワー密度が高いレーザ光を一
旦、熱に変えてから検出する熱形センサは、応答速度が
遅く、レーザ光が入射しはじめてから出力が安定するま
で時間がかかる。
However, in such a conventional laser power detecting device, a measurement error occurs when the laser power detecting element is heated by the laser beam or when the ambient temperature changes. A thermal sensor that detects laser light having high power density after converting it into heat once has a slow response speed, and it takes time for the output to stabilize after the laser light begins to be incident.

【0006】一方、焦電形センサはチョッピングしなけ
ればパワー検出ができず、測定中にチョッパーが熱せら
れるため徐々に出力値が小さく見えるという課題があっ
た。チョッパーにはモータファン等の駆動手段が必要と
なるため、この駆動手段から発生する熱や風が測定誤差
の原因となったり、機械的故障を起こしやすくなったり
する課題もあり、実際には熱形センサが多く使われてい
る。
On the other hand, the pyroelectric sensor cannot detect the power unless it is chopped, and the chopper is heated during the measurement, so that the output value gradually appears small. Since the chopper needs a driving means such as a motor fan, there are problems that the heat and wind generated from this driving means may cause a measurement error and may easily cause a mechanical failure. Shape sensors are often used.

【0007】また、熱容量の小さな受光板の裏側に熱電
対を貼り付け、レーザ光が入射しはじめてからの温度上
昇カーブを基にしてレーザパワーを推定する方法も考案
されているが、長時間にわたり連続的に検出することは
できず、また測定精度にも課題があった。すなわち、レ
ーザ光の出射直後から長時間にわたり精度よくレーザパ
ワーを測定することは困難であった。
Also, a method has been devised in which a thermocouple is attached to the back side of a light receiving plate having a small heat capacity, and the laser power is estimated based on a temperature rise curve after the laser light starts to be incident, but over a long period of time. It was not possible to detect continuously, and there was a problem in measurement accuracy. That is, it has been difficult to accurately measure the laser power for a long time immediately after the emission of the laser light.

【0008】[0008]

【発明が解決しようとする課題】上記従来の技術の問題
点に鑑み、本発明が解決しようとする課題は、レーザ受
光直後から長時間にわたり精度よくパワー測定すること
を目的の1つとする。特に予めレーザ入射位置が定めら
れている装置組み込み型レーザパワー検出装置に関し、
S/N性能に優れた信号を取り出すことを目的の1つと
する。また、レーザパワー検出素子に直接、レーザを入
射させず、素子の長寿命化や出力特性を安定させること
を目的の1つとする。また、装置全体を大型化すること
なくレーザパワー検出素子の発熱等によって生じる測定
誤差を抑制することを目的の1つとする。
SUMMARY OF THE INVENTION In view of the above problems of the prior art, an object of the present invention is to achieve accurate power measurement for a long time immediately after receiving a laser beam. In particular, with regard to the device built-in laser power detection device in which the laser incident position is determined in advance,
One of the purposes is to extract a signal having excellent S / N performance. It is another object of the present invention to extend the life of the device and stabilize the output characteristics without directly injecting the laser into the laser power detection device. Another object is to suppress a measurement error caused by heat generation of the laser power detection element without increasing the size of the entire apparatus.

【0009】[0009]

【課題を解決するための手段】上記課題を解決するため
に本発明のレーザパワー検出装置は、レーザ光を受光す
る受光板と、前記受光板上の複数点の温度を非接触で検
出する複数の温度検出手段と、前記複数の温度検出手段
の出力の差分に基づきレーザパワーを算出する演算手段
とを備えたものである。
In order to solve the above-mentioned problems, a laser power detecting apparatus of the present invention comprises a light receiving plate for receiving a laser beam, and a plurality of non-contact detecting temperatures at a plurality of points on the light receiving plate. The temperature detecting means and the calculating means for calculating the laser power based on the difference between the outputs of the plurality of temperature detecting means.

【0010】また第2の技術手段は、レーザ光を受光す
る受光板と、前記受光板上の2点の温度を非接触で検出
する第1の温度検出手段および第2の温度検出手段と、
前記第1の温度検出手段の出力と前記第2の温度検出手
段の出力との差分に基づきレーザパワーを算出する演算
手段とを備えたものである。
The second technical means is a light receiving plate for receiving a laser beam, first temperature detecting means and second temperature detecting means for detecting the temperatures of two points on the light receiving plate in a non-contact manner.
It is provided with a calculating means for calculating the laser power based on the difference between the output of the first temperature detecting means and the output of the second temperature detecting means.

【0011】また第3の技術手段は、一方の温度検出手
段が受光板のレーザ光入射点近傍の温度を検出し、他方
の温度検出手段は受光板のレーザ光入射点から所定距離
離れた位置の温度を検出するものである。
In the third technical means, one temperature detecting means detects the temperature near the laser light incident point of the light receiving plate, and the other temperature detecting means is located at a position apart from the laser light incident point of the light receiving plate by a predetermined distance. It detects the temperature of.

【0012】また第4の技術手段は、複数の温度検出手
段が、受光板のレーザ光入射面と反対側面の温度を検出
するものである。
In a fourth technical means, a plurality of temperature detecting means detect the temperature of the side surface of the light receiving plate opposite to the laser light incident surface.

【0013】また第5の技術手段は、複数の温度検出手
段を、受光板から離れた金属製の取付台に設け、受光板
のレーザ光入射面と反対側面から放射される赤外線をそ
れぞれ検出するものである。
In a fifth technical means, a plurality of temperature detecting means are provided on a metal mounting base apart from the light receiving plate to detect infrared rays emitted from the side opposite to the laser light incident surface of the light receiving plate. It is a thing.

【0014】また第6の技術手段は、複数の温度検出手
段が、サーモパイルからなるものである。
In the sixth technical means, the plurality of temperature detecting means are thermopiles.

【0015】[0015]

【発明の実施の形態】上記した本発明の目的は、各請求
項に記載した構成を実施の形態とすることにより達成で
きるので、以下には各請求項の構成にその構成による作
用を併記し併せて請求項記載の構成のうち説明を必要と
する特定用語については詳細な説明を加えて、本発明の
実施の形態の説明とする。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The above-mentioned object of the present invention can be achieved by adopting the constitution described in each claim as an embodiment. Therefore, the action of the constitution is described together with the constitution of each claim below. At the same time, a detailed description will be added to specific terms that require an explanation among the configurations described in the claims, and the embodiments of the present invention will be described.

【0016】請求項1に記載の発明は、レーザ光を受光
する受光板上の複数点の温度を、非接触で検出する複数
の温度検出手段の出力差分に基づきレーザパワーを算出
する演算手段を備えたものである。
According to the first aspect of the present invention, there is provided arithmetic means for calculating laser power based on output differences of a plurality of temperature detecting means for non-contact detection of temperatures at a plurality of points on the light receiving plate for receiving the laser light. Be prepared.

【0017】また請求項2に記載の発明は、レーザ光を
受光する受光板の2点の温度を非接触で検出する第1の
温度検出手段および第2の温度検出手段との出力差分に
基づきレーザパワーを算出する演算手段を備えたもので
ある。
The invention according to claim 2 is based on the output difference between the first temperature detecting means and the second temperature detecting means for detecting the temperature at two points of the light receiving plate for receiving the laser beam in a non-contact manner. It is provided with a calculation means for calculating the laser power.

【0018】上記各実施の形態により、レーザパワー検
出素子である複数の温度検出手段を取り巻く周囲温度が
受光板の温度上昇により高くなっても、複数の温度検出
手段の出力差分によって互いの影響を相殺することがで
きる。またレーザ光の受光板における裏側の複数点の温
度を検出するだけなので、別途温度補償を行うためのセ
ンサを温度変動しない場所に設ける必要がなく、装置全
体を大型化しなくてもよいようにできる。
According to each of the above-described embodiments, even if the ambient temperature surrounding the plurality of temperature detecting means, which is the laser power detecting element, becomes high due to the temperature rise of the light receiving plate, the mutual influence is exerted by the output difference of the plurality of temperature detecting means. Can be offset. Further, since it only detects the temperatures at a plurality of points on the back side of the light-receiving plate of the laser light, it is not necessary to separately provide a sensor for temperature compensation in a place where the temperature does not fluctuate, and it is not necessary to increase the size of the entire apparatus. .

【0019】また請求項3に記載の発明は、特に予めレ
ーザ光入射位置が定められている場合、一方の温度検出
手段は受光板のレーザ光入射点近傍の温度を検出し、他
方の温度検出手段は受光板のレーザ光入射点から所定距
離離れた位置の温度を検出するような配置にすることに
より、受光板にレーザパワーに対応した熱流を複数点間
の温度差として効率よくS/N性能に優れた信号を取り
出すことができる。更に、受光板の熱容量や複数の温度
検出手段間の距離を適切に選択することによって、複数
の温度検出手段の応答遅れを相殺し、レーザ光の受光開
始や停止に対する立ち上がり、立ち下がり特性を大幅に
改善することができ、常に精度よくレーザパワーを測定
することができる。
According to the third aspect of the present invention, particularly when the laser light incident position is determined in advance, one temperature detecting means detects the temperature near the laser light incident point of the light receiving plate and the other temperature detecting means. By arranging the means so as to detect the temperature of the light receiving plate at a position distant from the laser light incident point by a predetermined distance, the heat flow corresponding to the laser power is efficiently applied to the light receiving plate as a temperature difference between a plurality of points to achieve S / N. A signal with excellent performance can be extracted. Further, by appropriately selecting the heat capacity of the light receiving plate and the distance between the plurality of temperature detecting means, the response delays of the plurality of temperature detecting means are canceled out, and the rise and fall characteristics for the start and stop of receiving the laser light are significantly increased. The laser power can always be measured with high accuracy.

【0020】また請求項4に記載の発明は、複数の温度
検出手段が、受光板のレーザ光入射面と反対側面の温度
を離れて検出するので、レーザパワー検出素子である複
数の温度検出手段に直接レーザ光は入射しないため、素
子の長寿命化や出力特性を安定させることができる。
Further, according to the invention of claim 4, the plurality of temperature detecting means detect the temperature of the side surface of the light receiving plate opposite to the laser light incident surface, so that the plurality of temperature detecting means which are laser power detecting elements. Since no laser light is directly incident on the device, the life of the device can be extended and the output characteristics can be stabilized.

【0021】また請求項5に記載の発明は、複数の温度
検出手段が、受光板から離れた金属製の取付台に設けて
いるので、複数の温度検出手段における周囲温度のずれ
を抑制することができて測定精度が更に向上する。この
金属製の取付台は銅やアルミニウム等熱伝導性に優れた
材質を用い、所定以上の体積(熱容量)を有する方が望
ましい。また複数の温度検出手段は、受光板のレーザ光
入射面と反対側面から放射される赤外線をそれぞれ検出
し、受光板そのものとは断熱されている。これによりレ
ーザパワー検出素子である温度検出手段全体が暖められ
ることによって生じる測定誤差を抑制でき、精度よくレ
ーザパワーを検出できることになる。
According to the fifth aspect of the present invention, since the plurality of temperature detecting means are provided on the metal mounting base apart from the light receiving plate, it is possible to suppress the deviation of the ambient temperature in the plurality of temperature detecting means. The measurement accuracy is further improved. It is preferable that the metal mounting base is made of a material having excellent thermal conductivity such as copper or aluminum and has a volume (heat capacity) of a predetermined value or more. Further, the plurality of temperature detecting means respectively detect the infrared rays emitted from the side surface of the light receiving plate opposite to the laser light incident surface, and are insulated from the light receiving plate itself. As a result, it is possible to suppress a measurement error caused by heating the entire temperature detecting means, which is a laser power detecting element, and it is possible to accurately detect the laser power.

【0022】(実施の形態1)図1は、本発明の実施の
形態におけるレーザパワー検出装置の構成図である。1
はレーザ光を受光するアルミニウムからなる円板状の受
光板で、表面は黒色塗装してあり、入射したレーザ光を
反射することなく熱に変換するとともに、ちょうど受光
板1の中心点にレーザ光が垂直に入射するように配設し
てある。
(Embodiment 1) FIG. 1 is a configuration diagram of a laser power detection apparatus according to an embodiment of the present invention. 1
Is a disc-shaped light receiving plate made of aluminum for receiving the laser light, the surface of which is black-painted, the incident laser light is converted into heat without being reflected, and the laser light is exactly at the center point of the light receiving plate 1. Are arranged so as to be incident vertically.

【0023】受光板1は想定されるレーザパワーの最大
値が入射した場合でも、速やか(数秒以内)に熱平衡に
達するよう設計している。すなわち、受光板1の外周に
おいて受光板1を保持する保持手段1aは、常に周囲温
度と熱交換して自然冷却される構造である。このような
受光板1は、レーザ光が垂直に入射すると、中心から周
辺に向けてレーザパワーに応じた熱流が生じ、同心円状
の温度勾配分布が形成される。
The light receiving plate 1 is designed so as to reach thermal equilibrium promptly (within a few seconds) even when the maximum expected laser power is incident. That is, the holding means 1a for holding the light receiving plate 1 on the outer periphery of the light receiving plate 1 has a structure in which heat is constantly exchanged with the ambient temperature and naturally cooled. In such a light receiving plate 1, when laser light is vertically incident, a heat flow corresponding to the laser power is generated from the center toward the periphery, and a concentric temperature gradient distribution is formed.

【0024】2は第1の温度検出手段で、3は第2の温
度検出手段であり、これらはサーモパイル素子からな
る。そして、第1の温度検出手段1は受光板1のレーザ
光入射面と反対側面から放射される点線で示す赤外線を
非接触で検出する。第2の温度検出手段3は、受光板1
のレーザ光入射面と反対側面の中心から所定距離離れた
点から放射される点線で示す赤外線を非接触で検出す
る。
Reference numeral 2 is a first temperature detecting means, 3 is a second temperature detecting means, and these are thermopile elements. Then, the first temperature detecting means 1 detects the infrared rays indicated by the dotted line emitted from the side surface of the light receiving plate 1 opposite to the laser beam incident surface in a non-contact manner. The second temperature detecting means 3 is the light receiving plate 1.
Infrared rays indicated by a dotted line emitted from a point distant by a predetermined distance from the center of the side surface opposite to the laser light incident surface are detected without contact.

【0025】また第1の温度検出手段2と第2の温度検
出手段3は、熱伝導性に優れたアルミニウム製の取付台
4に取り付けるとともに、第1の温度検出手段2と第2
の温度検出手段3における各出力のうち、各々の冷接点
側は電気的に接続され、更に取付台4に対し電気的にも
熱的にも接続されている。5は第1の温度検出手段2の
出力である熱起電力と第2の温度検出手段3の出力であ
る熱起電力との差分である電圧差に基づきレーザパワー
を算出するマイクロコンピュータおよびその周辺回路か
らなる演算手段である。
Further, the first temperature detecting means 2 and the second temperature detecting means 3 are attached to a mounting base 4 made of aluminum having excellent thermal conductivity, and the first temperature detecting means 2 and the second temperature detecting means 2 are attached.
Of the respective outputs of the temperature detecting means 3, the cold junction side is electrically connected, and further electrically and thermally connected to the mounting base 4. Reference numeral 5 denotes a microcomputer for calculating laser power based on a voltage difference which is a difference between a thermoelectromotive force which is an output of the first temperature detecting means 2 and a thermoelectromotive force which is an output of the second temperature detecting means 3 and its periphery. It is a calculation means composed of a circuit.

【0026】演算手段5は、それぞれ第1の感度補正手
段5a、第2の感度補正手段5b、そして差動増幅手段
5c、直線化手段5dを有する。第1の感度補正手段5
a、第2の感度補正手段5bは、各温度検出手段2、3
の固有の出力電圧感度K1、K2を補正するものであ
る。差動増幅手段5cは、第1の感度補正手段5a、第
2の感度補正手段5bを介して補正された第1の温度検
出手段2と第2の温度検出手段3との出力の差分である
電圧差を増幅する。
The calculation means 5 has a first sensitivity correction means 5a, a second sensitivity correction means 5b, a differential amplification means 5c and a linearization means 5d, respectively. First sensitivity correction means 5
a, the second sensitivity correction means 5b is provided for each of the temperature detection means 2, 3
The output voltage sensitivities K1 and K2 peculiar to the above are corrected. The differential amplifying means 5c is the difference between the outputs of the first temperature detecting means 2 and the second temperature detecting means 3 corrected via the first sensitivity correcting means 5a and the second sensitivity correcting means 5b. Amplify the voltage difference.

【0027】直線化手段5dは、そのままではレーザパ
ワーに対し非線形カーブとなる差分信号を比例出力とな
るよう直線化変換を行う。6は演算手段5から出力され
たレーザパワーに対応する信号を表示する表示手段であ
る。7は受光板1と取付台4の間に空気の断熱層8を形
成するとともに、受光板1に閉蓋されて各温度検出手段
2、3に埃が溜まらないようにするため、受光板1と取
付台4の外周を連結した環状の連結体である。
The linearizing means 5d linearly converts the difference signal, which is a nonlinear curve with respect to the laser power, into a proportional output. Reference numeral 6 is a display unit for displaying a signal corresponding to the laser power output from the calculation unit 5. The light receiving plate 1 has a heat insulating layer 8 for air formed between the light receiving plate 1 and the mounting base 4, and is closed by the light receiving plate 1 to prevent dust from accumulating on the temperature detecting means 2 and 3. Is an annular connecting body that connects the outer periphery of the mounting base 4.

【0028】なお、第1の温度検出手段2および第2の
温度検出手段3を構成するサーモパイル素子は、通常の
放射温度計で用いられているものと同様、赤外線を透過
するシリコン窓が設けられ、ゼーベック効果により熱起
電力を生じるよう異種金属が100対以上接合されてい
る。温接点側は中心部に設けられた吸熱材(金黒)と熱
接触し、入射した赤外線に応じて瞬時に温度上昇する。
冷接点側は周囲に配設されTO−5形状のキャン筐体と
熱接触している。キャン筐体内部は不活性ガスで封止さ
れており、経年変化による出力特性の劣化を防止してい
る。
The thermopile elements constituting the first temperature detecting means 2 and the second temperature detecting means 3 are provided with a silicon window which transmits infrared rays, as in the thermopile element used in a normal radiation thermometer. , 100 pairs or more of dissimilar metals are joined so as to generate a thermoelectromotive force by the Seebeck effect. The hot junction side is in thermal contact with the heat absorbing material (gold black) provided in the central portion, and the temperature instantly rises according to the incident infrared rays.
The cold junction side is disposed in the periphery and is in thermal contact with a TO-5-shaped can housing. The inside of the can housing is sealed with an inert gas to prevent deterioration of output characteristics due to aging.

【0029】上記実施の形態において、図1に示すよう
にレーザ光が受光板1上に入射すると、その視点温度
(すなわち、第1の温度検出手段2の温接点側温度)を
Ta(K)、第1の温度検出手段2の周囲温度(すなわ
ち、第1の温度検出手段2の冷接点側温度)をTb
(K)とすれば、第1の温度検出手段2が出力する熱起
電力V1はステファン=ボルツマンの法則に従い次に示
す式、(数1)となる。
In the above embodiment, when the laser light is incident on the light receiving plate 1 as shown in FIG. 1, the viewpoint temperature (that is, the temperature at the hot junction of the first temperature detecting means 2) is Ta (K). , The ambient temperature of the first temperature detecting means 2 (that is, the temperature of the cold junction side of the first temperature detecting means 2) is Tb.
Assuming (K), the thermoelectromotive force V1 output from the first temperature detecting means 2 is given by the following equation (Equation 1) according to the Stefan-Boltzmann law.

【0030】[0030]

【数1】 もちろん、第1の温度検出手段2が検出する受光板1上
の視点温度Taはレーザ光入射点の真後ろとなり、レー
ザ光入射面と反対側面上では最も高い温度となるが、非
接触なので第1の温度検出手段2に直接、レーザ光を当
ててサーモパイル素子を劣化させることなく効率よく信
号を検出することができる。一般的にレーザ光はパワー
密度が非常に高く、受光板1を介さずに直接に第1の温
度検出手段2がレーザ光を受けてしまうと、特定位置だ
けが異常に過熱され故障や特性劣化にいたるケースがあ
り得るので、これを防止するため非接触にしてある。ま
た、サーモパイル素子に設けられた赤外線透過窓は波長
による透過率のずれがあり、単色光であるレーザ光を直
接入射させた場合、素子ごとに出力感度がばらつくとい
う課題を受光板1で受け止め一旦、熱に変換することで
解消している。
[Equation 1] Of course, the viewpoint temperature Ta on the light receiving plate 1 detected by the first temperature detecting means 2 is directly behind the laser light incident point and becomes the highest temperature on the side opposite to the laser light incident surface, but since it is non-contact, it is the first temperature. A signal can be efficiently detected by directly irradiating the temperature detecting means 2 with laser light without degrading the thermopile element. In general, laser light has a very high power density, and if the first temperature detecting means 2 receives the laser light directly without passing through the light receiving plate 1, only a specific position is abnormally overheated and a failure or characteristic deterioration occurs. In some cases, the contact is made so as to prevent this. In addition, the infrared transmission window provided in the thermopile element has a transmittance shift depending on the wavelength, and when the laser light that is a monochromatic light is directly incident, the light receiving plate 1 receives the problem that the output sensitivity varies from element to element. , It is solved by converting into heat.

【0031】第1の温度検出手段2と第2の温度検出手
段3は熱伝導性に優れたアルミニウム製の取付台4に取
り付けられているため、両者の周囲温度Tbは常に共通
であると考えられる。そして、取付台4は受光板1と直
接は接触せず、断熱層8としての空気を介在しているた
め、レーザ光の入射によって第1の温度検出手段2にお
ける受光板1の視点温度Taが急激に上昇しても、第1
の温度検出手段2と第2の温度検出手段3の周囲温度T
bが急に上昇することはない。
Since the first temperature detecting means 2 and the second temperature detecting means 3 are attached to the mounting base 4 made of aluminum having excellent thermal conductivity, it is considered that the ambient temperature Tb of both is always common. To be Since the mounting base 4 does not directly contact the light receiving plate 1 and the air as the heat insulating layer 8 is interposed, the viewpoint temperature Ta of the light receiving plate 1 in the first temperature detecting means 2 is changed by the incidence of the laser light. Even if it rises sharply,
Ambient temperature T of the temperature detecting means 2 and the second temperature detecting means 3 of
b does not rise suddenly.

【0032】第2の温度検出手段3において、受光板1
上の視点温度(すなわち、第2の温度検出手段3の温接
点側温度)をTc(K)、第2の温度検出手段3の周囲
温度(すなわち、第2の温度検出手段3の冷接点側温
度)をTb(K)とすれば、第2の温度検出手段3が出
力する熱起電力V2は、第1の温度検出手段2と同様に
次に示す式、(数2)となる。
In the second temperature detecting means 3, the light receiving plate 1
The upper viewpoint temperature (that is, the temperature of the hot junction side of the second temperature detecting means 3) is Tc (K), and the ambient temperature of the second temperature detecting means 3 (that is, the cold junction side of the second temperature detecting means 3). If the temperature) is Tb (K), the thermoelectromotive force V2 output by the second temperature detecting means 3 is expressed by the following equation (Equation 2) similarly to the first temperature detecting means 2.

【0033】[0033]

【数2】 そして、第1の温度検出手段2の熱起電力V1は第1の
感度補正手段5aに、第2の温度検出手段3の熱起電力
V2は第2の感度補正手段5bにそれぞれ入力されて各
温度検出手段の固有の出力電圧感度K1、K2が補正され
る。これにより前述した第1の温度検出手段2の熱起電
力V1と第2の温度検出手段3の熱起電力V2はそれぞ
れ次に示す式、(数3)、(数4)に変換できる。
[Equation 2] The thermoelectromotive force V1 of the first temperature detection means 2 is input to the first sensitivity correction means 5a, and the thermoelectromotive force V2 of the second temperature detection means 3 is input to the second sensitivity correction means 5b. The inherent output voltage sensitivities K1 and K2 of the temperature detecting means are corrected. Thus, the thermoelectromotive force V1 of the first temperature detecting means 2 and the thermoelectromotive force V2 of the second temperature detecting means 3 described above can be converted into the following equations (Equation 3) and (Equation 4), respectively.

【0034】[0034]

【数3】 [Equation 3]

【0035】[0035]

【数4】 そして、この変換された第1の温度検出手段2の熱起電
力V1’、第2の温度検出手段3の熱起電力V2’は差
動増幅手段5cに取り込まれ、熱起電力V1’と熱起電
力V2’の電圧差、すなわち、K×(Ta4−Tc4)は
入射したレーザ光のパワーに対応する。これにより、第
1の温度検出手段2と第2の温度検出手段3は、その周
囲温度Tbには依存せず精度よくレーザパワーを検出で
きることになる。更に、熱起電力V1’と熱起電力V
2’の電圧差である差分信号を比例出力となるよう直線
化手段5dで変換を行ない、レーザパワーに対応する信
号を表示手段6で表示するのである。
[Equation 4] Then, the converted thermoelectromotive force V1 ′ of the first temperature detecting means 2 and the converted thermoelectromotive force V2 ′ of the second temperature detecting means 3 are taken into the differential amplifying means 5c, and the thermoelectromotive force V1 ′ and the thermoelectromotive force V1 ′. The voltage difference of the electromotive force V2 ′, that is, K × (Ta 4 −Tc 4 ) corresponds to the power of the incident laser light. As a result, the first temperature detecting means 2 and the second temperature detecting means 3 can detect the laser power accurately without depending on the ambient temperature Tb. Further, the thermoelectromotive force V1 ′ and the thermoelectromotive force V
The difference signal which is the voltage difference of 2'is converted by the linearizing means 5d so as to be a proportional output, and the signal corresponding to the laser power is displayed on the display means 6.

【0036】図2(a)、図2(b)は受光板1の熱伝
達系の等価回路である。よく知られているように熱伝達
系における熱抵抗を抵抗、熱容量をコンデンサとすれ
ば、電気回路上、温度は電圧に、熱流は電流に置換でき
る。一般的には図2(a)のような分布定数系で熱伝達
モデルが記述されるが、図2(b)のように簡略化して
説明する。今、受光板1の中心へパルス状のレーザ光を
入射させると、当該点は周囲温度から瞬時に温度上昇す
る。これに伴いレーザ光入射面の反対側面点の視点温度
Taは、熱容量に応じた応答遅れを持って上昇する。さ
らに、その点から所定距離離れた視点温度Tc(第2の
温度検出手段3の温接点側温度)は、その距離や熱容量
に応じた応答遅れを生じながら平衡温度に達するまで上
昇を続ける。レーザ光の入射を停止した場合は、同様の
応答遅れを生じながら元の周囲温度に落ち着いていく。
図3は受光板1上の温度Ta、TcおよびTaとTcの
差分の温度変化カーブを示したものである。図3から明
らかなように温度TaとTcの差分は温度Taや温度T
cより立ち上がり、立ち下がりの応答が速い。つまり、
受光板1の熱容量や検出位置を適切に選択すれば、レー
ザ光入射直後の温度Ta、Tcの上昇中や、レーザ光入
射停止直後の温度Ta、Tcの下降中といった過渡状態
にあっても、レーザパワーの絶対値に関わらずに応答特
性に優れたレーザパワー検出装置を得ることができる。
更に、2個の温度検出手段2、3は受光板1で蓋をされ
る構造となっているため、サーモパイル素子に埃が付着
して感度特性がずれる等、経年劣化しにくいという効果
もある。
FIGS. 2A and 2B are equivalent circuits of the heat transfer system of the light receiving plate 1. As is well known, if the heat resistance in the heat transfer system is a resistance and the heat capacity is a capacitor, temperature can be replaced by voltage and heat flow can be replaced by current on the electric circuit. Generally, a heat transfer model is described in a distributed constant system as shown in FIG. 2A, but the description will be simplified as shown in FIG. 2B. Now, when a pulsed laser beam is incident on the center of the light receiving plate 1, the temperature of the point instantly rises from the ambient temperature. Along with this, the viewpoint temperature Ta at the point on the opposite side of the laser light incident surface rises with a response delay corresponding to the heat capacity. Furthermore, the viewpoint temperature Tc (the temperature on the hot junction side of the second temperature detecting means 3) that is away from that point by a predetermined distance continues to increase until it reaches the equilibrium temperature with a response delay depending on the distance and the heat capacity. When the incidence of the laser light is stopped, the ambient temperature settles back to the original ambient temperature with the same response delay.
FIG. 3 shows temperature change curves of the temperatures Ta, Tc and the difference between Ta and Tc on the light receiving plate 1. As is clear from FIG. 3, the difference between the temperatures Ta and Tc is the temperature Ta or the temperature T.
The response of rising and falling is faster than that of c. That is,
If the heat capacity and the detection position of the light receiving plate 1 are appropriately selected, even if the temperature Ta, Tc immediately after the laser light incidence is rising or the temperature Ta, Tc immediately after the laser light incidence is stopped is in a transient state, It is possible to obtain a laser power detection device having excellent response characteristics regardless of the absolute value of the laser power.
Furthermore, since the two temperature detecting means 2 and 3 are structured to be covered by the light receiving plate 1, there is also an effect that deterioration with age is unlikely to occur, for example, dust adheres to the thermopile element and the sensitivity characteristic shifts.

【0037】以上のように本実施の形態では、第1の温
度検出手段と第2の温度検出手段を熱伝導性に優れた取
付台に取り付けることで両方の温度検出手段の周囲温度
Tbを同一にすることができるとともに、第1の温度検
出手段と第2の温度検出手段との出力の差分を演算手段
でとるため、仮に両方の温度検出手段の周囲温度Tbが
変動してもその影響を相殺でき、レーザパワーをレーザ
受光直後から長時間にわたり高い精度で測定できる。
As described above, in the present embodiment, the ambient temperature Tb of both temperature detecting means is the same by mounting the first temperature detecting means and the second temperature detecting means on the mount having excellent thermal conductivity. In addition, since the difference between the outputs of the first temperature detecting means and the second temperature detecting means is calculated by the calculating means, even if the ambient temperature Tb of both temperature detecting means fluctuates, the influence thereof will be exerted. It is possible to cancel out, and the laser power can be measured with high accuracy for a long time immediately after receiving the laser.

【0038】また本実施の形態では、第1の温度検出手
段は受光板上の最高温度点を、非接触である、受光板か
ら離れた位置で検出するので、より大きな熱起電力を発
生させS/N性能に優れた信号を取り出すことができる
とともに、温度検出手段は暖められにくい配置構造にし
ているので、測定誤差も抑制できる。
In the present embodiment, the first temperature detecting means detects the highest temperature point on the light receiving plate at a non-contact position apart from the light receiving plate, so that a larger thermoelectromotive force is generated. A signal having excellent S / N performance can be taken out, and the temperature detecting means has an arrangement structure that is hard to be heated, so that a measurement error can be suppressed.

【0039】また本実施の形態では、差分によって第1
の温度検出手段と第2の温度検出手段の出力応答遅れを
相殺することで、立ち上がり、立ち下がり特性に優れた
高精度なパワー測定を行うことができる。
Further, in this embodiment, the first difference is used.
By canceling the output response delays of the temperature detecting means and the second temperature detecting means, it is possible to perform highly accurate power measurement excellent in rising and falling characteristics.

【0040】また本実施の形態では、レーザパワー検出
素子である温度検出手段に直接にレーザ光が入射しない
ため、素子の長寿命化や出力特性を安定させることがで
きるとともに、受光板の裏側における2点の温度を検出
するだけなので、別途温度補償を行うためのセンサを温
度変動しない場所に設ける必要がなく装置全体を大型化
しないようにもできる。
Further, in the present embodiment, since the laser light is not directly incident on the temperature detecting means which is the laser power detecting element, it is possible to prolong the life of the element and stabilize the output characteristics, and at the back side of the light receiving plate. Since the temperature of only two points is detected, it is not necessary to separately provide a sensor for temperature compensation in a place where the temperature does not fluctuate, and it is possible to prevent the size of the entire apparatus from increasing.

【0041】なお、上記実施の形態における第1の感度
補正手段5a、第2の感度補正手段5bの最も簡便な構
成方法は、第1の温度検出手段2が持つ出力電圧感度K
1と第2の温度検出手段3が持つ出力電圧感度K2のう
ち、感度の高い方のみをその比率分だけ抵抗分割し、差
動増幅手段5cに入力するものであるが、2系統の独立
した入力増幅回路を持ち、デジタル信号処理によって感
度補正や差分、直線化を行っても良い。
The simplest method of constructing the first sensitivity correction means 5a and the second sensitivity correction means 5b in the above-described embodiment is the output voltage sensitivity K of the first temperature detection means 2.
Of the output voltage sensitivities K2 of the first and second temperature detecting means 3, only the one having the higher sensitivity is resistance-divided by that ratio and input to the differential amplifying means 5c. It is possible to have an input amplifier circuit and perform sensitivity correction, difference, and linearization by digital signal processing.

【0042】また、上記実施の形態では直線化手段5d
を設けてレーザパワーに対し非線形カーブとなる差分信
号を比例出力となるようにしたが、レーザパワーが比較
的小さい場合は、信号出力はそのままレーザパワーに比
例すると見なし直線化変換を行わなくても良い。
In the above embodiment, the linearizing means 5d is used.
Although a differential signal that is a non-linear curve with respect to the laser power is provided as a proportional output, when the laser power is relatively small, the signal output is regarded as it is proportional to the laser power and linearization conversion is not necessary. good.

【0043】また、上記実施の形態における温度検出手
段としてはサーモパイル素子を用いるものとしたが、例
えば赤外線を熱に変換する感熱フィルムを設け、その感
熱フィルムに温度を検知する薄膜サーミスタを貼り付
け、抵抗値変化から温度を測定してもよい。熱電対や白
金測温体を用いても差し支えない。
Although the thermopile element is used as the temperature detecting means in the above embodiment, for example, a heat sensitive film for converting infrared rays into heat is provided, and a thin film thermistor for detecting temperature is attached to the heat sensitive film. The temperature may be measured from the change in resistance value. You can use a thermocouple or platinum temperature measuring element.

【0044】また本実施の形態では、周囲温度や各温度
検出手段2、3の周囲温度Tbの変動要因を無視した
が、考慮に入れても同等の作用効果を期待することがで
きる。また、受光板1のレーザ光入射面の反対側面から
放射される赤外線を非接触で検出するものとしたが、レ
ーザ光入射面の温度を斜め側方から検出しても良いし、
更に反射板を構成して別の角度から検出しても良い。受
光板1の保持手段1aと2個の温度検出手段2、3を取
り付けた取付台4は一体のものではなく完全に分離した
構造でも良い。
Further, in the present embodiment, the fluctuation factors of the ambient temperature and the ambient temperature Tb of each of the temperature detecting means 2 and 3 are neglected, but the same operational effect can be expected even if the factors are taken into consideration. Further, the infrared rays radiated from the side opposite to the laser light incident surface of the light receiving plate 1 is detected in a non-contact manner, but the temperature of the laser light incident surface may be detected obliquely from the side.
Further, a reflector may be configured to detect from another angle. The holding means 1a of the light receiving plate 1 and the mounting base 4 on which the two temperature detecting means 2 and 3 are mounted may not be integrated, but may be a completely separated structure.

【0045】また本実施の形態では、第1と第2の温度
検出手段2、3を使用しているが、この2個だけでなく
多く組み合わせ、受光板1上に生じた熱流、温度勾配を
より高分解能となるように測定しても良い。また、各温
度検出手段2、3は1点の検出素子ではなく、線上に並
べた多数の素子を1単位とする1次元的のラインセンサ
あるいは2次元的のエリアセンサを用いて測定誤差を軽
減しても良い。また、2個の温度検出手段を設けるので
なく、1個のラインセンサまたはエリアセンサの異なる
画素間から得られる温度情報の差分によってレーザパワ
ーを検出しても良い。
Further, in the present embodiment, the first and second temperature detecting means 2 and 3 are used. However, not only these two but also a large number of them may be combined to determine the heat flow and the temperature gradient generated on the light receiving plate 1. You may measure so that it may become higher resolution. Further, each of the temperature detecting means 2 and 3 uses a one-dimensional line sensor or a two-dimensional area sensor having a large number of elements arranged on a line as one unit, instead of a single detection element, to reduce measurement error. You may. Further, instead of providing two temperature detecting means, the laser power may be detected by the difference in temperature information obtained from different pixels of one line sensor or area sensor.

【0046】また本実施の形態では、片方の温度検出手
段が万一断線またはショート故障していないかどうか確
認するために、差分信号だけを取り出しているが、そう
ではなく、各温度検出手段から信号を独立して入力して
も良い。そして、受光板1の形状は円板に限らず棒状で
も良いとともに、レーザ光入射面には反射を抑制するた
めにV字型の同心円状の溝を多数設けても良い。また、
検出したレーザパワーを表示手段6に表示するようにし
たが、表示手段6を持たず、検出したレーザパワー測定
値に基づき、何らかの機器制御を行っても良い。
Further, in the present embodiment, only the differential signal is taken out in order to confirm whether or not one of the temperature detecting means is broken or short-circuited. However, this is not the case. The signals may be input independently. The shape of the light receiving plate 1 is not limited to a circular plate and may be a rod shape, and a large number of V-shaped concentric circular grooves may be provided on the laser light incident surface to suppress reflection. Also,
Although the detected laser power is displayed on the display means 6, some device control may be performed based on the detected laser power measurement value without the display means 6.

【0047】[0047]

【発明の効果】以上のように本発明によれば次のような
効果を有する。
As described above, the present invention has the following effects.

【0048】(1)温度検出手段の周囲温度が変動して
もその影響を相殺できる。
(1) Even if the ambient temperature of the temperature detecting means fluctuates, its influence can be canceled out.

【0049】(2)S/N性能に優れた信号を取り出す
ことができる。
(2) A signal having excellent S / N performance can be taken out.

【0050】(3)温度検出手段は暖められにくく、測
定誤差を抑制できる。
(3) The temperature detecting means is hard to be warmed and the measurement error can be suppressed.

【0051】(4)応答特性に優れ、短時間測定にも長
時間測定にも高精度を維持できる。
(4) The response characteristics are excellent, and high accuracy can be maintained for both short time measurement and long time measurement.

【0052】(5)検出素子の長寿命化や出力特性を安
定させることができる。
(5) The life of the detection element can be extended and the output characteristics can be stabilized.

【0053】(6)装置全体を大型化しないようにもで
きる。
(6) It is possible not to upsize the entire device.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施の形態1におけるレーザパワー検
出装置の構成図
FIG. 1 is a configuration diagram of a laser power detection device according to a first embodiment of the present invention.

【図2】(a)同レーザパワー検出装置における受光板
の熱伝達系の等価回路を分布定数系で示す熱伝達モデル
図(b)同レーザパワー検出装置における受光板の熱伝
達系の等価回路を分布定数系で示す熱伝達モデルを簡略
化した図
FIG. 2 (a) is a heat transfer model diagram showing an equivalent circuit of a heat transfer system of a light receiving plate in the same laser power detection device as a distributed constant system. (B) An equivalent circuit of a heat transfer system of a light receiving plate in the same laser power detection device. A simplified diagram of the heat transfer model showing

【図3】同受光板の温度Ta、TcおよびTaとTcの
差分の温度変化カーブを示した図
FIG. 3 is a diagram showing temperature change curves of temperatures Ta and Tc of the light receiving plate and a difference between Ta and Tc.

【図4】従来のレーザパワー検出装置の構成図FIG. 4 is a configuration diagram of a conventional laser power detection device.

【符号の説明】[Explanation of symbols]

1 受光板 2 第1の温度検出手段 3 第2の温度検出手段 4 取付台 5 演算手段 1 Light receiving plate 2 First temperature detecting means 3 Second temperature detecting means 4 mounting base 5 computing means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 菅田 文雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 柴田 泰夫 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 2G065 AA04 AB09 BA11 BA14 CA30 DA05 2G066 AC20 BA08 CA11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Fumio Sugada             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. (72) Inventor Yasuo Shibata             1006 Kadoma, Kadoma-shi, Osaka Matsushita Electric             Sangyo Co., Ltd. F term (reference) 2G065 AA04 AB09 BA11 BA14 CA30                       DA05                 2G066 AC20 BA08 CA11

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 レーザ光を受光する受光板と、前記受光
板上の複数点の温度を非接触で検出する複数の温度検出
手段と、前記複数の温度検出手段の出力の差分に基づき
レーザパワーを算出する演算手段とを備えたレーザパワ
ー検出装置。
1. A light receiving plate for receiving a laser beam, a plurality of temperature detecting means for detecting temperatures of a plurality of points on the light receiving plate in a non-contact manner, and a laser power based on a difference between outputs of the plurality of temperature detecting means. A laser power detection device comprising: a calculation unit for calculating
【請求項2】 レーザ光を受光する受光板と、前記受光
板上の2点の温度を非接触で検出する第1の温度検出手
段および第2の温度検出手段と、前記第1の温度検出手
段の出力と前記第2の温度検出手段の出力との差分に基
づきレーザパワーを算出する演算手段とを備えたレーザ
パワー検出装置。
2. A light receiving plate for receiving a laser beam, a first temperature detecting means and a second temperature detecting means for detecting the temperatures of two points on the light receiving plate in a non-contact manner, and the first temperature detecting means. A laser power detection device comprising: a calculation means for calculating a laser power based on a difference between the output of the means and the output of the second temperature detection means.
【請求項3】 一方の温度検出手段は受光板のレーザ光
入射点近傍の温度を検出し、また他方の温度検出手段は
前記受光板のレーザ光入射点から所定距離離れた位置の
温度を検出する請求項1または請求項2に記載のレーザ
パワー検出装置。
3. One of the temperature detecting means detects a temperature near a laser light incident point of the light receiving plate, and the other temperature detecting means detects a temperature of a position apart from the laser light incident point of the light receiving plate by a predetermined distance. The laser power detection device according to claim 1 or 2.
【請求項4】 複数の温度検出手段は、受光板のレーザ
光入射面と反対側面の温度を検出することを特徴とする
請求項1から請求項3のいずれかに記載のレーザパワー
検出装置。
4. The laser power detecting device according to claim 1, wherein the plurality of temperature detecting means detect temperatures of a side surface of the light receiving plate opposite to the laser light incident surface.
【請求項5】 複数の温度検出手段は、受光板から離れ
た金属製の取付台に設け、前記受光板のレーザ光入射面
と反対側面から放射される赤外線を検出することを特徴
とする請求項1から請求項4のいずれかに記載のレーザ
パワー検出装置。
5. The plurality of temperature detecting means are provided on a metal mounting base apart from the light receiving plate, and detect infrared rays emitted from a side surface of the light receiving plate opposite to the laser light incident surface. The laser power detection device according to any one of claims 1 to 4.
【請求項6】 複数の温度検出手段は、サーモパイルか
らなることを特徴とする請求項1から請求項5のいずれ
かに記載のレーザパワー検出装置。
6. The laser power detecting device according to claim 1, wherein the plurality of temperature detecting means are thermopiles.
JP2002098371A 2002-04-01 2002-04-01 Laser power detection device Withdrawn JP2003294526A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002098371A JP2003294526A (en) 2002-04-01 2002-04-01 Laser power detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002098371A JP2003294526A (en) 2002-04-01 2002-04-01 Laser power detection device

Publications (1)

Publication Number Publication Date
JP2003294526A true JP2003294526A (en) 2003-10-15

Family

ID=29240392

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002098371A Withdrawn JP2003294526A (en) 2002-04-01 2002-04-01 Laser power detection device

Country Status (1)

Country Link
JP (1) JP2003294526A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040530A (en) * 2006-08-01 2008-02-21 Omron Corp Control device and temperature controller
JP2008256702A (en) * 2008-04-25 2008-10-23 Japan Aviation Electronics Industry Ltd Optical sensor
JP2009294069A (en) * 2008-06-05 2009-12-17 Mitsubishi Heavy Ind Ltd Profile measuring apparatus, and profile measuring method for laser light
CN104792413A (en) * 2015-03-25 2015-07-22 北京光电技术研究所 Laser power meter
CN104792410A (en) * 2015-03-24 2015-07-22 中国科学院上海光学精密机械研究所 Measuring method for broadband spectrum high-energy laser energy distribution
CN106644098A (en) * 2017-02-27 2017-05-10 杭州博源光电科技有限公司 High-power wireless optical power meter
CN111256845A (en) * 2020-02-10 2020-06-09 绵阳天和机械制造有限公司 High-light-efficiency laser power meter
JP2020142250A (en) * 2019-03-04 2020-09-10 株式会社ディスコ Acceptance determination method of output measurement unit

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040530A (en) * 2006-08-01 2008-02-21 Omron Corp Control device and temperature controller
JP4715669B2 (en) * 2006-08-01 2011-07-06 オムロン株式会社 air conditioner
JP2008256702A (en) * 2008-04-25 2008-10-23 Japan Aviation Electronics Industry Ltd Optical sensor
JP4613222B2 (en) * 2008-04-25 2011-01-12 日本航空電子工業株式会社 Optical sensor
JP2009294069A (en) * 2008-06-05 2009-12-17 Mitsubishi Heavy Ind Ltd Profile measuring apparatus, and profile measuring method for laser light
CN104792410A (en) * 2015-03-24 2015-07-22 中国科学院上海光学精密机械研究所 Measuring method for broadband spectrum high-energy laser energy distribution
CN104792413A (en) * 2015-03-25 2015-07-22 北京光电技术研究所 Laser power meter
CN106644098A (en) * 2017-02-27 2017-05-10 杭州博源光电科技有限公司 High-power wireless optical power meter
JP2020142250A (en) * 2019-03-04 2020-09-10 株式会社ディスコ Acceptance determination method of output measurement unit
JP7199256B2 (en) 2019-03-04 2023-01-05 株式会社ディスコ Pass/Fail Judgment Method for Output Measurement Units
CN111256845A (en) * 2020-02-10 2020-06-09 绵阳天和机械制造有限公司 High-light-efficiency laser power meter

Similar Documents

Publication Publication Date Title
JP2826337B2 (en) Radiation thermometer
KR100205384B1 (en) Infrared sensor and method of temperature compensation
US6751497B2 (en) Infrared thermometer
US20080317087A1 (en) Calibrating Method of Current Detection Type Thermocouple or the Like, Calibration Method of Offset of Operational Amplifier, Current Detection Type Thermocouple, Infrared Sensor and Infrared Detector
JP2008145133A (en) Radiation thermometer
JPH09257587A (en) Non-contact type temperature meter
EP1333504A3 (en) Monolithically-integrated infrared sensor
US8215831B2 (en) Sensor element
US6637931B2 (en) Probe for use in an infrared thermometer
JP2003294526A (en) Laser power detection device
JP3873528B2 (en) Radiation thermometer
JPH0666639A (en) Infrared thermometer
JPS5852529A (en) Temperature compensating method of thermopile
US3519352A (en) Null-system radiometer
JP2006105651A (en) Thermopile element and infrared sensor using it
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
JPH04299225A (en) Clinical thermometer
JP3099470B2 (en) Non-contact temperature measurement system for centrifuge
JPH0235322A (en) Radiation clinical thermometer
JP3620370B2 (en) Radiation temperature detector
JP4400156B2 (en) Laser output monitor
JPH07140008A (en) Radiation thermometer
JP2011038951A (en) Temperature difference detection device by seebeck current integration
JPS6330890Y2 (en)
JPH10290790A (en) Radiation thermometer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050401

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050706

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20061101