WO2001088495A1 - Infrared thermometer and method of measuring temperature with infrared thermometer - Google Patents

Infrared thermometer and method of measuring temperature with infrared thermometer Download PDF

Info

Publication number
WO2001088495A1
WO2001088495A1 PCT/JP2000/002597 JP0002597W WO0188495A1 WO 2001088495 A1 WO2001088495 A1 WO 2001088495A1 JP 0002597 W JP0002597 W JP 0002597W WO 0188495 A1 WO0188495 A1 WO 0188495A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cold junction
infrared thermometer
self
heating element
Prior art date
Application number
PCT/JP2000/002597
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhito Sakano
Original Assignee
Kazuhito Sakano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuhito Sakano filed Critical Kazuhito Sakano
Priority to PCT/JP2000/002597 priority Critical patent/WO2001088495A1/en
Priority to AU2000238408A priority patent/AU2000238408A1/en
Publication of WO2001088495A1 publication Critical patent/WO2001088495A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • G01J5/16Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables

Definitions

  • thermometer Infrared thermometer and method of measuring temperature of infrared thermometer
  • the present invention relates to an infrared thermometer and a method of measuring the temperature of an infrared thermometer, and more particularly, to an infrared thermometer that measures the temperature of a measurement target by sensing infrared radiation radiated from a measurement target, and an infrared thermometer.
  • the present invention relates to a temperature measuring method using a thermometer.
  • thermometers have been used to detect infrared radiation emitted from a measurement target to measure the temperature of the measurement target.
  • thermometers emit more radiation from the eardrum and surrounding tissues than contact-type thermometers such as a sublingual thermometer that measures the temperature in the oral cavity and an axillary thermometer that measures the temperature of the axilla for hygiene reasons.
  • contact-type thermometers such as a sublingual thermometer that measures the temperature in the oral cavity and an axillary thermometer that measures the temperature of the axilla for hygiene reasons.
  • the demand for non-contact ear thermometers, which measure body temperature by detecting infrared rays, is increasing.
  • Ear-type thermometers are also attracting attention because the eardrum is located deep in the human body and is less susceptible to the effects of external temperature, so it can measure body temperature more accurately than other parts of the human body, such as the oral cavity and axilla. That is one of the reasons.
  • Non-contact type thermometers generally use a pyroelectric sensor or a thermopile sensor as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured.
  • a pyroelectric sensor is a sensor that detects, as an output, a change in surface charge of a pyroelectric body due to a temperature change when absorbing infrared energy radiated from an object to be measured. Pyroelectric sensors change the temperature of the pyroelectric body. In order to produce an output only when the power is turned on, the incident infrared rays are chopped, intermittently cut off, and a continuous output is taken out.
  • a thermopile sensor is a sensor in which thermocouples are deposited by integrated circuit technology, and a continuous output for the temperature difference between the hot junction and the cold junction is obtained by a large number of directly connected thermocouples. is there.
  • thermopile sensor used in a conventional infrared thermometer will be described.
  • thermopile sensor As a conventional thermopile sensor, for example, there is a thermopile sensor disclosed in Japanese Patent Application Laid-Open No. H11-125855. Such a thermopile sensor is shown in FIGS. 19 to 21 and will be described below.
  • FIG. 19 is a cross-sectional view of the conventional thermopile sensor shown in the above-mentioned Japanese Patent Application Laid-Open No. 11-25055, after the thermopile sensor is mounted on a sensor stem, and FIG. 20 is a thermopile portion.
  • FIG. A pit portion 13 is formed at the center of the upper surface of the heat sink 12 having a large heat capacity made of a silicon substrate, and the upper surface of the pit portion 13 has a small heat capacity having electrical insulation and a small heat capacity.
  • thermocouple materials 15 and second thermocouple materials 16 are alternately wired on the heat sink 12 and the hot junction supporting film 14 from the upper surface of the heat sink 12 to the upper surface of the hot junction supporting film 14. .
  • the cold junction 17 and the hot junction support film 14 are joined to form the warm junction 18, respectively.
  • a thermopile 19 is formed by connecting thermocouples in series.
  • output terminals 20 are provided at both ends of the thermopile 19.
  • the upper surface of the hot junction 18 is covered with the infrared absorber 21. Therefore, when infrared rays are applied to the hot junction 18, a thermoelectromotive force is generated in the hot junction 18, and the output terminal 20 responds to the temperature difference between the hot junction 18 and the cold junction 17. The generated electromotive force is output.
  • An insulating thin film 32 is formed on the entire lower surface of the heat sink 12. On the surface of the insulating thin film 32, there is a thin film thin film 48 as shown in FIG.
  • the thin-film thermistor 48 has lead wires 49 at both ends. Since the heat sink 12 has a large heat capacity, the temperature change is small, and the temperature of the cold junction 17 is equal to the temperature of the heat sink 12. Therefore, the temperature of the cold junction 17 can be measured by measuring the temperature of the heat sink 12 with the thin film semiconductor 48.
  • a recess 50 is formed on the upper surface of the sensor stem 31 for mounting the thermopile sensor 6 so that a region facing the thin-film thermistor 48 becomes lower by one step, and wiring patterns (not shown) are formed on both sides thereof. It is formed and connected to the extraction electrode 49. .
  • thermopile 19 can be taken out to the sensor stem 31, and the wiring is connected to the output circuit from the above wiring pattern, and the thin film thermistor 48 is connected.
  • the output that is, the temperature of the cold junction 17 can be taken out.
  • the infrared radiation radiated from the measurement target is absorbed by the infrared absorber 21 formed on the hot junction 18 so that the temperature difference between the hot junction 18 and the cold junction 1 ⁇ Then, an electromotive force is generated between the output terminals 20 of the thermopile 19 for temperature measurement.
  • the temperature of the hot junction 18 is T
  • the temperature of the cold junction 17 is T.
  • the electromotive force V generated between the output terminals 20 of the thermopile 19 for temperature measurement is expressed by Stefan-Boltzmann's law.
  • V k (T 4 one T. 4) (k is a constant) is represented as (1).
  • the analog data of the electromotive force V is sent to a micro computer via an analog / digital converter (not shown), and based on the digital data, the fourth root operation is performed by the micro computer.
  • the temperature of the hot junction 18, that is, the relative temperature T of the measurement target can be known.
  • thermopile sensor As described above, in the conventional thermopile sensor, the temperature of the cold junction is measured using the temperature of the cold junction as the reference temperature of the relative temperature T, so that the temperature of the cold junction is accurate. It is important to detect In the infrared thermopile sensor disclosed in the above-mentioned Japanese Patent Application Laid-Open No. H11-125855, a thin-film sensor 488 is provided on the lower surface of the heat sink 12.
  • the heat sink 12 does not transmit infrared light even though the thermal junction 18 is irradiated with infrared rays
  • the heat sink 12 and the thermal junction supporting film 14 block the infrared rays
  • the heat sink 12 The infrared light is blocked by the insulating thin film 32 even when the light is transparent to infrared light. That is, no electromotive force caused by infrared light was generated at the thin-film thermistor 48, and the temperature of the cold junction could be accurately detected, thereby reducing errors in measurement.
  • thermopile 19 and the thin film layer are occupied by the same area as the thermopile 19. It is possible to dispose one and a half, so that the chip size of the thermopile sensor 6 can be reduced, and it is possible to measure the infrared thermometer by bringing the thermopile sensor 6 close to the measurement target. However, accurate measurement is possible. Further, since the chip size can be reduced, the number of chips obtained from one silicon wafer increases, and the cost of the thermopile sensor 6 and the infrared thermometer using the same can be reduced.
  • thermopile sensor or the thermopile sensor disclosed in Japanese Patent Application Laid-Open No. 11-255555 has the following problems.
  • the temperature T of the cold junction 17 becomes the reference temperature of the relative temperature T. Is in a state different from the ambient temperature or in a transient state that fluctuates until it reaches an equilibrium state with the ambient temperature.
  • the relative temperature T output from the thermopile sensor becomes an unstable state, and the temperature of the object to be measured is accurately and accurately measured.
  • Stable detection Becomes difficult. That is, the relative electromotive force generated in the thermopile 19 depends on the temperature of the infrared absorber 21 installed on the hot-junction support film 14 and the temperature of the hot-junction support film 14 itself, which is generated by the infrared absorption from the object to be measured.
  • the temperature difference between the hot junction temperature that depends on the temperature of the heat sink 12 and the cold junction temperature that depends on the temperature of the upper surface of the heat sink 12 generates an electromotive force. Otherwise, measurement errors are likely to occur.
  • thermopile sensor is a sensor that takes out the relative output with respect to the temperature difference between the hot junction and the cold junction as described above, but as the temperature difference between the hot junction and the cold junction increases, the output-one temperature decreases.
  • Relative output errors due to the so-called “temperature coefficient of sensitivity” in which the correlation is not linear are generally generated at a rate of 0.2 to 0.4% / ° C, so measurement errors are likely to occur.
  • thermopile is a sensor that outputs a relative electromotive force based on the temperature of the cold junction, but measures the temperature of the cold junction itself and adds this cold junction temperature to the output temperature of the thermopile. Without it, you cannot know the temperature of the target in the evening. However, the temperature of the cold junction depends on the temperature of the heat sink, and it may not be possible to accurately measure the temperature of the cold junction depending on the installation position of the thin-film sensor, which is a cold junction temperature measuring element.
  • a silicon substrate heat sink 12 having a thickness of several hundreds of microns is thermally coupled at its lower surface to the sensor stem 31 and at its upper surface. Is thermally coupled to the cold joint. Since the heat sink 12 itself is made of silicon, it does not have thermal conductivity as much as a metal material such as copper, and has a thickness of several hundred microns, so that the lower surface and the upper surface cannot be said to be heat equivalent. Has a temperature gradient. Therefore, the thin film thermostat 48 for measuring the temperature of the cold junction installed on the lower surface of the heat sink 12 can accurately measure the temperature of the cold junction installed on the upper surface of the heat sink 12. However, if the ambient temperature of the thermopile sensor suddenly changes, measurement errors are likely to occur.
  • This time difference fluctuates when the ambient temperature is stable, slowly changing, and rapidly changing, so that the relative output temperature of the thermopile sensor and the cold junction
  • a change in the ambient temperature caused a temperature difference in the measurement result.
  • thermometer which solves the above-mentioned problems in the prior art, improves the measurement accuracy at the time of temperature measurement, has a small number of parts, and is inexpensive and durable.
  • the infrared thermometer according to the first aspect of the present invention includes a thermopile sensor having a resistor having a self-controlling positive temperature coefficient characteristic therein.
  • the characteristic of the infrared thermometer is that the resistor with self-control type positive temperature coefficient characteristic has the property that the electrical resistance of the heating element increases as the temperature of the heating element rises due to energization. It has the feature that the current is suppressed and it is maintained at a constant temperature of the saturation self-stabilization temperature.
  • thermopile sensor automatically keeps it at the required temperature.
  • the cold junction of the thermopile sensor is pre-applied with a preset constant bias temperature, and changes in ambient temperature below the set temperature.
  • the resistor including the self-control type positive temperature coefficient characteristic adjusts itself to absorb the temperature change, and as a result, it is possible to detect an accurate temperature that is not affected by the ambient temperature.
  • a complicated feedback temperature control circuit including a temperature measuring element such as a thermometer for maintaining the temperature at a required temperature becomes unnecessary. Therefore, by incorporating such a thermopile sensor inside, it is possible to improve the measurement accuracy and to provide an inexpensive, durable, and highly safe infrared thermometer with a small number of parts.
  • thermometer according to the second claim of the present application is the infrared thermometer according to the first claim, wherein the thermopile sensor includes a resistor having a self-controlling positive temperature coefficient characteristic in a cold junction region.
  • thermopile sensor includes a resistor having a self-controlling positive temperature coefficient characteristic in a cold junction region.
  • An infrared thermometer characterized by being incorporated.
  • the thermal response speed of the resistor including the self-control type positive temperature coefficient characteristic is made as close as possible to the output response speed of the thermopile, and a highly reliable infrared thermometer with less measurement error is provided. can do.
  • the infrared thermometer according to the third aspect of the present invention is the infrared thermometer according to the second aspect of the present invention, wherein the antibody having the self-controlling positive temperature coefficient characteristic is thermally directly connected to the cold junction region.
  • the thermal response speed of the resistor including the self-controlling positive temperature coefficient characteristic can be made as close as possible to the output response speed of the thermopile to provide a highly reliable infrared thermometer with a small measurement error. Can be.
  • An infrared thermometer is the infrared thermometer according to the third aspect of the present invention, wherein a heating element system for heating the cold junction region and a temperature of the cold junction region are measured.
  • the cold junction and the cold junction temperature measuring element are forcibly subordinated by the heating element system and are previously raised to a certain bias temperature. Therefore, when the temperature difference between the hot junction region and the cold junction region is large, the output error due to the temperature coefficient J of the sensitivity can be suppressed. However, only the temperature rise of the hot junction due to the infrared energy from the first measurement was obtained, and the thermal response speed of the cold junction temperature measuring element system was extremely high, which was synchronized with the output response speed of the thermopile sensor. Is possible, and the measurement error is reduced.
  • An infrared thermometer is the infrared thermometer according to the fourth aspect, wherein at least one of the heating element system and the cold junction temperature measuring element system is cold.
  • An infrared thermometer having a structure directly thermally connected to a joint region.
  • the thermal response speed of the resistor including the self-controlling positive temperature coefficient characteristic can be made as close as possible to the output response speed of the thermopile to provide a highly reliable infrared thermometer with a small measurement error. Can be.
  • An infrared thermometer is the infrared thermometer according to the fourth aspect of the present invention, wherein the heating element system for heating the cold junction region and the temperature of the cold junction region are measured.
  • An infrared thermometer is the infrared thermometer according to the sixth aspect, wherein the thermistor temperature measuring element is an NTC (Negative Temperature Coefficient) resistor. It is an external thermometer.
  • NTC Negative Temperature Coefficient
  • thermometer according to an eighth aspect of the present invention is the infrared thermometer according to the sixth aspect of the present invention, wherein the thermometer element is a PTC. (Positive Temperature Coefficient)
  • PTC Physical Temperature Coefficient
  • the resistor including the self-controlling positive temperature coefficient characteristic of the heating element system of the infrared thermometer when the predetermined voltage is applied to heat the cold junction region, the resistance is saturated.
  • the cold junction of the thermopile sensor is pre-applied with a preset bias temperature of a predetermined temperature, and self-control of ambient temperature change below the set temperature
  • the resistor including the mold positive temperature coefficient characteristic adjusting the temperature itself and absorbing the temperature change it is possible to detect an accurate temperature independent of the ambient temperature.
  • an overheating accident of the thermopile can be prevented, and a highly safe infrared thermometer can be provided.
  • An infrared thermometer is the infrared thermometer according to the fourth aspect of the present invention, wherein a semiconductor heating element is disposed as the heating element system, and the self-control is performed as the cold junction temperature measuring element system.
  • An infrared thermometer comprising a resistor having a positive temperature coefficient characteristic.
  • a transistor, a diode, or the like is used as the above-mentioned semiconductor element, and when a predetermined voltage is applied thereto, heat is generated to heat the cold junction region. At this time, the cold junction region generated in response to the temperature of the cold junction region is measured.
  • the temperature of the cold junction can be detected by directly detecting the change in the self-resistance of the resistor including the self-control type positive temperature coefficient characteristic of the temperature element system and converting it to a temperature.
  • a structure is used in which a resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element system is thermally connected directly to the cold junction, and the output of the thermopile sensor and the thermal response speed are synchronized as much as possible. By doing so, a highly reliable infrared thermometer with a small measurement error can be provided.
  • the infrared thermometer according to the tenth aspect of the present invention is the infrared thermometer according to the fourth aspect of the present invention, wherein the resistor including the self-control type positive temperature coefficient characteristic is self-heated to reduce the cold junction area.
  • the infrared thermometer is characterized by being divided into a heating element system for heating and a non-heating cold junction temperature measuring element system that does not generate heat and measures the temperature of the cold junction region.
  • the resistor including the self-control type positive temperature coefficient characteristic of the heating element system described above when heating a cold junction region by applying a predetermined voltage, the resistor is heated stably at a constant temperature of the saturation self-stabilizing temperature. It is possible to prevent overheating of the thermopile without adding a separate temperature detector to the device.
  • a predetermined constant bias temperature is applied to the cold junction of the thermopile sensor in advance by the resistor that includes the self-controlling positive temperature coefficient characteristic of the heating element system.
  • the resistor including the self-controlling positive temperature coefficient characteristic adjusts to the ambient temperature change below the set temperature to absorb the temperature change by self-temperature adjustment.
  • the cold junction temperature is maintained at a constant temperature.
  • the temperature rise of the cold junction caused by this temperature rise reaches a thermal equilibrium state after a predetermined time, and a temperature difference occurs between the hot junction and the cold junction. Since the cold junction temperature is regulated at a constant bias temperature before measuring the evening gate temperature, it is easy to extract the rise in the cold junction temperature by infrared rays from the evening gate. By directly detecting the self-resistance change of the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element system generated in response to the temperature of the junction area, the temperature is converted to a cold junction. Temperature can be accurately detected.
  • the temperature measuring element system has a structure in which a resistor including the self-control type positive temperature coefficient characteristic is thermally connected directly to the cold junction region.Furthermore, the measurement is performed under a constant bias temperature condition excluding the influence of the ambient temperature. By measuring the temperature of one gate, it is possible to synchronize the resistance of the above temperature measuring element system with the self-control type positive temperature coefficient characteristic as much as possible with the output of the thermopile sensor in terms of the thermal response speed. A highly reliable and safe infrared thermometer can be provided.
  • Sufficient heat dissipation characteristics When the temperature of the measurement target is measured, the cold junction is maintained at a constant bias temperature by a resistor including a self-controlling positive temperature coefficient characteristic, The rise in temperature of the junction due to infrared rays radiated from the gate can be completely absorbed by the heat sink and canceled out.
  • the temperature of the cold junction is constrained and treated as a specified value, and only the temperature change of the hot junction, that is, the output temperature of the thermopile, is detected, and the information processing device compares the output temperature value of the thermopile with the constant bias.
  • the specified temperature value By adding the specified temperature value, more accurate temperature detection becomes possible without detecting the cold junction temperature of the thermopile each time.
  • the infrared thermometer according to the eleventh aspect of the present invention is the infrared thermometer according to the fourth aspect, wherein the infrared thermometer according to the fourth aspect has a planar self-controlling positive temperature coefficient characteristic having an electrical insulating film on the surface of the cold junction region.
  • the thermal response speed of the resistor including the self-control type positive temperature coefficient characteristic is made as close as possible to the output response speed of the thermopile, and a highly reliable infrared thermometer with less measurement error is provided. can do.
  • the infrared thermometer according to claim 12 of the present application is the infrared thermometer according to claim 4, wherein the resistor including the self-control type positive temperature coefficient characteristic does not generate heat and has a cold junction.
  • the resistor including the self-control type positive temperature coefficient characteristic does not generate heat and has a cold junction.
  • the surface of the resistive element which is functionally divided into a system and has a planar shape including the self-regulating positive temperature coefficient characteristic of the heating element system and having the planar self-regulating positive temperature coefficient characteristic
  • This is an infrared thermometer characterized by horizontally arranging a comb-shaped analog thermostat having a large number of positive electrodes and negative electrodes arranged alternately in a horizontal direction.
  • the cold junction temperature is kept constant in order to continuously perform analog continuous correction for local temperature changes in the cold junction region and the cold junction temperature measuring element region due to a rapid change in the ambient temperature. Temperature measurement with high accuracy.
  • the infrared thermometer according to claim 13 of the present application is the infrared thermometer according to claim 4, wherein a resistor including a self-controlling positive temperature coefficient characteristic does not self-heat and has a cold junction.
  • a resistor which is functionally divided into a system and a self-controlling positive temperature coefficient characteristic of the heating element system has a planar shape having a predetermined thickness, and includes a planar positive electrode and a negative electrode.
  • An infrared thermometer characterized in that a positive electrode and a negative electrode of an analog thermostat are arranged so as to sandwich the front and back surfaces of a resistor including the above-mentioned planar self-control type positive temperature coefficient characteristic.
  • the infrared thermometer according to claim 14 of the present application is the infrared thermometer according to claim 4, wherein the thermopile output when the cold junction is unidirectionally and forcibly heated by the heating element system.
  • An infrared thermometer for detecting an element temperature.
  • the cold junction is forcibly and unilaterally heated by the heating element system, so that the conventional problems, that is, the problem relating to the delay in thermal response speed to changes in ambient temperature and the problem relating to the “temperature coefficient of sensitivity” are one. There is an effect that cutting does not occur.
  • the thermopile output voltage value is forced to pass through the zero point at a constant gradient. By controlling, the measurement time can be greatly reduced.
  • the cold junction area and the cold junction temperature measuring element are fixed in advance by the heating element. Heated to the bias temperature, the resistance change of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, so its thermal response speed is extremely fast, and the cold junction It is possible to synchronize as much as possible to the temperature change in the local area.
  • the infrared thermometer according to the fifteenth aspect of the present invention is the infrared thermometer according to the fourth aspect, wherein the thermopile output when the cold junction is unidirectionally and forcibly heated by the heating element system.
  • a detector for detecting whether or not the voltage value of the phase is inverted with respect to a voltage threshold value which is set in advance and becomes a reference voltage value, and a converter for converting the presence or absence of the phase inversion into a 2-bit digital signal
  • an infrared thermometer that detects the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
  • An infrared thermometer is the infrared thermometer according to the fourteenth aspect of the present invention, wherein the heating element system generates a constant temperature by generating heat and maintaining the temperature at a constant temperature.
  • An infrared thermometer comprising a variable temperature system that changes the temperature in the above temperature range.
  • the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by the variable temperature system.
  • the infrared thermometer according to the seventeenth aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the heating element system generates a constant temperature by generating heat and maintaining the temperature at a constant temperature.
  • An infrared thermometer comprising a variable temperature system that changes the temperature in the above temperature range. With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
  • the infrared thermometer according to the eighteenth aspect of the present invention is the infrared thermometer according to the sixteenth aspect of the present invention, wherein the heating element system has two types of self-control type positive electrodes having different self-saturation stable temperatures.
  • This is an infrared thermometer characterized by disposing a resistor having a temperature coefficient characteristic.
  • the cold junction region and the cold junction region are formed by a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C).
  • a self-regulating positive temperature coefficient characteristic in which the temperature measuring element is pre-heated to a constant bias temperature (34 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C).
  • the temperature of the eardrum can be measured by variably heating the resistor within a certain temperature range (for example, 34 to 42 ° C).
  • the antibody containing the self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is near the eardrum temperature is maintained at a constant self-saturation stable temperature (34 ° C) regardless of the ambient temperature change.
  • self-saturation stable temperature 34 ° C
  • resistors with self-regulating positive temperature coefficient characteristics, whose self-stable saturation temperature is higher than the eardrum temperature are variably heated, but temperature control of variable heating becomes impossible even due to malfunction or failure.
  • self-saturated stable temperature Temperature (50 ° C) which prevents the infrared thermometer from overheating.
  • the infrared thermometer according to the nineteenth aspect of the present invention is the infrared thermometer according to the seventeenth aspect of the present invention, wherein the heating element system has two types of self-control type positive electrodes having different self-saturation stable temperatures.
  • This is an infrared thermometer characterized by disposing a resistor having a temperature coefficient characteristic.
  • the cold junction region and the cold junction region are formed by a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C).
  • a self-regulating positive temperature coefficient characteristic in which the temperature measuring element is pre-heated to a constant bias temperature (34 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C).
  • the temperature of the eardrum can be measured by variably heating the resistor within a certain temperature range (for example, 34 to 42 ° C).
  • the antibody containing the self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is near the eardrum temperature is maintained at a constant self-saturation stable temperature (34 ° C) regardless of the ambient temperature change. This prevents overheating accidents.
  • resistors with self-regulating positive temperature coefficient characteristics, whose self-stable saturation temperature is higher than the eardrum temperature are variable-heated. Even if it does, it will not be heated above the self-saturation stable temperature (50 ° C), preventing an overheating accident.
  • the infrared thermometer according to the twenty-first aspect of the present invention is the infrared thermometer according to the tenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements.
  • An infrared thermometer having a structure in which a plurality of systems including a plurality of resistors having the same resistance and having a self-controlling positive temperature coefficient characteristic are incorporated in the cold junction region.
  • the infrared thermometer according to the twenty-first aspect of the present invention is the infrared thermometer according to the tenth aspect, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements.
  • An infrared thermometer having a structure in which two or more pairs of resistors each having a self-control type positive temperature coefficient characteristic of a different resistance are incorporated in the cold junction region.
  • the infrared thermometer according to claim 22 of the present application is the infrared thermometer according to claim 10 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. It is characterized in that it has a structure in which a plurality of pairs of two pairs of resistors including self-controlling positive temperature coefficient characteristics of different resistances are combined in the cold junction region. It is an infrared thermometer.
  • the infrared thermometer according to claim 23 of the present application is the infrared thermometer according to claim 16 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region, and is electrically insulated between the elements.
  • An infrared thermometer having a structure in which a plurality of systems composed of a plurality of resistors having the same resistance and a self-controlling positive temperature coefficient characteristic are incorporated in the cold junction region.
  • the infrared thermometer according to the twenty-fourth aspect of the present invention is the infrared thermometer according to the sixteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and is electrically isolated between the elements.
  • An infrared thermometer having a structure in which a pair of two or more resistors including self-controlled positive temperature coefficient characteristics of different resistances are incorporated in the cold junction region. .
  • the infrared thermometer according to claim 25 of the present application is the infrared thermometer according to claim 16 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. It is characterized in that it has a structure in which a plurality of pairs of two pairs of resistors including self-controlling positive temperature coefficient characteristics of different resistances are combined in the cold junction region. It is an infrared thermometer.
  • the infrared thermometer according to claim 26 of the present application is the infrared thermometer according to claim 17 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements.
  • An infrared thermometer having a structure in which a plurality of systems including a plurality of resistors having the same resistance and having a self-controlling positive temperature coefficient characteristic are incorporated in the cold junction region.
  • the infrared thermometer according to the twenty-seventh aspect of the present invention is the infrared thermometer according to the seventeenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and is electrically insulated between the elements. Self-controlled positive temperature coefficient characteristics of different resistances An infrared thermometer having a structure in which two or more pairs of resistors are incorporated in the cold junction region.
  • the infrared thermometer according to claim 28 of the present application is the infrared thermometer according to claim 1 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. It is characterized in that it has a structure in which a plurality of pairs of two pairs of resistors including self-controlling positive temperature coefficient characteristics of different resistances are combined in the cold junction region. It is an infrared thermometer.
  • the self-controlling positive temperature coefficient characteristic is obtained by arranging a plurality of resistors or a plurality of pairs including the self-controlling positive temperature coefficient characteristic.
  • the resistors included are heated for each system, enabling fine temperature control.
  • the resistors including the self-controlling positive temperature coefficient characteristic of the heating system and the cold junction temperature measuring element system are all safe from being overheated to a certain temperature or higher.
  • the infrared thermometer according to claim 29 of the present application is the infrared thermometer according to claim 4, wherein the resistor including the self-controlling positive temperature coefficient characteristic is formed on the substrate surface by vapor deposition. This is an infrared thermometer.
  • thermopile sensor is generally formed on a surface of a silicon pellet or a silicon chip or a silicon wafer by using a semiconductor lamination technique. Therefore, even when a resistor having a self-controlling positive temperature coefficient characteristic is formed, it is formed by using a vapor deposition technique which is one of the semiconductor lamination techniques, thereby increasing the degree of integration of the thermopile sensor of the present invention. In addition, it can be manufactured efficiently. In addition, it is easy to thermally directly connect the resistor including the self-control type positive temperature coefficient characteristic to the cold junction region of the thermopile.
  • the infrared thermometer according to claim 30 of the present application is the infrared thermometer according to claim 4, wherein the resistor including the self-controlling positive temperature coefficient characteristic is formed by paste baking on the substrate surface. Specially It is an infrared thermometer.
  • the infrared thermometer of the present invention can be efficiently manufactured by pasting and baking a resistor having a self-controlling positive temperature coefficient characteristic on the surface of a substrate such as a printed circuit board.
  • the infrared thermometer according to claim 31 of the present application is the infrared thermometer according to claim 4, wherein the resistor including the self-control type positive temperature coefficient characteristic is planarly printed on a substrate surface.
  • This is an infrared thermometer characterized in that:
  • the infrared thermometer of the present invention can be efficiently manufactured by printing a resistor having a self-controlling positive temperature coefficient characteristic on the surface of a substrate such as a printed circuit board.
  • the infrared thermometer according to claim 32 of the present application is the infrared thermometer according to claim 4, wherein the heating element region in which the heating element system is arranged and the cooling thermometer in which the cold junction temperature measuring element system is arranged.
  • the junction temperature measuring element area is arranged outside the cold junction with the hot junction as the center, on the substrate on which the cold junction is arranged, and arranged so as to be horizontally aligned with each other. This is a featured infrared thermometer.
  • thermopile sensor of the conventional infrared thermometer With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
  • the infrared thermometer according to claim 33 of the present application is the infrared thermometer according to claim 4 of the present application, wherein the heating element region in which the heating element system is arranged and the cooling thermometer in which the cold junction temperature measuring element system is arranged.
  • the junction temperature measuring element region is arranged outside the cold junction with the hot junction as the center, on the substrate on which the cold junction is arranged, and arranged so as to be vertically aligned with each other. This is a featured infrared thermometer.
  • thermopile sensor of the conventional infrared thermometer With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
  • the infrared thermometer according to claim 34 of the present application is the same as the infrared thermometer according to claim 4 of the present application.
  • the heating element region in which the heating element system is arranged and the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged are located outside the cold junction around the hot junction.
  • thermopile sensor of the conventional infrared thermometer With this configuration, the arrangement of the hot junction and the cold junction, which has been applied in the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
  • the infrared thermometer according to claim 35 of the present application is the infrared thermometer according to claims 32 to 34 of the present application, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measuring element.
  • the infrared thermometer is characterized in that the shape with the cold junction temperature measuring element region in which the system is arranged is a continuous square.
  • thermopile sensor of the conventional infrared thermometer With this configuration, the arrangement of the hot junction and the cold junction, which has been applied in the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
  • the infrared thermometer according to claim 36 of the present application is the infrared thermometer according to claims 32 to 34 of the present application, wherein the temperature of the heating element region in which the heating element system is arranged and the temperature of the cold junction are measured.
  • the infrared thermometer is characterized in that the shape of the cold junction temperature measuring element area in which the element system is arranged is a discontinuous polygon separated by a certain angle.
  • thermopile sensor of the conventional infrared thermometer With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
  • the infrared thermometer according to claim 37 of the present application is the infrared thermometer according to claims 32 to 3, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measuring element system.
  • the infrared thermometer is characterized in that the shape with the cold junction temperature measuring element region in which is disposed is a continuous circle.
  • thermopile sensor of the conventional infrared thermometer Such a configuration (from this, the thermopile sensor of the conventional infrared thermometer)
  • the arrangement of the hot junction and the cold junction applied to the sensor can be applied to the infrared thermometer of the present invention.
  • An infrared thermometer is the infrared thermometer according to the thirty-second to thirty-fourth aspects, wherein: a heating element region in which the heating element system is disposed; This infrared thermometer is characterized in that the shape with the cold junction temperature measuring element region where the system is arranged is a discontinuous circle separated by a certain angle.
  • thermopile sensor of the conventional infrared thermometer With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
  • the infrared thermometer according to claim 39 of the present application is the infrared thermometer according to claim 4 of the present application, wherein the cold junction is built into the inside or surface of a silicon pellet or a silicon chip.
  • a resistor having a buried layer structure in the silicon pellet or silicon chip and having a self-controlling positive temperature coefficient characteristic is mixed with the cold junction ( It is an infrared thermometer having a hybrid structure.
  • thermopile sensor of the conventional infrared thermometer With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
  • An infrared thermometer according to a 40th aspect of the present invention is the infrared thermometer according to the 4th aspect of the present invention, which has a structure in which a cold junction is incorporated in or on a silicon pellet or a silicon chip.
  • An infrared thermometer incorporating a molypile sensor characterized in that a thin film formed on the surface of the silicon pellet or silicon chip has a structure in which a resistive antibody having a self-controlling positive temperature coefficient characteristic is formed. It is an infrared thermometer. With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
  • the infrared thermometer according to claim 41 of the present application is In the infrared thermometer according to (1), the self-controlling positive temperature coefficient characteristic is obtained in the infrared thermometer incorporating a thermopile having a structure in which the cold junction has a thick film formed on the surface of a chip substrate made of an insulator.
  • thermopile sensor of the conventional infrared thermometer With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
  • the infrared thermometer according to claim 42 of the present application is the infrared thermometer according to claims 1 to 28 of the present application, wherein the temperature is sequentially measured with respect to a plurality of black body furnaces having different temperatures as a reference temperature. It has a storage device for storing temperature measurement data at the time of measurement, and creates a unique temperature measurement data stored in the storage device as discontinuous plot temperature characteristics, and furthermore The plot characteristic processing is sequentially performed for each plot using a plurality of plot data before and after the plot, and a free curve temperature characteristic in which these plot plots are continuously connected is used as a unique temperature characteristic reference.
  • An infrared thermometer comprising: a recording medium on which a program stored in a storage device is recorded; and an information processing device for executing the program.
  • the temperature measurement method for an infrared thermometer is a thermopile having a heating element system for heating the cold junction region and a cold junction temperature measuring element system for measuring the temperature of the cold junction region.
  • a method of measuring the temperature of an infrared thermometer which detects infrared rays emitted from a measurement target by an infrared thermometer incorporating a sensor, and measures a temperature of the infrared thermometer.
  • a resistor having a self-controlling positive temperature coefficient characteristic is placed in at least one of the systems, and at least one of them is thermally connected directly to the cold junction area, thereby achieving the output of the thermopile.
  • a method for measuring the temperature of an infrared thermometer characterized by synchronizing the thermal response speed. is there.
  • Resistors with self-controlling positive temperature coefficient characteristics have the property that the electrical resistance of the heating element increases as the temperature of the heating element rises due to energization, so the current is suppressed as the temperature approaches the predetermined temperature. It has the characteristic of being maintained at a constant temperature of the saturated self-stabilizing temperature. Therefore, the thermopile sensor of the infrared thermometer has a resistor that includes a self-controlling positive temperature coefficient characteristic that maintains the thermopile sensor at a required temperature, so that the constant temperature set for the cold junction of the thermopile sensor is maintained.
  • the resistor with self-controlling positive temperature coefficient characteristic adjusts the temperature by itself and absorbs the temperature change, and as a result, it is not affected by the ambient temperature. Temperature can be detected.
  • thermopile without adding a safety device and a separate temperature detection device, an overheating accident of the thermopile can be prevented.
  • a complicated temperature control circuit including a temperature measuring element such as a thermistor for maintaining the temperature at a required temperature becomes unnecessary.
  • thermopile sensor since a constant bias temperature set for the cold junction of the thermopile sensor is preliminarily applied, the resistance change of the cold junction temperature measuring element system is caused by the temperature change due to infrared energy from the measurement target. Only the temperature rise at the junction, which makes the thermal response speed of the cold junction temperature measuring element system extremely fast, enables synchronization with the output response speed of the thermopile sensor, and reduces measurement errors.
  • thermopile the temperature of the cold junction of the thermopile can be easily maintained at a constant bias temperature without using a complicated temperature control circuit, and non-contact temperature measurement can be performed safely and with high accuracy by preventing overheating.
  • a temperature measuring method for an infrared thermometer according to claim 44 of the present application is the temperature measuring method for an infrared thermometer according to claim 43 of the present application, wherein: While maintaining the bias temperature, the thermopile output is detected and converted into a temperature value, the temperature of the cold junction area is measured each time by the cold junction temperature measuring element system, and the cold junction temperature is measured. Infrared thermometer characterized by adding the temperature value obtained from the thermopile output as the reference temperature to obtain the temperature of the measurement target Temperature measurement method.
  • thermopile sensor By adopting such a temperature measuring method, since a constant bias temperature set for the cold junction of the thermopile sensor is previously applied, the resistance change of the cold junction temperature measuring element system is measured by the measurement target.
  • the thermal response speed of the cold junction temperature measuring element system is extremely fast, and it is possible to synchronize with the output response speed of the thermopile sensor. The error is reduced.
  • thermopile the temperature of the cold junction of the thermopile can be easily maintained at a constant bias temperature without using a complicated temperature control circuit, and non-contact temperature measurement can be performed safely and with high accuracy by preventing overheating.
  • the method of measuring a temperature of an infrared thermometer according to claim 45 of the present application is the method of measuring temperature of an infrared thermometer according to claim 43 of the present application, wherein: The bias temperature is maintained and treated as a specified value, only the thermopile output is detected and converted to a temperature value. The constant bias temperature default value and the temperature value obtained from the thermopile output are compared with the predetermined value.
  • This is a method for measuring the temperature of an infrared thermometer, characterized in that the temperature of the measurement target is obtained by adding the following.
  • a resistor with a self-controlling positive temperature coefficient characteristic is used when measuring the temperature of the measurement target.
  • the cold junction can be maintained at a constant bias temperature, and the rise in the temperature of the junction due to infrared rays emitted from the measurement target can be completely absorbed by the heat sink to cancel out. Therefore, the temperature of the cold junction is constrained and treated as a specified value, and only the temperature change of the hot junction, that is, the output temperature of the thermopile is detected, and the output temperature value of the thermopile and the constant value are detected by the information processing device.
  • the bias temperature specified value By adding the bias temperature specified value, more accurate temperature detection can be performed without detecting the cold junction temperature of the thermopile each time.
  • the method for measuring the temperature of an infrared thermometer according to claim 46 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44 or 45 of the present application.
  • a non-heated cold junction temperature measuring element system that measures the temperature of the cold junction without self-heating the resistor including the self-control type positive temperature coefficient characteristic;
  • the function is divided into a cold junction temperature measuring element region in which the element system is arranged and a heating element system for heating the cold junction region, and the resistor is provided as a resistor including the self-controlling positive temperature coefficient characteristic of the heating element system.
  • a resistor having a planar self-control type positive temperature coefficient characteristic is disposed, and a positive electrode and a negative electrode alternate on the surface of the planar self-control positive temperature coefficient characteristic resistor.
  • a large number of comb-shaped analog thermostats acting in the horizontal direction are arranged at the same time, and the heating element heats the cold junction temperature measuring element region and the cold junction region so that the self-saturation stable temperature is maintained at a constant temperature. While maintaining the horizontal action of the comb A log Thermos Yu' up by the temperature measuring method of the infrared thermometer, characterized in that a partial temperature change of a thermal device region measuring the cold junction and a cold junction region analog continuous correction.
  • the method for measuring the temperature of an infrared thermometer according to claim 47 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44 or claim 45 of the present application.
  • a non-heated cold junction temperature measuring element system that measures the temperature of the cold junction without self-heating the resistor containing the characteristics, and a cold junction where the cold junction temperature measuring element system is arranged by self-heating.
  • the heating element system for heating the temperature measuring element region and the cold junction region is functionally divided, and the heating element system has a predetermined thickness as a resistor having a self-controllable positive temperature coefficient characteristic of the gun.
  • a resistor including a self-control type positive temperature coefficient characteristic is arranged, and a planar positive electrode and a negative electrode are arranged so as to sandwich the front and back surfaces of the planar self-control type positive temperature coefficient characteristic resistor. It is characterized by the placement of a vertical-acting analog thermostat A temperature measuring method of the infrared thermometer to.
  • the temperature measuring method for an infrared thermometer according to claim 48 of the present application is the method for measuring temperature of an infrared thermometer according to claim 43 of the present application, wherein the heating element system is heated to form a cold junction area.
  • the thermopile output voltage value is reduced functionally with respect to the heating element system heating time, and the zero point of the thermopile output voltage is forcibly passed.
  • the phase inversion between the positive and negative voltage values is detected, and the cold junction measurement is performed in synchronization with the phase inversion.
  • This is a method for measuring the temperature of an infrared thermometer, which is characterized by measuring the temperature of a measurement target by detecting the temperature of a cold junction region by a temperature element.
  • the cold junction is forcibly and unilaterally heated by the heating element system, so that the conventional problems, that is, the problem relating to the delay in thermal response speed to changes in ambient temperature and the problem relating to the “temperature coefficient of sensitivity” are one. There is an effect that cutting does not occur.
  • control is performed so that the zero point of the thermopile output voltage value is forcibly passed. Thereby, the measurement time can be significantly reduced.
  • the heating element heats the cold junction area and the cold junction temperature measuring element to a predetermined bias temperature in advance, and the resistance change of the cold junction temperature measuring element measures the temperature of the hot junction area due to infrared energy from the measurement target. Since only the rise is achieved, the thermal response speed becomes extremely fast, and can be synchronized as much as possible with the temperature change in the cold junction region.
  • the method for measuring the temperature of an infrared thermometer according to claim 49 of the present application is the method for measuring temperature of an infrared thermometer according to claim 43 of the present application, wherein the heating element system is heated to form a cold junction area.
  • the temperature of the heating element system is increased by one-sided and forced to reduce the thermo-modal output voltage value functionally with respect to the heating element system heating time.
  • the thermopile output voltage is forcibly passed with respect to the voltage threshold value, and the phase inversion of the thermopile output voltage with respect to the voltage threshold value is detected.
  • the cold junction is measured by the cold junction temperature measuring element.
  • This is a method for measuring the temperature of an infrared thermometer, characterized by measuring the temperature of a measurement target by detecting the temperature of a part area.
  • the voltage threshold is forcibly passed without being influenced by the ambient temperature change, and the measuring time can be greatly reduced.
  • the resistance change of the cold junction temperature measuring element can be measured from the moment of measurement by heating the cold junction area and the cold junction temperature measuring element to a constant bias temperature by the heating element in advance. Since only the temperature rise in the hot junction region due to the infrared energy is obtained, the thermal response speed becomes extremely fast, and it can be synchronized as much as possible with the temperature change in the cold junction region. That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
  • the temperature measuring method for an infrared thermometer according to the fiftyth aspect of the present invention is the method for measuring a temperature of an infrared thermometer according to the fifty-eighth aspect of the present invention, wherein the temperature of the cold junction region is changed.
  • the phase detector determines whether or not the thermopile output voltage value of the thermopile output has inverted between the voltage value positive / negative regions, and generates a two-bit digital signal of “presence” or “absence”.
  • the temperature of the cold junction area is detected by detecting the temperature of the cold junction temperature sensor in synchronization with the digital signal. This is a method for measuring the temperature of an infrared thermometer, wherein the temperature is detected.
  • the method for measuring the temperature of an infrared thermometer according to claim 51 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 49 of the present application, except that the temperature of the cold junction region is changed.
  • the phase detector determines whether or not the thermopile output voltage value has inverted the phase with respect to the voltage threshold value that becomes the reference voltage value, and determines whether the phase inversion is a two-bit digital signal of “present” or “absent”.
  • This is a temperature measuring method for an infrared thermometer, which detects a temperature of a cold junction region by detecting a temperature of a cold junction temperature measuring element in synchronization with the two-bit digital signal.
  • the voltage threshold is defined as a positive region of a thermopile output voltage value. This is a method for measuring the temperature of an infrared thermometer, wherein one is set for each negative region and a pair of voltage thresholds is set.
  • the temperature measuring method for an infrared thermometer according to claim 53 of the present application is the temperature measuring method for an infrared thermometer according to claim 49 of the present application, wherein the voltage threshold is defined as a positive region of a thermopile output voltage value.
  • This is a method for measuring the temperature of an infrared thermometer, comprising providing a plurality of pairs of voltage thresholds, one set for each negative region.
  • the number of measuring points can be further increased, so that the measuring accuracy is improved.
  • the temperature measuring method for an infrared thermometer according to claim 54 of the present application the temperature measuring method for an infrared thermometer according to claim 53 or 53 of the present application, This is a method for measuring the temperature of an infrared thermometer, wherein the absolute value of the voltage threshold in the positive region and the absolute value of the voltage threshold in the negative region are equal.
  • the average value of the measured value obtained in synchronization with the phase inversion with respect to the voltage threshold in the positive region and the measurement value obtained in synchronization with the phase inversion with respect to the voltage threshold in the negative region is calculated. It can be obtained as the temperature of the measurement one night. In other words, highly accurate measurement can be performed by simple arithmetic processing.
  • the temperature measuring method of the infrared thermometer according to the 55th claim of the present application is the temperature measuring method of the infrared thermometer according to the 48th or 49th claim of the present application.
  • the system is separated into a steady temperature system gun that generates heat and is maintained at a constant temperature, and a variable temperature system that varies the temperature within a certain temperature range.
  • a temperature measurement method for an infrared thermometer, wherein the temperature is maintained at a constant temperature, and the variable temperature system unilaterally and forcibly changes the temperature of a cold junction area after the start of temperature measurement.
  • the cold junction region and the cold junction temperature measuring element are preliminarily heated to a constant Piase temperature by a steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise of the hot junction due to infrared energy from the measurement target, its thermal response speed is extremely fast, and the temperature of the cold junction region It can be synchronized as much as possible with changes.
  • the temperature measuring method of the infrared thermometer according to claim 56 of the present application is the temperature measuring method of infrared thermometer according to claim 44 of the present application, wherein the self-controlling positive temperature coefficient characteristic is used as the heating element system.
  • a temperature measuring method for an infrared thermometer comprising: disposing a resistor including the following, and disposing a thermometer element as the temperature measuring element system.
  • the method for measuring the temperature of the infrared thermometer according to claim 57 of the present application is as follows. 45. The method of measuring a temperature of an infrared thermometer according to claim 45, wherein a resistor having a self-controlling positive temperature coefficient characteristic is arranged as the heating element system, and a thermometer is used as the temperature measuring element system. The temperature measuring method for an infrared thermometer according to claim 45, wherein a temperature measuring element is provided.
  • the method of measuring a temperature of an infrared thermometer according to claim 58 of the present application is the method of measuring temperature of an infrared thermometer according to claim 48 of the present application, wherein the heat is generated.
  • a temperature measuring method for an infrared thermometer comprising disposing a resistor having characteristics and disposing a thermometer for measuring temperature as a temperature measuring element system.
  • the temperature measuring method for an infrared thermometer according to claim 59 of the present application is the temperature measuring method for infrared thermometer according to claim 49 of the present application, wherein the self-controlling positive temperature coefficient characteristic is used as the heating element system.
  • a temperature measuring method for an infrared thermometer comprising: disposing a resistor including the following, and disposing a thermometer element as the temperature measuring element system.
  • the infrared thermometer according to the 60th aspect of the present invention is the infrared thermometer according to the 58th to 61st aspects of the present invention.
  • NTC Negative Temperature Coefficient
  • the method for measuring the temperature of an infrared thermometer according to claim 61 of the present application is the method for measuring temperature of an infrared thermometer according to claims 58 to 61 of the present application, This is a method for measuring the temperature of an infrared thermometer, using a PTC (Positive Temperature Coefficient) resistor as an element.
  • PTC Positive Temperature Coefficient
  • thermocouple sensor is heated at a constant temperature of the saturation self-stabilization temperature, so that the constant junction bias temperature of the cold junction of the thermopile sensor is pre-applied.
  • the resistor including the self-control type positive temperature coefficient characteristic As a result, it is possible to detect an accurate temperature independent of the ambient temperature. Also, without adding a safety device and a separate temperature detection device, overheating of the thermopile can be prevented, and a highly safe thermopile sensor can be provided.
  • the method for measuring the temperature of an infrared thermometer according to claim 62 of the present application is the method for measuring temperature of an infrared thermometer according to claim 44, 45, 48 or 48 or 49 of the present application.
  • a semiconductor heating element is arranged as the heating element system, and a resistor having a self-controlling positive temperature coefficient characteristic is arranged as the cold junction temperature measuring element system.
  • a transistor, a diode, or the like is used as the semiconductor element.
  • heat is generated to heat the cold junction region.
  • the cold junction region generated in response to the temperature of the cold junction region is measured.
  • the temperature of the cold junction can be detected by directly detecting the change in the self-resistance of the resistor including the self-control type positive temperature coefficient characteristic of the temperature element system and converting it to a temperature.
  • a structure is used in which a resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element system is thermally connected directly to the cold junction, and the output of the thermopile sensor and the thermal response speed are synchronized as much as possible. By doing so, a highly reliable infrared thermometer with a small measurement error can be provided.
  • the method for measuring the temperature of an infrared thermometer according to claim 63 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44, 45 or 48 or 49 of the present application.
  • An infrared thermometer wherein a resistor having a self-controlling positive temperature coefficient characteristic is separated into a heating element system for generating heat by applying a predetermined voltage and a cold junction temperature measuring element system. This is the temperature measurement method.
  • the resistor including the self-control type positive temperature coefficient characteristic of the heating element system when a predetermined voltage is applied to heat the cold junction region, the cold junction region is heated at a constant temperature of the saturation self-stabilization temperature.
  • the cold junction of a single mopile sensor is in a state in which a predetermined constant bias temperature is applied in advance, and the ambient temperature change below the set temperature is detected by the resistor including the self-control type positive temperature coefficient characteristic. It adjusts its own temperature and absorbs changes in temperature. As a result, it is possible to detect an accurate temperature independent of the ambient temperature. In addition, an overheating accident of the infrared thermometer can be prevented without adding a safety device and a separate temperature detection device.
  • the resistor including the self-controlling positive temperature coefficient characteristic of the heating element system due to the resistor including the self-controlling positive temperature coefficient characteristic of the heating element system, the fixed junction temperature of the thermopile sensor was pre-applied to the preset fixed temperature, so the ambient temperature changed rapidly. Even in the case, the resistor including the self-control type positive temperature coefficient characteristic absorbs the temperature change by self-controlling the ambient temperature change below the set temperature, and as a result, the cold junction temperature is maintained at a constant temperature .
  • the infrared energy of the measurement target is converted into heat by the infrared absorber of the thermopile sensor, and the temperature of the hot junction is instantly measured.
  • the temperature of the cold junction is directly detected by detecting the self-resistance change of the resistor including the self-control positive temperature coefficient characteristic of the cold junction temperature measuring element system generated in response to the temperature of the cold junction, and converting it to temperature. Can be accurately detected.
  • the temperature measuring element system has a structure in which a resistor including the self-controlling positive temperature coefficient characteristic is thermally connected directly to the cold junction region.
  • a resistor including the self-controlling positive temperature coefficient characteristic is thermally connected directly to the cold junction region.
  • self-control is performed when measuring the temperature of the measurement target.
  • the cold junction is maintained at a constant pipe temperature by a resistor having a positive temperature coefficient characteristic, and the temperature of the junction is increased by infrared radiation radiated from the measurement gate.
  • the heat can be completely absorbed and offset. Therefore, the cold junction temperature is constrained and treated as a specified value, and only the temperature change of the hot junction, that is, the output temperature of the thermopile, is detected.
  • the cold junction is forcibly and unilaterally heated by a resistor including a self-controlling positive temperature coefficient characteristic of the heating element system, and the thermopile output voltage value is reduced as a function of the thermopile output voltage.
  • the thermopile output voltage value is reduced as a function of the thermopile output voltage.
  • the method for measuring the temperature of an infrared thermometer according to claim 64 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44, 45 or 48 or 49 of the present application.
  • a system consisting of a plurality of resistors electrically insulated between elements and including a self-controlling positive temperature coefficient characteristic with the same resistance characteristic is incorporated in multiple systems so as to be thermally connected directly to the cold junction region. This is a method for measuring the temperature of an infrared thermometer, in which different voltages are applied from the outside of the thermopile to generate different heating temperatures for each system in the cold junction area.
  • the method for measuring the temperature of an infrared thermometer according to claim 65 of the present application is the method for measuring temperature of an infrared thermometer according to claim 44, 45, 48 or 48 or 49 of the present application.
  • a plurality of systems consisting of resistors with self-controlling positive temperature coefficient characteristics with different resistance characteristics electrically insulated from each other are incorporated so as to be thermally connected directly to the cold junction area. Thermo This is a method for measuring the temperature of an infrared thermometer, wherein the same voltage is applied from the outside of the pile to generate a different heat generation temperature for each system in the cold junction.
  • the method for measuring the temperature of an infrared thermometer according to claim 66 of the present application is the method for measuring temperature of an infrared thermometer according to claim 44, 45, 48 or 48 or 49 of the present application.
  • a system is created by combining a plurality of pairs of two resistors that include self-controlling positive temperature coefficient characteristics with different resistance characteristics that are electrically insulated between elements, and these are thermally connected to the cold junction region.
  • a method for measuring the temperature of an infrared thermometer characterized by incorporating a plurality of systems so as to be directly connected, applying the same voltage to the outside of the thermopile, and generating a different heat generation temperature for each system at a cold junction. It is.
  • the resistors including the self-controlling positive temperature coefficient characteristic are heated for each system by arranging a plurality of resistors or a plurality of pairs including the self-controlling positive temperature coefficient characteristic, so that fine temperature control is performed. Is possible.
  • the resistors including the self-controlling positive temperature coefficient characteristic of the heating system and the temperature measuring element system are all safe because they are not overheated beyond a certain temperature.
  • the method for measuring the temperature of an infrared thermometer according to claim 67 of the present application is the same as the method for measuring temperature of infrared thermometer according to claim 48 or 49 of the present application, except that the heating element is different.
  • the cold junction region and the cold junction region are formed by a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C).
  • the temperature measuring element is heated in advance to a constant bias temperature (34 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C).
  • the temperature of the eardrum can be measured by variably heating the resistor within a certain temperature range (for example, 34 to 42 ° C).
  • the resistive antibody having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is close to the eardrum temperature has a constant self-saturation stable temperature (34 ° C) regardless of the surrounding temperature change. This will prevent overheating accidents.
  • resistors with self-regulating positive temperature coefficient characteristics, whose self-stable saturation temperature is higher than the eardrum temperature are variable-heated. Even if the temperature rises, it will not be heated above the self-saturation stable temperature (50 ° C), preventing an overheating accident.
  • the method for measuring the temperature of an infrared thermometer according to claim 68 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44, 45, 48 or 48 or 49 of the present application.
  • a blackbody furnace with a plurality of different temperatures is installed as a reference temperature, and the infrared thermometer measures the temperature sequentially for the different temperatures of the blackbody furnace, and the unique temperature measurement result based on the individual difference of the infrared thermometer is obtained. Then, it is stored in a storage device provided inside the infrared thermometer, and thereafter, a specific program based on the black body furnace reference temperature data stored in the storage device is executed by a CPU program provided inside the infrared thermometer.
  • the temperature measurement data is created as discontinuous plot temperature characteristics, and the plot characteristic processing between plots is performed sequentially using the plot data before and after each plot between each plot.
  • Curve between plots The temperature characteristics of the free-curve that continuously connects the cows are used as the reference for the unique temperature characteristics of the infrared thermometer, and are stored in a storage device provided inside the infrared thermometer. This is a method for measuring the temperature of an infrared thermometer, which is characterized by automatically calibrating individual differences between the thermometers. With this configuration, it is possible to store in advance the inherent characteristics of the thermopile sensor and the infrared thermometer incorporating the same in the device, and to perform highly accurate measurement with little error.
  • FIG. 1 is a partially cutaway perspective view of an infrared thermometer according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of an infrared detector in the infrared thermometer according to the first embodiment of the present invention.
  • FIG. 3 is a top view and a sectional view of a main part of an internal structure in the thermopile sensor of the infrared thermometer according to the first embodiment of the present invention.
  • FIG. 4 is a top view of a thermopile portion in the thermopile sensor of the infrared thermometer according to the first embodiment of the present invention.
  • FIG. 5 is a top view of a main part of an internal structure in the thermopile sensor of the infrared thermometer according to the first embodiment of the present invention.
  • FIG. 6 is a graph showing characteristics of a resistor including a self-control type positive temperature coefficient characteristic used in the infrared thermometer according to the first embodiment of the present invention.
  • FIG. 7 is a block diagram showing an infrared thermometer according to the first embodiment of the present invention.
  • FIG. 8 is a top view and a sectional view of a main part of an internal structure in a thermopile sensor of an infrared thermometer according to a third embodiment of the present invention.
  • FIG. 9 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of an infrared thermometer according to a fourth embodiment of the present invention.
  • FIG. 10 is a top view and a sectional view of a main part of an internal structure in a thermopile sensor of an infrared thermometer according to a fifth embodiment of the present invention.
  • FIG. 11 is a schematic diagram showing the principle of temperature measurement in the infrared thermometer shown in FIG.
  • FIG. 12 is a top view and a sectional view of a main part of an internal structure in a thermopile sensor of an infrared thermometer according to a sixth embodiment of the present invention.
  • FIG. 13 is a block diagram showing an infrared thermometer according to a seventh embodiment of the present invention.
  • FIG. 14 is a flowchart of a temperature measuring method in the infrared thermometer shown in FIG.
  • FIG. 15 is a diagram showing a via of the infrared thermometer according to the seventh embodiment of the present invention.
  • 6 is a time-temperature curve showing a method of controlling the temperature of the thermopile sensor at the temperature of the thermopile.
  • FIG. 16 is a time-temperature curve showing a method of controlling the temperature of the thermopile sensor in the temperature measurement by the infrared thermometer according to the seventh embodiment of the present invention.
  • FIG. 17 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of an infrared thermometer according to an eighth embodiment of the present invention.
  • FIG. 18 is a top view and a sectional view of a main part of an internal structure in a thermopile sensor of an infrared thermometer according to a ninth embodiment of the present invention.
  • FIG. 19 is a sectional view of a thermopile sensor in a conventional infrared thermometer.
  • FIG. 20 is a top view of a thermopile sensor in a conventional infrared thermometer.
  • FIG. 21 is a top view showing the inner surface of a thermopile sensor in a conventional infrared thermometer.
  • FIG. 1 shows an ear thermometer as an infrared thermometer according to the first embodiment of the present invention.
  • the ear thermometer 1 is composed of a main body case 2, an infrared detecting section 3 and a temperature measuring circuit section 4 housed in the main body case 2.
  • the infrared ray detector 3 has a waveguide 5 and a thermopile sensor 6, the temperature measurement circuit 4 has a printed circuit board 7, a switch 8, and a display device 9.
  • Each element such as an information processing device required for temperature measurement is incorporated.
  • the infrared detecting section 3 and the temperature measuring circuit section 4 are incorporated and fixed in a plate-shaped hybrid board 10 as shown in FIG.
  • a waveguide 5, a thermopile sensor 6, and a printed board 7 are mounted on the hybrid board 10.
  • the nozzle 11 at the tip of the main body case 2 is formed so as to become thinner toward the tip so as not to penetrate deeply into the ear canal.
  • the infrared detecting section 3 is disposed at the tip of the main body case 2 and detects infrared rays incident on the hole provided at the tip of the nozzle 11.
  • the infrared detector 3 is radiated from the eardrum as shown in Figs. 1 and 2.
  • FIGS. 3 and 4 main parts of the internal structure of the thermopile sensor 6 are shown in FIGS. 3 and 4.
  • FIG. 3 main parts of the internal structure of the thermopile sensor 6 are shown in FIGS. 3 and 4.
  • a heat sink 12 made of silicon and having a pit portion 13 in the center and having a thickness of about several hundreds of microns has a heat insulating property on the upper and lower surfaces.
  • the joint support film 14 and the insulating thin film 32 are formed.
  • the hot-junction support film 14 is formed of silicon oxide, silicon nitride, or the like, and has a thickness of about several microns for the purpose of reducing heat capacity.
  • thermocouple materials 15 and second thermocouple materials 16 are alternately wired from the upper surface of the heat sink 12 to the upper surface of the hot junction supporting film 14.
  • the cold junction 17 and the hot junction support film 14 are formed on the upper surface to form the hot junction 18, respectively.
  • a thermopile 19 is formed by connecting the pairs in series. Output terminals 20 are provided at both ends of the thermopile 19.
  • the hot junction 18 has its upper surface covered with an infrared absorber 21.
  • the thermopile 19 may be formed in a shape as shown in FIG. 5, and the thermal junction 18 may not be covered with the infrared absorber.
  • the area where the cold junction 17 is formed is referred to as a cold junction area 22 and the area where the hot junction 18 is formed is referred to as a hot junction area 23.
  • This name is used according to As shown in FIG. 3, on the upper surface of the heat sink 12, a heating element 24 made of a resistor having a self-controlling positive temperature coefficient characteristic and a resistor also having a self-controlling positive temperature coefficient characteristic are formed.
  • the cold junction temperature measuring element 25 is arranged outside the four sides of the cold junction area 22 when viewed from the center of the diaphragm 26, and the cold junction temperature measuring element 25 and the heating element 24 are arranged in this order. I have.
  • the heating elements 24 and the cold junction temperature measuring elements 25 are electrically connected to each other, and electrodes 27 and 28 made of Au or the like are formed at both ends.
  • the region where the heating element 24 is formed is referred to as a heating element region 29, a region where the cold junction temperature measuring element 25 is formed, and a ⁇ cold junction temperature measuring element region 30, Hereinafter, this name will be used as necessary.
  • thermopile sensor 6 is fixed to the sensor stem 31 by die-bonding the thermopile sensor 6 to the sensor stem 31 as described above.
  • thermopile sensor 6 a thermal bonding support film 14 made of silicon oxide or silicon nitride and having a thickness of several microns is formed on both surfaces of a silicon pellet or a silicon chip or a silicon wafer to be a heat sink 12 by a CVD device or the like.
  • the surface of the heat sink 12 is made of a dissimilar metal (the first thermocouple material 15 and the second thermocouple material 16), and these are connected in series to form the cold junction 17 and the hot junction 18
  • thermopile having Examples of the combination of the first thermocouple material 15 and the second thermocouple material 16 forming the thermopile 19 include polysilicon and aluminum, or bismuth and antimony.
  • a resistor including a self-controlling positive temperature coefficient characteristic of the heating element 24 and the cold junction temperature measuring element 25 is formed on the surface of the heat sink 12 by vapor deposition. They can also be formed by a first bake. Alternatively, it may be formed by planar printing.
  • thermo-modal sensor 6 is completed.
  • the resistor including the self-control type positive temperature coefficient characteristic is the resistance-temperature characteristic graph in Fig. 6.
  • the heating element has the property that its electrical resistance increases as the temperature of the heating element rises due to energization.
  • resistors with self-regulating positive temperature characteristics have the property that the electrical resistance increases rapidly at a certain temperature (self-saturation stable temperature).
  • self-saturation stable temperature Generally, when a current flows through a resistor, heat is generated.
  • a resistor including a self-controlling positive temperature coefficient characteristic rapidly increases its electric resistance at a self-saturation stable temperature, so that the flowing current is suppressed.
  • the resistor including the self-control type positive temperature coefficient characteristic is maintained at a constant self-saturation stable temperature. That is, the resistor including the self-control type positive temperature coefficient characteristic is a resistor that can control the heating temperature by itself.
  • the conductive resin is a conductive resin made of conductive rubber, or a material obtained by appropriately mixing a semiconductor with such a conductive resin.
  • the resistor including the self-control type positive temperature coefficient characteristic of the heating element 24 generates heat by applying a predetermined constant voltage to the resistor, thereby maintaining the cold junction region 22 at a constant temperature of the self-saturation stable temperature. Things. Therefore, by using a resistor having a self-control type positive temperature coefficient characteristic having a desired self-saturation stable temperature, the cold junction region can be maintained at a desired temperature.
  • thermopile sensor By pre-biasing the cold junction region 22 to a constant temperature near the measurement target temperature in this way, the voltage output of the thermopile sensor decreases, and as the output increases, the output-temperature The relative output error of the thermopile sensor due to the so-called “temperature coefficient of sensitivity” where the correlation is not linear can be suppressed, and accurate temperature measurement can be performed. .
  • the resistor including the self-control type positive temperature coefficient characteristic is maintained at a constant temperature of the self-saturation stable temperature only by applying a predetermined constant voltage, so that complicated circuits and devices for temperature control are required. It is unnecessary and contributes to cost reduction.
  • the device configuration is simple, failure due to impact or the like is unlikely to occur, and the strength is excellent.
  • resistors with self-regulating positive temperature coefficient characteristics are naturally maintained at a constant temperature and are safe because they do not have to be overheated more than necessary.
  • the cold junction temperature measuring element region 30 and the cold junction region 22 are adjacent to each other and directly thermally connected.
  • the relative output of the thermopile sensor 6, that is, the temperature change of the thermal junction area 23 and the thermal equilibrium with this temperature change The temperature change in the cold junction region 22 is linked in a predetermined physical period. Therefore, the resistor including the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 25 can be synchronized as much as possible with the output of the thermopile sensor 6 in the thermal response speed.
  • thermopile sensor 6 caused by the infrared rays radiated from the measurement target and the temperature of the cold junction area 22 by the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element 25
  • the deviation of the response speed from the temperature measurement is extremely small, the measurement error is small, and accurate measurement results can be obtained.
  • the resistors including the self-controlling positive temperature coefficient characteristics of the heating element 24 and the cold junction temperature measuring element 25 are arranged on the four sides of the cold junction region 22 as shown in FIG.
  • the arrangement is not limited to that shown above.
  • the shape may be a frame shape, or may be a concentric circle or a regular polygon, or a shape obtained by dividing such a circle or regular polygon at a certain angle according to the shape of the thermopile 19.
  • thermopile sensor 6 Next, how the temperature is measured by the thermopile sensor 6 will be described with reference to the block circuit diagram of FIG.
  • thermo pie The sensor 6 outputs a voltage corresponding to the temperature of the measurement target, that is, the difference between the temperature of the hot junction region 23 and the temperature of the cold junction region 22.
  • the amplifier 33 connected to the thermopile sensor 6 amplifies the minute voltage output from the thermopile sensor 6 to a predetermined magnitude.
  • the information processing device 34 connected to the amplifier 33 includes an A / D converter, and the information processing device 34 performs arithmetic processing based on the output signal from the amplifier 33, and cools this value. By adding to the temperature value of the junction area 22, the temperature value of the measurement target can be obtained.
  • the drive IC 35 applies a predetermined voltage to the resistor including the self-controlling positive temperature coefficient characteristic of the heating element 24 in accordance with the heating instruction signal from the information processing device 34. Then, the resistor including the self-controlling positive temperature coefficient characteristic of the heating element 24 is heated to a certain temperature of the self-saturation stable temperature near the temperature of the measurement target, and the cold junction temperature measuring element area 30 and Cold junction area 2 2 is set temperature T. Is maintained at a constant Pierce temperature.
  • the information processing device 34 When the measurement start command is transmitted to the information processing device 34, the information processing device 34 does not generate heat with respect to the resistor including the self-controlled positive temperature coefficient characteristic of the cold junction temperature measuring element 25.
  • the analog voltage obtained by the current flow is amplified by an amplifier 33, converted into a digital signal by an A / D converter built in the information processing device, and arithmetically processed based on the digital signal.
  • the obtained value is added to the temperature value of the cold junction area 2 2 that Detects the temperature of the object to be measured.
  • amplifier 33 the information processing device 34, and the drive IC 35 shown above and in FIG. 7 are arranged on the printed circuit board 7 shown in FIG.
  • the constant temperature bias temperature is set in the cold junction area 22 of the thermopile sensor 6 by the resistor including the self-controlling positive temperature coefficient characteristic of the heating element 24. Since the temperature is pre-applied, the ambient temperature change below the set temperature is self-controlled.
  • the resistor including the positive temperature coefficient characteristic adjusts its own temperature and absorbs the temperature change. Is kept. Therefore cold junction area
  • the self-resistance change of the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element system generated in response to the temperature of 22 is not affected at all by the ambient temperature change. Therefore, the relative output signal of the thermopile sensor 6 and the signal processing from the cold junction temperature measuring element 25 can be processed in exactly the same manner as in the above-mentioned ambient temperature stable state. Temperature can be accurately detected.
  • the temperature control is performed on the heating element 24 by applying the resistor including the self-controlling positive temperature coefficient characteristic to both the heating element 24 and the cold junction temperature measuring element 25. No circuit is required.
  • the temperature of the cold junction region 22 is set by the resistor including the self-control type positive temperature coefficient characteristic of the heating element 24. It is not affected by changes in ambient temperature because it is maintained at a constant bias temperature. Furthermore, since the relative output of the thermopile sensor is compressed, the output error due to “temperature coefficient of sensitivity” is also suppressed, so that the measurement error can be reduced.
  • the resistor including the self-controlling positive temperature coefficient characteristic is safe because it is not overheated above the self-saturation stable temperature.
  • the temperature of the cold junction region 22 is stable at a constant temperature, so that the temperature of the measurement target can be accurately detected.
  • the resistor including the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 25 is thermally directly connected to the cold junction region 22. Furthermore, by measuring the temperature of the measurement target under a constant bias temperature condition excluding the influence of the ambient temperature, the relative output of the thermopile sensor 6, that is, the temperature change of the hot junction area 23 and the thermal equilibrium with this temperature change The temperature change of the cold junction region 22 is linked in a predetermined physical time. Therefore, the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element 25 can be synchronized with the output of the thermopile sensor as much as possible in the thermal response speed. Therefore, accurate and quick temperature measurement becomes possible.
  • the heat sink 12 and the sensor stem 31 to which the heat sink 12 is thermally connected have sufficient heat radiation characteristics so that the self-control positive temperature coefficient
  • the cold junction region 22 is maintained at a constant bias temperature by a resistor including a heat sink, and the temperature rise of the junction due to infrared rays emitted from the measurement target is completely absorbed by the heat sink. Can be offset. Therefore, a constant bias temperature in the cold junction region 22 can be treated as a specified value. That is, by detecting only the thermopile output and converting it to a temperature, the temperature change in the hot junction region 23 is detected, and the information processing device 34 detects the thermopile output temperature value and the constant bias temperature regulation. By adding the values, it becomes possible to obtain the temperature of the measurement target one night. That is, it is possible to more accurately detect the temperature of the cold junction region 22 without detecting the temperature each time.
  • FIG. 8 is a top view and a sectional view of a thermopile sensor in an infrared thermometer according to a third embodiment of the present invention.
  • a heating element 24 made of a resistor having a self-controlling positive temperature coefficient characteristic and a cold junction made of a resistor also having a self-controlling positive temperature coefficient characteristic
  • the temperature measuring element 25 is disposed outside the four sides of the cold junction area 22 when viewed from the center of the diaphragm 26, in the order of the heating element 24 and the cold junction temperature measuring element 25.
  • the heating element region 29 is adjacent to the cold junction region 22 and has a structure directly thermally connected.
  • the resistor including the self-controlling positive temperature coefficient characteristic of the heating element 24 becomes a cold junction region. 2 2 It is possible to heat rapidly and reach a certain temperature (self-saturation stable temperature) in a short time. Therefore, the time required to start the measurement is reduced.
  • FIG. 9 is a top view and a sectional view of a thermopile sensor in an infrared thermometer according to a fourth embodiment of the present invention.
  • a heating element 24 made of a resistor having a self-controlling positive temperature coefficient characteristic, and a cold junction made of a resistor also having a self-controlling positive temperature coefficient characteristic
  • the temperature measuring elements 25 are arranged in a stacked manner.
  • thermopile sensor 6 The manufacturing process of the thermopile sensor 6 will be described. First, a thermal bonding support film 14 made of silicon oxide or silicon nitride with a thickness of several microns is formed on both surfaces of a silicon pellet or silicon chip or silicon wafer to be a heat sink 12 by a CVD device or the like. . Next, the self-controlling positive temperature of the cold junction temperature measuring element 25 is deposited on the thermal junction supporting film 14 on the upper surface side of the heat sink 12 by vapor deposition, paste baking, or sheet printing. A resistor having a coefficient characteristic is formed, and a thermal junction supporting film 14 made of silicon oxide or silicon nitride is formed thereon to a thickness of several microns again by a CVD apparatus or the like.
  • thermocouple material 15 and the second thermocouple material 16 are connected in series to form a heat sink having a cold junction 17 and a hot junction 18.
  • a resistor having a self-controlling positive temperature coefficient characteristic of the heating element 24 is formed on the surface of the heat sink 12 by a vapor deposition method, a paste baking method, or a sheet printing method.
  • the region below the thermopile 19 is partially removed by jet etching. Thereafter, the oxide film is removed by wet etching using hydrofluoric acid or the like, whereby the thermopile sensor 6 is completed.
  • the cold junction area 22 and the cold junction temperature measuring element area 30 are arranged adjacent to each other, and the heating element area 29 and the cold junction temperature measuring element area 30 are adjacent to each other. Are arranged to overlap in the vertical direction.
  • thermopile sensor of the infrared thermometer the heating element region 29 and the cold junction temperature measuring element region 30 are arranged so as to vertically overlap with each other.
  • the film 14 By interposing the film 14, it is electrically insulated and the temperature of the cold junction temperature measuring element region 30 is increased by the heating element.
  • the cold junction region 22 and the cold junction temperature measuring element region 30 are forcibly made dependent on the temperature of 24, they are raised in advance to a certain bias temperature. Therefore, the resistance change of the cold junction temperature measuring element 25 is only the temperature rise of the hot junction area 23 due to the infrared energy from the measurement sample, and the thermal response speed of the cold junction temperature measuring element 25 Becomes extremely fast, and can be synchronized with the output response speed of the thermopile sensor 6.
  • FIG. 10 is a top view and a sectional view of a thermopile sensor in an infrared thermometer according to a fifth embodiment of the present invention.
  • a resistor 36 including a planar self-controlling positive temperature coefficient characteristic as a heating element 24 is provided in both the cold junction region 22 and the cold junction temperature measuring element region 30. It is arranged on the upper surface of.
  • a comb-shaped analog solar panel 39 in which positive electrodes 37 and negative electrodes 38 are alternately arranged is formed.
  • thermopile sensor 6 Next, how the temperature is measured by the thermopile sensor 6 will be described with reference to FIG.
  • the procedure for measuring the temperature when the change in the ambient temperature is within a certain range, that is, in the steady state, is as described in the first embodiment of the present invention.
  • the comb-shaped analog thermos According to step 39, the temperature is corrected as follows. That is, the comb analog thermostat A current flows between the electrode 37 and the negative electrode 38 in accordance with a resistance change caused by a temperature difference between the electrodes.
  • the current between the positive electrode 37 and the negative electrode 38 in the part A due to the resistance change 0 is generated and heat is generated. Then, as the temperature approaches the set temperature, the current 40 decreases due to the resistance change, and becomes almost 0 when the temperature reaches the set temperature.
  • part B near part A, a slight temperature change occurs compared to part A, and a smaller current 41 is generated than in part A, generating heat, and the current 41 reaches the set temperature. At that point, it is almost zero. On the other hand, the current value is almost 0 in the part C maintained at the set temperature. .
  • the comb-shaped analog thermostat 39 generates a current corresponding to the temperature change between the mutual electrodes composed of the large number of positive electrodes 37 and the negative electrodes 38, thereby generating a current around the mutual electrodes. It compensates for the effects of temperature changes. Therefore, fine and precise temperature control is performed locally on both the cold junction area 22 and the cold junction temperature measuring element area 30 to assist the temperature maintenance by the heating element 24 and keep them at a constant temperature. By maintaining the temperature, the accuracy of the temperature measurement can be improved.
  • FIG. 12 is a top view and a cross-sectional view of a thermopile sensor in an infrared thermometer according to a sixth embodiment of the present invention.
  • the resistor 36 including the sheet-like self-control type positive temperature coefficient characteristic is connected to both the cold junction area 22 and the cold junction temperature measuring element area 30. It is arranged on the upper surface of.
  • an analog thermostat 44 composed of a planar positive electrode 42 disposed on the upper surface of the planar self-control type positive temperature coefficient characteristic heating element 36 and a planar negative electrode 43 disposed on the lower surface is provided. Is formed.
  • thermopile sensor 6 the analog thermos sunset 4 Numeral 4 has the same action as the comb analog thermostat unit 39 shown in FIG. That is, the temperature control is locally performed on both the cold junction region 22 and the cold junction temperature measuring element region 30 to assist in maintaining the temperature by the heating element 24, and these are always kept at a constant temperature. By maintaining the temperature, the accuracy of the temperature measurement can be improved.
  • the number of mutual electrodes whose number is limited in the comb-shaped analog thermostat 39 is innumerable on the surface, so that more local non-boundary and Temperature control without positional limitation can be performed.
  • thermopile sensor 6 outputs a voltage dependent on the amount of infrared radiation radiated from the measurement target and the temperature of the cold junction region 22. That is, the thermopile sensor 6 outputs a voltage corresponding to the temperature of the measurement target, that is, the difference between the temperature of the hot junction region 23 and the temperature of the cold junction region 22.
  • the output voltage value is the temperature.
  • thermopile sensor 6 If the temperature of the junction region 23 is higher than the temperature of the cold junction region 22, a positive voltage value is output, and the temperature of the hot junction region 23 is lower than the temperature of the cold junction region 22. In this case, it is output as a negative voltage value. When the temperature of the hot junction region 23 is equal to the temperature of the cold junction region 22, the output of the thermopile sensor 6 becomes zero.
  • the amplifier 33 connected to the thermopile sensor 6 amplifies the minute voltage output from the thermopile sensor 6 to a predetermined magnitude.
  • the phase detector 45 connected to the amplifier 33 determines whether or not the output voltage value of the thermopile sensor 6 amplified by the amplifier 33 has reversed between the voltage value positive / negative regions. It is sent to the information processing device 34 as a two-bit digital signal of “Yes” or “No”.
  • the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element 25 is ⁇ This is a temperature measuring element for measuring the temperature of the junction area 22.It converts the change in self-resistance value into a voltage value, and this voltage value is the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 22. It is amplified by an amplifier 33 connected to a resistor including.
  • the information processing device 34 includes an A / D converter, and the information processing device 34 outputs the output signal from the amplifier 33 in synchronization with the output signal of the phase inversion “yes” from the phase detector 45. The temperature is detected and arithmetic processing is performed to obtain the temperature value of the one-time measurement, which is displayed on the display device 9.
  • Figure 14 shows how the temperature of the measurement target is measured by the temperature measurement circuit described above, using the ear thermometer shown in Fig. 1 with such a thermopile sensor 6 as an example. This will be described in more detail with reference to the flowchart of FIG.
  • the procedure is roughly divided into a measurement preparation stage and a measurement stage. First, the measurement preparation stage will be described.
  • the switch 8 When the switch 8 is turned on, the information processing device 34 operates (1), the output of the cold junction temperature measuring element 25 is input via the amplifier 33, and the temperature is converted by the built-in AZD converter. To obtain the temperature of the cold junction area 22 (2).
  • the drive IC 35 is driven by the information processing device 34 to heat the heating element 24, and the cold junction area 22 and the cold junction temperature measuring element area 30 are set to a constant temperature bias temperature.
  • the bias temperature is appropriately determined, for example, when the thermopile sensor is applied to an ear thermometer and is set at 34 ° C., which is near the eardrum temperature.
  • the heating element 24 is feedback-controlled as shown in FIG.
  • the feedback control which is generally performed to maintain a constant temperature, is problematic in that it takes a long time for the temperature to become constant and that temperature changes are likely to occur due to temperature disturbances. Become.
  • the feedback control performed here is for the purpose of shortening the measurement time by applying the bias temperature to the last, ⁇ Pendular temperature control '' that forcibly fluctuates the temperature within the specified threshold value for the target constant temperature value. (See Figure 15). As described above, if the temperature of the cold junction region 22 and the temperature of the cold junction temperature measuring element region 30 are within the specified threshold region around the set bias temperature, the effect is sufficiently obtained. In other words, it is possible to shorten the time required to reach the bias temperature, and there is no particular problem even if there is a disturbance factor in the temperature unless the influence is very large.
  • the information processing device 34 determines whether or not the temperature of the cold junction region 22 is within the specified threshold region by the output of the cold junction temperature measuring element 25 in this manner. It is determined whether the temperature gradient is within the specified rate of change (that is, the temperature disturbance is within the allowable range) (3). If both the temperature and the rate of change are within the range, then Judgment is made as to whether such a rate of change within the regulation has continued for the prescribed time or more (whether or not a stable state with less disturbance has continued for a certain time or more) (4).
  • a change rate within a specified threshold value with respect to the temperature gradient of the “pendulum temperature control” is stored in advance as a change rate table. Then, the information processing device 34 reads this change rate table (5), compares it with the measured temperature change rate of the cold junction area 22 and finds a matching numerical value (6). The degree of influence due to the disturbance is determined (7), the degree of correction in the measured temperature value is then determined (8), and displayed on the display device 9 (9). As a display method at this time, for example, it is conceivable that the degree of the correction is set in advance as a rank, and the rank is displayed. At this stage, preparation for measurement is completed. It is desirable to indicate this at the same time in 9.
  • the process proceeds to the temperature measurement stage of the measurement target.
  • a thermometer is inserted into the ear canal (10)
  • the temperature is measured by infrared radiation emitted from the eardrum.
  • a notification sound such as a puza
  • the measurement start switch (13) Temperature measurement is started.
  • the output of the cold junction temperature measuring element 25 is input to the information processing unit 34 via the amplifier 33, and the temperature is converted by the built-in A / D converter to the cold junction area.
  • the drive IC 35 is driven by the information processing device 34, and the heating element 24 is rapidly heated, thereby forcibly heating the cold junction area 22 and the cold junction temperature measuring element area 30.
  • an ear-type thermometer heats at a bias temperature between 34 ° C and 42 ° C.
  • the thermopile output voltage value is reduced linearly with a constant gradient with respect to the heating element heating time, so that the zero point of the thermopile output voltage is forcibly passed.
  • Positive and negative voltage value area inversion is unilaterally and forcibly generated for the output.
  • the phase inversion between the voltage value positive / negative regions is detected by the phase detector 45, and is transmitted to the information processing device 34 as a two-bit digital signal of “presence” and “absence”.
  • the information processing device 34 determines from the 2-bit digital signal whether the phase inversion is “present” or “absent” (16).
  • a resistor including a self-controlling positive temperature coefficient characteristic is used as the heating element 24. It is used and maintained at a constant self-saturation stable temperature, and will not be overheated.
  • a resistor with a self-regulating positive temperature coefficient characteristic having a self-saturation stable temperature of 50 ° C prevents overheating accidents without using special safety devices. It is.
  • the output of the cold junction temperature measuring element 24 is input to the information processing device 34 through the amplifier 33 in synchronization with the signal of “presence” of the phase inversion, and is output by the built-in A / D converter. Temperature conversion is performed. Further, the temperature disturbance is corrected to obtain the temperature of the cold junction area 22 (17), and this temperature value is displayed on the display device 9 (18), and the temperature measurement ends.
  • the temperature of the cold junction region 22 obtained in this way is the temperature of the hot junction region 23, that is, the temperature of the measurement gate, and the positive and negative voltage values of the thermopile output voltage value.
  • the cold junction temperature measuring element region 30 and the heating element region 29 are arranged in this order outside the cold junction region 22 when viewed from the center of the diaphragm 26.
  • the order may be the heating element region 29 and the cold junction temperature measuring element region 30.
  • the bias temperature is applied to the cold junction region 22, the constant temperature is reduced in a shorter time. Can be reached.
  • thermopile sensor according to the present embodiment is shown in FIG.
  • This embodiment is characterized in that the heating element 24 is further system-separated into a steady-temperature system heating element 46 and a variable-temperature system heating element 47, as shown in FIG.
  • the cold junction region 22 is maintained at a constant bias temperature by the system heating element 46, and the variable temperature system heating element 47 keeps the temperature of the cold junction region 22 after the temperature measurement starts. And forcibly change it. That is, heating to the bias temperature in the measurement preparation stage and heating in the measurement stage were performed by the single heating element 24 in the first embodiment.
  • the forced heating of the cold junction region 22 is shared between the steady-state temperature system heating element 46 and the variable temperature system heating element 47.
  • Each of these heating elements is composed of a resistor having a self-control type positive temperature coefficient characteristic, and as a resistor having a self-controlling positive temperature coefficient characteristic of the steady temperature type heating element 46, the self-saturation stable temperature is a variable temperature type heating element.
  • a resistor whose temperature is lower than that of the resistor containing the self-control type positive temperature coefficient characteristic of 47.
  • a variable temperature system heating element 4 is used as the steady temperature system heating element 46 using a self-regulating positive temperature coefficient characteristic having a self-saturation stable temperature of 34 ° C of the bias temperature.
  • a resistor including a self-control type positive temperature coefficient characteristic having a self-saturation stable temperature of 50 ° C. is used.
  • the steady temperature system heating element 46 is heated to 34 ° C by applying a specified voltage value in the measurement preparation stage, and then is kept at a constant temperature without being overheated further. Is maintained. Furthermore, even when there is a disturbance factor such as a sudden change in the ambient temperature, the temperature is adjusted and maintained at this temperature. Therefore, the feed pack control as performed in the seventh embodiment is not required, and the apparatus configuration can be simplified, the cost can be reduced, and the strength can be improved.
  • variable heating system heating element 47 is maintained at a bias temperature of 34 ° C. following the heating by the steady temperature system heating element 46 without applying a voltage in the measurement preparation stage. Then, voltage is applied for the first time in the measurement stage, and it is forcibly heated between 34 ° C and 42 ° C.
  • the information processing device 34 determines whether or not the phase inversion is “present” or “absent” based on the 2-bit digital signal, and stops the heating of the variable system heating element 47 when it is determined to be “present”. Send a signal to At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the variable system heating element 47. However, also in this case, the variable system heating element 47
  • the resistor including the control-type positive temperature coefficient characteristic is maintained at a constant temperature of 50 ° C, which is the self-saturation stable temperature, does not rise any more, and overheats without using a special safety device. Accidents are prevented.
  • the order may be the heating element area 29 and the cold junction temperature measuring element area 30.
  • FIG. 18 shows a thermopile sensor section of the infrared thermometer according to the present embodiment.
  • a cold junction temperature measuring element 25 As shown in FIG. 18, a cold junction temperature measuring element 25, a steady temperature system heating element 46, and a variable temperature system heating element 47 are stacked and arranged.
  • thermopile sensor 6 The manufacturing process of the thermopile sensor 6 will be described. First, a thermal bonding portion support film 14 made of silicon oxide or silicon nitride and having a thickness of several microns is formed on both surfaces of a silicon pellet or silicon chip to be a heat sink 12 or a silicon wafer by a CVD apparatus or the like. Next, the self-controlling positive temperature of the cold junction temperature measuring element 25 is deposited on the hot junction support film 14 on the upper surface side of the heat sink 12 by vapor deposition, paste baking, or sheet printing. A resistor having a coefficient characteristic is formed, and a thermal junction supporting film 14 made of silicon oxide or silicon nitride is formed thereon to a thickness of several microns again by a CVD apparatus or the like.
  • thermocouple material 15 and the second thermocouple material 16 are formed on the surface of the heat sink 12 and connected in series to form the cold junction 17 and the hot junction 18.
  • the formed thermopile 19 is formed.
  • a resistor having a self-controlling positive temperature coefficient characteristic of the variable temperature system heating element 47 is formed on the surface of the heat sink 12 by a vapor deposition method, a paste baking method, a sheet printing method, or the like.
  • a thermal bonding support film 14 made of silicon oxide or silicon nitride is formed again to a thickness of several microns by a CVD apparatus or the like.
  • a self-regulating positive temperature control A resistor having numerical characteristics is formed by a vapor deposition method, a paste baking method, a sheet printing method, or the like.
  • the region below the thermopile 19 is removed by jet etching. I do.
  • a thermopile sensor 6 is formed.
  • the cold junction temperature measuring element 25, the steady temperature system heating element 46, and the variable temperature system heating element 47 are stacked and arranged. By interposing the film 14, they are electrically insulated from each other, and exhibit exactly the same operation as the eighth embodiment when measuring the temperature. Moreover, it has the feature that the device configuration is compact.
  • thermopile output voltage is forcibly passed through the zero point of the thermopile output voltage so that the output value of the thermopile decreases linearly with a constant gradient with respect to the heating time of the heating element.
  • the phase inversion between the positive and negative voltage values is detected by a phase detector and sent to the information processing device 34 as a two-bit digital signal of "in” and "no j".
  • thermopile output voltage value serving as a reference voltage value
  • the thermopile output voltage value is forced to decrease temporarily with a constant gradient to this voltage threshold value.
  • the phase detector 45 detects the phase inversion of the thermopile output voltage value with respect to the voltage threshold, and sends it to the information processing device 34 as a two-bit digital signal of “presence” and “absence”.
  • This voltage threshold value is set near the zero point in the positive or negative region of the thermopile output voltage, but is preferably provided in both the positive and negative regions to form a pair of voltage thresholds. The reason is described below.
  • the phase detector 45 sends the information to the information processing device 34 as a 2-bit digital signal of “presence” and “absence” of the phase inversion with respect to the voltage threshold.
  • the information processing device 34 outputs the cold junction temperature measuring element 25 in synchronization with the phase inversion “Yes” signal.
  • the force is input via the amplifier 33, and the temperature is converted by the built-in AZD converter to obtain the temperature of the cold junction region 22.
  • the relational expression between the temperature corresponding to the zero point of the thermopile output voltage value and the temperature corresponding to the voltage threshold is input in advance to the storage device built in the information processing device 34, and this relational expression is obtained.
  • the temperature of the hot junction region 23 that is, the temperature of the measurement target
  • the voltage threshold is provided in both the positive and negative regions of the thermopile voltage output value, the above operation can be performed twice, and therefore, measurement with less error and high accuracy can be performed.
  • the average value of the temperature obtained for each of the voltage thresholds in the positive region and the negative region is obtained.
  • the temperature of the hot junction region 23, that is, the temperature of the measurement target is obtained. Therefore, it is preferable because the arithmetic processing can be simplified and the measurement efficiency can be increased.
  • the infrared thermometer according to the present embodiment is obtained by adding a self-calibration function that configures a measurement error caused by a temperature characteristic unique to the device to the infrared thermometer described in the first to tenth embodiments. .
  • the temperature of a blackbody furnace with multiple reference temperatures is measured for each device.
  • the temperature ranges from 34 ° C, which is the aforementioned bias temperature, to 42.
  • Several reference temperatures are determined in the range of about C, and the temperature is measured sequentially for the blackbody furnace at each of these temperatures.
  • the results of the temperature measurement are stored in a storage device built in the information processing device 34, and the reference temperature is graduated. Furthermore, this information processing device 3 4 A program for interpolating between the data with a curve for each of the data graduated as described above is built in, and the program is converted into a continuous curve by this program and stored in the storage device. The product is shipped when the processing up to is completed. That is, at this stage, a device such as an ear thermometer incorporating a thermopile sensor or a thermopile sensor has a built-in reference continuous curve corresponding to each temperature characteristic.
  • the information processing device 34 When the temperature is measured using a device such as an ear thermometer incorporating the thermopile sensor or the thermopile sensor, the information processing device 34 directly obtains the temperature value of the measurement target based on the above standard continuous curve. By doing so, the inherent error between the devices is self-calibrated, and high-precision measurement can be performed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

The invention relates to an infrared thermometer and a method of measuring temperature with an infrared thermometer. A resistor with self-controlled positive temperature coefficient is arranged at lease either in a heater system for heating the cold junction of a thermopile sensor or in a temperature measurement system for measuring the temperature of the cold junction. The cold junction is maintained at a particular temperature or bias temperature before a temperature measurement begins. For a temperature measurement, the temperature of the cold junction is forcedly raised so that the thermopile output voltage may decrease linearly below zero output or a predetermined threshold. Temperature is measured at the time the thermopile output voltage reaches zero or the threshold.

Description

明細書  Specification
赤外線温度計及び赤外線温度計の温度測定方法 Infrared thermometer and method of measuring temperature of infrared thermometer
技術分野 本発明は赤外線温度計及び赤外線温度計の温度測定方法に関し、 詳し くは測定ターゲッ トから放射される赤外線を感知することにより測定夕 ーゲッ トの温度を測定する赤外線温度計及び、 この赤外線温度計を用い る温度測定方法に関するものである。 TECHNICAL FIELD The present invention relates to an infrared thermometer and a method of measuring the temperature of an infrared thermometer, and more particularly, to an infrared thermometer that measures the temperature of a measurement target by sensing infrared radiation radiated from a measurement target, and an infrared thermometer. The present invention relates to a temperature measuring method using a thermometer.
背景技術 従来から、 赤外線温度計を用いることにより測定夕ーゲッ トから放射 される赤外線を検知して測定夕一ゲッ トの温度を測定することが行われ ている。 例えば、 体温計では近年、 衛生上の理由から口腔内の温度を測 定する舌下型体温計や腋窩の温度を測定する腋窩型体温計等の接触型体 温計よりも、 鼓膜や周辺組織から放射される赤外線を検知することで体 温を測定する非接触型耳式体温計の需要が増大している。 BACKGROUND ART Conventionally, an infrared thermometer has been used to detect infrared radiation emitted from a measurement target to measure the temperature of the measurement target. For example, in recent years, thermometers emit more radiation from the eardrum and surrounding tissues than contact-type thermometers such as a sublingual thermometer that measures the temperature in the oral cavity and an axillary thermometer that measures the temperature of the axilla for hygiene reasons. The demand for non-contact ear thermometers, which measure body temperature by detecting infrared rays, is increasing.
鼓膜は人体の深部に位置し、 外界の温度の影響を受けにくいため、 口 腔内や腋窩等いつた人体の他の部位に比べて体温を正確に測定できるこ とも耳式体温計が注目されている理由の一つである。  Ear-type thermometers are also attracting attention because the eardrum is located deep in the human body and is less susceptible to the effects of external temperature, so it can measure body temperature more accurately than other parts of the human body, such as the oral cavity and axilla. That is one of the reasons.
非接触型体温計には、 一般に測定対象から放射される赤外線を検知す るための非接触型温度センサとして、 焦電型センサ又はサーモパイルセ ンサが使用されている。 焦電型センサは測定対象から放射される赤外線 エネルギを吸収したときの温度変化による焦電体の表面電荷の変化を出 力として検出するセンサである。 焦電型センサは焦電体の温度が変化し たときのみに出力を出すため、 入射赤外線をチヨッビングして断続的に 遮断し連続的な出力を取り出している。 一方、 サ一モパイルセンサは熱 電対を集積回路技術によって堆積し、 直接接続された多数の熱電対によ り、 温接合部と冷接合部との温度差に対する連続的な出力を取り出すセ ンサである。 Non-contact type thermometers generally use a pyroelectric sensor or a thermopile sensor as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured. A pyroelectric sensor is a sensor that detects, as an output, a change in surface charge of a pyroelectric body due to a temperature change when absorbing infrared energy radiated from an object to be measured. Pyroelectric sensors change the temperature of the pyroelectric body. In order to produce an output only when the power is turned on, the incident infrared rays are chopped, intermittently cut off, and a continuous output is taken out. On the other hand, a thermopile sensor is a sensor in which thermocouples are deposited by integrated circuit technology, and a continuous output for the temperature difference between the hot junction and the cold junction is obtained by a large number of directly connected thermocouples. is there.
以下、 従来の赤外線温度計において使用されているサ一モパイルセン ザについて説明する。  Hereinafter, a thermopile sensor used in a conventional infrared thermometer will be described.
従来のサーモパイルセンサとして、 例えば特開平 1 1一 2 5 8 0 5 5 号公報に示されたサーモパイルセンサがある。 かかるサーモパイルセン サを、 第 1 9図乃至第 2 1図において示し、 以下に説明する。  As a conventional thermopile sensor, for example, there is a thermopile sensor disclosed in Japanese Patent Application Laid-Open No. H11-125855. Such a thermopile sensor is shown in FIGS. 19 to 21 and will be described below.
第 1 9図は上記特開平 1 1— 2 5 8 0 5 5号公報に示された従来のサ —モパイルセンサにおいて、 サ一モパイルセンサをセンサステムに実装 後の断面図、 第 2 0図はサーモパイル部分の上面図である。 シリコン基 板からなる熱容量の大きなヒートシンク 1 2の上面中央部にはピッ ト部 1 3が形成されており、 このピッ ト部 1 3の上面には電気的な絶縁性を 有する熱容量の小さな温接合部支持膜 (絶縁薄膜) 1 4が形成されてい o  FIG. 19 is a cross-sectional view of the conventional thermopile sensor shown in the above-mentioned Japanese Patent Application Laid-Open No. 11-25055, after the thermopile sensor is mounted on a sensor stem, and FIG. 20 is a thermopile portion. FIG. A pit portion 13 is formed at the center of the upper surface of the heat sink 12 having a large heat capacity made of a silicon substrate, and the upper surface of the pit portion 13 has a small heat capacity having electrical insulation and a small heat capacity. Part support film (insulating thin film) 14 formed o
ヒートシンク 1 2及び温接合部支持膜 1 4にはヒートシンク 1 2上面 から温接合部支持膜 1 4上面にかけて第一熱電対材料 1 5及び第二熱電 対材料 1 6が交互に多数配線されている。 これら両金属をヒートシンク 1 2上面で接合することにより冷接合部 1 7、 温接合部支持膜 1 4上面 で接合することにより温接合部 1 8がそれそれ形成されており、 このよ うにして熱電対を直列に接続することによりサ一モパイル 1 9が形成さ れている。 さらにサーモパイル 1 9の両端には出力端子 2 0が設けられ ている。 なお温接合部 1 8の上面は赤外線吸収体 2 1によって覆われて いる。 従って、 温接合部 1 8に赤外線が照射されると、 温接合部 1 8に 熱起電力が生じ、 出力端子 2 0からは温接合部 1 8と冷接合部 1 7 との 温度差に応じた起電力が出力される。  A large number of first thermocouple materials 15 and second thermocouple materials 16 are alternately wired on the heat sink 12 and the hot junction supporting film 14 from the upper surface of the heat sink 12 to the upper surface of the hot junction supporting film 14. . By joining these two metals on the upper surface of the heat sink 12, the cold junction 17 and the hot junction support film 14 are joined to form the warm junction 18, respectively. A thermopile 19 is formed by connecting thermocouples in series. Further, output terminals 20 are provided at both ends of the thermopile 19. In addition, the upper surface of the hot junction 18 is covered with the infrared absorber 21. Therefore, when infrared rays are applied to the hot junction 18, a thermoelectromotive force is generated in the hot junction 18, and the output terminal 20 responds to the temperature difference between the hot junction 18 and the cold junction 17. The generated electromotive force is output.
ヒートシンク 1 2の下面全体には絶縁薄膜 3 2が形成されている。 こ の絶縁薄膜 3 2の表面には第 2 1図に示すような薄膜サ一ミス夕 4 8が 形成されており、 薄膜サーミス夕 4 8の両端には引出配線 4 9が設けら れている。 ヒートシンク 1 2は熱容量が大きいので温度変化が小さく、 冷接合部 1 7の温度はヒートシンク 1 2の温度と等しくなる。 従って、 薄膜サ一ミス夕 4 8によりヒートシンク 1 2の温度を測定することによ り、 冷接合部 1 7の温度を測定することができる。 An insulating thin film 32 is formed on the entire lower surface of the heat sink 12. On the surface of the insulating thin film 32, there is a thin film thin film 48 as shown in FIG. The thin-film thermistor 48 has lead wires 49 at both ends. Since the heat sink 12 has a large heat capacity, the temperature change is small, and the temperature of the cold junction 17 is equal to the temperature of the heat sink 12. Therefore, the temperature of the cold junction 17 can be measured by measuring the temperature of the heat sink 12 with the thin film semiconductor 48.
サ一モパイルセンサ 6を実装するためのセンサステム 3 1の上面には、 薄膜サーミス夕 4 8 と対向する領域が一段低くなつて凹部 5 0が形成さ れており、 その両側に図示しない配線パターンが形成されており、 引出 電極 4 9 と接続されている。 .  A recess 50 is formed on the upper surface of the sensor stem 31 for mounting the thermopile sensor 6 so that a region facing the thin-film thermistor 48 becomes lower by one step, and wiring patterns (not shown) are formed on both sides thereof. It is formed and connected to the extraction electrode 49. .
さらに出力端子 2 0に図示しないワイヤボンディ ングを結線し、 サー モパイル 1 9の出力をセンサステム 3 1へと取り出すことができ、 上記 配線パターンから出力回路に配線をつなぎ、 薄膜サーミス夕 4 8の出力 すなわち冷接合部 1 7の温度を取り出すことが可能となる。  Further, by connecting a wire bonding (not shown) to the output terminal 20, the output of the thermopile 19 can be taken out to the sensor stem 31, and the wiring is connected to the output circuit from the above wiring pattern, and the thin film thermistor 48 is connected. The output, that is, the temperature of the cold junction 17 can be taken out.
次に上記特開平 1 1一 2 5 8 0 5 5号公報に示された従来のサーモパ ィルセンサにおける温度測定の原理について以下に説明する。  Next, the principle of temperature measurement in the conventional thermopile sensor disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 11-258555 is described below.
測定夕一ゲッ トから放射された赤外線が温接合部 1 8上に形成された 赤外線吸収体 2 1により吸収されることによって温接合部 1 8 と冷接合 部 1 Ί との間に温度差が生じ、 温度測定用サ一モパイル 1 9の出力端子 2 0の間に起電力が生じる。  The infrared radiation radiated from the measurement target is absorbed by the infrared absorber 21 formed on the hot junction 18 so that the temperature difference between the hot junction 18 and the cold junction 1 がThen, an electromotive force is generated between the output terminals 20 of the thermopile 19 for temperature measurement.
ここで温接合部 1 8の温度を T、冷接合部 1 7の温度を T。 とすると、 温度測定用サ一モパイル 1 9の出力端子 2 0の間に生じる起電力 Vはス テフアン一ボルツマンの法則により、  Here, the temperature of the hot junction 18 is T, and the temperature of the cold junction 17 is T. Then, the electromotive force V generated between the output terminals 20 of the thermopile 19 for temperature measurement is expressed by Stefan-Boltzmann's law.
V = k ( T 4一 T。4 ) ( kは定数) … ( 1 ) と表される。 この起電力 Vのアナログデ一夕を図示しないアナログ/デ ジ夕ル変換器を経由してマイクロコンピュ一夕に送り、 かかるデジタル デ一夕に基づきマイクロコンピュー夕にて' 4乗根演算が行われることで 温接合部 1 8の温度、 すなわち測定夕一ゲッ トの相対温度 Tを知ること ができる。 V = k (T 4 one T. 4) (k is a constant) is represented as (1). The analog data of the electromotive force V is sent to a micro computer via an analog / digital converter (not shown), and based on the digital data, the fourth root operation is performed by the micro computer. As a result, the temperature of the hot junction 18, that is, the relative temperature T of the measurement target can be known.
上記のように、 従来のサーモパイルセンサにおいては冷接合部の温度 を相対温度 Tの基準温度として測定を行うため、 冷接合部の温度を正確 に検出することが重要となる。 上記特開平 1 1一 2 5 8 0 5 5号に示さ れた赤外線サーモパイルセンサにおいては薄膜サ一ミス夕 4 8がヒ一ト シンク 1 2の下面に設けられている。 従って温接合部 1 8に赤外線が照 射されても、 ヒートシンク 1 2が赤外線を透過しない場合には、 ヒート シンク 1 2や温接合部支持膜 1 4によって赤外線が遮断され、 またヒー トシンク 1 2が赤外線に対して透明な場合にも絶縁薄膜 3 2によって赤 外線が遮断される。 すなわち、 薄膜サーミス夕 4 8において赤外線に起 因する起電力は一切生じず、 冷接合部の温度を正確に検出することがで き、 測定における誤差を減少させることができた。 As described above, in the conventional thermopile sensor, the temperature of the cold junction is measured using the temperature of the cold junction as the reference temperature of the relative temperature T, so that the temperature of the cold junction is accurate. It is important to detect In the infrared thermopile sensor disclosed in the above-mentioned Japanese Patent Application Laid-Open No. H11-125855, a thin-film sensor 488 is provided on the lower surface of the heat sink 12. Therefore, if the heat sink 12 does not transmit infrared light even though the thermal junction 18 is irradiated with infrared rays, the heat sink 12 and the thermal junction supporting film 14 block the infrared rays, and the heat sink 12 The infrared light is blocked by the insulating thin film 32 even when the light is transparent to infrared light. That is, no electromotive force caused by infrared light was generated at the thin-film thermistor 48, and the temperature of the cold junction could be accurately detected, thereby reducing errors in measurement.
また、 ヒー トシンク 1 2のサーモパイル形成面と対向する面に薄膜サ —ミス夕 4 8を形成しているので、 サ一モパイル 1 9 と同程度の占有面 積でサ一モパイル 1 9及び薄膜サ一ミス夕 4 8とを配置することができ、 サ一モパイルセンサ 6のチップサイズを小型化することができ、 赤外線 温度計において測定夕ーゲッ ト付近までサーモパイルセンサ 6を近づけ て測定することが可能となり、 正確な測定が可能となる。 さらに、 チッ プサイズを小さくすることができるので、 1枚のシリコンウェハから得 られるチップ個数が増加し、 サ一モパイルセンサ 6及びこれを用いた赤 外線体温計のコス トを安価にすることができる。  In addition, since a thin film layer 48 is formed on the surface of the heat sink 12 opposite to the surface on which the thermopile is formed, the thermopile 19 and the thin film layer are occupied by the same area as the thermopile 19. It is possible to dispose one and a half, so that the chip size of the thermopile sensor 6 can be reduced, and it is possible to measure the infrared thermometer by bringing the thermopile sensor 6 close to the measurement target. However, accurate measurement is possible. Further, since the chip size can be reduced, the number of chips obtained from one silicon wafer increases, and the cost of the thermopile sensor 6 and the infrared thermometer using the same can be reduced.
しかしながら従来のサ一モパイルセンサ又は特開平 1 1一 2 5 8 0 5 5号に示されたサ一モパイルセンサには、 以下に示す問題があった。 第一に、 周囲温度が急激に変化した場合において、 測定値の誤差が大 きかった。 例えば冷所から暖所へと運ばれた直後あるいはその逆の場合 等においては、ヒートシンク 1 2は熱容量が大きくかつセンサステム(金 属ハウジング) 3 1 に熱接続されているため、 周囲温度の変化に追随で きない。 また熱容量の小さな温接合部支持膜 1 4の熱応答速度に対して も追随することができない。  However, the conventional thermopile sensor or the thermopile sensor disclosed in Japanese Patent Application Laid-Open No. 11-255555 has the following problems. First, there was a large error in the measured values when the ambient temperature changed rapidly. For example, immediately after being transported from a cold place to a warm place, or vice versa, the heat sink 12 has a large heat capacity and is thermally connected to the sensor stem (metal housing) 31. Cannot follow. Further, it cannot follow the thermal response speed of the thermal bonding support film 14 having a small heat capacity.
その結果、 相対温度 Tの基準温度となる冷接合部 1 7の温度 T。は周 囲温度と異なる状態、 あるいは周囲温度と平衡状態になるまで変動しつ づける過渡的状態となり、 サ一モパイルセンサから出力される相対温度 Tが非安定状態となって測定対象の温度を正確かつ安定に検出すること が困難となる。 すなわちサーモパイル 1 9に生じる相対起電力は、 測定 対象からの赤外線吸収によって生じる温接合部支持膜 1 4 上に設置され た赤外線吸収体 2 1の温度及び温接合部支持膜 1 4自体の温度に依存す る温接合部温度と、 ヒ一トシンク 1 2の上面温度に依存する冷接合部温 度との温度差とに起因する起電力を発生するため、 ヒートシンク 1 2の 上面温度が安定していない場合、 測定誤差を生じやすかつた。 As a result, the temperature T of the cold junction 17 becomes the reference temperature of the relative temperature T. Is in a state different from the ambient temperature or in a transient state that fluctuates until it reaches an equilibrium state with the ambient temperature.The relative temperature T output from the thermopile sensor becomes an unstable state, and the temperature of the object to be measured is accurately and accurately measured. Stable detection Becomes difficult. That is, the relative electromotive force generated in the thermopile 19 depends on the temperature of the infrared absorber 21 installed on the hot-junction support film 14 and the temperature of the hot-junction support film 14 itself, which is generated by the infrared absorption from the object to be measured. The temperature difference between the hot junction temperature that depends on the temperature of the heat sink 12 and the cold junction temperature that depends on the temperature of the upper surface of the heat sink 12 generates an electromotive force. Otherwise, measurement errors are likely to occur.
第二に、 サーモパイルセンサ自体の温度特性に起因する測定誤差が発 生する点である。 すなわち、 サ一モパイルセンサは上述のように温接合 部と冷接合部との温度差に対する相対的出力を取り出すセンサであるが、 温接合部と冷接合部との温度差が大きいほど出力一温度の相関関係が直 線的ではなくなるいわゆる 「感度の温度係数」 による相対出力誤差が一 般的に 0 . 2〜 0 . 4 % /°Cの割合で生じるため、 測定誤差を生じやす かった。  Second, a measurement error occurs due to the temperature characteristics of the thermopile sensor itself. That is, the thermopile sensor is a sensor that takes out the relative output with respect to the temperature difference between the hot junction and the cold junction as described above, but as the temperature difference between the hot junction and the cold junction increases, the output-one temperature decreases. Relative output errors due to the so-called “temperature coefficient of sensitivity” in which the correlation is not linear are generally generated at a rate of 0.2 to 0.4% / ° C, so measurement errors are likely to occur.
第三に、 サーモパイルは冷接合部の温度を基準とした相対起電力を出 力するセンサであるが、 冷接合部自体の温度を測定しこの冷接合部温度 をサ一モパイル出力温度と加算しなければ測定夕一ゲッ トの温度を知る ことができない。 しかしながら冷接合部温度はヒ一卜シンクの温度に依 存しており冷接合部測温素子である薄膜サ一ミス夕の設置位置によって は冷接合部温度を正確に測定できない場合があった。  Third, a thermopile is a sensor that outputs a relative electromotive force based on the temperature of the cold junction, but measures the temperature of the cold junction itself and adds this cold junction temperature to the output temperature of the thermopile. Without it, you cannot know the temperature of the target in the evening. However, the temperature of the cold junction depends on the temperature of the heat sink, and it may not be possible to accurately measure the temperature of the cold junction depending on the installation position of the thin-film sensor, which is a cold junction temperature measuring element.
上記特開平 11一 2 5 8 0 5 5号に開示された実施形態において、数百 ミクロン厚さのシリコン基板ヒ一トシンク 1 2は、 その下面部がセンサ ステム 3 1に熱結合され、 上面部が冷接合部に熱結合される。 ヒートシ ンク 1 2自体はシリコンで構成されているため例えば銅等の金属材料ほ どの熱伝導性がなく、 しかも数百ミクロン厚みがあるため下面部と上面 部は熱等価といえず、 両面間には温度勾配が存在する。 従ってヒ一トシ ンク 1 2の下面部に設置された冷接合部温度測定用の薄膜サ一ミス夕 4 8は、 ヒートシンク 1 2の上面部に設置された冷接合部の温度を正確に 測定できず、 サ一モパイルセンサの周囲温度が急変した場合測定誤差を 生じやすかつた。  In the embodiment disclosed in the above-mentioned Japanese Patent Application Laid-Open No. H11-258055, a silicon substrate heat sink 12 having a thickness of several hundreds of microns is thermally coupled at its lower surface to the sensor stem 31 and at its upper surface. Is thermally coupled to the cold joint. Since the heat sink 12 itself is made of silicon, it does not have thermal conductivity as much as a metal material such as copper, and has a thickness of several hundred microns, so that the lower surface and the upper surface cannot be said to be heat equivalent. Has a temperature gradient. Therefore, the thin film thermostat 48 for measuring the temperature of the cold junction installed on the lower surface of the heat sink 12 can accurately measure the temperature of the cold junction installed on the upper surface of the heat sink 12. However, if the ambient temperature of the thermopile sensor suddenly changes, measurement errors are likely to occur.
さらにセンサステム (金属ハウジング) 3 1とヒートシンク 1 2下面 部のダイボンデング熱結合部における熱伝達損失もあり、 周囲温度の変 化がヒートシンク 1 2に直接反映されないため、 薄膜サ一ミス夕 4 8は 熱容量の小さな温接合部支持膜 1 4上の温接合部温度変化速度に追随で きなかった。 すなわち熱時定数が小さい温接合部の熱応答速度は早く、 これに対して冷接合部の熱応答速度は熱時定数が大きいヒートシンクに 依存しているため遅く、 サーモパイル出力の温度応答速度と冷接合部の 温度応答速度との間に時間差が発生していた。 この時間差は、 周囲温度 が安定している場合、 ゆっく りと変化している場合、 及び急激に変化し ている場合の各状況において変動するため、 サ一モパイルセンサの相対 出力温度と冷接合部基準温度をリアルタイムに加算する方式において、 同一測定夕ーゲッ トの温度を測定しているにもかかわらず周囲温度の変 化状況によって測定結果に温度差が発生する原因となっていた。 Sensor stem (metal housing) 3 1 and heat sink 1 2 There is also a heat transfer loss at the die-bonding thermal coupling part of the part, and changes in the ambient temperature are not directly reflected on the heat sink 12. Could not follow the temperature change rate of the part. That is, the thermal response speed of the hot junction having a small thermal time constant is fast, whereas the thermal response speed of the cold junction is low because it depends on the heat sink having a large thermal time constant. There was a time difference between the temperature response speed of the joint and the temperature response speed. This time difference fluctuates when the ambient temperature is stable, slowly changing, and rapidly changing, so that the relative output temperature of the thermopile sensor and the cold junction In the method of adding the reference temperature in real time, even though the temperature of the same measurement target was measured, a change in the ambient temperature caused a temperature difference in the measurement result.
本発明は上記従来技術における問題点を解決し、 温度測定時における 測定精度の向上を図り、 かつ部品点数が少なく安価で耐久性のある赤外 線温度計を提供することを目的とする。  SUMMARY OF THE INVENTION It is an object of the present invention to provide an infrared thermometer which solves the above-mentioned problems in the prior art, improves the measurement accuracy at the time of temperature measurement, has a small number of parts, and is inexpensive and durable.
発明の開示 Disclosure of the invention
以上の課題を解決するために提供する本願第 1の請求項にかかる赤外 線温度計は、 自己制御型正温度係数特性を含む抵抗体を内部に有するサ —モパイルセンサを組込んでなることを特徴とする赤外線温度計である < 自己制御型正温度係数特性を含む抵抗体は、 通電によって発熱体の温 度が上昇するに伴い発熱体の電気抵抗が増大する性質を有しているため, 電流が抑制されて飽和自己安定温度の一定温度に維持される特徴を有す る。 The infrared thermometer according to the first aspect of the present invention, which is provided to solve the above-described problem, includes a thermopile sensor having a resistor having a self-controlling positive temperature coefficient characteristic therein. The characteristic of the infrared thermometer is that the resistor with self-control type positive temperature coefficient characteristic has the property that the electrical resistance of the heating element increases as the temperature of the heating element rises due to energization. It has the feature that the current is suppressed and it is maintained at a constant temperature of the saturation self-stabilization temperature.
従って、 サーモパイルセンサにおいて、 これを所要温度に維持する自 3制御型正温度係数特性を含む抵抗体を有することにより、 サ一モパイ ルセンサの冷接合部は設定された一定温度のバイァス温度が予め加わつ た状態となって、 設定温度以下の周囲温度変化を自己制御型正温度係数 特性を含む抵抗体が自己温度調整して温度変化を吸収し、 その結果、 周 囲温度の影響を受けない正確な温度を検出することができる。 また安全 装置と別途の温度検出装置を付加することなくサーモパイルの過熱事故 が防がれる。 また、 これを所要温度に維持するためのサ一ミス夕等の測 温素子を含む複雑なフィ一ドバック温度制御回路は不要になる。従って、 このようなサーモパイルセンサを内部に組み込むこよにより、 測定精度 の向上を図り、 かつ部品点数の少ない、 安価で耐久性のある、 安全性の 高い赤外線温度計を提供することができる。 Therefore, the thermopile sensor automatically keeps it at the required temperature. (3) By having a resistor with a control-type positive temperature coefficient characteristic, the cold junction of the thermopile sensor is pre-applied with a preset constant bias temperature, and changes in ambient temperature below the set temperature. The resistor including the self-control type positive temperature coefficient characteristic adjusts itself to absorb the temperature change, and as a result, it is possible to detect an accurate temperature that is not affected by the ambient temperature. In addition, it is possible to prevent the thermopile from overheating without adding a safety device and a separate temperature detection device. Further, a complicated feedback temperature control circuit including a temperature measuring element such as a thermometer for maintaining the temperature at a required temperature becomes unnecessary. Therefore, by incorporating such a thermopile sensor inside, it is possible to improve the measurement accuracy and to provide an inexpensive, durable, and highly safe infrared thermometer with a small number of parts.
また本願第 2の請求項にかかる赤外線温度計は、 本願第 1の請求項に かかる赤外線温度計において、 冷接合部領域に自己制御型正温度係数特 性を含む抵抗体を有するサ一モパイルセンサを組込んでなることを特徴 とする赤外線温度計である。  The infrared thermometer according to the second claim of the present application is the infrared thermometer according to the first claim, wherein the thermopile sensor includes a resistor having a self-controlling positive temperature coefficient characteristic in a cold junction region. An infrared thermometer characterized by being incorporated.
かかる構成とすることにより、 自己制御型正温度係数特性を含む抵抗 体の熱応答速度を可及的にサ一モパイルの出力応答速度に近づけ、 測定 誤差が少なく信頼性の高い赤外線温度計を提供することができる。  With this configuration, the thermal response speed of the resistor including the self-control type positive temperature coefficient characteristic is made as close as possible to the output response speed of the thermopile, and a highly reliable infrared thermometer with less measurement error is provided. can do.
また本願第 3の請求項にかかる赤外線温度計は、 本願第 2の請求項に かかる赤外線温度計において、 前記自己制御型正温度係数特性を含む抵 抗体が、 冷接合部領域と熱的に直結した構造を有することを特徴とする 赤外線温度計である。  The infrared thermometer according to the third aspect of the present invention is the infrared thermometer according to the second aspect of the present invention, wherein the antibody having the self-controlling positive temperature coefficient characteristic is thermally directly connected to the cold junction region. An infrared thermometer having a structure as described above.
かかる構成とすることにより、 自己制御型正温度係数特性を含む抵抗 体の熱応答速度を可及的にサーモパイルの出力応答速度に近づけ、 測定 誤差が少なく信頼性の高い赤外線温度計を提供することができる。  With this configuration, the thermal response speed of the resistor including the self-controlling positive temperature coefficient characteristic can be made as close as possible to the output response speed of the thermopile to provide a highly reliable infrared thermometer with a small measurement error. Can be.
また本願第 4の請求項にかかる赤外線温度計は、 本願第 3の請求項に かかる赤外線温度計において、 冷接合部領域を加熱するための発熱素子 系統と、 冷接合部領域の温度を測定するための冷接合部測温素子系統と を有するサ一モパイルセンサを組込んだ赤外線温度計において、 前記発 熱素子系統と、 前記冷接合部測温素子系統のうち少なく ともいずれか一 方がサーモパイル出力と熱応答速度において同期していることを特徴と する赤外線温度計である。 An infrared thermometer according to a fourth aspect of the present invention is the infrared thermometer according to the third aspect of the present invention, wherein a heating element system for heating the cold junction region and a temperature of the cold junction region are measured. An infrared thermometer incorporating a thermopile sensor having a cold junction temperature measuring element system for at least one of the heat generating element system and the cold junction temperature measuring element system. The infrared thermometer is characterized in that the thermopile output and the thermal response speed are synchronized.
かかる構成とすることにより、 冷接合部及び冷接合部測温素子は発熱 素子系統によって強制的に従属させられて一定のバイァス温度まで予め 引き上げられる。 従って温接合部領域と冷接合部領域との温度差が大き い場合に問題となる 「感度の温度係数 J による出力誤差を抑制すること ができる。 また冷接合部測温素子系統の抵抗変化は、 測定夕一ゲッ トか らの赤外線エネルギーによる温接合部の温度上昇分だけとなり、 これに より冷接合部測温素子系統の熱応答速度は極めて早くなり、 サーモパイ ルセンサの出力応答速度との同期が可能になり、測定誤差が小さくなる。  With this configuration, the cold junction and the cold junction temperature measuring element are forcibly subordinated by the heating element system and are previously raised to a certain bias temperature. Therefore, when the temperature difference between the hot junction region and the cold junction region is large, the output error due to the temperature coefficient J of the sensitivity can be suppressed. However, only the temperature rise of the hot junction due to the infrared energy from the first measurement was obtained, and the thermal response speed of the cold junction temperature measuring element system was extremely high, which was synchronized with the output response speed of the thermopile sensor. Is possible, and the measurement error is reduced.
また本願第 5の請求項にかかる赤外線温度計は、 本願第 4の請求項に かかる赤外線温度計において、 前記発熱素子系統と、 前記冷接合部測温 素子系統のうち少なく ともいずれか一方が冷接合部領域と熱的に直結し た構造を有することを特徴とする赤外線温度計である。  An infrared thermometer according to a fifth aspect of the present invention is the infrared thermometer according to the fourth aspect, wherein at least one of the heating element system and the cold junction temperature measuring element system is cold. An infrared thermometer having a structure directly thermally connected to a joint region.
かかる構成とすることにより、 自己制御型正温度係数特性を含む抵抗 体の熱応答速度を可及的にサーモパイルの出力応答速度に近づけ、 測定 誤差が少なく信頼性の高い赤外線温度計を提供することができる。  With this configuration, the thermal response speed of the resistor including the self-controlling positive temperature coefficient characteristic can be made as close as possible to the output response speed of the thermopile to provide a highly reliable infrared thermometer with a small measurement error. Can be.
また本願第 6の請求項にかかる赤外線温度計は、 本願第 4の請求項に かかる赤外線温度計において、 冷接合部領域を加熱するための発熱素子 系統と、 冷接合部領域の温度を測定するための冷接合部測温素子系統と を有するサーモパイルセンサを組込んだ赤外線温度計において、 前記発 熱素子系統として自己制御型正温度係数特性を含む抵抗体を配し、 前記 冷接合部測温素子系統としてサ一ミス夕測温素子を配してなることを特 徴とする赤外線温度計である。  An infrared thermometer according to a sixth aspect of the present invention is the infrared thermometer according to the fourth aspect of the present invention, wherein the heating element system for heating the cold junction region and the temperature of the cold junction region are measured. An infrared thermometer incorporating a thermopile sensor having a cold junction temperature measuring element system for: A self-controlling positive temperature coefficient characteristic resistor is disposed as the heat generating element system; This infrared thermometer is characterized by the provision of a temperature measuring element as an element system.
また本願第 7の請求項にかかる赤外線温度計は、 本願第 6の請求項に かかる赤外線温度計において、 前記サーミスタ測温素子が、 N T C ( Negative Temperature Coefficient) 抵抗体であることを特徴とする赤外 線温度計である。  An infrared thermometer according to a seventh aspect of the present invention is the infrared thermometer according to the sixth aspect, wherein the thermistor temperature measuring element is an NTC (Negative Temperature Coefficient) resistor. It is an external thermometer.
また本願第 8の請求項にかかる赤外線温度計は、 本願第 6の請求項に かかる赤外線温度計において、 前記サーミス夕測温素子が、 P T C ( Positive Temperature Coefficient) 抵抗体であることを特徴とする赤外 線温度計である。 An infrared thermometer according to an eighth aspect of the present invention is the infrared thermometer according to the sixth aspect of the present invention, wherein the thermometer element is a PTC. (Positive Temperature Coefficient) An infrared thermometer characterized by being a resistor.
上記本願第 6乃至第 8の請求項にかかる赤外線温度計の発熱素子系統 の自己制御型正温度係数特性を含む抵抗体においては、 所定電圧を印加 して冷接合部領域を加熱する際に飽和自己安定温度の一定温度で安定さ せて加熱するため、 サ一モパイルセンサの冷接合部が設定された一定温 度のバイァス温度が予め加わった状態となり、 設定温度以下の周囲温度 変化を、 自己制御型正温度係数特性を含む抵抗体が自 3温度調整して温 度変化を吸収する結果、 周囲温度の影響を受けない正確な温度を検出す ることができる。 また安全装置と別途の温度検出装置を付加することな くサ一モパイルの過熱事故が防がれ、 安全性の高い赤外線温度計を提供 することができる。  In the resistor including the self-controlling positive temperature coefficient characteristic of the heating element system of the infrared thermometer according to the sixth to eighth aspects of the present invention, when the predetermined voltage is applied to heat the cold junction region, the resistance is saturated. In order to stabilize and heat at a constant temperature of self-stabilization temperature, the cold junction of the thermopile sensor is pre-applied with a preset bias temperature of a predetermined temperature, and self-control of ambient temperature change below the set temperature As a result of the resistor including the mold positive temperature coefficient characteristic adjusting the temperature itself and absorbing the temperature change, it is possible to detect an accurate temperature independent of the ambient temperature. Also, without adding a safety device and a separate temperature detecting device, an overheating accident of the thermopile can be prevented, and a highly safe infrared thermometer can be provided.
また本願第 9の請求項にかかる赤外線温度計は、 本願第 4の請求項に かかる赤外線温度計において、 前記発熱素子系統として半導体発熱素子 を配し、 前記冷接合部測温素子系統として自己制御型正温度係数特性を 含む抵抗体を配してなることを特徴とする赤外線温度計である。  An infrared thermometer according to a ninth aspect of the present invention is the infrared thermometer according to the fourth aspect of the present invention, wherein a semiconductor heating element is disposed as the heating element system, and the self-control is performed as the cold junction temperature measuring element system. An infrared thermometer comprising a resistor having a positive temperature coefficient characteristic.
上記半導体素子として トランジスタやダイオード等を用い、 これに所 定電圧を印加することにより発熱して冷接合部領域を加熱し、 このとき 冷接合部領域の温度に反応して発生する冷接合部測温素子系統の自己制 御型正温度係数特性を含む抵抗体の自己抵抗変化を直接検出し、 これを 温度換算することにより冷接合部の温度を検出することができる。 特に 上記冷接合部測温素子系統の自己制御型正温度係数特性を含む抵抗体が 冷接合部に熱的に直結した構造とし、 サ一モパイルセンサの出力と熱応 答速度において可及的に同期させることにより、 測定誤差が少なく信頼 性の高い赤外線温度計を提供することができる。  A transistor, a diode, or the like is used as the above-mentioned semiconductor element, and when a predetermined voltage is applied thereto, heat is generated to heat the cold junction region. At this time, the cold junction region generated in response to the temperature of the cold junction region is measured. The temperature of the cold junction can be detected by directly detecting the change in the self-resistance of the resistor including the self-control type positive temperature coefficient characteristic of the temperature element system and converting it to a temperature. In particular, a structure is used in which a resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element system is thermally connected directly to the cold junction, and the output of the thermopile sensor and the thermal response speed are synchronized as much as possible. By doing so, a highly reliable infrared thermometer with a small measurement error can be provided.
また本願第 1 0の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 自己制御型正温度係数特性を含む抵抗 体を、 自己発熱して冷接合部領域を加熱する発熱素子系統と、 自己発熱 せずかつ冷接合部領域の温度を測定する非加熱の冷接合部測温素子系統 とに機能分割したことを特徴とする赤外線温度計である。 上記発熱素子系統の自己制御型正温度係数特性を含む抵抗体において は、 所定電圧を印加して冷接合部領域を加熱する際に飽和自己安定温度 の一定温度で安定させて加熱するため、 安全装置と別途の温度検出装置 を付加することなくサ一モパイルの過熱事故が防がれる。 The infrared thermometer according to the tenth aspect of the present invention is the infrared thermometer according to the fourth aspect of the present invention, wherein the resistor including the self-control type positive temperature coefficient characteristic is self-heated to reduce the cold junction area. The infrared thermometer is characterized by being divided into a heating element system for heating and a non-heating cold junction temperature measuring element system that does not generate heat and measures the temperature of the cold junction region. In the resistor including the self-control type positive temperature coefficient characteristic of the heating element system described above, when heating a cold junction region by applying a predetermined voltage, the resistor is heated stably at a constant temperature of the saturation self-stabilizing temperature. It is possible to prevent overheating of the thermopile without adding a separate temperature detector to the device.
また、発熱素子系統の自己制御型正温度係数特性を含む抵抗体により、 サーモパイルセンサの冷接合部には設定された一定温度のバイアス温度 が予め加わっているため、 周囲温度が急激に変化した場合においても設 定温度以下の周囲温度変化を自己制御型正温度係数特性を含む抵抗体が 自己温度調整して温度変化を吸収し、 その結果、 冷接合部温度は一定温 度に保たれる。 このような冷接合部温度安定状態において測定対象の温 度を測定すると、 測定夕一ゲッ トの赤外線エネルギーがサーモパイルセ ンサの赤外線吸収体により熱に変換されて瞬時に温接合部の温度が上昇 し、 この温度上昇によって引き起こされた冷接合部温度上昇は所定時間 後に熱平衡状態に達し、 温接合部と冷接合部の間に温度差が発生する。 測定夕一ゲッ ト温度を測定する前に予め冷接合部温度を一定のバイァス 温度で規制しているため、 夕一ゲッ トからの赤外線による冷接合部温度 上昇分の抽出は容易であり、 冷接合部領域の温度に反応して発生する冷 接合部測温素子系統の自己制御型正温度係数特性を含む抵抗体の自己抵 抗変化を直接検出し、 これを温度換算することにより冷接合部の温度を 正確に検出することができる。  In addition, when the ambient temperature changes suddenly, a predetermined constant bias temperature is applied to the cold junction of the thermopile sensor in advance by the resistor that includes the self-controlling positive temperature coefficient characteristic of the heating element system. In this case as well, the resistor including the self-controlling positive temperature coefficient characteristic adjusts to the ambient temperature change below the set temperature to absorb the temperature change by self-temperature adjustment. As a result, the cold junction temperature is maintained at a constant temperature. When the temperature of the measurement target is measured in such a cold junction temperature stable state, the infrared energy of the measurement target is converted into heat by the infrared absorber of the thermopile sensor, and the temperature of the hot junction instantly rises. However, the temperature rise of the cold junction caused by this temperature rise reaches a thermal equilibrium state after a predetermined time, and a temperature difference occurs between the hot junction and the cold junction. Since the cold junction temperature is regulated at a constant bias temperature before measuring the evening gate temperature, it is easy to extract the rise in the cold junction temperature by infrared rays from the evening gate. By directly detecting the self-resistance change of the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element system generated in response to the temperature of the junction area, the temperature is converted to a cold junction. Temperature can be accurately detected.
また上記測温素子系統の自己制御型正温度係数特性を含む抵抗体を冷 接合部領域に熱的に直結した構造であること、 またさらに周囲温度影響 を排除した一定バイァス温度条件下において測定夕一ゲッ 卜の温度を測 定することにより、 上記測温素子系統の自己制御型正温度係数特性の抵 抗体をサ一モパイルセンサの出力と熱応答速度において可及的に同期さ せることが可能となり、 信頼性及び安全性の高い赤外線温度計を提供す ることができる。  In addition, the temperature measuring element system has a structure in which a resistor including the self-control type positive temperature coefficient characteristic is thermally connected directly to the cold junction region.Furthermore, the measurement is performed under a constant bias temperature condition excluding the influence of the ambient temperature. By measuring the temperature of one gate, it is possible to synchronize the resistance of the above temperature measuring element system with the self-control type positive temperature coefficient characteristic as much as possible with the output of the thermopile sensor in terms of the thermal response speed. A highly reliable and safe infrared thermometer can be provided.
上記測温素子系統の自己制御型正温度係数特性を含む抵抗体を冷接合 部領域に熱的に直結した構造とし、 さらに冷接合部ヒ一トシンク及びヒ —トシンクが熱接続されるハウジングステムにおいて十分なる放熱特性 を持たせることにより、 測定ターゲッ トの温度測定を行う際に、 自己制 御型正温度係数特性を含む抵抗体により上記冷接合部を一定温度のバイ ァス温度に維持し、 かつ測定夕一ゲッ 卜から放射される赤外線による接 合部の温度上昇を、 前記ヒートシンクにより完全に熱吸収させて相殺す ることができる。 従って冷接合部温度を拘束してこれを規定値として扱 い、 温接合部温度変化すなわちサ一モパイル出力温度だけを検出し、 情 報処理装置によりこのサ一モパイル出力温度値と前記の一定バイァス温 度規定値とを加算することにより、 サ一モパイルの冷接合部温度をその 都度検出することなくさらに高精度な温度検出が可能となる。 A structure in which a resistor including the self-controllable positive temperature coefficient characteristic of the temperature measuring element system described above is thermally connected directly to the cold junction region, and the cold junction heat sink and the housing stem to which the heat sink is thermally connected. Sufficient heat dissipation characteristics When the temperature of the measurement target is measured, the cold junction is maintained at a constant bias temperature by a resistor including a self-controlling positive temperature coefficient characteristic, The rise in temperature of the junction due to infrared rays radiated from the gate can be completely absorbed by the heat sink and canceled out. Therefore, the temperature of the cold junction is constrained and treated as a specified value, and only the temperature change of the hot junction, that is, the output temperature of the thermopile, is detected, and the information processing device compares the output temperature value of the thermopile with the constant bias. By adding the specified temperature value, more accurate temperature detection becomes possible without detecting the cold junction temperature of the thermopile each time.
また本願第 1 1の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 冷接合部領域表面に電気絶縁皮膜を持 つた面状自己制御型正温度係数特性を含む抵抗体を配置してなることを 特徴とする赤外線温度計である。  The infrared thermometer according to the eleventh aspect of the present invention is the infrared thermometer according to the fourth aspect, wherein the infrared thermometer according to the fourth aspect has a planar self-controlling positive temperature coefficient characteristic having an electrical insulating film on the surface of the cold junction region. An infrared thermometer characterized by comprising a resistor including the same.
かかる構成とすることにより、 自己制御型正温度係数特性を含む抵抗 体の熱応答速度を可及的にサ一モパイルの出力応答速度に近づけ、 測定 誤差が少なく信頼性の高い赤外線温度計を提供することができる。  With this configuration, the thermal response speed of the resistor including the self-control type positive temperature coefficient characteristic is made as close as possible to the output response speed of the thermopile, and a highly reliable infrared thermometer with less measurement error is provided. can do.
また本願第 1 2の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 自己制御型正温度係数特性を含む抵抗 体を、 自己発熱せずかつ冷接合部の温度を測定する非加熱の冷接合部測 温素子系統と、 自己発熱して前記冷接合部測温素子系統を配置した冷接 合部測温素子領域と冷接合部領域とを加熱する発熱素子系統とに機能分 割し、 かつ前記発熱素子系統の自己制御型正温度係数特性を含む抵抗体 の形状が面状であり、 かつ前記面状自己制御型正温度係数特性を含む抵 抗体の表面に正電極と負電極とが交互に多数配置された水平方向作用の 櫛形アナログサ一モス夕ッ トを水平配置してなることを特徴とする赤外 線温度計である。 '  Further, the infrared thermometer according to claim 12 of the present application is the infrared thermometer according to claim 4, wherein the resistor including the self-control type positive temperature coefficient characteristic does not generate heat and has a cold junction. A non-heated cold junction temperature measuring element system for measuring temperature, and a heating element for self-heating to heat the cold junction temperature measuring element area and the cold junction area in which the cold junction temperature measuring element system is arranged. The surface of the resistive element which is functionally divided into a system and has a planar shape including the self-regulating positive temperature coefficient characteristic of the heating element system and having the planar self-regulating positive temperature coefficient characteristic This is an infrared thermometer characterized by horizontally arranging a comb-shaped analog thermostat having a large number of positive electrodes and negative electrodes arranged alternately in a horizontal direction. '
かかる構成とすることにより、 周囲温度の急激な変化による冷接合部 領域及び冷接合部測温素子領域の局所的な温度変化に対してアナログ的 な連続補正を行うため、 冷接合部温度を一定に維持して高い精度で温度 測定を行うことができる。 また本願第 1 3の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 自己制御型正温度係数特性を含む抵抗 体を、 自己発熱せずかつ冷接合部の温度を測定する非加熱の冷接合部測 温素子系統と、 自己発熱して前記冷接合部測温素子系統を配置した冷接 合部測温素子領域と冷接合部領域とを加熱する発熱素子系統とに機能分 割し、 かつ前記発熱素子系統の自己制御型正温度係数特性を含む抵抗体 が所定の厚さを有する面状であり、 かつ面状の正電極と負電極とからな るアナログサーモスタツ 卜の正電極と負電極とを前記面状自己制御型正 温度係数特性を含む抵抗体の表裏面を挟むように配置してなることを特 徴とする赤外線温度計である。 With such a configuration, the cold junction temperature is kept constant in order to continuously perform analog continuous correction for local temperature changes in the cold junction region and the cold junction temperature measuring element region due to a rapid change in the ambient temperature. Temperature measurement with high accuracy. Further, the infrared thermometer according to claim 13 of the present application is the infrared thermometer according to claim 4, wherein a resistor including a self-controlling positive temperature coefficient characteristic does not self-heat and has a cold junction. A non-heated cold junction temperature measuring element system for measuring temperature, and a heating element for self-heating to heat the cold junction temperature measuring element area and the cold junction area in which the cold junction temperature measuring element system is arranged. A resistor which is functionally divided into a system and a self-controlling positive temperature coefficient characteristic of the heating element system has a planar shape having a predetermined thickness, and includes a planar positive electrode and a negative electrode. An infrared thermometer characterized in that a positive electrode and a negative electrode of an analog thermostat are arranged so as to sandwich the front and back surfaces of a resistor including the above-mentioned planar self-control type positive temperature coefficient characteristic.
かかる構成とすることにより、 周囲温度の急激な変化による冷接合部 領域及び冷接合部測温素子領域の局所的な温度変化に対して、 非境界か つ水平位置において無限数検出し、 また連続的なアナログ補正を行うこ とが可能となるため、 冷接合部温度を一定に維持して、 高い精度で温度 測定を行うことができる。  With this configuration, an infinite number of non-boundary and horizontal positions are detected at local temperature changes in the cold junction area and the cold junction temperature measuring element area due to a rapid change in the ambient temperature. This makes it possible to perform accurate analog correction, so that the temperature of the cold junction can be kept constant and the temperature can be measured with high accuracy.
また本願第 1 4の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 前記発熱素子系統により冷接合部を一 方的かつ強制的に加熱したときのサーモパイル出力の正負電圧値領域反 転の有無を検出する検出器と、 前記相反転の有無を 2ビッ トデジタル信 号に変換する変換器とを有し、 このデジタル信号に同期して冷接合部測 温素子温度を検出することを特徴とする赤外線温度計である。  The infrared thermometer according to claim 14 of the present application is the infrared thermometer according to claim 4, wherein the thermopile output when the cold junction is unidirectionally and forcibly heated by the heating element system. A detector for detecting the presence / absence of the inversion of the positive / negative voltage value region of each other, and a converter for converting the presence / absence of the phase inversion into a 2-bit digital signal. The temperature of the cold junction is measured in synchronization with the digital signal. An infrared thermometer for detecting an element temperature.
かかる構成とし、 発熱素子系統によって冷接合部を強制的かつ一方的 に加熱することにより、 従来の問題すなわち周囲温度の変化に対する熱 応答速度の遅れに関する問題及び 「感度の温度係数」 に関する問題は一 切生じないという効果がある。 またこのときサーモパイル出力電圧を零 点に一致させるように冷接合部領域の温度をフィ一ドバック制御するの ではなく、 サ一モパイル出力電圧値の零点を強制的に一定勾配で通過せ しめるように制御することにより、 測定時間を大幅に短縮することがで きる。  With this configuration, the cold junction is forcibly and unilaterally heated by the heating element system, so that the conventional problems, that is, the problem relating to the delay in thermal response speed to changes in ambient temperature and the problem relating to the “temperature coefficient of sensitivity” are one. There is an effect that cutting does not occur. At this time, instead of performing feedback control of the temperature of the cold junction region so that the thermopile output voltage coincides with the zero point, the thermopile output voltage value is forced to pass through the zero point at a constant gradient. By controlling, the measurement time can be greatly reduced.
また発熱素子によって予め冷接合部領域及び冷接合部測温素子は一定 温度のバイァス温度まで加熱され、 冷接合部測温素子の抵抗変化は測定 ターゲッ トからの赤外線エネルギーによる温接合部領域の温度上昇分だ けとなるのでその熱応答速度は極めて早くなり、 冷接合部領域の温度変 化に対して可及的に同期させることができる。 In addition, the cold junction area and the cold junction temperature measuring element are fixed in advance by the heating element. Heated to the bias temperature, the resistance change of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, so its thermal response speed is extremely fast, and the cold junction It is possible to synchronize as much as possible to the temperature change in the local area.
ところでこのようにパイァス温度の一定温度を実現する場合には、 フ イードバヅク制御を行う必要がある。 フィードバック制御においては、 一定温度に達するまでの時間が長い点や温度の外乱要因に影響を受けや すい点等が問題となりやすい。 しかしここで行うフィ一ドバック制御は 一定温度に制御するとはいってもさほど厳密な制御を要するものではな く、 たとえバイアス温度に完全に一致しなくとも、 バイアス温度を中心 としたある一定の温度範囲に加熱されていればその効果を得ることが可 能であって、 上述のような問題は発生しない。  By the way, when realizing the constant temperature of the bypass temperature, it is necessary to perform feedback control. In feedback control, problems such as a long time to reach a certain temperature and a point easily affected by disturbance factors of temperature are likely to be problems. However, the feedback control performed here does not require very strict control even though it is controlled to a constant temperature, and even if it does not completely match the bias temperature, a certain temperature range around the bias temperature If it is heated to a low temperature, the effect can be obtained, and the above-mentioned problem does not occur.
すなわち、 測定時間の短縮と測定精度の向上とを同時に実現すること ができる。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 5の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 前記発熱素子系統により冷接合部を一 方的かつ強制的に加熱したときのサーモパイル出力の電圧値が、 予め設 定されかつ基準電圧値となる電圧閾値に対して相反転したか否かを検出 する検出器と、 前記相反転の有無を 2ビッ トデジタル信号に変換する変 換器とを有し、 このデジタル信号に同期して冷接合部測温素子温度を検 出することを特徴とする赤外線温度計である。  The infrared thermometer according to the fifteenth aspect of the present invention is the infrared thermometer according to the fourth aspect, wherein the thermopile output when the cold junction is unidirectionally and forcibly heated by the heating element system. A detector for detecting whether or not the voltage value of the phase is inverted with respect to a voltage threshold value which is set in advance and becomes a reference voltage value, and a converter for converting the presence or absence of the phase inversion into a 2-bit digital signal And an infrared thermometer that detects the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
かかる構成とすることにより、 測定時間の短縮と測定精度の向上とを 同時に実現することが可能となる。  With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 6の請求項にかかる赤外線温度計は、 本願第 1 4の請求 項にかかる赤外線温度計において、 前記発熱素子系統が、 発熱して一定 温度に維持される定常温度系統と、 一定の温度範囲において温度可変と する可変温度系統とからなることを特徴とする赤外線温度計である。 かかる構成とすることにより、 定常温度系統によって予め冷接合部領 域及び冷接合部測温素子を一定のバイァス温度に加熱し、 測定時間の短 縮を図ることができる。 さらに、 冷接合部測温素子の抵抗変化は、 測定 ターゲッ トからの赤外線エネルギーによる温接合部領域の温度上昇分だ けとなるのでその熱応答速度は極めて早くなり、 冷接合部領域の温度変 化に対して可及的に同期させることができる。 An infrared thermometer according to a sixteenth aspect of the present invention is the infrared thermometer according to the fourteenth aspect of the present invention, wherein the heating element system generates a constant temperature by generating heat and maintaining the temperature at a constant temperature. An infrared thermometer comprising a variable temperature system that changes the temperature in the above temperature range. With this configuration, the cold junction area and the cold junction temperature measuring element can be heated in advance to a constant bias temperature by the steady temperature system, and the measurement time can be shortened. In addition, the resistance change of the cold junction Since only the temperature rise in the hot junction region due to the infrared energy from the target is achieved, the thermal response speed is extremely fast, and the temperature can be synchronized as much as possible with the temperature change in the cold junction region.
一方可変温度系統により冷接合部領域の温度を一方的かつ強制的に変 化させることにより、 測定時間を大幅に短縮することができる。  On the other hand, the measurement time can be greatly reduced by unilaterally and forcibly changing the temperature of the cold junction region by the variable temperature system.
すなわち測定時間の短縮と測定精度の向上とを同時に実現することが 可能となる。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 7の請求項にかかる赤外線温度計は、 本願第 1 5の請求 項にかかる赤外線温度計において、 前記発熱素子系統が、 発熱して一定 温度に維持される定常温度系統と、 一定の温度範囲において温度可変と する可変温度系統とからなることを特徴とする赤外線温度計である。 かかる構成とすることにより、 測定時間の短縮と測定精度の向上とを 同時に実現することが可能となる。  The infrared thermometer according to the seventeenth aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the heating element system generates a constant temperature by generating heat and maintaining the temperature at a constant temperature. An infrared thermometer comprising a variable temperature system that changes the temperature in the above temperature range. With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 1 8の請求項にかかる赤外線温度計は、 本願第 1 6の請求 項にかかる赤外線温度計において、 前記発熱素子系統として、 異なる自 己飽和安定温度を有する 2種類の自己制御型正温度係数特性を含む抵抗 体を配置してなることを特徴とする赤外線温度計である。  The infrared thermometer according to the eighteenth aspect of the present invention is the infrared thermometer according to the sixteenth aspect of the present invention, wherein the heating element system has two types of self-control type positive electrodes having different self-saturation stable temperatures. This is an infrared thermometer characterized by disposing a resistor having a temperature coefficient characteristic.
かかる構成とすることにより、 例えば耳式体温計において、 自己飽和 安定温度が鼓膜温度付近 (例えば 3 4 °C ) である自己制御型正温度係数 特性を含む抵抗体により冷接合部領域及び冷接合部測温素子を予め一定 温度のバイアス温度 ( 3 4 °C ) に加熱し、 一方自己飽和安定温度が鼓膜 温度よりも高温 (例えば 5 0 °C ) である自己制御型正温度係数特性を含 む抵抗体を一定温度範囲内 (例えば 3 4〜 4 2 °C ) において可変加熱す ることにより鼓膜の温度を測定することが可能となる。 この際に、 自己 飽和安定温度が鼓膜温度付近である自己制御型正温度係数特性を含む抵 抗体は、 周囲の温度変化にかかわらず自己飽和安定温度の一定温度 ( 3 4 °C ) にみずから維持されるので、 サ一モパイルセンサの過熱事故が防 がれる。 また、 自己安定飽和温度が鼓膜温度よりも高温である自己制御 型正温度係数特性を含む抵抗体は可変加熱されるが、 たとえ誤作動や故 障により可変加熱の温度制御が不可能になったとしても自己飽和安定温 度 ( 5 0 °C ) 以上には加熱されないため、 赤外線温度計の過熱事故が防 止される。 With such a configuration, for example, in an ear thermometer, the cold junction region and the cold junction region are formed by a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C). Includes a self-regulating positive temperature coefficient characteristic in which the temperature measuring element is pre-heated to a constant bias temperature (34 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C). The temperature of the eardrum can be measured by variably heating the resistor within a certain temperature range (for example, 34 to 42 ° C). At this time, the antibody containing the self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is near the eardrum temperature is maintained at a constant self-saturation stable temperature (34 ° C) regardless of the ambient temperature change. As a result, overheating of the thermopile sensor is prevented. In addition, resistors with self-regulating positive temperature coefficient characteristics, whose self-stable saturation temperature is higher than the eardrum temperature, are variably heated, but temperature control of variable heating becomes impossible even due to malfunction or failure. Even self-saturated stable temperature Temperature (50 ° C), which prevents the infrared thermometer from overheating.
また本願第 1 9の請求項にかかる赤外線温度計は、 本願第 1 7の請求 項にかかる赤外線温度計において、 前記発熱素子系統として、 異なる自 己飽和安定温度を有する 2種類の自己制御型正温度係数特性を含む抵抗 体を配置してなることを特徴とする赤外線温度計である。  The infrared thermometer according to the nineteenth aspect of the present invention is the infrared thermometer according to the seventeenth aspect of the present invention, wherein the heating element system has two types of self-control type positive electrodes having different self-saturation stable temperatures. This is an infrared thermometer characterized by disposing a resistor having a temperature coefficient characteristic.
かかる構成とすることにより、 例えば耳式体温計において、 自己飽和 安定温度が鼓膜温度付近 (例えば 3 4 °C ) である自己制御型正温度係数 特性を含む抵抗体により冷接合部領域及び冷接合部測温素子を予め一定 温度のバイアス温度 ( 3 4 °C ) に加熱し、 一方自己飽和安定温度が鼓膜 温度よりも高温 (例えば 5 0 °C ) である自己制御型正温度係数特性を含 む抵抗体を一定温度範囲内 (例えば 3 4〜4 2 °C ) において可変加熱す ることにより鼓膜の温度を測定することが可能となる。 この際に、 自己 飽和安定温度が鼓膜温度付近である自己制御型正温度係数特性を含む抵 抗体は、 周囲の温度変化にかかわらず自己飽和安定温度の一定温度 ( 3 4 °C ) にみずから維持されるので、 過熱事故が防がれる。 また、 自己安 定飽和温度が鼓膜温度よりも高温である自己制御型正温度係数特性を含 む抵抗体は可変加熱されるが、 たとえ誤作動や故障により可変加熱の温 度制御が不可能になったとしても自 3飽和安定温度 ( 5 0 °C ) 以上には 加熱されないため、 過熱事故が防止される。  With such a configuration, for example, in an ear thermometer, the cold junction region and the cold junction region are formed by a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C). Includes a self-regulating positive temperature coefficient characteristic in which the temperature measuring element is pre-heated to a constant bias temperature (34 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C). The temperature of the eardrum can be measured by variably heating the resistor within a certain temperature range (for example, 34 to 42 ° C). At this time, the antibody containing the self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is near the eardrum temperature is maintained at a constant self-saturation stable temperature (34 ° C) regardless of the ambient temperature change. This prevents overheating accidents. In addition, resistors with self-regulating positive temperature coefficient characteristics, whose self-stable saturation temperature is higher than the eardrum temperature, are variable-heated. Even if it does, it will not be heated above the self-saturation stable temperature (50 ° C), preventing an overheating accident.
また本願第 2 0の請求項にかかる赤外線温度計は、 本願第 1 0の請求 項にかかる赤外線温度計において、 冷接合部領域と熱的に直結され、 か つ電気的に素子間絶縁された複数の同一抵抗の自己制御型正温度係数特 性を含む抵抗体からなる系統を、 前記冷接合部領域に対して複数系統組 込んだ構造を有することを特徴とする赤外線温度計である。  The infrared thermometer according to the twenty-first aspect of the present invention is the infrared thermometer according to the tenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. An infrared thermometer having a structure in which a plurality of systems including a plurality of resistors having the same resistance and having a self-controlling positive temperature coefficient characteristic are incorporated in the cold junction region.
また本願第 2 1の請求項にかかる赤外線温度計は、 本願第 1 0の請求 項にかかる赤外線温度計において、 冷接合部領域と熱的に直結され、 か つ電気的に素子間絶縁された異なる抵抗の自己制御型正温度係数特性を 含む抵抗体 2個からなる対を、 前記冷接合部領域に対して一対以上組込 んだ構造を有することを特徴とする赤外線温度計である。 また本願第 2 2の請求項にかかる赤外線温度計は、 本願第 1 0の請求 項にかかる赤外線温度計において、 冷接合部領域と熱的に直結され、 か つ電気的に素子間絶縁された異なる抵抗の自己制御型正温度係数特性を 含む抵抗体 2個からなる対を複数対組み合わせてなる系統を、 前記冷接 合部領域に対して複数系統組込んだ構造を有することを特徴とする赤外 線温度計である。 The infrared thermometer according to the twenty-first aspect of the present invention is the infrared thermometer according to the tenth aspect, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. An infrared thermometer having a structure in which two or more pairs of resistors each having a self-control type positive temperature coefficient characteristic of a different resistance are incorporated in the cold junction region. The infrared thermometer according to claim 22 of the present application is the infrared thermometer according to claim 10 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. It is characterized in that it has a structure in which a plurality of pairs of two pairs of resistors including self-controlling positive temperature coefficient characteristics of different resistances are combined in the cold junction region. It is an infrared thermometer.
また本願第 2 3の請求項にかかる赤外線温度計は、 本願第 1 6の請求 項にかかる赤外線温度計において、 冷接合部領域と熱的に直結され、 か つ電気的に素子間絶縁された複数の同一抵抗の自 3制御型正温度係数特 性を含む抵抗体からなる系統を、 前記冷接合部領域に対して複数系統組 込んだ構造を有することを特徴とする赤外線温度計である。  The infrared thermometer according to claim 23 of the present application is the infrared thermometer according to claim 16 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region, and is electrically insulated between the elements. An infrared thermometer having a structure in which a plurality of systems composed of a plurality of resistors having the same resistance and a self-controlling positive temperature coefficient characteristic are incorporated in the cold junction region.
また本願第 2 4の請求項にかかる赤外線温度計は、 本願第 1 6の請求 項にかかる赤外^温度計において、 冷接合部領域と熱的に直結され、 か つ電気的に素子間絶縁された異なる抵抗の自己制御型正温度係数特性を 含む抵抗体 2個からなる対を、 前記冷接合部領域に対して一対以上組込 んだ構造を有することを特徴とする赤外線温度計である。  The infrared thermometer according to the twenty-fourth aspect of the present invention is the infrared thermometer according to the sixteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and is electrically isolated between the elements. An infrared thermometer having a structure in which a pair of two or more resistors including self-controlled positive temperature coefficient characteristics of different resistances are incorporated in the cold junction region. .
また本願第 2 5の請求項にかかる赤外線温度計は、 本願第 1 6の請求 項にかかる赤外線温度計において、 冷接合部領域と熱的に直結され、 か つ電気的に素子間絶縁された異なる抵抗の自己制御型正温度係数特性を 含む抵抗体 2個からなる対を複数対組み合わせてなる系統を、 前記冷接 合部領域に対して複数系統組込んだ構造を有することを特徴とする赤外 線温度計である。  The infrared thermometer according to claim 25 of the present application is the infrared thermometer according to claim 16 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. It is characterized in that it has a structure in which a plurality of pairs of two pairs of resistors including self-controlling positive temperature coefficient characteristics of different resistances are combined in the cold junction region. It is an infrared thermometer.
また本願第 2 6の請求項にかかる赤外線温度計は、 本願第 1 7の請求 項にかかる赤外線温度計において、 冷接合部領域と熱的に直結され、 か つ電気的に素子間絶縁された複数の同一抵抗の自己制御型正温度係数特 性を含む抵抗体からなる系統を、 前記冷接合部領域に対して複数系統組 込んだ構造を有することを特徴とする赤外線温度計である。  The infrared thermometer according to claim 26 of the present application is the infrared thermometer according to claim 17 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. An infrared thermometer having a structure in which a plurality of systems including a plurality of resistors having the same resistance and having a self-controlling positive temperature coefficient characteristic are incorporated in the cold junction region.
また本願第 2 7の請求項にかかる赤外線温度計は、 本願第 1 7の請求 項にかかる赤外線温度計において、 冷接合部領域と熱的に直結され、 か つ電気的に素子間絶縁された異なる抵抗の自己制御型正温度係数特性を 含む抵抗体 2個からなる対を、 前記冷接合部領域に対して一対以上組込 んだ構造を有することを特徴とする赤外線温度計である。 The infrared thermometer according to the twenty-seventh aspect of the present invention is the infrared thermometer according to the seventeenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and is electrically insulated between the elements. Self-controlled positive temperature coefficient characteristics of different resistances An infrared thermometer having a structure in which two or more pairs of resistors are incorporated in the cold junction region.
また本願第 2 8の請求項にかかる赤外線温度計は、 本願第 1 Ίの請求 項にかかる赤外線温度計において、 冷接合部領域と熱的に直結され、 か つ電気的に素子間絶縁された異なる抵抗の自己制御型正温度係数特性を 含む抵抗体 2個からなる対を複数対組み合わせてなる系統を、 前記冷接 合部領域に対して複数系統組込んだ構造を有することを特徴とする赤外 線温度計である。  The infrared thermometer according to claim 28 of the present application is the infrared thermometer according to claim 1 of the present application, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. It is characterized in that it has a structure in which a plurality of pairs of two pairs of resistors including self-controlling positive temperature coefficient characteristics of different resistances are combined in the cold junction region. It is an infrared thermometer.
上記本願第 2 0乃至第 2 8の請求項にかかる赤外線温度計において、 自己制御型正温度係数特性を含む抵抗体を複数系統あるいは複数対配す ることにより、 自己制御型正温度係数特性を含む抵抗体をその系統ごと に加熱し、 きめ細かい温度制御を可能とする。  In the infrared thermometer according to the twenty-eighth to twenty-eighth claims of the present application, the self-controlling positive temperature coefficient characteristic is obtained by arranging a plurality of resistors or a plurality of pairs including the self-controlling positive temperature coefficient characteristic. The resistors included are heated for each system, enabling fine temperature control.
また上記発熱系統および冷接合部測温素子系統の自己制御型正温度係 数特性を含む抵抗体はいずれも、一定温度以上に過熱されることがなく、 安全である。  Further, the resistors including the self-controlling positive temperature coefficient characteristic of the heating system and the cold junction temperature measuring element system are all safe from being overheated to a certain temperature or higher.
また本願第 2 9の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 前記自己制御型正温度係数特性を含む 抵抗体が、 基板表面に蒸着により組成されてなることを特徴とする赤外 線温度計である。  The infrared thermometer according to claim 29 of the present application is the infrared thermometer according to claim 4, wherein the resistor including the self-controlling positive temperature coefficient characteristic is formed on the substrate surface by vapor deposition. This is an infrared thermometer.
サーモパイルセンサは一般的に、 シリコンペレヅ トあるいはシリコン チヅプあるいはシリコンウェハの表面上に、 半導体積層技術を用いて形 成されるものである。 従って、 自己制御型正温度係数特性を含む抵抗体 を形成する際にもこのような半導体積層技術の一手法である蒸着技術を 用いて形成することにより、 本願発明のサーモパイルセンサの集積度を 上げ、 しかもこれを効率的に作製することが可能となる。 また、 自己制 御型正温度係数特性を含む抵抗体とサーモパイルの冷接合部領域とを熱 的に直結させることが容易である。  A thermopile sensor is generally formed on a surface of a silicon pellet or a silicon chip or a silicon wafer by using a semiconductor lamination technique. Therefore, even when a resistor having a self-controlling positive temperature coefficient characteristic is formed, it is formed by using a vapor deposition technique which is one of the semiconductor lamination techniques, thereby increasing the degree of integration of the thermopile sensor of the present invention. In addition, it can be manufactured efficiently. In addition, it is easy to thermally directly connect the resistor including the self-control type positive temperature coefficient characteristic to the cold junction region of the thermopile.
また本願第 3 0の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 前記自己制御型正温度係数特性を含む 抵抗体が、 基板表面にペース ト焼き付けにより形成されてなることを特 徴とする赤外線温度計である。 The infrared thermometer according to claim 30 of the present application is the infrared thermometer according to claim 4, wherein the resistor including the self-controlling positive temperature coefficient characteristic is formed by paste baking on the substrate surface. Specially It is an infrared thermometer.
上記のようにプリント基板等の基板表面に自己制御型正温度係数特性 を含む抵抗体をペース ト焼き付けすることにより、 本願発明の赤外線温 度計を効率よく作製することができる。  As described above, the infrared thermometer of the present invention can be efficiently manufactured by pasting and baking a resistor having a self-controlling positive temperature coefficient characteristic on the surface of a substrate such as a printed circuit board.
また本願第 3 1の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 前記自己制御型正温度係数特性を含む 抵抗体が、 基板表面に面状印刷されてなることを特徴とする赤外線温度 計である。  The infrared thermometer according to claim 31 of the present application is the infrared thermometer according to claim 4, wherein the resistor including the self-control type positive temperature coefficient characteristic is planarly printed on a substrate surface. This is an infrared thermometer characterized in that:
上記のようにプリント基板等の基板表面に自己制御型正温度係数特性 を含む抵抗体を面状印刷することにより、 本願発明の赤外線温度計を効 率よく作製することができる。  As described above, the infrared thermometer of the present invention can be efficiently manufactured by printing a resistor having a self-controlling positive temperature coefficient characteristic on the surface of a substrate such as a printed circuit board.
また本願第 3 2の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 前記発熱素子系統を配置した発熱素子 領域と冷接合部測温素子系統を配置した冷接合部測温素子領域とが、 温 接合部を中心として冷接合部の外側に、 かつ冷接合部が配置された基板 上に、 かつお互いが水平方向に並ぶようにして配置されてなることを特 徴とする赤外線温度計である。  The infrared thermometer according to claim 32 of the present application is the infrared thermometer according to claim 4, wherein the heating element region in which the heating element system is arranged and the cooling thermometer in which the cold junction temperature measuring element system is arranged. The junction temperature measuring element area is arranged outside the cold junction with the hot junction as the center, on the substrate on which the cold junction is arranged, and arranged so as to be horizontally aligned with each other. This is a featured infrared thermometer.
かかる構成とすることにより、 従来の赤外線温度計のサ一モパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。  With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
また本願第 3 3の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 前記発熱素子系統を配置した発熱素子 領域と冷接合部測温素子系統を配置した冷接合部測温素子領域とが、 温 接合部を中心として冷接合部の外側に、 かつ冷接合部が配置された基板 上に、 かつお互いが垂直方向に並ぶようにして配置されてなることを特 徴とする赤外線温度計である。  The infrared thermometer according to claim 33 of the present application is the infrared thermometer according to claim 4 of the present application, wherein the heating element region in which the heating element system is arranged and the cooling thermometer in which the cold junction temperature measuring element system is arranged. The junction temperature measuring element region is arranged outside the cold junction with the hot junction as the center, on the substrate on which the cold junction is arranged, and arranged so as to be vertically aligned with each other. This is a featured infrared thermometer.
かかる構成とすることにより、 従来の赤外線温度計のサ一モパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。  With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
また本願第 3 4の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 前記発熱素子系統を配置した発熱素子 領域と冷接合部測温素子系統を配置した冷接合部測温素子領域とが、 温 接合部を中心として冷接合部の外側に、 かつ冷接合部が配置された基板 の外部に、 かつお互いが垂直方向に並ぶようにして配置されてなること を特徴とする赤外線温度計である。 The infrared thermometer according to claim 34 of the present application is the same as the infrared thermometer according to claim 4 of the present application. In the infrared thermometer according to the above, the heating element region in which the heating element system is arranged and the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged are located outside the cold junction around the hot junction. And an infrared thermometer which is arranged outside the substrate on which the cold junction is arranged, and in such a manner that they are arranged vertically.
かかる構成とすることにより、 従来の赤外線温度計のサーモパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。  With this configuration, the arrangement of the hot junction and the cold junction, which has been applied in the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
また本願第 3 5の請求項にかかる赤外線温度計は、 本願第 3 2乃至第 3 4の請求項にかかる赤外線温度計において、 前記発熱素子系統を配置 した発熱素子領域と冷接合部測温素子系統を配置した冷接合部測温素子 領域との形状が、 連続する角形であることを特徴とする赤外線温度計で ある。  The infrared thermometer according to claim 35 of the present application is the infrared thermometer according to claims 32 to 34 of the present application, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measuring element. The infrared thermometer is characterized in that the shape with the cold junction temperature measuring element region in which the system is arranged is a continuous square.
かかる構成とすることにより、 従来の赤外線温度計のサーモパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。  With this configuration, the arrangement of the hot junction and the cold junction, which has been applied in the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
また本願第 3 6の請求項にかかる赤外線温度計は、 本願第 3 2乃至第 3 4の請求項にかかる赤外線温度計において、 記発熱素子系統を配置し た発熱素子領域と冷接合部測温素子系統を配置した冷接合部測温素子領 域との形状が、 一定角度で区切られた不連続の多角形であることを特徴 とする赤外線温度計である。  The infrared thermometer according to claim 36 of the present application is the infrared thermometer according to claims 32 to 34 of the present application, wherein the temperature of the heating element region in which the heating element system is arranged and the temperature of the cold junction are measured. The infrared thermometer is characterized in that the shape of the cold junction temperature measuring element area in which the element system is arranged is a discontinuous polygon separated by a certain angle.
かかる構成とすることにより、 従来の赤外線温度計のサ一モパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。  With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
また本願第 3 7の請求項にかかる赤外線温度計は、 本願第 3 2乃至第 3 の請求項にかかる赤外線温度計において、 前記発熱素子系統を配置 した発熱素子領域と冷接合部測温素子系統を配置した冷接合部測温素子 領域との形状が、 連続する円であることを特徴とする赤外線温度計であ る。  The infrared thermometer according to claim 37 of the present application is the infrared thermometer according to claims 32 to 3, wherein the heating element region in which the heating element system is arranged and a cold junction temperature measuring element system. The infrared thermometer is characterized in that the shape with the cold junction temperature measuring element region in which is disposed is a continuous circle.
かかる構成とすること (こより、 従来の赤外線温度計のサ一モパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。 Such a configuration (from this, the thermopile sensor of the conventional infrared thermometer) The arrangement of the hot junction and the cold junction applied to the sensor can be applied to the infrared thermometer of the present invention.
また本願第 3 8の請求項にかかる赤外線温度計は、 本願第 3 2乃至第 3 4の請求項にかかる赤外線温度計において、 前記発熱素子系統を配置 した発熱素子領域と冷接合部測温素子系統を配置した冷接合部測温素子 領域との形状が、 一定角度で区切られた不連続の円であることを特徴と する赤外線温度計である。  An infrared thermometer according to a thirty-eighth aspect of the present invention is the infrared thermometer according to the thirty-second to thirty-fourth aspects, wherein: a heating element region in which the heating element system is disposed; This infrared thermometer is characterized in that the shape with the cold junction temperature measuring element region where the system is arranged is a discontinuous circle separated by a certain angle.
かかる構成とすることにより、 従来の赤外線温度計のサ一モパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。  With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
また本願第 3 9の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 冷接合部がシリコンペレヅ ト又はシリ コンチップの内部又は表面に組込まれた構造を有するサ一モパイルセン サを組込んだ赤外線温度計において、 このシリコンペレッ ト又はシリコ ンチップに埋込み層 (buded layer) 構造であり、 かつ自己制御型正温度 係数特性を含む抵抗体が前記冷接合部との混成 (hybrid) 構造を有する ことを特徴とする赤外線温度計である。  Further, the infrared thermometer according to claim 39 of the present application is the infrared thermometer according to claim 4 of the present application, wherein the cold junction is built into the inside or surface of a silicon pellet or a silicon chip. In an infrared thermometer incorporating a mopil sensor, a resistor having a buried layer structure in the silicon pellet or silicon chip and having a self-controlling positive temperature coefficient characteristic is mixed with the cold junction ( It is an infrared thermometer having a hybrid structure.
かかる構成とすることにより、 従来の赤外線温度計のサ一モパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。  With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
また本願第 4 0の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 冷接合部がシリコンペレツ ト又はシリ コンチップの内部又は表面に組込まれた構造を有するサ一モパイルセン サを組込んだ赤外線温度計において、 このシリコンペレッ ト又はシリコ ンチツプの表面に形成された薄膜に自己制御型正温度係数特性を含む抵 抗体が組成された構造を有することを特徴とする赤外線温度計である。 かかる構成とすることにより、 従来の赤外線温度計のサ一モパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。  An infrared thermometer according to a 40th aspect of the present invention is the infrared thermometer according to the 4th aspect of the present invention, which has a structure in which a cold junction is incorporated in or on a silicon pellet or a silicon chip. An infrared thermometer incorporating a molypile sensor, characterized in that a thin film formed on the surface of the silicon pellet or silicon chip has a structure in which a resistive antibody having a self-controlling positive temperature coefficient characteristic is formed. It is an infrared thermometer. With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
また本願第 4 1の請求項にかかる赤外線温度計は、 本願第 4の請求項 にかかる赤外線温度計において、 冷接合部が、 絶縁物からなるチップ基 板の表面に厚膜形成された構造を有するサ一モパイルを組込んだ赤外線 温度計において、 自己制御型正温度係数特性を含む抵抗体が前記冷接合 部と混成 (hybrid) した厚膜ハイプリ ヅ ド構造を有することを特徴とす る赤外線温度計である。. · In addition, the infrared thermometer according to claim 41 of the present application is In the infrared thermometer according to (1), the self-controlling positive temperature coefficient characteristic is obtained in the infrared thermometer incorporating a thermopile having a structure in which the cold junction has a thick film formed on the surface of a chip substrate made of an insulator. An infrared thermometer characterized in that the resistor includes a thick film hybrid structure hybridized with the cold junction. ·
かかる構成とすることにより、 従来の赤外線温度計のサ一モパイルセ ンサにおいて適用されてきた温接合部と冷接合部との配置を本願発明の 赤外線温度計においても適用することが可能となる。  With this configuration, the arrangement of the hot junction and the cold junction, which has been applied to the thermopile sensor of the conventional infrared thermometer, can be applied to the infrared thermometer of the present invention.
また本願第 4 2の請求項にかかる赤外線温度計は、 本願第 1乃至第 2 8の請求項にかかる赤外線温度計において、 基準温度としての複数の異 なる温度の黒体炉に対して順次温度測定を行ったときの温度測定データ を格納するための記憶装置を有し、 かつ前記記憶装置に格納された固有 の温度測定デ一夕を不連続のプロヅ ト温度特性として作成し、 更にそれ それのプロッ ト間毎にその前後の複数プロッ トデータを使用してプロヅ ト間曲線特性処理を順次行い、 これらプロッ ト間曲線どうしを連続的に 繋いだ自由曲線温度特性を固有の温度特性基準として前記記憶装置に内 蔵するプログラムを記録した記録媒体と、 前記プログラムを実行するた めの情報処理装置とを有することを特徴とする赤外線温度計である。 かかる構成とすることにより、 予めサ一モパイルセンサ及びこれを組 み込んだ赤外線温度計の装置固有特性を装置内に記憶させておき、 誤差 の少ない高精度な測定を行うことが可能となる。  The infrared thermometer according to claim 42 of the present application is the infrared thermometer according to claims 1 to 28 of the present application, wherein the temperature is sequentially measured with respect to a plurality of black body furnaces having different temperatures as a reference temperature. It has a storage device for storing temperature measurement data at the time of measurement, and creates a unique temperature measurement data stored in the storage device as discontinuous plot temperature characteristics, and furthermore The plot characteristic processing is sequentially performed for each plot using a plurality of plot data before and after the plot, and a free curve temperature characteristic in which these plot plots are continuously connected is used as a unique temperature characteristic reference. An infrared thermometer comprising: a recording medium on which a program stored in a storage device is recorded; and an information processing device for executing the program. With this configuration, it is possible to store in advance the inherent characteristics of the thermopile sensor and the infrared thermometer incorporating the same in the device, and to perform highly accurate measurement with little error.
また本願第 4 3の請求項にかかる赤外線温度計の温度測定方法は、 冷 接合部領域を加熱する発熱素子系統と冷接合部領域の温度を測定する冷 接合部測温素子系統とを有するサーモパイルセンサを組込んだ赤外線温 度計により、 測定夕一ゲッ トから放射される赤外線を検知して温度測定 を行う赤外線温度計の温度測定方法において、 前記発熱素子系統と冷接 合部測温素子系統のうち少なくともいずれか一方に自己制御型正温度係 数特性を含む抵抗体を配置し、 かつ少なく ともいずれか一方を冷接合部 領域に対して熱的に直結させることによりサ一モパイル出力と熱応答速 度において同期させることを特徴とする赤外線温度計の温度測定方法で ある。 The temperature measurement method for an infrared thermometer according to claim 43 of the present application is a thermopile having a heating element system for heating the cold junction region and a cold junction temperature measuring element system for measuring the temperature of the cold junction region. A method of measuring the temperature of an infrared thermometer, which detects infrared rays emitted from a measurement target by an infrared thermometer incorporating a sensor, and measures a temperature of the infrared thermometer. A resistor having a self-controlling positive temperature coefficient characteristic is placed in at least one of the systems, and at least one of them is thermally connected directly to the cold junction area, thereby achieving the output of the thermopile. A method for measuring the temperature of an infrared thermometer, characterized by synchronizing the thermal response speed. is there.
自己制御型正温度係数特性を含む抵抗体は、 通電によって発熱体の温 度が上昇するに伴い発熱体の電気抵抗が増大する性質を有しているため、 所定温度に近づくに従い電流が抑制されて飽和自己安定温度の一定温度 に維持される特徴を有する。 従って、 赤外線温度計のサーモパイルセン ザにおいて、 これを所要温度に維持する自己制御型正温度係数特性を含 む抵抗体を有することにより、 サ一モパイルセンサの冷接合部に対して 設定された一定温度のバイァス温度が予め加わり、 設定温度以下の周囲 温度変化を自己制御型正温度係数特性を含む抵抗体が自 3温度調整し温 度変化を吸収し、 その結果、 周囲温度の影響を受けない正確な温度を検 出することができる。 さらに安全装置と別途の温度検出装置を付加する ことなくサ一モパイルの過熱事故が防がれる。 また、 これを所要温度に 維持するためのサーミス夕等の測温素子を含む複雑な温度制御回路は不 要になる。  Resistors with self-controlling positive temperature coefficient characteristics have the property that the electrical resistance of the heating element increases as the temperature of the heating element rises due to energization, so the current is suppressed as the temperature approaches the predetermined temperature. It has the characteristic of being maintained at a constant temperature of the saturated self-stabilizing temperature. Therefore, the thermopile sensor of the infrared thermometer has a resistor that includes a self-controlling positive temperature coefficient characteristic that maintains the thermopile sensor at a required temperature, so that the constant temperature set for the cold junction of the thermopile sensor is maintained. The resistor with self-controlling positive temperature coefficient characteristic adjusts the temperature by itself and absorbs the temperature change, and as a result, it is not affected by the ambient temperature. Temperature can be detected. Furthermore, without adding a safety device and a separate temperature detection device, an overheating accident of the thermopile can be prevented. In addition, a complicated temperature control circuit including a temperature measuring element such as a thermistor for maintaining the temperature at a required temperature becomes unnecessary.
またサ一モパイルセンサの冷接合部に対して設定された一定温度のバ ィァス温度が予め加わっているため、 冷接合部測温素子系統の抵抗変化 は、 測定夕一ゲッ トからの赤外線エネルギーによる温接合部の温度上昇 分だけとなり、 これにより冷接合部測温素子系統の熱応答速度は極めて 早くなり、 サ一モパイルセンサの出力応答速度との同期が可能になり、 測定誤差が小さくなる。  In addition, since a constant bias temperature set for the cold junction of the thermopile sensor is preliminarily applied, the resistance change of the cold junction temperature measuring element system is caused by the temperature change due to infrared energy from the measurement target. Only the temperature rise at the junction, which makes the thermal response speed of the cold junction temperature measuring element system extremely fast, enables synchronization with the output response speed of the thermopile sensor, and reduces measurement errors.
従って、 複雑な温度制御回路を用いずにサーモパイルの冷接合部温度 を容易に一定のバイァス温度に維持しかつ過熱を防いで安全に、 かつ高 い精度で非接触温度測定を行うことができる。  Therefore, the temperature of the cold junction of the thermopile can be easily maintained at a constant bias temperature without using a complicated temperature control circuit, and non-contact temperature measurement can be performed safely and with high accuracy by preventing overheating.
また本願第 4 4の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 3の請求項にかかる赤外線温度計の温度測定方法において、 前記 発熱系統により冷接合部領域を一定温度のバイアス温度に維持し、 サー モパイル出力を検出してこれを温度値に換算するとともに、 前記冷接合 部測温素子系統により冷接合部領域の温度をその都度測定し、 前記冷接 合部温度を基準温度としてサ一モパイル出力により求められた温度値を 加算して測定ターゲッ トの温度を求めることを特徴とする赤外線温度計 の温度測定方法である。 Further, a temperature measuring method for an infrared thermometer according to claim 44 of the present application is the temperature measuring method for an infrared thermometer according to claim 43 of the present application, wherein: While maintaining the bias temperature, the thermopile output is detected and converted into a temperature value, the temperature of the cold junction area is measured each time by the cold junction temperature measuring element system, and the cold junction temperature is measured. Infrared thermometer characterized by adding the temperature value obtained from the thermopile output as the reference temperature to obtain the temperature of the measurement target Temperature measurement method.
かかる温度測定方法とすることにより、 サ一モパイルセンサの冷接合 部に対して設定された一定温度のバイァス温度が予め加わっているため、 冷接合部測温素子系統の抵抗変化は、 測定夕ーゲッ トからの赤外線エネ ルギ一による温接合部の温度上昇分だけとなり、 これにより冷接合部測 温素子系統の熱応答速度は極めて早くなり、 サーモパイルセンサの出力 応答速度との同期が可能になり、 測定誤差が小さくなる。  By adopting such a temperature measuring method, since a constant bias temperature set for the cold junction of the thermopile sensor is previously applied, the resistance change of the cold junction temperature measuring element system is measured by the measurement target. The thermal response speed of the cold junction temperature measuring element system is extremely fast, and it is possible to synchronize with the output response speed of the thermopile sensor. The error is reduced.
従って、 複雑な温度制御回路を用いずにサーモパイルの冷接合部温度 を容易に一定のバイァス温度に維持しかつ過熱を防いで安全に、 かつ高 い精度で非接触温度測定を行うことができる。  Therefore, the temperature of the cold junction of the thermopile can be easily maintained at a constant bias temperature without using a complicated temperature control circuit, and non-contact temperature measurement can be performed safely and with high accuracy by preventing overheating.
また本願第 4 5の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 3の請求項にかかる赤外線温度計の温度測定方法において、 前記 発熱素子系統により冷接合部領域を一定温度のバイァス温度に維持して これを規定値として扱い、 サ一モパイル出力だけを検出してこれを温度 値に換算し、 前記一定バイアス温度既定値とサ一モパイル出力により求 められた温度値とを加算して測定夕一ゲッ トの温度を求めることを特徴 とする赤外線温度計の温度測定方法である。  In addition, the method of measuring a temperature of an infrared thermometer according to claim 45 of the present application is the method of measuring temperature of an infrared thermometer according to claim 43 of the present application, wherein: The bias temperature is maintained and treated as a specified value, only the thermopile output is detected and converted to a temperature value.The constant bias temperature default value and the temperature value obtained from the thermopile output are compared with the predetermined value. This is a method for measuring the temperature of an infrared thermometer, characterized in that the temperature of the measurement target is obtained by adding the following.
冷接合部ヒートシンク及びヒ一トシンクが熱接続されるハウジングス テムにおいて十分なる放熱特性を持たせることにより、 測定夕ーゲッ ト の温度測定を行う際に、 自己制御型正温度係数特性を含む抵抗体により 上記冷接合部を一定温度のバイアス温度に維持し、 かつ測定夕ーゲッ ト から放射される赤外線による接合部の温度上昇を、 前記ヒートシンクに より完全に熱吸収させて相殺することができる。 従って冷接合部温度を 拘束してこれを規定値として扱い、 温接合部温度変化すなわちサ一モパ ィル出力温度だけを検出し、 情報処理装置によりこのサ一モパイル出力 温度値と前記の一定バイァス温度規定値とを加算することにより、 サー モパイルの冷接合部温度をその都度検出することなくさらに高精度な温 度検出が可能となる。  By providing sufficient heat radiation characteristics in the housing system to which the cold junction heat sink and heat sink are thermally connected, a resistor with a self-controlling positive temperature coefficient characteristic is used when measuring the temperature of the measurement target. Thus, the cold junction can be maintained at a constant bias temperature, and the rise in the temperature of the junction due to infrared rays emitted from the measurement target can be completely absorbed by the heat sink to cancel out. Therefore, the temperature of the cold junction is constrained and treated as a specified value, and only the temperature change of the hot junction, that is, the output temperature of the thermopile is detected, and the output temperature value of the thermopile and the constant value are detected by the information processing device. By adding the bias temperature specified value, more accurate temperature detection can be performed without detecting the cold junction temperature of the thermopile each time.
また本願第 4 6の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 4又は第 4 5の請求項にかかる赤外線温度計の温度測定方法にお いて、 自己制御型正温度係数特性を含む抵抗体を、 自己発熱せずかつ冷 接合部の温度を測定する非加熱の冷接合部測温素子系統と、 自己発熱し て前記冷接合部測温素子系統を配置した冷接合部測温素子領域と冷接合 部領域とを加熱する発熱素子系統とに機能分割し、 かつ前記発熱素子系 統の自己制御型正温度係数特性を含む抵抗体としてその形状が面状であ る自己制御型正温度係数特性を含む抵抗体を配置し、 かつ前記面状の自 己制御型正温度係数特性を含む抵抗体の表面に正電極と負電極とが交互 に多数配置された水平方向作用の櫛形アナログサーモス夕ッ トを配置し て、 前記発熱素子により前記冷接合部測温素子領域と冷接合部領域とを 加熱して自己飽和安定温度の一定温度に維持するとともに、 前記水平方 向作用の櫛形アナログサーモス夕ッ トにより前記冷接合部測温素子領域 と冷接合部領域の部分的な温度変化をアナログ的に連続補正することを 特徴とする赤外線温度計の温度測定方法である。 The method for measuring the temperature of an infrared thermometer according to claim 46 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44 or 45 of the present application. And a non-heated cold junction temperature measuring element system that measures the temperature of the cold junction without self-heating the resistor including the self-control type positive temperature coefficient characteristic; The function is divided into a cold junction temperature measuring element region in which the element system is arranged and a heating element system for heating the cold junction region, and the resistor is provided as a resistor including the self-controlling positive temperature coefficient characteristic of the heating element system. A resistor having a planar self-control type positive temperature coefficient characteristic is disposed, and a positive electrode and a negative electrode alternate on the surface of the planar self-control positive temperature coefficient characteristic resistor. A large number of comb-shaped analog thermostats acting in the horizontal direction are arranged at the same time, and the heating element heats the cold junction temperature measuring element region and the cold junction region so that the self-saturation stable temperature is maintained at a constant temperature. While maintaining the horizontal action of the comb A log Thermos Yu' up by the temperature measuring method of the infrared thermometer, characterized in that a partial temperature change of a thermal device region measuring the cold junction and a cold junction region analog continuous correction.
かかる構成とすることにより、 周囲温度の急激な変化による冷接合部 領域及び冷接合部測温素子領域の局所的な温度変化に対して補正を行う ため、 冷接合部温度を一定に維持して、 高い精度で温度測定を行うこと ができる。  With this configuration, local temperature changes in the cold junction region and the cold junction temperature measuring element region caused by a rapid change in the ambient temperature are corrected, so that the cold junction temperature is kept constant. Temperature measurement can be performed with high accuracy.
また本願第 4 7の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 4又は第 4 5の請求項にかかる赤外線温度計の温度測定方法にお いて、 自己制御型正温度係数特性を含む抵抗体を、 自己発熱せずかつ冷 接合部の温度を測定する非加熱の冷接合部測温素子系統と、 自己発熱し て前記冷接合部測温素子系統を配置した冷接合部測温素子領域と冷接合 部領域とを加熱する発熱素子系統とに機能分割し、 かつ前記発熱素子系 銃の自己制御型正温度係数特性を含む抵抗体として所定の厚さを有する 面状の自己制御型正温度係数特性を含む抵抗体を配置し、 かつ面状の正 電極と負電極が前記面状の自己制御型正温度係数特性を含む抵抗体の表 裏面を挟むように配置してなる垂直方向作用のアナログサーモス夕ッ ト を配置したことを特徴とする赤外線温度計の温度測定方法である。  The method for measuring the temperature of an infrared thermometer according to claim 47 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44 or claim 45 of the present application. A non-heated cold junction temperature measuring element system that measures the temperature of the cold junction without self-heating the resistor containing the characteristics, and a cold junction where the cold junction temperature measuring element system is arranged by self-heating. The heating element system for heating the temperature measuring element region and the cold junction region is functionally divided, and the heating element system has a predetermined thickness as a resistor having a self-controllable positive temperature coefficient characteristic of the gun. A resistor including a self-control type positive temperature coefficient characteristic is arranged, and a planar positive electrode and a negative electrode are arranged so as to sandwich the front and back surfaces of the planar self-control type positive temperature coefficient characteristic resistor. It is characterized by the placement of a vertical-acting analog thermostat A temperature measuring method of the infrared thermometer to.
かかる構成とすることにより、 周囲温度の急激な変化による冷接合部 領域及び冷接合部測温素子領域の局所的な温度変化を非境界かつ水平位 置において無限数検出し、 かつ連続的なアナログ補正を行うことが可能 となるため冷接合部全ての位置においてその温度を一定に維持して、 高 い精度で温度測定を行うことができる。 With such a configuration, local temperature changes in the cold junction region and the cold junction temperature measuring element region due to a rapid change in the ambient temperature can be detected at non-boundary and horizontal positions. Since it is possible to detect an infinite number of units and perform continuous analog correction, the temperature can be kept constant at all positions of the cold junction and the temperature can be measured with high accuracy.
また本願第 4 8の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 3の請求項にかかる赤外線温度計の温度測定方法において、 前記 発熱素子系統を加熱して冷接合部領域に対して温度上昇を一方的かつ強 制的に加えることにより、 前記発熱素子系統加熱時間に対してサーモパ ィル出力電圧値を関数的に減少せしめてサ一モパイル出力電圧の零点を 強制通過させ、 サ一モパイル出力に対して正負の電圧値領域反転を一方 的かつ強制的に発生させながら、 この電圧値正負領域間の相反転を検出 し、 この相反転に同期して前記冷接合部測温素子により冷接合部領域の 温度を検知することにより、 測定夕ーゲッ 卜の温度を測定することを特 徴とする赤外線温度計の温度測定方法である。  The temperature measuring method for an infrared thermometer according to claim 48 of the present application is the method for measuring temperature of an infrared thermometer according to claim 43 of the present application, wherein the heating element system is heated to form a cold junction area. , The thermopile output voltage value is reduced functionally with respect to the heating element system heating time, and the zero point of the thermopile output voltage is forcibly passed. In addition, while unidirectionally and forcibly inverting the positive and negative voltage value areas with respect to the thermopile output, the phase inversion between the positive and negative voltage values is detected, and the cold junction measurement is performed in synchronization with the phase inversion. This is a method for measuring the temperature of an infrared thermometer, which is characterized by measuring the temperature of a measurement target by detecting the temperature of a cold junction region by a temperature element.
かかる構成とし、 発熱素子系統によって冷接合部を強制的かつ一方的 に加熱することにより、 従来の問題すなわち周囲温度の変化に対する熱 応答速度の遅れに関する問題及び 「感度の温度係数」 に関する問題は一 切生じないという効果がある。 またこのときサ一モパイル出力電圧を零 点に一致させるように冷接合部領域の温度をフィ一ドバヅ ク制御するの ではなく、 サーモパイル出力電圧値の零点を強制的に通過せしめるよう に制御することにより、 測定時間を大幅に短縮することができる。 また発熱素子によって予め冷接合部領域及び冷接合部測温素子は一定 温度のバイァス温度まで加熱され、 冷接合部測温素子の抵抗変化は測定 ターゲッ トからの赤外線エネルギーによる温接合部領域の温度上昇分だ けとなるのでその熱応答速度は極めて早くなり、 冷接合部領域の温度変 化に対して可及的に同期させることができる。  With this configuration, the cold junction is forcibly and unilaterally heated by the heating element system, so that the conventional problems, that is, the problem relating to the delay in thermal response speed to changes in ambient temperature and the problem relating to the “temperature coefficient of sensitivity” are one. There is an effect that cutting does not occur. At this time, instead of performing feedback control of the temperature of the cold junction area so that the thermopile output voltage coincides with the zero point, control is performed so that the zero point of the thermopile output voltage value is forcibly passed. Thereby, the measurement time can be significantly reduced. The heating element heats the cold junction area and the cold junction temperature measuring element to a predetermined bias temperature in advance, and the resistance change of the cold junction temperature measuring element measures the temperature of the hot junction area due to infrared energy from the measurement target. Since only the rise is achieved, the thermal response speed becomes extremely fast, and can be synchronized as much as possible with the temperature change in the cold junction region.
ところでこのようにバイァス温度の一定温度を実現する場合には、 フ ィ一ドバック制御を行う必要がある。 フィ一ドバック制御においては、 一定温度に達するまでの時間が長い点や温度の外乱要因に影響を受けや すい点等が問題となりやすい。 しかしここで行うフィ一ドバヅク制御は 一定温度に制御するとはいってもさほど厳密な制御を要するものではな く、 たとえバイアス温度に完全に一致しなくとも、 バイアス温度を中心 としたある一定の温度範囲に加熱されていればその効果を得ることが可 能であって、 上述のような問題は発生しない。 By the way, when realizing a constant bias temperature in this way, it is necessary to perform feedback control. In feedback control, problems such as a long time to reach a certain temperature and a susceptibility to temperature disturbances are likely to be problems. However, the feedback control performed here does not require very strict control even though it is controlled to a constant temperature. Even if the temperature does not completely match the bias temperature, the effect can be obtained if the heating is performed within a certain temperature range centered on the bias temperature, and the above-mentioned problem does not occur. .
すなわち、 測定時間の短縮と測定精度の向上とを同時に実現すること ができる。  That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 4 9の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 3の請求項にかかる赤外線温度計の温度測定方法において、 前記 発熱素子系統を加熱して冷接合部領域に対して温度上昇を一方的かつ強 制的に加えることにより、 前記発熱素子系統加熱時間に対してサ一モパ ィル出力電圧値を関数的に減少せしめて、 予め設定された基準電圧値と なる電圧閾値に対してサ一モパイル出力電圧を強制通過させ、 前記電圧 閾値に対するサ一モパイル出力電圧の相反転を検出し、 この相反転に同 期して前記冷接合部測温素子により冷接合部領域の温度を検知すること により、 測定夕ーゲッ トの温度を測定することを特徴とする赤外線温度 計の温度測定方法である。  The method for measuring the temperature of an infrared thermometer according to claim 49 of the present application is the method for measuring temperature of an infrared thermometer according to claim 43 of the present application, wherein the heating element system is heated to form a cold junction area. , The temperature of the heating element system is increased by one-sided and forced to reduce the thermo-modal output voltage value functionally with respect to the heating element system heating time. The thermopile output voltage is forcibly passed with respect to the voltage threshold value, and the phase inversion of the thermopile output voltage with respect to the voltage threshold value is detected. In synchronization with this phase inversion, the cold junction is measured by the cold junction temperature measuring element. This is a method for measuring the temperature of an infrared thermometer, characterized by measuring the temperature of a measurement target by detecting the temperature of a part area.
かかる温度測定方法とすることにより、 周囲の温度変化に左右される ことなく電圧閾値を強制的に通過せしめ、 測定時間を大幅に短縮するこ とができる。 また発熱素子によつて予め冷接合部領域及び冷接合部測温 素子は一定温度のバイァス温度まで加熱しておくことにより、 冷接合部 測温素子の抵抗変化は、 測定夕一ゲッ トからの赤外線エネルギーによる 温接合部領域の温度上昇分だけとなるのでその熱応答速度は極めて早く なり、 冷接合部領域の温度変化に対して可及的に同期させることができ る。 すなわち、 測定時間の短縮と測定精度の向上とを同時に実現するこ とが可能となる。  By adopting such a temperature measuring method, the voltage threshold is forcibly passed without being influenced by the ambient temperature change, and the measuring time can be greatly reduced. In addition, the resistance change of the cold junction temperature measuring element can be measured from the moment of measurement by heating the cold junction area and the cold junction temperature measuring element to a constant bias temperature by the heating element in advance. Since only the temperature rise in the hot junction region due to the infrared energy is obtained, the thermal response speed becomes extremely fast, and it can be synchronized as much as possible with the temperature change in the cold junction region. That is, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 5 0の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 8の請求項にかかる赤外線温度計の温度測定方法において、 冷接 合部領域の温度を変化させたときのサーモパイル出力電圧値が電圧値正 負領域間で相反転したか否かを相検出器により判定して相反転 「有」 か 「無」 かの 2 ビヅ トデジタル信号とし、 この 2 ビヅ トデジタル信号に同 期して冷接合部測温素子温度を検出することにより、 冷接合部領域の温 度を検出することを特徴とする赤外線温度計の温度測定方法である。 The temperature measuring method for an infrared thermometer according to the fiftyth aspect of the present invention is the method for measuring a temperature of an infrared thermometer according to the fifty-eighth aspect of the present invention, wherein the temperature of the cold junction region is changed. The phase detector determines whether or not the thermopile output voltage value of the thermopile output has inverted between the voltage value positive / negative regions, and generates a two-bit digital signal of “presence” or “absence”. The temperature of the cold junction area is detected by detecting the temperature of the cold junction temperature sensor in synchronization with the digital signal. This is a method for measuring the temperature of an infrared thermometer, wherein the temperature is detected.
かかる構成とすることにより、 測定時間の短縮と測定精度の向上とを 同時に実現することが可能となる。  With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 5 1の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 9の請求項にかかる赤外線温度計の温度測定方法において、 冷接 合部領域の温度を変化させたときのサ一モパイル出力電圧値が基準電圧 値となる電圧閾値に対して相反転したか否かを相検出器により判定して 相反転 「有」 か 「無」 かの 2 ビヅ トデジタル信号とし、 この 2ビヅ トデ ジタル信号に同期して冷接合部測温素子温度を検出することにより、 冷 接合部領域の温度を検出することを特徴とする赤外線温度計の温度測定 方法である。  The method for measuring the temperature of an infrared thermometer according to claim 51 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 49 of the present application, except that the temperature of the cold junction region is changed. The phase detector determines whether or not the thermopile output voltage value has inverted the phase with respect to the voltage threshold value that becomes the reference voltage value, and determines whether the phase inversion is a two-bit digital signal of “present” or “absent”. This is a temperature measuring method for an infrared thermometer, which detects a temperature of a cold junction region by detecting a temperature of a cold junction temperature measuring element in synchronization with the two-bit digital signal.
かかる構成とすることにより、 測定時間の短縮と測定精度の向上とを 同時に実現することが可能となる。  With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy.
また本願第 5 2の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 9の請求項にかかる赤外線温度計の温度測定方法において、 前記 電圧閾値をサーモパイル出力電圧値の正領域と負領域とに一ずつ設定し、 一対の電圧閾値対となすことを特徴とする赤外線温度計の温度測定方法 である。  Further, in the temperature measuring method for an infrared thermometer according to claim 52 of the present application, in the temperature measuring method for infrared thermometer according to claim 49 of the present application, the voltage threshold is defined as a positive region of a thermopile output voltage value. This is a method for measuring the temperature of an infrared thermometer, wherein one is set for each negative region and a pair of voltage thresholds is set.
かかる温度測定方法とすることにより、 サーモパイル出力電圧値の電 圧閾値に対する相反転に同期して冷接合部領域の温度を 2度検出するこ とが可能となり、 これらの測定値の間に演算処理を施すことによって測 定夕ーゲッ トの温度を得る。このように測定点を複数とすることにより、 測定精度をさらに向上することができる。  By adopting such a temperature measurement method, it becomes possible to detect the temperature of the cold junction region twice in synchronization with the phase inversion of the thermopile output voltage value with respect to the voltage threshold. To obtain the temperature of the measurement target. By using a plurality of measurement points in this way, the measurement accuracy can be further improved.
また本願第 5 3の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 9の請求項にかかる赤外線温度計の温度測定方法において、 前記 電圧閾値をサーモパイル出力電圧値の正領域と負領域とに一ずつ設定し てなる電圧閾値対を、 複数対設けることを特徴とする赤外線温度計の温 度測定方法である。  The temperature measuring method for an infrared thermometer according to claim 53 of the present application is the temperature measuring method for an infrared thermometer according to claim 49 of the present application, wherein the voltage threshold is defined as a positive region of a thermopile output voltage value. This is a method for measuring the temperature of an infrared thermometer, comprising providing a plurality of pairs of voltage thresholds, one set for each negative region.
かかる温度測定方法とすることにより、 測定点をさらに増加すること ができるので、 測定精度が向上する。 また本願第 5 4の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 5 3又は第 5 3の請求項にかかる赤外線温度計の温度測定方法にお いて、 前記電圧閾値対において、 対となる正領域の電圧閾値と負領域の 電圧閾値との絶対値を等しくすることを特徴とする赤外線温度計の温度 測定方法である。 By adopting such a temperature measuring method, the number of measuring points can be further increased, so that the measuring accuracy is improved. Further, in the temperature measuring method for an infrared thermometer according to claim 54 of the present application, the temperature measuring method for an infrared thermometer according to claim 53 or 53 of the present application, This is a method for measuring the temperature of an infrared thermometer, wherein the absolute value of the voltage threshold in the positive region and the absolute value of the voltage threshold in the negative region are equal.
かかる温度測定方法とすることにより、 正領域の電圧閾値に対する相 反転に同期して得られた測定値と、 負領域の電圧閾値に対する相反転に 同期して得られた測定値との平均値を、 測定夕一ゲッ トの温度として求 めることが可能となる。 すなわち簡単な演算処理により、 高い精度の測 定を行うことができる。  With such a temperature measurement method, the average value of the measured value obtained in synchronization with the phase inversion with respect to the voltage threshold in the positive region and the measurement value obtained in synchronization with the phase inversion with respect to the voltage threshold in the negative region is calculated. It can be obtained as the temperature of the measurement one night. In other words, highly accurate measurement can be performed by simple arithmetic processing.
また本願第 5 5の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 8又は第 4 9の請求項にかかる赤外線温度計の温度測定方法にお いて、 前記発熱素子系統を、 発熱して一定温度に維持される定常温度系 銃と、 一定の温度範囲において温度可変とする可変温度系統とに系統分 離し、 前記定常温度系統により温度測定開始前に予め冷接合部領域を一 定温度に維持し、 前記可変温度系統は温度測定開始後に冷接合部領域の 温度を一方的かつ強制的に変化させることを特徴とする赤外線温度計の 温度測定方法である。  Further, the temperature measuring method of the infrared thermometer according to the 55th claim of the present application is the temperature measuring method of the infrared thermometer according to the 48th or 49th claim of the present application. The system is separated into a steady temperature system gun that generates heat and is maintained at a constant temperature, and a variable temperature system that varies the temperature within a certain temperature range. A temperature measurement method for an infrared thermometer, wherein the temperature is maintained at a constant temperature, and the variable temperature system unilaterally and forcibly changes the temperature of a cold junction area after the start of temperature measurement.
かかる温度測定方法とすることにより、 定常温度系統によって予め冷 接合部領域及び冷接合部測温素子を一定のパイァス温度に加熱し、 測定 時間の短縮を図ることができる。 さらに、 冷接合部測温素子の抵抗変化 は、 測定夕一ゲッ トからの赤外線エネルギーによる温接合部の温度上昇 分だけとなるのでその熱応答速度は極めて早くなり、 冷接合部領域の温 度変化に対して可及的に同期させることができる。  By adopting such a temperature measuring method, the cold junction region and the cold junction temperature measuring element are preliminarily heated to a constant Piase temperature by a steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise of the hot junction due to infrared energy from the measurement target, its thermal response speed is extremely fast, and the temperature of the cold junction region It can be synchronized as much as possible with changes.
また本願第 5 6の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 4の請求項にかかる赤外線温度計の温度測定方法において、 前記 発熱素子系統として自己制御型正温度係数特性を含む抵抗体を配し、 か つ前記測温素子系統としてサ一ミス夕測温素子を配することを特徴とす る赤外線温度計の温度測定方法である。  Further, the temperature measuring method of the infrared thermometer according to claim 56 of the present application is the temperature measuring method of infrared thermometer according to claim 44 of the present application, wherein the self-controlling positive temperature coefficient characteristic is used as the heating element system. A temperature measuring method for an infrared thermometer, comprising: disposing a resistor including the following, and disposing a thermometer element as the temperature measuring element system.
また本願第 5 7の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 5の請求項にかかる赤外線温度計の温度測定方法において、 前記 発熱素子系統として自己制御型正温度係数特性を含む抵抗体を配し、 か つ前記測温素子系統としてサ一ミス夕測温素子を配することを特徴とす る請求項 4 5に記載の赤外線温度計の温度測定方法である。 Further, the method for measuring the temperature of the infrared thermometer according to claim 57 of the present application is as follows. 45. The method of measuring a temperature of an infrared thermometer according to claim 45, wherein a resistor having a self-controlling positive temperature coefficient characteristic is arranged as the heating element system, and a thermometer is used as the temperature measuring element system. The temperature measuring method for an infrared thermometer according to claim 45, wherein a temperature measuring element is provided.
また本願第 5 8の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 8の請求項にかかる赤外線温度計の温度測定方法において、 前記 発熱.素子系統として自己制御型正温度係数特性を含む抵抗体を配し、 か つ前記測温素子系統としてサ一ミス夕測温素子を配することを特徴とす る赤外線温度計の温度測定方法である。  In addition, the method of measuring a temperature of an infrared thermometer according to claim 58 of the present application is the method of measuring temperature of an infrared thermometer according to claim 48 of the present application, wherein the heat is generated. A temperature measuring method for an infrared thermometer, comprising disposing a resistor having characteristics and disposing a thermometer for measuring temperature as a temperature measuring element system.
また本願第 5 9の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 9の請求項にかかる赤外線温度計の温度測定方法において、 前記 発熱素子系統として自己制御型正温度係数特性を含む抵抗体を配し、 か つ前記測温素子系統としてサ一ミス夕測温素子を配することを特徴とす る赤外線温度計の温度測定方法である。  The temperature measuring method for an infrared thermometer according to claim 59 of the present application is the temperature measuring method for infrared thermometer according to claim 49 of the present application, wherein the self-controlling positive temperature coefficient characteristic is used as the heating element system. A temperature measuring method for an infrared thermometer, comprising: disposing a resistor including the following, and disposing a thermometer element as the temperature measuring element system.
また本願第 6 0の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 5 8乃至第 6 1の請求項にかかる赤外線温度計の温度測定方法にお いて、 前記サーミス夕測温素子として N T C ( Negative Temperature Coefficient) 抵抗体を用いることを特徴とする記載の赤外線温度計の温 度測定方法である。  The infrared thermometer according to the 60th aspect of the present invention is the infrared thermometer according to the 58th to 61st aspects of the present invention. A temperature measuring method for an infrared thermometer as described above, wherein an NTC (Negative Temperature Coefficient) resistor is used.
また本願第 6 1の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 5 8乃至第 6 1の請求項にかかる赤外線温度計の温度測定方法にお いて、 前記サ一ミスタ測温素子として P T C ( Positive Temperature Coefficient) 抵抗体を用いることを特徴とする赤外線温度計の温度測定 方法である。  The method for measuring the temperature of an infrared thermometer according to claim 61 of the present application is the method for measuring temperature of an infrared thermometer according to claims 58 to 61 of the present application, This is a method for measuring the temperature of an infrared thermometer, using a PTC (Positive Temperature Coefficient) resistor as an element.
上記本願第 5 6乃至第 6 1の請求項にかかる赤外線温度計の発熱素子 系統の自己制御型正温度係数特性を含む抵抗体においては、 所定電圧を 印加して冷接合部領域を加熱する際に飽和自己安定温度の一定温度で安 定させて加熱するため、 サ一モパイルセンサの冷接合部が設定された一 定温度のバイァス温度が予め加わった状態となり、 設定温度以下の周囲 温度変化を、 自己制御型正温度係数特性を含む抵抗体が自己温度調整し て温度変化を吸収し、 その結果、 周囲温度の影響を受けない正確な温度 を検出することができる。 また安全装置と別途の温度検出装置を付加す ることなくサーモパイルの過熱事故が防がれ、 安全性の高いサーモパイ ルセンサを提供することができる。 In the resistor including the self-control type positive temperature coefficient characteristic of the heating element system of the infrared thermometer according to the above-mentioned claims 56 to 61, a predetermined voltage is applied to heat the cold junction region. In this case, the thermocouple sensor is heated at a constant temperature of the saturation self-stabilization temperature, so that the constant junction bias temperature of the cold junction of the thermopile sensor is pre-applied. The resistor including the self-control type positive temperature coefficient characteristic As a result, it is possible to detect an accurate temperature independent of the ambient temperature. Also, without adding a safety device and a separate temperature detection device, overheating of the thermopile can be prevented, and a highly safe thermopile sensor can be provided.
また本願第 6 2の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 4又は第 4 5又は第 4 8又は第 4 9の請求項にかかる赤外線温度 計の温度測定方法において、 前記発熱素子系統として半導体発熱素子を 配し、 かつ前記冷接合部測温素子系統として自己制御型正温度係数特性 を含む抵抗体を配することを特徴とする赤外線温度計の温度測定方法で める。  The method for measuring the temperature of an infrared thermometer according to claim 62 of the present application is the method for measuring temperature of an infrared thermometer according to claim 44, 45, 48 or 48 or 49 of the present application. A semiconductor heating element is arranged as the heating element system, and a resistor having a self-controlling positive temperature coefficient characteristic is arranged as the cold junction temperature measuring element system. You.
上記半導体素子としてトランジスタやダイォード等を用い、 これに所 定電圧を印加することにより発熱して冷接合部領域を加熱し、 このとき 冷接合部領域の温度に反応して発生する冷接合部測温素子系統の自己制 御型正温度係数特性を含む抵抗体の自己抵抗変化を直接検出し、 これを 温度換算することにより冷接合部の温度を検出することができる。 特に 上記冷接合部測温素子系統の自己制御型正温度係数特性を含む抵抗体が 冷接合部に熱的に直結した構造とし、 サ一モパイルセンサの出力と熱応 答速度において可及的に同期させることにより、 測定誤差が少なく信頼 性の高い赤外線温度計を提供することができる。  A transistor, a diode, or the like is used as the semiconductor element. When a predetermined voltage is applied to the transistor, heat is generated to heat the cold junction region. At this time, the cold junction region generated in response to the temperature of the cold junction region is measured. The temperature of the cold junction can be detected by directly detecting the change in the self-resistance of the resistor including the self-control type positive temperature coefficient characteristic of the temperature element system and converting it to a temperature. In particular, a structure is used in which a resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element system is thermally connected directly to the cold junction, and the output of the thermopile sensor and the thermal response speed are synchronized as much as possible. By doing so, a highly reliable infrared thermometer with a small measurement error can be provided.
また本願第 6 3の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 4又は第 4 5又は第 4 8又は第 4 9の請求項にかかる赤外線温度 計の温度測定方法において、自己制御型正温度係数特性を含む抵抗体を、 所定電圧を引加して自己発熱させる発熱素子系統と、 冷接合部測温素子 系統とに分離して配することを特徴とする赤外線温度計の温度測定方法 である。  The method for measuring the temperature of an infrared thermometer according to claim 63 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44, 45 or 48 or 49 of the present application. An infrared thermometer wherein a resistor having a self-controlling positive temperature coefficient characteristic is separated into a heating element system for generating heat by applying a predetermined voltage and a cold junction temperature measuring element system. This is the temperature measurement method.
上記発熱素子系統の自己制御型正温度係数特性を含む抵抗体において は、 所定電圧を印加して冷接合部領域を加熱する際に飽和自己安定温度 の一定温度で安定させて加熱するため、 サ一モパイルセンサの冷接合部 は設定された一定温度のバイァス温度が予め加わった状態となり、 設定 温度以下の周囲温度変化を、 自己制御型正温度係数特性を含む抵抗体が 自己温度調整し温度変化を吸収し、 その結果、 周囲温度の影響を受けな い正確な温度を検出することができる。 さらに安全装置と別途の温度検 出装置を付加することなく赤外線温度計の過熱事故が防がれる。 In the resistor including the self-control type positive temperature coefficient characteristic of the heating element system, when a predetermined voltage is applied to heat the cold junction region, the cold junction region is heated at a constant temperature of the saturation self-stabilization temperature. The cold junction of a single mopile sensor is in a state in which a predetermined constant bias temperature is applied in advance, and the ambient temperature change below the set temperature is detected by the resistor including the self-control type positive temperature coefficient characteristic. It adjusts its own temperature and absorbs changes in temperature. As a result, it is possible to detect an accurate temperature independent of the ambient temperature. In addition, an overheating accident of the infrared thermometer can be prevented without adding a safety device and a separate temperature detection device.
また、発熱素子系統の自己制御型正温度係数特性を含む抵抗体により、 サ一モパイルセンサの冷接合部には設定された一定温度のパイァス温度 が予め加わっているため、 周囲温度が急激に変化した場合においても設 定温度以下の周囲温度変化を自己制御型正温度係数特性を含む抵抗体が 自己温度調整して温度変化を吸収し、 その結果、 冷接合部温度は一定温 度に保たれる。 このように冷接合部の温度が安定した状態において測定 対象の温度を測定すると、 測定夕ーゲッ トの赤外線エネルギーがサ一モ パイルセンサの赤外線吸収体により熱に変換されて瞬時に温接合部の温 度が上昇し、 この温度上昇によつて引き起こされた冷接合部の温度上昇 は所定時間後に熱平衡状態に達し、 温接合部と冷接合部の間に温度差が 発生する。 測定夕ーゲッ ト温度を測定する前に予め温度冷接合部を一定 のバイァス温度で規制しているため、 夕一ゲッ トからの赤外線による冷 接合部温度上昇分の抽出は容易であり、 冷接合部領域の温度に反応して 発生する冷接合部測温素子系統の自己制御型正温度係数特性を含む抵抗 体の自己抵抗変化を直接検出し、 これを温度換算することにより冷接合 部の温度を正確に検出することができる。  In addition, due to the resistor including the self-controlling positive temperature coefficient characteristic of the heating element system, the fixed junction temperature of the thermopile sensor was pre-applied to the preset fixed temperature, so the ambient temperature changed rapidly. Even in the case, the resistor including the self-control type positive temperature coefficient characteristic absorbs the temperature change by self-controlling the ambient temperature change below the set temperature, and as a result, the cold junction temperature is maintained at a constant temperature . When the temperature of the object to be measured is measured in such a state where the temperature of the cold junction is stable, the infrared energy of the measurement target is converted into heat by the infrared absorber of the thermopile sensor, and the temperature of the hot junction is instantly measured. The temperature rises, and the temperature rise of the cold junction caused by the temperature rise reaches a thermal equilibrium state after a predetermined time, and a temperature difference occurs between the hot junction and the cold junction. Since the temperature of the cold junction is regulated at a fixed bias temperature before measuring the target temperature, it is easy to extract the temperature rise of the cold junction by infrared rays from the evening target. The temperature of the cold junction is directly detected by detecting the self-resistance change of the resistor including the self-control positive temperature coefficient characteristic of the cold junction temperature measuring element system generated in response to the temperature of the cold junction, and converting it to temperature. Can be accurately detected.
また上記測温素子系統の自己制御型正温度係数特性を含む抵抗体を冷 接合部領域に熱的に直結した構造であること、 またさらに周囲温度影響 を排除した一定バイアス温度条件下において測定夕ーゲッ トの温度を測 定することにより、 上記測温素子系統の自己制御型正温度係数特性を含 む抵抗体をサーモパイルセンサの出力と熱応答速度において可及的に同 期させることが可能となり、 信頼性及び安全性の高い赤外線温度計を提 供することができる。  In addition, the temperature measuring element system has a structure in which a resistor including the self-controlling positive temperature coefficient characteristic is thermally connected directly to the cold junction region. By measuring the temperature of the target, it is possible to synchronize the resistor including the self-control type positive temperature coefficient characteristic of the temperature measuring element system with the output of the thermopile sensor as much as possible in the thermal response speed. A highly reliable and safe infrared thermometer can be provided.
上記測温素子系統の自己制御型正温度係数特性を含む抵抗体を冷接合 部領域に熱的に直結した構造とし、 さらに冷接合部ヒートシンク及びヒ 一トシンクが熱接続されるハウジングステムにおいて十分なる放熱特性 を持たせることにより、 測定ターゲッ トの温度測定を行う際に、 自己制 御型正温度係数特性を含む抵抗体により上記冷接合部を一定温度のパイ ァス温度に維持し、 かつ測定夕一ゲッ 卜から放射される赤外線による接 合部の温度上昇を、 前記ヒートシンクにより完全に熱吸収させて相殺す ることができる。 従って冷接合部温度を拘束してこれを規定値として扱 い、 温接合部温度変化すなわちサーモパイル出力温度だけを検出し、 倩 報処理装置によりこのサーモパイル出力温度値と前記の一定バイァス温 度規定値とを加算することにより、 サーモパイルの冷接合部温度をその 都度検出することなくさらに高精度な温度検出が可能となる。 A structure in which a resistor including the self-control type positive temperature coefficient characteristic of the temperature measuring element system is thermally connected directly to the cold junction region, and sufficient for the housing stem to which the cold junction heat sink and the heat sink are thermally connected. By providing heat radiation characteristics, self-control is performed when measuring the temperature of the measurement target. The cold junction is maintained at a constant pipe temperature by a resistor having a positive temperature coefficient characteristic, and the temperature of the junction is increased by infrared radiation radiated from the measurement gate. The heat can be completely absorbed and offset. Therefore, the cold junction temperature is constrained and treated as a specified value, and only the temperature change of the hot junction, that is, the output temperature of the thermopile, is detected. By adding the above, it is possible to detect the temperature of the cold junction of the thermopile more accurately without detecting the temperature each time.
あるいは、 発熱素子系統の自己制御型正温度係数特性を含む抵抗体に よって冷接合部を強制的かつ一方的に加熱し、 サ一モパイル出力電圧値 を関数的に減少せしめてサ一モパイル出力電圧の零点あるいは電圧閾値 を強制的に通過するようにし、 このときの零点あるいは電圧閾値に対す る相反転を検出し、 その相反転に同期して冷接合部測温素子系統の自己 制御型正温度係数特性を含む抵抗体により冷接合部領域の温度を測定す ることにより、 従来の問題すなわち周囲温度の変化に対する熱応答速度 の遅れに関する問題及び 「感度の温度係数」 に関する問題を一切生じな いという効果を得る。 また測定時間を大幅に短縮することができる。 また本願第 6 4の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 4又は第 4 5又は第 4 8又は第 4 9の請求項にかかる赤外線温度 計の温度測定方法において、 電気的に素子間絶縁された複数の同一抵抗 特性の自己制御型正温度係数特性を含む抵抗体からなる系統を、 冷接合 部領域と熱的に直結するようにして複数系統組込み、 これらに対してサ ーモパイル外部からそれそれ異なる電圧を印加し、 系統別に異なる発熱 温度を冷接合部領域に発生させることを特徴とする赤外線温度計の温度 測定方法である。  Alternatively, the cold junction is forcibly and unilaterally heated by a resistor including a self-controlling positive temperature coefficient characteristic of the heating element system, and the thermopile output voltage value is reduced as a function of the thermopile output voltage. At the zero point or the voltage threshold at this time, detects the phase inversion with respect to the zero point or the voltage threshold at this time, and synchronizes with the phase inversion to control the self-controlling positive temperature of the cold junction temperature measuring element system. Measuring the temperature of the cold junction area with a resistor that has a coefficient characteristic eliminates any of the conventional problems, that is, the problem of delay in thermal response speed to changes in ambient temperature and the problem of the "temperature coefficient of sensitivity" The effect is obtained. Also, the measurement time can be greatly reduced. The method for measuring the temperature of an infrared thermometer according to claim 64 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44, 45 or 48 or 49 of the present application. A system consisting of a plurality of resistors electrically insulated between elements and including a self-controlling positive temperature coefficient characteristic with the same resistance characteristic is incorporated in multiple systems so as to be thermally connected directly to the cold junction region. This is a method for measuring the temperature of an infrared thermometer, in which different voltages are applied from the outside of the thermopile to generate different heating temperatures for each system in the cold junction area.
また本願第 6 5の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 4又は第 4 5又は第 4 8又は第 4 9の請求項にかかる赤外線温度 計の温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性 の自己制御型正温度係数特性を含む抵抗体からなる系統を、 冷接合部領 域と熱的に直結するようにして複数系統組込み、 これらに対してサーモ パイル外部から同一の電圧を印加し、 系統別に異なる発熱温度を冷接合 部に発生させることを特徴とする赤外線温度計の温度測定方法である。 In addition, the method for measuring the temperature of an infrared thermometer according to claim 65 of the present application is the method for measuring temperature of an infrared thermometer according to claim 44, 45, 48 or 48 or 49 of the present application. A plurality of systems consisting of resistors with self-controlling positive temperature coefficient characteristics with different resistance characteristics electrically insulated from each other are incorporated so as to be thermally connected directly to the cold junction area. Thermo This is a method for measuring the temperature of an infrared thermometer, wherein the same voltage is applied from the outside of the pile to generate a different heat generation temperature for each system in the cold junction.
また本願第 6 6の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 4又は第 4 5又は第 4 8又は第 4 9の請求項にかかる赤外線温度 計の温度測定方法において、 電気的に素子間絶縁された異なる抵抗特性 の自己制御型正温度係数特性を含む抵抗体 2個からなる対を複数対組み 合わせてなる系統を作製し、 これらを冷接合部領域と熱的に直結するよ うにして複数系統組込み、 これらに対してサ一モパイル外部から同一の 電圧を印加し、 系統別に異なる発熱温度を冷接合部に発生させることを 特徴とする赤外線温度計の温度測定方法である。  The method for measuring the temperature of an infrared thermometer according to claim 66 of the present application is the method for measuring temperature of an infrared thermometer according to claim 44, 45, 48 or 48 or 49 of the present application. A system is created by combining a plurality of pairs of two resistors that include self-controlling positive temperature coefficient characteristics with different resistance characteristics that are electrically insulated between elements, and these are thermally connected to the cold junction region. A method for measuring the temperature of an infrared thermometer characterized by incorporating a plurality of systems so as to be directly connected, applying the same voltage to the outside of the thermopile, and generating a different heat generation temperature for each system at a cold junction. It is.
上記のように自己制御型正温度係数特性を含む抵抗体を複数系統ある いは複数対配することによって、 自己制御型正温度係数特性を含む抵抗 体をその系統ごとに加熱し、 きめ細かい温度制御を可能とする。  As described above, the resistors including the self-controlling positive temperature coefficient characteristic are heated for each system by arranging a plurality of resistors or a plurality of pairs including the self-controlling positive temperature coefficient characteristic, so that fine temperature control is performed. Is possible.
また上記発熱系統および測温素子系統の自己制御型正温度係数特性を 含む抵抗体はいずれも、 一定温度以上に過熱されることがなく、 安全で ある。  Further, the resistors including the self-controlling positive temperature coefficient characteristic of the heating system and the temperature measuring element system are all safe because they are not overheated beyond a certain temperature.
また本願第 6 7の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 8又は第 4 9の請求項にかかる赤外線温度計の温度測定方法にお いて、 前記発熱素子において、 異なる自己飽和安定温度を有する 2種類 の自己制御型正温度係数特性を含む抵抗体を用い、 自己飽和安定温度が 低温であるほうの自己制御型正温度係数特性を含む抵抗体に対しては所 定電圧を印加して自己飽和安定温度の一定温度で安定させ、 一方、 自己 飽和安定温度が高温であるほうの自己制御型正温度係数特性を含む抵抗 体は自己飽和安定温度以下において任意温度に変化させることを特徴と する赤外線温度計の温度測定方法である。  Further, the method for measuring the temperature of an infrared thermometer according to claim 67 of the present application is the same as the method for measuring temperature of infrared thermometer according to claim 48 or 49 of the present application, except that the heating element is different. Use two types of resistors with self-saturated stable temperature and including self-controlled positive temperature coefficient characteristics.Specify for resistors with self-controlled positive temperature coefficient characteristics with lower self-saturated stable temperature. A voltage is applied to stabilize at a constant temperature of the self-saturation stable temperature.On the other hand, a resistor with a higher self-saturation stable temperature, including a self-controlled positive temperature coefficient characteristic, changes to an arbitrary temperature below the self-saturation stable temperature. This is a method of measuring the temperature of an infrared thermometer.
かかる構成とすることにより、 例えば耳式体温計において、 自己飽和 安定温度が鼓膜温度付近 (例えば 3 4 °C ) である自己制御型正温度係数 特性を含む抵抗体により冷接合部領域及び冷接合部測温素子を予め一定 温度のバイアス温度 ( 3 4 °C ) に加熱し、 一方自己飽和安定温度が鼓膜 温度よりも高温 (例えば 5 0 °C ) である自己制御型正温度係数特性を含 む抵抗体を一定温度範囲内 (例えば 3 4〜4 2 °C ) において可変加熱す ることにより鼓膜の温度を測定することが可能となる。 この際に、 自 3 飽和安定温度が鼓膜温度付近である自己制御型正温度係数特性を含む抵 抗体は、 周囲の温度変化にかかわらず自己飽和安定温度の一定温度 ( 3 4 °C ) にみずから維持されるので、 過熱事故が防がれる。 また、 自己安 定飽和温度が鼓膜温度よりも高温である自己制御型正温度係数特性を含 む抵抗体は可変加熱されるが、 たとえ誤作動や故障により可変加熱の温 度制御が不可能になったとしても自己飽和安定温度 ( 5 0 °C ) 以上には 加熱されないため、 過熱事故が防止される。 With such a configuration, for example, in an ear thermometer, the cold junction region and the cold junction region are formed by a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C). The temperature measuring element is heated in advance to a constant bias temperature (34 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C). The temperature of the eardrum can be measured by variably heating the resistor within a certain temperature range (for example, 34 to 42 ° C). At this time, the resistive antibody having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is close to the eardrum temperature has a constant self-saturation stable temperature (34 ° C) regardless of the surrounding temperature change. This will prevent overheating accidents. In addition, resistors with self-regulating positive temperature coefficient characteristics, whose self-stable saturation temperature is higher than the eardrum temperature, are variable-heated. Even if the temperature rises, it will not be heated above the self-saturation stable temperature (50 ° C), preventing an overheating accident.
また本願第 6 8の請求項にかかる赤外線温度計の温度測定方法は、 本 願第 4 4又は第 4 5又は第 4 8又は第 4 9の請求項にかかる赤外線温度 計の温度測定方法において、 基準温度として複数の異なる温度の黒体炉 を設置し、 赤外線温度計を上記黒体炉の異なる温度に対して順次温度測 定をさせ、 赤外線温度計の個体差に基づく固有の温度測定結果を、 赤外 線温度計内部に設けられた記憶装置に記憶させ、 しかる後に赤外線温度 計内部に設けられた C P Uプログラムにより、 前記記憶装置に格納され た黒体炉基準温度データを基にした固有の温度測定デ一夕を不連続のプ 口ッ ト温度特性として作成し、 更にそれぞれのプロッ 卜間毎にその前後 の複数プロッ トデ一夕を使用してプロッ ト間曲線特性処理を順次行い、 これらプロッ ト間曲線どう しを連続的に繋いだ自由曲線温度特性を赤外 線温度計の固有の温度特性基準とし、 これを赤外線温度計内部に設けら れた記憶装置に内蔵させることにより、 赤外線温度計の装置間個体差を 自動校正することを特徴とする赤外線温度計の温度測定方法である。 かかる構成とすることにより、 予めサ一モパイルセンサ及びこれを組 み込んだ赤外線温度計の装置固有特性を装置内に記憶させておき、 誤差 の少ない高精度な測定を行うことが可能となる。  Further, the method for measuring the temperature of an infrared thermometer according to claim 68 of the present application is the same as the method for measuring temperature of an infrared thermometer according to claim 44, 45, 48 or 48 or 49 of the present application. A blackbody furnace with a plurality of different temperatures is installed as a reference temperature, and the infrared thermometer measures the temperature sequentially for the different temperatures of the blackbody furnace, and the unique temperature measurement result based on the individual difference of the infrared thermometer is obtained. Then, it is stored in a storage device provided inside the infrared thermometer, and thereafter, a specific program based on the black body furnace reference temperature data stored in the storage device is executed by a CPU program provided inside the infrared thermometer. The temperature measurement data is created as discontinuous plot temperature characteristics, and the plot characteristic processing between plots is performed sequentially using the plot data before and after each plot between each plot. Curve between plots The temperature characteristics of the free-curve that continuously connects the cows are used as the reference for the unique temperature characteristics of the infrared thermometer, and are stored in a storage device provided inside the infrared thermometer. This is a method for measuring the temperature of an infrared thermometer, which is characterized by automatically calibrating individual differences between the thermometers. With this configuration, it is possible to store in advance the inherent characteristics of the thermopile sensor and the infrared thermometer incorporating the same in the device, and to perform highly accurate measurement with little error.
図面の簡単な説明 第 1図は本願発明第一の実施の形態にかかる赤外線温度計の部分切欠 斜視図である。 BRIEF DESCRIPTION OF THE FIGURES FIG. 1 is a partially cutaway perspective view of an infrared thermometer according to a first embodiment of the present invention.
第 2図は本願発明第一の実施の形態にかかる赤外線温度計における赤 外線検出部の断面図である。  FIG. 2 is a cross-sectional view of an infrared detector in the infrared thermometer according to the first embodiment of the present invention.
第 3図は本願発明第一の実施の形態にかかる赤外線温度計のサーモパ ィルセンサにおける内部構造主要部の上面図及び断面図である。  FIG. 3 is a top view and a sectional view of a main part of an internal structure in the thermopile sensor of the infrared thermometer according to the first embodiment of the present invention.
第 4図は本願発明第一の実施の形態にかかる赤外線温度計のサーモパ ィルセンサにおけるサ一モパイル部の上面図である。  FIG. 4 is a top view of a thermopile portion in the thermopile sensor of the infrared thermometer according to the first embodiment of the present invention.
第 5図は本願発明第一の実施の形態にかかる赤外線温度計のサーモパ ィルセンサにおける内部構造主要部の上面図である。  FIG. 5 is a top view of a main part of an internal structure in the thermopile sensor of the infrared thermometer according to the first embodiment of the present invention.
第 6図は本願発明第一の実施の形態にかかる赤外線温度計において用 いられる自己制御型正温度係数特性を含む抵抗体の特性を示すグラフで ある。  FIG. 6 is a graph showing characteristics of a resistor including a self-control type positive temperature coefficient characteristic used in the infrared thermometer according to the first embodiment of the present invention.
第 7図は本願発明第一の実施の形態にかかる赤外線温度計を示すプロ ック図である。  FIG. 7 is a block diagram showing an infrared thermometer according to the first embodiment of the present invention.
第 8図は本願発明第三の実施の形態にかかる赤外線温度計のサーモパ ィルセンサにおける内部構造主要部の上面図及び断面図である。  FIG. 8 is a top view and a sectional view of a main part of an internal structure in a thermopile sensor of an infrared thermometer according to a third embodiment of the present invention.
第 9図は本願発明第四の実施の形態にかかる赤外線温度計のサ一モパ ィルセンサにおける内部構造主要部の上面図及び断面図である。  FIG. 9 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of an infrared thermometer according to a fourth embodiment of the present invention.
第 1 0図は本願発明第五の実施の形態にかかる赤外線温度計のサ一モ パイルセンサにおける内部構造主要部の上面図及び断面図である。  FIG. 10 is a top view and a sectional view of a main part of an internal structure in a thermopile sensor of an infrared thermometer according to a fifth embodiment of the present invention.
第 1 1図は第 1 0図に示す赤外線温度計における温度測定原理を示す 概略図である。  FIG. 11 is a schematic diagram showing the principle of temperature measurement in the infrared thermometer shown in FIG.
第 1 2図は本願発明第六の実施の形態にかかる赤外線温度計のサーモ パイルセンサにおける内部構造主要部の上面図及び断面図である。  FIG. 12 is a top view and a sectional view of a main part of an internal structure in a thermopile sensor of an infrared thermometer according to a sixth embodiment of the present invention.
第 1 3図は本願発明第七の実施の形態にかかる赤外線温度計を示すブ ロック図である。  FIG. 13 is a block diagram showing an infrared thermometer according to a seventh embodiment of the present invention.
第 1 4図は第 1 3図に示す赤外線温度計における温度測定方法のフロ 一チャートである。  FIG. 14 is a flowchart of a temperature measuring method in the infrared thermometer shown in FIG.
第 1 5図は本願第七の実施の形態にかかる赤外線温度計によるバイァ ス温度におけるサーモパイルセンサの温度制御の方法を示す時間—温度 曲線である。 FIG. 15 is a diagram showing a via of the infrared thermometer according to the seventh embodiment of the present invention. 6 is a time-temperature curve showing a method of controlling the temperature of the thermopile sensor at the temperature of the thermopile.
第 1 6図は本願第七の実施の形態にかかる赤外線温度計による温度測 定におけるサーモパイルセンサの温度制御の方法を示す時間—温度曲線 である。  FIG. 16 is a time-temperature curve showing a method of controlling the temperature of the thermopile sensor in the temperature measurement by the infrared thermometer according to the seventh embodiment of the present invention.
第 1 7図は本願発明第八の実施の形態にかかる赤外線温度計のサ一モ パイルセンサにおける内部構造主要部の上面図及び断面図である。 第 1 8図は本願発明第九の実施の形態にかかる赤外線温度計のサーモ パイルセンサにおける内部構造主要部の上面図及び断面図である。 第 1 9図は従来の赤外線温度計におけるサーモパイルセンサ部の断面 図である。  FIG. 17 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of an infrared thermometer according to an eighth embodiment of the present invention. FIG. 18 is a top view and a sectional view of a main part of an internal structure in a thermopile sensor of an infrared thermometer according to a ninth embodiment of the present invention. FIG. 19 is a sectional view of a thermopile sensor in a conventional infrared thermometer.
第 2 0図は従来の赤外線温度計におけるサーモパイルセンサ部の上面 図である。  FIG. 20 is a top view of a thermopile sensor in a conventional infrared thermometer.
第 2 1図は従来の赤外線温度計におけるサーモパイルセンサ部の内面 を示す上面図である。  FIG. 21 is a top view showing the inner surface of a thermopile sensor in a conventional infrared thermometer.
符号の説明 耳式体温計 Explanation of sign Ear thermometer
2 本体ケース  2 Body case
3 赤外線検出部  3 Infrared detector
4 温度測定回路 4 Temperature measurement circuit
5  Five
6 サ一モパイルセンサ  6 Thermopile sensor
7 プリン ト基板  7 Printed circuit board
8 スィッチ  8 Switch
9  9
1 0 ハイブリッ ドボード  1 0 Hybrid board
1 1 ノズル ヒートシンク 1 1 Nozzle heatsink
ピッ ト部 Pit
温接合部支持膜 Warm joint support membrane
第一熱電対材料 First thermocouple material
第二熱電対材料 Second thermocouple material
冷接合部 Cold junction
温接合部 Warm joint
サーモパイル Thermopile
出力端子 Output terminal
赤外線吸収体 Infrared absorber
冷接合部領域 Cold joint area
温接合部領域 Warm joint area
発熱素子 Heating element
冷接合部測温素子 Cold junction temperature measuring element
ダイアフラム Diaphragm
発熱素子の電極 Heating element electrode
冷接合部測温素子の電極 発熱素子領域 Electrode of cold junction temperature measuring element Heating element area
冷接合部測温素子領域 Cold junction temperature measuring element area
センサステム 増幅器 Sensor stem Amplifier
情報処理装置 , ドライブ I C Information processing device, Drive IC
面状自己制御型正温度係数発熱体 Planar self-control type positive temperature coefficient heating element
櫛型アナログサ一モス夕ッ トComb-shaped analog summaries
A部の電流 A part current
B部の電流 4 2 面状正電極 B part current 4 2 Planar positive electrode
4 3 面状負電極  4 3 Planar negative electrode
4 4 アナログサーモスタッ ト  4 4 Analog thermostat
5 相検出器  5-phase detector
4 6 定常温度系統発熱素子  4 6 Steady temperature system heating element
4 7 可変温度系統発熱素子  4 7 Variable temperature heating element
4 8 薄膜サ一ミス夕 4 8 Thin film failure
4 9 引出電極  4 9 Leader electrode
5 0 凹部  5 0 recess
発明を実施するための最良の形態 以下、 本発明の実施の形態を図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本願発明第一の実施の形態にかかる赤外線温度計として耳式体温計を 第 1図に示す。 耳式体温計 1は、 本体ケース 2と、 本体ケース 2に収納 された赤外線検出部 3及び温度測定回路部 4とから構成されている。 赤 外線検出部 3は導波管 5とサーモパイルセンサ 6 とを有し、 温度測定回 路部 4はプリント基板 7、 スィッチ 8、 及び表示装置 9を有しており、 プリン ト基板 7には後述するように、 温度測定において必要となる情報 処理装置等の各素子が組み込まれている。  FIG. 1 shows an ear thermometer as an infrared thermometer according to the first embodiment of the present invention. The ear thermometer 1 is composed of a main body case 2, an infrared detecting section 3 and a temperature measuring circuit section 4 housed in the main body case 2. The infrared ray detector 3 has a waveguide 5 and a thermopile sensor 6, the temperature measurement circuit 4 has a printed circuit board 7, a switch 8, and a display device 9. Each element such as an information processing device required for temperature measurement is incorporated.
これら赤外線検出部 3と温度測定回路部 4は図 1に示すように板状の ハイブリッ ドボ一ド 1 0に組み込まれて固定されている。 かかるハイプ リ ヅ ドボ一ド 1 0には導波管 5、 サ一モパイルセンサ 6、 プリン ト基板 7が取付けられている。  The infrared detecting section 3 and the temperature measuring circuit section 4 are incorporated and fixed in a plate-shaped hybrid board 10 as shown in FIG. A waveguide 5, a thermopile sensor 6, and a printed board 7 are mounted on the hybrid board 10.
本体ケース 2先端のノズル 1 1は、 耳孔に深く揷入されないように先 端に行くほど細くなるように形成されている。 また、 赤外線検出部 3は 本体ケース 2の先端に配置され、 ノズル 1 1の先端に設けられた孔ょり 入射する赤外線を検出する。  The nozzle 11 at the tip of the main body case 2 is formed so as to become thinner toward the tip so as not to penetrate deeply into the ear canal. The infrared detecting section 3 is disposed at the tip of the main body case 2 and detects infrared rays incident on the hole provided at the tip of the nozzle 11.
赤外線検出部 3は第 1図及び第 2図に示すように、 鼓膜から放射され る赤外線を検出するサ一モパイルセンサ 6と、 本体ケース 2先端のノズ ル 1 1内に設置され、 鼓膜から放射される微弱な赤外線を効率よく伝搬 させるための導波管 5 とを有している。 The infrared detector 3 is radiated from the eardrum as shown in Figs. 1 and 2. A thermopile sensor 6 for detecting infrared light, and a waveguide 5 installed in the nozzle 11 at the tip of the main body case 2 for efficiently transmitting weak infrared rays radiated from the eardrum. .
次にサーモパイルセンサ 6の内部構造についてその主要部を第 3図及 び第 4図に示す。  Next, main parts of the internal structure of the thermopile sensor 6 are shown in FIGS. 3 and 4. FIG.
第 3図に示すように、 シリコンからなり中央にピッ ト部 1 3が開口さ れた数百ミクロン程度の厚さを持つヒ一トシンク 1 2は上面及び下面に 電気的な絶縁性を有する温接合部支持膜 1 4及び絶縁薄膜 3 2が形成さ れている。 温接合部支持膜 1 4は、 酸化シリコンあるいは窒化シリコン 等によって形成され、 またその厚さは熱容量を小さくする目的から数ミ クロン程度となっている。  As shown in FIG. 3, a heat sink 12 made of silicon and having a pit portion 13 in the center and having a thickness of about several hundreds of microns has a heat insulating property on the upper and lower surfaces. The joint support film 14 and the insulating thin film 32 are formed. The hot-junction support film 14 is formed of silicon oxide, silicon nitride, or the like, and has a thickness of about several microns for the purpose of reducing heat capacity.
第 4図に示すように、 ヒートシンク 1 2上面から温接合部支持膜 1 4 上面にかけて第一熱電対材料 1 5及び第二熱電対材料 1 6が交互に多数 配線されている。 これら両金属をヒートシンク 1 2上面で接合すること により冷接合部 1 7、 温接合部支持膜 1 4上面で接合することにより温 接合部 1 8がそれそれ形成されており、 このようにして熱電対を直列に 接続することによりサーモパイル 1 9が形成されている。 サ一モパイル 1 9の両端には出力端子 2 0が設けられている。 温接合部 1 8は、 上面 を赤外線吸収体 2 1によって覆われている。 あるいはサ一モパイル 1 9 を第 5図に示すような形状で構成し、 温接合部 1 8を赤外線吸収体で覆 わない構造としてもよい。 なおここで、 本明細書において、 冷接合部 1 7が形成された領域を冷接合部領域 2 2、 温接合部 1 8が形成された領 域を温接合部領域 2 3と称し、 以下必要に応じてこの名称を用いる。 第 3図に示すようにヒ一トシンク 1 2上面には、 自己制御型正温度係 数特性を含む抵抗体からなる発熱素子 2 4と、 同じく自己制御型正温度 係数特性を含む抵抗体からなる冷接合部測温素子 2 5とが、 ダイアフラ ム 2 6の中心部から見て冷接合部領域 2 2の四辺の外側に、 冷接合部測 温素子 2 5、 発熱素子 2 4順に配置されている。 また発熱素子 2 4相互 間、 及び冷接合部測温素子 2 5相互間は電気的に接続されており、 両端 には A u等からなる電極 2 7及び 2 8が形成されている。 なおここで本明細書において、 発熱素子 2 4が形成された領域を発熱 素子領域 2 9、 冷接合部測温素子 2 5が形成された領域 ¾冷接合部測温 素子領域 3 0 と称し、 以下必要に応じてこの名称を用いる。 As shown in FIG. 4, a large number of first thermocouple materials 15 and second thermocouple materials 16 are alternately wired from the upper surface of the heat sink 12 to the upper surface of the hot junction supporting film 14. By joining these two metals on the upper surface of the heat sink 12, the cold junction 17 and the hot junction support film 14 are formed on the upper surface to form the hot junction 18, respectively. A thermopile 19 is formed by connecting the pairs in series. Output terminals 20 are provided at both ends of the thermopile 19. The hot junction 18 has its upper surface covered with an infrared absorber 21. Alternatively, the thermopile 19 may be formed in a shape as shown in FIG. 5, and the thermal junction 18 may not be covered with the infrared absorber. In this specification, the area where the cold junction 17 is formed is referred to as a cold junction area 22 and the area where the hot junction 18 is formed is referred to as a hot junction area 23. This name is used according to As shown in FIG. 3, on the upper surface of the heat sink 12, a heating element 24 made of a resistor having a self-controlling positive temperature coefficient characteristic and a resistor also having a self-controlling positive temperature coefficient characteristic are formed. The cold junction temperature measuring element 25 is arranged outside the four sides of the cold junction area 22 when viewed from the center of the diaphragm 26, and the cold junction temperature measuring element 25 and the heating element 24 are arranged in this order. I have. The heating elements 24 and the cold junction temperature measuring elements 25 are electrically connected to each other, and electrodes 27 and 28 made of Au or the like are formed at both ends. In this specification, the region where the heating element 24 is formed is referred to as a heating element region 29, a region where the cold junction temperature measuring element 25 is formed, and a 接合 cold junction temperature measuring element region 30, Hereinafter, this name will be used as necessary.
以上のようなサーモパイルセンサ 6をセンサステム 3 1にダイボン ド することにより、 サ一モパイルセンサ 6がセンサステム 3 1に固定され る o  The thermopile sensor 6 is fixed to the sensor stem 31 by die-bonding the thermopile sensor 6 to the sensor stem 31 as described above.
次に上記サーモパイルセンサ 6の製造プロセスについて説明する。 ま ず C V D装置等により、 ヒートシンク 1 2となるシリコンペレッ ト、 又 はシリコンチヅプ、 又はシリコンウェハの両面に酸化シリコンあるいは 窒化シリコンからなる温接合部支持膜 1 4を数ミクロンの厚さに形成す る。 次にヒ一トシンク 1 2の表面に異種金属 (第一熱電対材料 1 5及び 第二熱電対材料 1 6 ) からなりこれらを直列に接続して冷接合部 1 7及 び温接合部 1 8を有するサ一モパイルを形成する。 サーモパイル 1 9を 形成する第一熱電対材料 1 5及び第二熱電対材料 1 6の組み合わせとし ては、 例えばポリシリコンとアルミニウム、 あるいはビスマスとアンチ モン等が挙げられる。  Next, a manufacturing process of the thermopile sensor 6 will be described. First, a thermal bonding support film 14 made of silicon oxide or silicon nitride and having a thickness of several microns is formed on both surfaces of a silicon pellet or a silicon chip or a silicon wafer to be a heat sink 12 by a CVD device or the like. . Next, the surface of the heat sink 12 is made of a dissimilar metal (the first thermocouple material 15 and the second thermocouple material 16), and these are connected in series to form the cold junction 17 and the hot junction 18 To form a thermopile having Examples of the combination of the first thermocouple material 15 and the second thermocouple material 16 forming the thermopile 19 include polysilicon and aluminum, or bismuth and antimony.
次にヒートシンク 1 2の表面に発熱素子 2 4び冷接合部測温素子 2 5の 自己制御型正温度係数特性を含む抵抗体を蒸着法により形成する。 また これらは、 ぺ一スト焼き付けにより形成することもできる。 あるいは、 面状印刷により形成してもよい。 Next, a resistor including a self-controlling positive temperature coefficient characteristic of the heating element 24 and the cold junction temperature measuring element 25 is formed on the surface of the heat sink 12 by vapor deposition. They can also be formed by a first bake. Alternatively, it may be formed by planar printing.
さらにヒートシンク 1 2の両面に C V D装置等により温接合部支持膜 1 4と同一材料からなる絶縁薄膜 3 2を堆積させて覆った後、 サーモパ ィル 1 9の下の領域をゥェヅ トエッチングにより一部除去する。その後、 酸化膜をフッ酸等によりゥエツ トエッチングして除去すると、 サ一モパ ィルセンサ 6が完成する。  Furthermore, after depositing and covering an insulating thin film 32 made of the same material as the thermal bonding portion supporting film 14 on both surfaces of the heat sink 12 using a CVD device or the like, the region under the thermopile 19 is subjected to gate etching by a single etching. Remove part. Thereafter, the oxide film is removed by wet etching using hydrofluoric acid or the like, whereby the thermo-modal sensor 6 is completed.
次に上記本願発明第一の実施の形態にかかる赤外線温度計 (耳式体温 計) における自己制御型正温度係数係数特性を含む抵抗体についての詳 細、 及びこの赤外線温度計を用いた温度測定方法について説明する。  Next, details of the resistor including the self-control type positive temperature coefficient coefficient characteristic in the infrared thermometer (ear thermometer) according to the first embodiment of the present invention, and temperature measurement using the infrared thermometer The method will be described.
最初に自己制御'型正温度係数特性を含む抵抗体について説明する。 自 己制御型正温度係数特性を含む抵抗体は第 6図の抵抗一温度特性グラフ に示すように、 通電によって発熱体の温度が上昇するに伴い、 その電気 抵抗が増大する性質を有する発熱体である。 特に自己制御型正温度特性 を含む抵抗体はある温度 (自己飽和安定温度) で急激に電気抵抗が増加 する性質を有している。 一般に抵抗体に電流を流すと発熱するが、 自己 制御型正温度係数特性を含む抵抗体は前記のように自己飽和安定温度で 急激に電気抵抗が増加するため、 流れる電流が抑制され、 その結果自己 制御型正温度係数特性を含む抵抗体は自己飽和安定温度の一定温度に維 持される。 すなわち、 自己制御型正温度係数特性を含む抵抗体は自分自 身で発熱温度を制御することができる抵抗体である。 具体的には、 導電 性力一ボンからなる導電性樹脂、 あるいはこのような導電性樹脂に対し て適宜半導体を混合させたもの等である。 First, a resistor including a “self-controlling” type positive temperature coefficient characteristic will be described. The resistor including the self-control type positive temperature coefficient characteristic is the resistance-temperature characteristic graph in Fig. 6. As shown in Fig. 5, the heating element has the property that its electrical resistance increases as the temperature of the heating element rises due to energization. In particular, resistors with self-regulating positive temperature characteristics have the property that the electrical resistance increases rapidly at a certain temperature (self-saturation stable temperature). Generally, when a current flows through a resistor, heat is generated.However, as described above, a resistor including a self-controlling positive temperature coefficient characteristic rapidly increases its electric resistance at a self-saturation stable temperature, so that the flowing current is suppressed. The resistor including the self-control type positive temperature coefficient characteristic is maintained at a constant self-saturation stable temperature. That is, the resistor including the self-control type positive temperature coefficient characteristic is a resistor that can control the heating temperature by itself. Specifically, the conductive resin is a conductive resin made of conductive rubber, or a material obtained by appropriately mixing a semiconductor with such a conductive resin.
発熱素子 2 4の自己制御型正温度係数特性を含む抵抗体は、 これに所 定の定電圧を印加することにより発熱せしめ、 冷接合部領域 2 2を自己 飽和安定温度の一定温度において維持するものである。 従って、 所望の 自己飽和安定温度を有する自己制御型正温度係数特性を含む抵抗体を用 いることにより、 冷接合部領域を所望の温度に維持することができる。  The resistor including the self-control type positive temperature coefficient characteristic of the heating element 24 generates heat by applying a predetermined constant voltage to the resistor, thereby maintaining the cold junction region 22 at a constant temperature of the self-saturation stable temperature. Things. Therefore, by using a resistor having a self-control type positive temperature coefficient characteristic having a desired self-saturation stable temperature, the cold junction region can be maintained at a desired temperature.
このようにして冷接合部領域 2 2を測定夕ーゲッ ト温度近傍の一定温 度に予めバイアスしておくことにより、 サーモパイルセンサの電圧出力 が小さくなるので、 出力の増大に伴って出力一温度の相関関係が直線的 ではなくなるいわゆる 「感度の温度係数」 によるサ一モパイルセンサの 相対出力誤差を抑制することができ、 正確な温度測定が行える。 .  By pre-biasing the cold junction region 22 to a constant temperature near the measurement target temperature in this way, the voltage output of the thermopile sensor decreases, and as the output increases, the output-temperature The relative output error of the thermopile sensor due to the so-called “temperature coefficient of sensitivity” where the correlation is not linear can be suppressed, and accurate temperature measurement can be performed. .
しかもこのとき、 自己制御型正温度係数特性を含む抵抗体は所定の定 電圧を印加するだけでみずから自己飽和安定温度の一定温度に維持され るので、 温度制御のための複雑な回路や装置が不要であり、 コス トの低 下に寄与する。 またこのように装置構成が簡略であることから、 衝撃等 による故障が起こりにく く、 強度に優れる。 さらに、 自己制御型正温度 係数特性を含む抵抗体はみずから一定温度に維持され、 必要以上に過熱 されるおそれがないので安全である。  Moreover, at this time, the resistor including the self-control type positive temperature coefficient characteristic is maintained at a constant temperature of the self-saturation stable temperature only by applying a predetermined constant voltage, so that complicated circuits and devices for temperature control are required. It is unnecessary and contributes to cost reduction. In addition, since the device configuration is simple, failure due to impact or the like is unlikely to occur, and the strength is excellent. In addition, resistors with self-regulating positive temperature coefficient characteristics are naturally maintained at a constant temperature and are safe because they do not have to be overheated more than necessary.
一方、 冷接合部測温素子 2 5の自己制御型正温度係数特性を含む抵抗 体に対しては特に外部から電流を流さない。 前記のように発熱素子 2 4 の自己制御型正温度係数特性を含む抵抗体により、 冷接合部領域 2 2は バイァス温度の一定温度に維持され、 周囲温度の急激な変化が起こった 場合にも温度変化しない。 従って、 温度測定時において、 冷接合部測温 素子 2 5の自己制御型正温度係数特性を含む抵抗体に誘発される自己抵 抗変化を直接検出して温度換算することにより冷接合部領域 2 2の温度 を正確に検出することができる。 On the other hand, no current flows from the outside particularly to the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element 25. Heating element 2 4 as described above With the resistor including the self-control type positive temperature coefficient characteristic, the cold junction region 22 is maintained at a constant bias temperature, and does not change in temperature even when the ambient temperature changes suddenly. Therefore, at the time of temperature measurement, the self-resistance change induced by the resistor including the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 25 is directly detected and converted to the temperature to obtain the cold junction area 2. The temperature of 2 can be detected accurately.
第 3図において示すように、 冷接合部測温素子領域 3 0 と冷接合部領 域 2 2 とはお互いが隣接して熱的に直結した構造である。 また周囲温度 影響を排除した一定バイァス温度条件下において測定夕一ゲッ トの温度 を測定することにより、 サ一モパイルセンサ 6の相対出力すなわち温接 合部領域 2 3の温度変化とこの温度変化に熱平衡する冷接合部領域 2 2 の温度変化は物理的な所定時間で連動する関係となる。 従って、 上記冷 接合部測温素子 2 5の自己制御型正温度係数特性を含む抵抗体は、 サー モパイルセンサ 6の出力と熱応答速度において可及的に同期させること が可能となる。 従って、 測定夕一ゲッ トから放射される赤外線に起因す るサーモパイルセンサ 6の出力と、 冷接合部測温素子 2 5の自己制御型 正温度係数特性を含む抵抗体による冷接合部領域 2 2の温度測定との間 において、 応答速度のずれはきわめて小さく、 測定誤差が小さくなり、 正確な測定結果を得ることができる。  As shown in FIG. 3, the cold junction temperature measuring element region 30 and the cold junction region 22 are adjacent to each other and directly thermally connected. In addition, by measuring the temperature of the measurement target under a constant bias temperature condition excluding the influence of the ambient temperature, the relative output of the thermopile sensor 6, that is, the temperature change of the thermal junction area 23 and the thermal equilibrium with this temperature change The temperature change in the cold junction region 22 is linked in a predetermined physical period. Therefore, the resistor including the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 25 can be synchronized as much as possible with the output of the thermopile sensor 6 in the thermal response speed. Therefore, the output of the thermopile sensor 6 caused by the infrared rays radiated from the measurement target and the temperature of the cold junction area 22 by the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element 25 The deviation of the response speed from the temperature measurement is extremely small, the measurement error is small, and accurate measurement results can be obtained.
発熱素子 2 4及び冷接合部測温素子 2 5の自己制御型正温度係数特性 を含む抵抗体は、 第 3図に示されるように冷接合部領域 2 2の四辺に配 置されるが、 その配置は以上に示したものに限らない。 例えば、 枠状と してもよく、 またサ一モパイル 1 9の形状に応じて、 同心円、 あるいは 正多角形、 あるいはそのような円や正多角形を一定角度で区切った形状 としてもよい。  The resistors including the self-controlling positive temperature coefficient characteristics of the heating element 24 and the cold junction temperature measuring element 25 are arranged on the four sides of the cold junction region 22 as shown in FIG. The arrangement is not limited to that shown above. For example, the shape may be a frame shape, or may be a concentric circle or a regular polygon, or a shape obtained by dividing such a circle or regular polygon at a certain angle according to the shape of the thermopile 19.
次に上記サ一モパイルセンサ 6により、 どのように温度が測定される かを第 7図のプロック回路図を参照して説明する。  Next, how the temperature is measured by the thermopile sensor 6 will be described with reference to the block circuit diagram of FIG.
第 7図において、 温接合部領域 2 3が測定夕一ゲッ トから放射される 赤外線を吸収し、 サーモパイルセンサ 6はこのときの赤外線量及び冷接 合部領域 2 2の温度に依存する電圧を出力する。 すなわち、 サーモパイ ルセンサ 6は測定夕一ゲツ トの温度、 すなわち温接合部領域 2 3の温度 と冷接合部領域 2 2の温度との差に応じた電圧を出力する。 サ一モパイ ルセンサ 6に接続された増幅器 3 3は、 サーモパイルセンサ 6から出力 される微小電圧を所定の大きさに増幅する。 増幅器 3 3に接続された情 報処理装置 3 4には A / D変換器が内臓され、 かかる情報処理装置 3 4 は増幅器 3 3からの出力信号に基づいて演算処理を行い、 この値を冷接 合部領域 2 2の温度値に加算することにより、 測定夕一ゲッ トの温度値 ¾得る。 In FIG. 7, the hot junction region 23 absorbs infrared radiation radiated from the measurement target, and the thermopile sensor 6 generates a voltage depending on the amount of infrared radiation and the temperature of the cold junction region 22 at this time. Output. That is, thermo pie The sensor 6 outputs a voltage corresponding to the temperature of the measurement target, that is, the difference between the temperature of the hot junction region 23 and the temperature of the cold junction region 22. The amplifier 33 connected to the thermopile sensor 6 amplifies the minute voltage output from the thermopile sensor 6 to a predetermined magnitude. The information processing device 34 connected to the amplifier 33 includes an A / D converter, and the information processing device 34 performs arithmetic processing based on the output signal from the amplifier 33, and cools this value. By adding to the temperature value of the junction area 22, the temperature value of the measurement target can be obtained.
第 1 3図においてドライブ I C 3 5は情報処理装置 3 4からの加熱命 令信号に従い、 発熱素子 2 4の自己制御型正温度係数特性を含む抵抗体 に対して所定電圧を印加する。 すると発熱素子 2 4の自己制御型正温度 係数特性を含む抵抗体は、 測定夕ーゲッ トの温度近傍である自己飽和安 定温度の一定温度まで加熱され、 冷接合部測温素子領域 3 0及び冷接合 部領域 2 2は設定温度 T。の一定パイァス温度に維持される。  In FIG. 13, the drive IC 35 applies a predetermined voltage to the resistor including the self-controlling positive temperature coefficient characteristic of the heating element 24 in accordance with the heating instruction signal from the information processing device 34. Then, the resistor including the self-controlling positive temperature coefficient characteristic of the heating element 24 is heated to a certain temperature of the self-saturation stable temperature near the temperature of the measurement target, and the cold junction temperature measuring element area 30 and Cold junction area 2 2 is set temperature T. Is maintained at a constant Pierce temperature.
測定開始命令が情報処理装置 3 4に伝達されると、 情報処理装置 3 4 は冷接合部測温素子 2 5の自己制御型正温度係数特性を含む抵抗体に対 して、 発熱しない範囲内において電流を流し、 これによつて得られたァ ナログ電圧を増幅器 3 3で増幅し、 情報処理装置に内蔵の A / D変換器 によるデジタル信号に変換し、 このデジ夕ル信号に基づき演算処理を行 つて冷接合部領域 2 2の温度 T。を検出し、 この T Dと、 増幅器 3 3によ り増幅されたサ一モパイルセンサ 6の相対出力信号とを演算処理し、 得 られた値を冷接合部領域 2 2の温度値に加算することにより、 測定対象 の温度を検出する。 When the measurement start command is transmitted to the information processing device 34, the information processing device 34 does not generate heat with respect to the resistor including the self-controlled positive temperature coefficient characteristic of the cold junction temperature measuring element 25. The analog voltage obtained by the current flow is amplified by an amplifier 33, converted into a digital signal by an A / D converter built in the information processing device, and arithmetically processed based on the digital signal. To the temperature T of the cold junction region 22. Detects, and this T D, and processing the relative output signal of the mono Mopairusensa 6 amplified Ri by the amplifier 3 3, the obtained value is added to the temperature value of the cold junction area 2 2 that Detects the temperature of the object to be measured.
なお、以上及び第 7図において示した増幅器 3 3、情報処理装置 3 4、 及びドライブ I C 3 5は、第 1図に示すプリント基板 7上に配置される。  Note that the amplifier 33, the information processing device 34, and the drive IC 35 shown above and in FIG. 7 are arranged on the printed circuit board 7 shown in FIG.
以上は、 周囲温度の変化がある一定範囲内にある場合、 すなわち定常 状態における温度測定の手順である。 '  The above is the procedure for measuring the temperature when the change in the ambient temperature is within a certain range, that is, in the steady state. '
次に周囲温度が急激に変化する場合の温度測定について説明する。 発 熱素子 2 4の自己制御型正温度係数特性を含 抵抗体により、 サーモパ ィルセンサ 6の冷接合部領域 2 2には設定された一定温度のバイァス温 度が予め加わっているため、 設定温度以下の周囲温度変化を自己制御型 正温度係数特性を含む抵抗体が自己温度調整し温度変化を吸収し、 その 結果、 冷接合部領域の温度は一定温度に保たれる。 従って冷接合部領域Next, temperature measurement in a case where the ambient temperature changes rapidly will be described. The constant temperature bias temperature is set in the cold junction area 22 of the thermopile sensor 6 by the resistor including the self-controlling positive temperature coefficient characteristic of the heating element 24. Since the temperature is pre-applied, the ambient temperature change below the set temperature is self-controlled.The resistor including the positive temperature coefficient characteristic adjusts its own temperature and absorbs the temperature change. Is kept. Therefore cold junction area
2 2の温度に反応して発生する冷接合部測温素子系統の自己制御型正温 度係数特性を含む抵抗体の自己抵抗変化は周囲温度変化に全く影響され ない。 従ってサー乇パイルセンサ 6の相対出力信号及び冷接合部測温素 子 2 5からの信号処理は、 前記の周囲温度安定状態と全く同様に処理す ることが可能であり、 測定夕一ゲッ 卜の温度を正確に検出することがで ぎる。 The self-resistance change of the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element system generated in response to the temperature of 22 is not affected at all by the ambient temperature change. Therefore, the relative output signal of the thermopile sensor 6 and the signal processing from the cold junction temperature measuring element 25 can be processed in exactly the same manner as in the above-mentioned ambient temperature stable state. Temperature can be accurately detected.
以上に述べたように、 発熱素子 2 4と冷接合部測温素子 2 5の両方に 自己制御型正温度係数特性を含む抵抗体を適用したことにより、 発熱素 子 2 4に温度制御を行う回路を必要としない。  As described above, the temperature control is performed on the heating element 24 by applying the resistor including the self-controlling positive temperature coefficient characteristic to both the heating element 24 and the cold junction temperature measuring element 25. No circuit is required.
また、 発熱素子 2 4の自己制御型正温度係数特性を含む抵抗体により 冷接合部領域 2 2を設定温度 T。の一定のバイァス温度に維持されてい るので、 周囲温度変化に影響されない。 さらに、 サ一モパイルセンサの 相対出力が圧縮されるため r感度の温度係数」による出力誤差も抑制され るため測定誤差を減少させることができる。  Further, the temperature of the cold junction region 22 is set by the resistor including the self-control type positive temperature coefficient characteristic of the heating element 24. It is not affected by changes in ambient temperature because it is maintained at a constant bias temperature. Furthermore, since the relative output of the thermopile sensor is compressed, the output error due to “temperature coefficient of sensitivity” is also suppressed, so that the measurement error can be reduced.
また、 自 3制御型正温度係数特性を含む抵抗体は自己飽和安定温度以 上には過熱されないので、 安全である。  Also, the resistor including the self-controlling positive temperature coefficient characteristic is safe because it is not overheated above the self-saturation stable temperature.
また、 周囲温度の急激な変化が発生しても冷接合部領域 2 2の温度は 一定温度に安定しているため、 測定夕ーゲッ トの温度を正確に検出する ことができる。  In addition, even if a sudden change in the ambient temperature occurs, the temperature of the cold junction region 22 is stable at a constant temperature, so that the temperature of the measurement target can be accurately detected.
さらに冷接合部測温素子 2 5の自己制御型正温度係数特性を含む抵抗 体は冷接合部領域 2 2と熱的に直結している。 さらに、 周囲温度影響を 排除した一定バイァス温度条件下において測定夕一ゲッ トの温度を測定 することにより、 サーモパイルセンサ 6の相対出力すなわち温接合部領 域 2 3の温度変化とこの温度変化に熱平衡する冷接合部領域 2 2の温度 変化は物理的な所定時間で連動する関係となる。 従って、 上記冷接合部 測温素子 2 5の自己制御型正温度係数特性を含む抵抗体は、 サ一モパイ ルセンサの出力と熱応答速度において可及的に同期させることが可能と なり、 正確かつ迅速な温度測定が可能となる。 Further, the resistor including the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 25 is thermally directly connected to the cold junction region 22. Furthermore, by measuring the temperature of the measurement target under a constant bias temperature condition excluding the influence of the ambient temperature, the relative output of the thermopile sensor 6, that is, the temperature change of the hot junction area 23 and the thermal equilibrium with this temperature change The temperature change of the cold junction region 22 is linked in a predetermined physical time. Therefore, the resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element 25 can be synchronized with the output of the thermopile sensor as much as possible in the thermal response speed. Therefore, accurate and quick temperature measurement becomes possible.
次に本願発明第二の実施の形態を図で参照して説明する。 但し、 上述 した実施の形態と重複する部分については説明を省略し、 相違する部分 についてのみ説明する。  Next, a second embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
第 3図においてヒートシンク 1 2及びヒートシンク 1 2が熱接続され るセンサステム 3 1において十分なる放熱特性を持たせることにより、 測定夕ーゲッ トの温度測定を行う際に、 自己制御型正温度係数特性を含 む抵抗体により上記冷接合部領域 2 2を一定温度のバイアス温度に維持 し、 かつ測定夕一ゲツ トから放射される赤外線による接合部の温度上昇 を、前記ヒートシンクにより完全に熱吸収させて相殺することができる。 従って冷接合部領域 2 2における一定バイァス温度を規定値として扱う ことができる。 すなわち、 サーモパイル出力だけを検出してこれを温度 換算することにより温接合部領域 2 3の温度変化を検出し、 情報処理装 置 3 4によってこのサ一モパイル出力温度値と前記の一定バイァス温度 規定値とを加算し、 測定夕一ゲッ トの温度を得ることが可能となる。 す なわち冷接合部領域 2 2の温度をその都度検出することなく、 さらに高 精度な温度検出が可能となる。  In Fig. 3, the heat sink 12 and the sensor stem 31 to which the heat sink 12 is thermally connected have sufficient heat radiation characteristics so that the self-control positive temperature coefficient The cold junction region 22 is maintained at a constant bias temperature by a resistor including a heat sink, and the temperature rise of the junction due to infrared rays emitted from the measurement target is completely absorbed by the heat sink. Can be offset. Therefore, a constant bias temperature in the cold junction region 22 can be treated as a specified value. That is, by detecting only the thermopile output and converting it to a temperature, the temperature change in the hot junction region 23 is detected, and the information processing device 34 detects the thermopile output temperature value and the constant bias temperature regulation. By adding the values, it becomes possible to obtain the temperature of the measurement target one night. That is, it is possible to more accurately detect the temperature of the cold junction region 22 without detecting the temperature each time.
次に本願発明第三の実施の形態を図で参照して説明する。 但し、 上述 した実施の形態と重複する部分については説明を省略し、 相違する部分 についてのみ説明する。  Next, a third embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
第 8図は本願発明第三の実施の形態にかかる赤外線温度計におけるサ —モパイルセンサ部の上面図及び断面図である。 本実施形態では第 8図 に示すように、 自己制御型正温度係数特性を含む抵抗体からなる発熱素 子 2 4と、 同じく自己制御型正温度係数特性を含む抵抗体からなる冷接 合部測温素子 2 5とが、 ダイアフラム 2 6の中心部から見て冷接合部領 域 2 2の四辺の外側に、 発熱素子 2 4、 冷接合部測温素子 2 5の順に配 置されている。 また発熱素子領域 2 9は冷接合部領域 2 2 と隣接し、 熱 的に直結した構造となっている。 これにより情報処理装置 3 4に温度測 定命令が入力される前に予め一定のバイァス温度を与える際に、 発熱素 子 2 4の自己制御型正温度係数特性を含む抵抗体は冷接合部領域 2 2を 急速に加熱し、 短時間で一定温度 (自己飽和安定温度) に到達せしめる ことが可能となる。 従って、 測定開始までに要する時間が短縮される。 次に本願発明第四の実施の形態を図で参照して説明する。 但し、 上述 した実施の形態と重複する部分については説明を省略し、 相違する部分 についてのみ説明する。 FIG. 8 is a top view and a sectional view of a thermopile sensor in an infrared thermometer according to a third embodiment of the present invention. In the present embodiment, as shown in FIG. 8, a heating element 24 made of a resistor having a self-controlling positive temperature coefficient characteristic and a cold junction made of a resistor also having a self-controlling positive temperature coefficient characteristic The temperature measuring element 25 is disposed outside the four sides of the cold junction area 22 when viewed from the center of the diaphragm 26, in the order of the heating element 24 and the cold junction temperature measuring element 25. . The heating element region 29 is adjacent to the cold junction region 22 and has a structure directly thermally connected. As a result, when a constant bias temperature is given in advance before the temperature measurement command is input to the information processing device 34, the resistor including the self-controlling positive temperature coefficient characteristic of the heating element 24 becomes a cold junction region. 2 2 It is possible to heat rapidly and reach a certain temperature (self-saturation stable temperature) in a short time. Therefore, the time required to start the measurement is reduced. Next, a fourth embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
第 9図は本願発明第四の実施の形態にかかる赤外線温度計におけるサ —モパイルセンサ部の上面図及び断面図である。 本実施形態においては 第 9図に示すように、 自己制御型正温度係数特性を含む抵抗体からなる 発熱素子 2 4と、 同じく自己制御型正温度係数特性を含む抵抗体からな る冷接合部測温素子 2 5とが積層して配置される。  FIG. 9 is a top view and a sectional view of a thermopile sensor in an infrared thermometer according to a fourth embodiment of the present invention. In the present embodiment, as shown in FIG. 9, a heating element 24 made of a resistor having a self-controlling positive temperature coefficient characteristic, and a cold junction made of a resistor also having a self-controlling positive temperature coefficient characteristic The temperature measuring elements 25 are arranged in a stacked manner.
上記サ一モパイルセンサ 6の製造プロセスについて説明する。 まず C V D装置等により、 ヒートシンク 1 2となるシリコンペレッ ト、 又はシ リコンチップ、 又はシリコンウェハの両面に酸化シリコンあるいは窒化 シ リコンからなる温接合部支持膜 1 4を数ミクロンの厚さに形成する。 次にヒートシンク 1 2上面側の温接合部支持膜 1 4上に、 蒸着法、 ある いはペース ト焼付け法、 あるいは面状印刷法等により冷接合部測温素子 2 5の自己制御型正温度係数特性を含む抵抗体を形成し、 その上に再び C V D装置等により、 酸化シリコンあるいは窒化シリコンからなる温接 合部支持膜 1 4を数ミクロンの厚さに形成する。 次にヒートシンク 1 2 の表面に異種金属 (第一熱電対材料 1 5及び第二熱電対材料 1 6 ) から なるこれらを直列に接続して冷接合部 1 7及び温接合部 1 8を有するサ ーモパイル 1 9を形成する。 次にヒートシンク 1 2表面に発熱素子 2 4 の自己制御型正温度係数特性を含む抵抗体を蒸着法、 あるいはペース ト 焼付け法、 あるいは面状印刷法により形成する。 さらにヒートシンク 1 2の両面に C V D装置等により絶縁薄膜 3 2を堆積させて覆った後、 サ ーモパイル 1 9の下の領域をゥエツ トエッチングにより一部除去する。 その後、 酸化膜をフッ酸等によりゥエツ トエッチングして除去すると、 サーモパイルセンサ 6が完成する。  The manufacturing process of the thermopile sensor 6 will be described. First, a thermal bonding support film 14 made of silicon oxide or silicon nitride with a thickness of several microns is formed on both surfaces of a silicon pellet or silicon chip or silicon wafer to be a heat sink 12 by a CVD device or the like. . Next, the self-controlling positive temperature of the cold junction temperature measuring element 25 is deposited on the thermal junction supporting film 14 on the upper surface side of the heat sink 12 by vapor deposition, paste baking, or sheet printing. A resistor having a coefficient characteristic is formed, and a thermal junction supporting film 14 made of silicon oxide or silicon nitride is formed thereon to a thickness of several microns again by a CVD apparatus or the like. Next, on the surface of the heat sink 12, these made of dissimilar metals (the first thermocouple material 15 and the second thermocouple material 16) are connected in series to form a heat sink having a cold junction 17 and a hot junction 18. -To form mopiles 19; Next, a resistor having a self-controlling positive temperature coefficient characteristic of the heating element 24 is formed on the surface of the heat sink 12 by a vapor deposition method, a paste baking method, or a sheet printing method. Furthermore, after depositing and covering the insulating thin film 32 on both surfaces of the heat sink 12 with a CVD device or the like, the region below the thermopile 19 is partially removed by jet etching. Thereafter, the oxide film is removed by wet etching using hydrofluoric acid or the like, whereby the thermopile sensor 6 is completed.
なお、 冷接合部領域 2 2 と冷接合部測温素子領域 3 0とは隣接し合う ように配置され、 また発熱素子領域 2 9 と冷接合部測温素子領域 3 0と は垂直方向に重なり合うように配置される。 The cold junction area 22 and the cold junction temperature measuring element area 30 are arranged adjacent to each other, and the heating element area 29 and the cold junction temperature measuring element area 30 are adjacent to each other. Are arranged to overlap in the vertical direction.
本実施形態の赤外線温度計のサ一モパイルセンサにおいては、 発熱素 子領域 2 9と冷接合部測温素子領域 3 0とが垂直方向に重なり合う配置 であるが、 その間に絶縁性の温接合部支持膜 1 4を介在させることによ り、 電気的に絶縁されかつ冷接合部測温素子領域 3 0の温度は発熱素子 In the thermopile sensor of the infrared thermometer according to the present embodiment, the heating element region 29 and the cold junction temperature measuring element region 30 are arranged so as to vertically overlap with each other. By interposing the film 14, it is electrically insulated and the temperature of the cold junction temperature measuring element region 30 is increased by the heating element.
2 4の温度に強制的に従属させられるため冷接合部領域 2 2及び冷接合 部測温素子領域 3 0は一定のバイアス温度まで予め引き上げられる。 従 つて、 冷接合部測温素子 2 5の抵抗変化は測定夕一ゲッ 卜からの赤外線 エネルギーによる温接合部領域 2 3の温度上昇分だけとなり、 冷接合部 測温素子 2 5の熱応答速度が極めて早くなってサ一モパイルセンサ 6の 出力応答速度と同期させることが可能になる。 Since the cold junction region 22 and the cold junction temperature measuring element region 30 are forcibly made dependent on the temperature of 24, they are raised in advance to a certain bias temperature. Therefore, the resistance change of the cold junction temperature measuring element 25 is only the temperature rise of the hot junction area 23 due to the infrared energy from the measurement sample, and the thermal response speed of the cold junction temperature measuring element 25 Becomes extremely fast, and can be synchronized with the output response speed of the thermopile sensor 6.
次に本願発明第五の実施の形態を第 1 0図を参照して説明する。但し、 上述した実施の形態と重複する部分については説明を省略し、 相違する 部分についてのみ説明する。  Next, a fifth embodiment of the present invention will be described with reference to FIG. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
第 1 0図は本願発明第五の実施の形態にかかる赤外線温度計における サーモパイルセンサ部の上面図及び断面図である。 ここでは第 1 0図に 示すように、 発熱素子 2 4として面状自己制御型正温度係数特性を含む 抵抗体 3 6が、 冷接合部領域 2 2及び冷接合部測温素子領域 3 0両者の 上面に配置される。 さらに面状自己制御型正温度係数特性を含む抵抗体 FIG. 10 is a top view and a sectional view of a thermopile sensor in an infrared thermometer according to a fifth embodiment of the present invention. Here, as shown in FIG. 10, a resistor 36 including a planar self-controlling positive temperature coefficient characteristic as a heating element 24 is provided in both the cold junction region 22 and the cold junction temperature measuring element region 30. It is arranged on the upper surface of. In addition, a resistor that includes a planar self-control type positive temperature coefficient characteristic
3 6の上面には正電極 3 7及び負電極 3 8が交互に配置された櫛形アナ ログサ一モス夕ヅ ト 3 9が形成されている。 On the upper surface of 36, a comb-shaped analog solar panel 39 in which positive electrodes 37 and negative electrodes 38 are alternately arranged is formed.
次に上記サ一モパイルセンサ 6により、 どのように温度が測定される かを第 1 1図で参照して説明する。  Next, how the temperature is measured by the thermopile sensor 6 will be described with reference to FIG.
周囲温度の変化がある一定範囲内にある場合、 すなわち定常状態にお ける温度測定の手順は、 本願発明第一の実施形態において記述したとお りである。  The procedure for measuring the temperature when the change in the ambient temperature is within a certain range, that is, in the steady state, is as described in the first embodiment of the present invention.
次に周囲温度が急激に変化した場合、 特に冷接合部領域 2 2及び冷接 合部測温素子領域 3 0において局所的な温度変化が誘発されるような場 合には、 櫛形アナログサーモス夕ヅ ト 3 9により、 以下のようにして温 度補正が行なわれる。 すなわち、 櫛形アナログサーモス夕ッ ト 3 9の正 電極 3 7と負電極 3 8との間には、 これらの間の温度差に起因する抵抗 変化に応じて電極間電流が流れる。 第 1 1図において、 周囲温度の影響 により A部において局所的な温度低下が起こった楊合に、 A部の正電極 3 7と負電極 3 8との間には抵抗変化に起因する電流 4 0が発生して発 熱する。 そして設定温度に近づくにつれて、 その抵抗変化により電流 4 0は減少し、 設定温度となった時点でほぼ 0となる。 また、 A部近傍の B部においては、 A部に比較して微小な温度変化が起こっており、 A部 よりも微小な電流 4 1が発生して発熱し、 電流 4 1は設定温度となった 時点でほぼ 0となる。 これに対して設定温度に維持された C部において は、 電流値はほぼ 0となる。 . Next, when the ambient temperature changes suddenly, especially when a local temperature change is induced in the cold junction area 22 and the cold junction temperature measuring element area 30, the comb-shaped analog thermos According to step 39, the temperature is corrected as follows. That is, the comb analog thermostat A current flows between the electrode 37 and the negative electrode 38 in accordance with a resistance change caused by a temperature difference between the electrodes. In Fig. 11, when a local temperature drop occurs in the part A due to the influence of the ambient temperature, the current between the positive electrode 37 and the negative electrode 38 in the part A due to the resistance change 0 is generated and heat is generated. Then, as the temperature approaches the set temperature, the current 40 decreases due to the resistance change, and becomes almost 0 when the temperature reaches the set temperature. In part B near part A, a slight temperature change occurs compared to part A, and a smaller current 41 is generated than in part A, generating heat, and the current 41 reaches the set temperature. At that point, it is almost zero. On the other hand, the current value is almost 0 in the part C maintained at the set temperature. .
上記とは逆に、 周囲温度の影響に'より局所的に温度上昇が起こった場 合には、 正電極 3 7と負電極 3 8との間には電流は流れない。  Contrary to the above, when the temperature rise occurs more locally due to the influence of the ambient temperature, no current flows between the positive electrode 37 and the negative electrode 38.
このように、 櫛形アナログサ一モス夕ッ ト 3 9は多数の正電極 3 7及 び負電極 3 8からなる相互電極間それそれにおいて、 温度変化に応じた 電流を発生し、 これによつて周囲温度の変化の影響を補償するものであ る。 従って、 冷接合部領域 2 2及び冷接合部測温素子領域 3 0双方に対 して局所的にきめこまかい温度制御を行って発熱素子 2 4による温度維 持を補助し、 これらを常に一定の温度に維持することにより、 温度測定 の精度を向上することができる。  As described above, the comb-shaped analog thermostat 39 generates a current corresponding to the temperature change between the mutual electrodes composed of the large number of positive electrodes 37 and the negative electrodes 38, thereby generating a current around the mutual electrodes. It compensates for the effects of temperature changes. Therefore, fine and precise temperature control is performed locally on both the cold junction area 22 and the cold junction temperature measuring element area 30 to assist the temperature maintenance by the heating element 24 and keep them at a constant temperature. By maintaining the temperature, the accuracy of the temperature measurement can be improved.
次に本願発明第六の実施の形態を図を参照して説明する。 但し、 上述 した実施の形態と重複する部分については説明を省略し、 相違する部分 についてのみ説明する。  Next, a sixth embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
第 1 2図は本願発明第六の実施の形態にかかる赤外線温度計における サーモパイルセンサ部の上面図及び断面図である。 'ここでは第 1 2図に 示すように、 発熱素子 2 として面状自己制御型正温度係数特性を含む 抵抗体 3 6が、 冷接合部領域 2 2及び冷接合部測温素子領域 3 0両者の 上面に配置される。 さらに面状自己制御型正温度係数特性発熱体 3 6の 上面に配置された面状の正電極 4 2、 及び下面に配置された面状の負電 極 4 3からなるアナログサーモスタッ ト 4 4が形成されている。  FIG. 12 is a top view and a cross-sectional view of a thermopile sensor in an infrared thermometer according to a sixth embodiment of the present invention. Here, as shown in FIG. 12, as the heating element 2, the resistor 36 including the sheet-like self-control type positive temperature coefficient characteristic is connected to both the cold junction area 22 and the cold junction temperature measuring element area 30. It is arranged on the upper surface of. Further, an analog thermostat 44 composed of a planar positive electrode 42 disposed on the upper surface of the planar self-control type positive temperature coefficient characteristic heating element 36 and a planar negative electrode 43 disposed on the lower surface is provided. Is formed.
かかるサーモパイルセンサ 6においては、 アナログサーモス夕ヅ ト 4 4が第 9図において示した櫛形アナログサ一モス夕ヅ ト 3 9と同じ作用 を有する。 すなわち、 冷接合部領域 2 2及び冷接合部測温素子領域 3 0 双方に対して局所的にきめこまかい温度制御を行って発熱素子 2 4によ る温度維持を補助し、 これらを常に一定の温度に維持することにより、 温度測定の精度を向上することができる。 In the thermopile sensor 6, the analog thermos sunset 4 Numeral 4 has the same action as the comb analog thermostat unit 39 shown in FIG. That is, the temperature control is locally performed on both the cold junction region 22 and the cold junction temperature measuring element region 30 to assist in maintaining the temperature by the heating element 24, and these are always kept at a constant temperature. By maintaining the temperature, the accuracy of the temperature measurement can be improved.
さらに、 アナログサーモスタヅ ト 4 4においては櫛形アナログサ一モ ス夕ッ ト 3 9においてその数が限定されていた相互電極の対が、 面上に 無数存在するため、 より局所的な非境界かつ位置的限定がない温度制御 を行うことができる。  Further, in the analog thermostat 44, the number of mutual electrodes whose number is limited in the comb-shaped analog thermostat 39 is innumerable on the surface, so that more local non-boundary and Temperature control without positional limitation can be performed.
次に本願発明第七の実施の形態を図を参照して説明する。 但し、 本実 施形態にかかる赤外線温度計におけるサ一モパイルセンサ部の構造は、 第 1図乃至第 5図において示される第一の実施形態と同じであるので、 この部分については説明を省略し、相違する部分についてのみ説明する。 第 1 3図のブロック図において、 サーモパイルセンサ 6は測定夕一ゲ ッ トから放射される赤外線量及び冷接合部領域 2 2の温度に依存する電 圧を出力する。 すなわち、 サ一モパイルセンサ 6は測定夕一ゲッ トの温 度すなわち温接合部領域 2 3の温度と冷接合部領域 2 2の温度との差に 応じた電圧を出力し、 かかる出力電圧値は温接合部領域 2 3の温度が冷 接合部領域 2 2の温度よりも高い場合には正の電圧値として出力され、 温接合部領域 2 3の温度が冷接合部領域 2 2の温度よりも低い場合には 負の電圧値として出力される。 また、 温接合部領域 2 3の温度と冷接合 部領域 2 2の温度が等しい場合にはサーモパイルセンサ 6の出力が 0と なる。  Next, a seventh embodiment of the present invention will be described with reference to the drawings. However, since the structure of the thermopile sensor unit in the infrared thermometer according to the present embodiment is the same as that of the first embodiment shown in FIGS. 1 to 5, description of this part is omitted. Only the differences will be described. In the block diagram of FIG. 13, the thermopile sensor 6 outputs a voltage dependent on the amount of infrared radiation radiated from the measurement target and the temperature of the cold junction region 22. That is, the thermopile sensor 6 outputs a voltage corresponding to the temperature of the measurement target, that is, the difference between the temperature of the hot junction region 23 and the temperature of the cold junction region 22. The output voltage value is the temperature. If the temperature of the junction region 23 is higher than the temperature of the cold junction region 22, a positive voltage value is output, and the temperature of the hot junction region 23 is lower than the temperature of the cold junction region 22. In this case, it is output as a negative voltage value. When the temperature of the hot junction region 23 is equal to the temperature of the cold junction region 22, the output of the thermopile sensor 6 becomes zero.
サ一乇パイルセンサ 6に接続された増幅器 3 3は、 サーモパイルセン サ 6から出力される微小電圧を所定の大きさに増幅する。 増幅器 3 3に 接続された相検出器 4 5は、 増幅器 3 3により増幅されたサ一モパイル センサ 6の出力電圧値が電圧値正負領域間で相反転したか否かを判定し ,て相反転 「有」 か 「無」 かの 2ビッ トデジタル信号として情報処理装置 3 4に送る。  The amplifier 33 connected to the thermopile sensor 6 amplifies the minute voltage output from the thermopile sensor 6 to a predetermined magnitude. The phase detector 45 connected to the amplifier 33 determines whether or not the output voltage value of the thermopile sensor 6 amplified by the amplifier 33 has reversed between the voltage value positive / negative regions. It is sent to the information processing device 34 as a two-bit digital signal of “Yes” or “No”.
冷接合部測温素子 2 5の自己制御型正温度係数特性を含む抵抗体は泠 接合部領域 2 2の温度を測定するための測温素子であり、 自己抵抗値の 変化を電圧値に変換し、 この電圧値は冷接合部測温素子 2 2の自己制御 型正温度係数特性を含む抵抗体に接続された増幅器 3 3により増幅され る。 The resistor including the self-control type positive temperature coefficient characteristic of the cold junction temperature measuring element 25 is 泠 This is a temperature measuring element for measuring the temperature of the junction area 22.It converts the change in self-resistance value into a voltage value, and this voltage value is the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 22. It is amplified by an amplifier 33 connected to a resistor including.
情報処理装置 3 4には A / D変換器が内蔵され、 かかる情報処理装置 3 4は相検出器 4 5からの相反転 「有」 の出力信号に同期して増幅器 3 3からの出力信号を検出し、 演算処理を行って測定夕一ゲッ 卜の温度値 を得、 これを表示装置 9に表示する。  The information processing device 34 includes an A / D converter, and the information processing device 34 outputs the output signal from the amplifier 33 in synchronization with the output signal of the phase inversion “yes” from the phase detector 45. The temperature is detected and arithmetic processing is performed to obtain the temperature value of the one-time measurement, which is displayed on the display device 9.
以上に示した温度測定回路により、 どのように測定ターゲッ トの温度 が測定されるかを、 このようなサ一モパイルセンサ 6を搭載した第 1図 に示す耳式体温計を例に、 第 1 4図のフロ一チャートを参照してより詳 細に説明する。  Figure 14 shows how the temperature of the measurement target is measured by the temperature measurement circuit described above, using the ear thermometer shown in Fig. 1 with such a thermopile sensor 6 as an example. This will be described in more detail with reference to the flowchart of FIG.
本実施の形態にかかる赤外線温度計 (耳式体温計 1 ) を用いて温度測 定を行う場合、 その手順は測定準備段階と測定段階とに大きく分けられ るが、 まず測定準備段階について説明する。 スイッチ 8を O Nとするこ とにより情報処理装置 3 4が作動し (1)、 増幅器 3 3を介して冷接合部 測温素子 2 5の出力が入力され、 内蔵の A Z D変換器により温度換算さ れて冷接合部領域 2 2の温度を得る (2) 。  When the temperature is measured using the infrared thermometer (ear thermometer 1) according to the present embodiment, the procedure is roughly divided into a measurement preparation stage and a measurement stage. First, the measurement preparation stage will be described. When the switch 8 is turned on, the information processing device 34 operates (1), the output of the cold junction temperature measuring element 25 is input via the amplifier 33, and the temperature is converted by the built-in AZD converter. To obtain the temperature of the cold junction area 22 (2).
次いで情報処理装置 3 4により ドライブ I C 3 5が駆動されて発熱素 子 2 4が加熱され、 冷接合部領域 2 2及び冷接合部測温素子領域 3 0を —定温度のバイアス温度とする。 このバイアス温度は、 例えばサーモパ ィルセンサを耳式体温計に適用して用いる場合には鼓膜温度近傍である 3 4 °Cに設定する等、 適宜決定される。 またこのとき、 発熱素子 2 4は 第 1 5図において示されるようにフィードバック制御される。 温度を一 定に維持するために一般的に行われているフィ一ドバック制御において は、 温度が一定となるまでに長時間を要する点、 及び温度の外乱により 温度変化が起こりやすい点が問題となる。 しかしここで行うフィードバ ック制御はあくまでバイァス温度を印加して測定時間短縮を図ることを 目的として、 目標とする一定温度値に対する規定閾値内において強制的 に温度を変動させる「振り子式温度制御」である (第 1 5図参照のこと)。 このように冷接合部領域 2 2及び冷接合部測温素子領域 3 0の温度が、 設定されたバイアス温度を中心として規定閾値領域内にあればその効果 は十分に得られる。 すなわちバイァス温度に達するまでの時間を短時間 とすることが可能であり、 また温度の外乱要因があった場合にもその影 響がよほど大でない限りは特に問題とはならない。 Next, the drive IC 35 is driven by the information processing device 34 to heat the heating element 24, and the cold junction area 22 and the cold junction temperature measuring element area 30 are set to a constant temperature bias temperature. The bias temperature is appropriately determined, for example, when the thermopile sensor is applied to an ear thermometer and is set at 34 ° C., which is near the eardrum temperature. At this time, the heating element 24 is feedback-controlled as shown in FIG. The feedback control, which is generally performed to maintain a constant temperature, is problematic in that it takes a long time for the temperature to become constant and that temperature changes are likely to occur due to temperature disturbances. Become. However, the feedback control performed here is for the purpose of shortening the measurement time by applying the bias temperature to the last, `` Pendular temperature control '' that forcibly fluctuates the temperature within the specified threshold value for the target constant temperature value. (See Figure 15). As described above, if the temperature of the cold junction region 22 and the temperature of the cold junction temperature measuring element region 30 are within the specified threshold region around the set bias temperature, the effect is sufficiently obtained. In other words, it is possible to shorten the time required to reach the bias temperature, and there is no particular problem even if there is a disturbance factor in the temperature unless the influence is very large.
情報処理装置 3 4は、 このようにして冷接合部測温素子 2 5の出力に より冷接合部領域 2 2の温度が規定閾値領域内にあるか否か、 またその 「振り子式温度制御」 の温度勾配が規定内の変化率である (すなわち温 度の外乱が許容範囲内である) か否かを判断し (3) 、 温度及びその変化 率がともに領域内の値であれば、 さらにそのような規定内の変化率が規 定時間以上継続した (一定時間以上外乱の少ない安定状態が継続してい るか) か否かを判断する (4) 。  The information processing device 34 determines whether or not the temperature of the cold junction region 22 is within the specified threshold region by the output of the cold junction temperature measuring element 25 in this manner. It is determined whether the temperature gradient is within the specified rate of change (that is, the temperature disturbance is within the allowable range) (3). If both the temperature and the rate of change are within the range, then Judgment is made as to whether such a rate of change within the regulation has continued for the prescribed time or more (whether or not a stable state with less disturbance has continued for a certain time or more) (4).
ここで規定内の変化率が規定時間以上継続したと判断された場合には 直ちに測定ターゲッ トの温度測定を行うことが可能である。 しかし、 こ のように冷接合部領域 2 2がバイァス温度で安定していると判断された としても、 その判断に際して規定閾値を設けている以上、 その範囲内に おいては外乱による若干の影響を受けている可能性がある。 その結果と して、 測定夕ーゲッ 卜の温度測定値において微小ながらそのような外乱 による測定誤差を生じることが避けられない。 そこで、 温度の外乱によ る測定値の測定精度の変動をある程度予測して補 ΪΕを行うことが望まし い。 以下にその手順を説明する。  Here, when it is determined that the rate of change within the regulation has continued for the prescribed time or more, it is possible to immediately measure the temperature of the measurement target. However, even if it is determined that the cold junction region 22 is stable at the bias temperature in this way, a certain threshold value is set for the determination, and within this range, the influence of the disturbance will be a little. May have been As a result, it is inevitable that measurement errors due to such disturbances are generated, albeit minutely, in the temperature measurement value of the measurement target. Therefore, it is desirable to compensate for the fluctuation of the measurement accuracy of the measured value due to temperature disturbance to some extent. The procedure will be described below.
情報処理装置 3 4の内部記憶装置には、 予め 「振り子式温度制御」 の 温度勾配に関して、 規定閾値内における変化率が変化率表として格納さ れている。 そこで、 情報処理装置 3 4はこの変化率表を読み込み ( 5)、 実測された冷接合部領域 2 2の温度変化率と比較を行い、 一致する数値 があれば(6)、その数値により温度の外乱による影響度合いを判断し(7)、 その後測定される温度値における補正の度合を判断し (8) 、 表示装置 9 に表示する (9) 。 このときの表示方法としては、 例えば前記補正の多寡 に関してその度合を予めランク設定しておき、 そのランクを表示するこ と等が考えられる。 またこの段階で測定準備が完了するので、 表示装置 9において同時にその旨を示すことが望ましい。 In the internal storage device of the information processing device 34, a change rate within a specified threshold value with respect to the temperature gradient of the “pendulum temperature control” is stored in advance as a change rate table. Then, the information processing device 34 reads this change rate table (5), compares it with the measured temperature change rate of the cold junction area 22 and finds a matching numerical value (6). The degree of influence due to the disturbance is determined (7), the degree of correction in the measured temperature value is then determined (8), and displayed on the display device 9 (9). As a display method at this time, for example, it is conceivable that the degree of the correction is set in advance as a rank, and the rank is displayed. At this stage, preparation for measurement is completed. It is desirable to indicate this at the same time in 9.
次に測定ターゲッ トの温度測定段階に進む。 例えば耳式体温計におい ては体温計を外耳道に挿入して (10) 鼓膜から放射される赤外線により 温度測定を行う。 このとき、 鼓膜から放射される赤外線の温接合部 1 8 への入射量が一定量以上となるように最適な角度で揷入することが.重要 である。 そこで、 測定者が耳式体温計を外耳道に挿入してその角度を調 整する際 (11) に、 最適な角度がわかりやすいように示されることが望 ましい。 例えば鼓膜から放射される赤外線のピーク値を探索し、 ピーク 値近傍において告知音 (プザ一等) を発するようにする (12) 。  Next, the process proceeds to the temperature measurement stage of the measurement target. For example, in an ear thermometer, a thermometer is inserted into the ear canal (10) The temperature is measured by infrared radiation emitted from the eardrum. At this time, it is important to insert the infrared rays emitted from the eardrum at an optimum angle so that the amount of incidence on the hot junction 18 is equal to or more than a certain amount. Therefore, when the measurer inserts an ear thermometer into the ear canal and adjusts its angle (11), it is desirable that the optimal angle be shown in a way that is easy to understand. For example, search for the peak value of infrared radiation emitted from the eardrum, and emit a notification sound (such as a puza) near the peak value [12].
この段階で測定者が測定開始操作として、 例えば測定開始スィツチを 押すと (13) 温度測定が開始される。  At this stage, when the measurer presses the measurement start switch, for example, the measurement start switch (13) Temperature measurement is started.
情報処理装置 3 4には増幅器 3 3を介して冷接合部測温素子 2 5の出 力が入力され、 内蔵の A / D変換器により温度換算されて冷接合部領域 The output of the cold junction temperature measuring element 25 is input to the information processing unit 34 via the amplifier 33, and the temperature is converted by the built-in A / D converter to the cold junction area.
2 2の温度を得る (14) 。 Get the temperature of 22 (14).
次いで情報処理装置 3 4により ドライブ I C 3 5が駆動されて発熱素 子 2 4が急速に加熱され、 これにより冷接合部領域 2 2及ぴ冷接合部測 温素子領域 3 0を強制的に加熱する (15) 。 例えば耳式温度計において は、 バイアス温度の 3 4 °Cから 4 2 °Cの間で加熱する。 このとき、 第 1 6図に示すように発熱素子加熱時間に対してサ一モパイル出力電圧値が 一定勾配で一次間数的に減少するようにしてサーモパイル出力電圧の零 点を強制通過させ、 サーモパイル出力に対して正負の電圧値領域反転を 一方的かつ強制的に発生させる。 そしてこの電圧値正負領域間の相反転 を相検出器 4 5により検出し、 相反転 「有」 と 「無」 との 2ビッ トデジ タル信号として情報処理装置 3 4に送る。  Next, the drive IC 35 is driven by the information processing device 34, and the heating element 24 is rapidly heated, thereby forcibly heating the cold junction area 22 and the cold junction temperature measuring element area 30. Yes (15). For example, an ear-type thermometer heats at a bias temperature between 34 ° C and 42 ° C. At this time, as shown in Fig. 16, the thermopile output voltage value is reduced linearly with a constant gradient with respect to the heating element heating time, so that the zero point of the thermopile output voltage is forcibly passed. Positive and negative voltage value area inversion is unilaterally and forcibly generated for the output. The phase inversion between the voltage value positive / negative regions is detected by the phase detector 45, and is transmitted to the information processing device 34 as a two-bit digital signal of “presence” and “absence”.
情報処理装置 3 4は前記 2 ビッ トデジタル信号により、相反転が「有」 か 「無」 かを判断し (16) 、 「有」 と判断された場合にはドライブ I C The information processing device 34 determines from the 2-bit digital signal whether the phase inversion is “present” or “absent” (16).
3 5による発熱素子 2 4の加熱を停止する信号を送る。 このとき装置の 動作不良等何らかの理由により、 加熱停止信号が送られなかった場合に は、 発熱素子 2 4に対して電圧が印加され続ける。 しかし本実施形態に おいては発熱素子 2 4として自己制御型正温度係数特性を含む抵抗体を 用いており、 自己飽和安定温度の一定温度に維持され、 それ以上に過熱 されることはない。 そこで例えば耳式体温計において、 5 0 °Cの自己飽 和安定温度を有する自己制御型正温度係数特性を含む抵抗体をもちいる ことにより、 特別な安全装置を用いなくても過熱事故が防がれる。 Send a signal to stop heating of the heating element 24 by 3 5. At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the heating element 24. However, in this embodiment, a resistor including a self-controlling positive temperature coefficient characteristic is used as the heating element 24. It is used and maintained at a constant self-saturation stable temperature, and will not be overheated. Thus, for example, in an ear thermometer, using a resistor with a self-regulating positive temperature coefficient characteristic having a self-saturation stable temperature of 50 ° C prevents overheating accidents without using special safety devices. It is.
また、 情報処理装置 3 4には、 相反転 「有」 の信号に同期して冷接合 部測温素子 2 4の出力が増幅器 3 3を介して入力され、 内蔵の A / D変 換器により温度換算が行われる。 さらに前記の温度外乱に対する補正が 行われて冷接合部領域 2 2の温度を得 (17) 、 この温度値が表示装置 9 に表示されて (18) 温度測定が終了する。 このようにして得られる冷接 合部領域 2 2の温度とは温接合部領域 2 3の温度、 すなわち測定夕ーゲ ヅ トの温度に他ならず、 サ一モパイル出力電圧値の正負電圧値領域相反 転に同期して測定することにより、 誤差が少なく精度の高い測定を行う ことができる。 また測定時間を大幅に短縮することができる。  In addition, the output of the cold junction temperature measuring element 24 is input to the information processing device 34 through the amplifier 33 in synchronization with the signal of “presence” of the phase inversion, and is output by the built-in A / D converter. Temperature conversion is performed. Further, the temperature disturbance is corrected to obtain the temperature of the cold junction area 22 (17), and this temperature value is displayed on the display device 9 (18), and the temperature measurement ends. The temperature of the cold junction region 22 obtained in this way is the temperature of the hot junction region 23, that is, the temperature of the measurement gate, and the positive and negative voltage values of the thermopile output voltage value. By performing measurement in synchronization with the area reversal, highly accurate measurement can be performed with little error. Also, the measurement time can be greatly reduced.
なお本実施形態においては、 ダイアフラム 2 6の中心部から見て冷接 合部領域 2 2の外側に、 冷接合部測温素子領域 3 0、 発熱素子領域 2 9 の順に配置したが、 これらの順序を発熱素子領域 2 9、,冷接合部測温素 子領域 3 0としてもよく、 この場合には冷接合部領域 2 2に対してバイ ァス温度を与える場合においてより短時間に一定温度に到達せしめるこ とが可能となる。  In the present embodiment, the cold junction temperature measuring element region 30 and the heating element region 29 are arranged in this order outside the cold junction region 22 when viewed from the center of the diaphragm 26. The order may be the heating element region 29 and the cold junction temperature measuring element region 30. In this case, when the bias temperature is applied to the cold junction region 22, the constant temperature is reduced in a shorter time. Can be reached.
次に本願発明にかかる第八の実施の形態を図を参照して説明する。 但 し、 上述した実施の形態と重複する部分については説明を省略し、 相違 する部分についてのみ説明する。  Next, an eighth embodiment according to the present invention will be described with reference to the drawings. However, the description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
本実施形態にかかるサ一モパイルセンサを第 1 7図に示す。 本実施形 態は第 1 7図に示すように、 発熱素子 2 4をさらに定常温度系統発熱素 子 4 6と可変温度系統発熱素子 4 7とに系統分離する点に特徴を有する < そして定常温度系統発熱素子 4 6により温度測定開始前に予め冷接合部 領域 2 2を一定温度のバイァス温度に維持し、 可変温度系統発熱素子 4 7は温度測定開始後に冷接合部領域 2 2の温度を一方的かつ強制的に変 化させる。 すなわち第一の実施形態において単一の発熱素子 2 4により 行っていた、 測定準備段階のバイアス温度への加熱と、 測定段階におけ る冷接合部領域 2 2の強制的な加熱とを定常温度系統発熱素子 4 6 と可 変温度系統発熱素子 4 7 とに役割分担させている。 A thermopile sensor according to the present embodiment is shown in FIG. This embodiment is characterized in that the heating element 24 is further system-separated into a steady-temperature system heating element 46 and a variable-temperature system heating element 47, as shown in FIG. Before starting the temperature measurement, the cold junction region 22 is maintained at a constant bias temperature by the system heating element 46, and the variable temperature system heating element 47 keeps the temperature of the cold junction region 22 after the temperature measurement starts. And forcibly change it. That is, heating to the bias temperature in the measurement preparation stage and heating in the measurement stage were performed by the single heating element 24 in the first embodiment. The forced heating of the cold junction region 22 is shared between the steady-state temperature system heating element 46 and the variable temperature system heating element 47.
これら発熱素子はともに自己制御型正温度係数特性を含む抵抗体から なり、 定常温度系統発熱素子 4 6の自己制御型正温度係数特性を含む抵 抗体として、 自己飽和安定温度が可変温度系統発熱素子 4 7の自己制御 型正温度係数特性を含む抵抗体よりも低温であるものを用いる。 例えば 耳式体温計においては、 定常温度系統発熱素子 4 6として自己飽和安定 温度がバイァス温度の 3 4 °Cである自己制御型正温度係数特性を含む抵 抗体を用い、 可変温度系統発熱体素子 4 7として自己飽和安定温度が 5 0 °Cである自己制御型正温度係数特性を含む抵抗体を用いる。  Each of these heating elements is composed of a resistor having a self-control type positive temperature coefficient characteristic, and as a resistor having a self-controlling positive temperature coefficient characteristic of the steady temperature type heating element 46, the self-saturation stable temperature is a variable temperature type heating element. Use a resistor whose temperature is lower than that of the resistor containing the self-control type positive temperature coefficient characteristic of 47. For example, in an ear-type thermometer, a variable temperature system heating element 4 is used as the steady temperature system heating element 46 using a self-regulating positive temperature coefficient characteristic having a self-saturation stable temperature of 34 ° C of the bias temperature. As 7, a resistor including a self-control type positive temperature coefficient characteristic having a self-saturation stable temperature of 50 ° C. is used.
このような構成とすることにより、 定常温度系統発熱素子 4 6は測定 準備段階において規定電圧値を印加されて 3 4 °Cまで加熱された後、 そ れ以上に過熱されることなく 自ら一定温度に維持される。 さらに周囲温 度の急激な変化等温度の外乱要因があった場合においても、 自ら温度調 整されてこの温度に維持される。 従って第七の実施形態において行って いたようなフィ一ドパック制御が不要であり、 装置構成を簡略化してコ ストを削減するとともに強度を向上することができる。  With this configuration, the steady temperature system heating element 46 is heated to 34 ° C by applying a specified voltage value in the measurement preparation stage, and then is kept at a constant temperature without being overheated further. Is maintained. Furthermore, even when there is a disturbance factor such as a sudden change in the ambient temperature, the temperature is adjusted and maintained at this temperature. Therefore, the feed pack control as performed in the seventh embodiment is not required, and the apparatus configuration can be simplified, the cost can be reduced, and the strength can be improved.
一方、 可変加熱系統発熱素子 4 7は測定準備段階においては電圧を印 加されることなく、 定常温度系統発熱素子 4 6による加熱に追随してバ ィァス温度の 3 4 °Cに維持される。 そして測定段階において初めて電圧 印加がなされ、 3 4 °Cから 4 2 °Cの間で強制加熱される。 情報処理装置 3 4は前記 2 ビッ トデジタル信号により、 相反転が 「有」 か 「無」 かを 判断し、 「有」 と判断された場合には可変系統発熱素子 4 7の加熱を停 止する信号を送る。 このとき装置の動作不良等何らかの理由により、 加 熱停止信号が送られなかった場合には、 可変系統発熱素子 4 7に対して 電圧が印加され続ける。 しかしこのときも、 可変系統発熱素子 4 7の自 On the other hand, the variable heating system heating element 47 is maintained at a bias temperature of 34 ° C. following the heating by the steady temperature system heating element 46 without applying a voltage in the measurement preparation stage. Then, voltage is applied for the first time in the measurement stage, and it is forcibly heated between 34 ° C and 42 ° C. The information processing device 34 determines whether or not the phase inversion is “present” or “absent” based on the 2-bit digital signal, and stops the heating of the variable system heating element 47 when it is determined to be “present”. Send a signal to At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the variable system heating element 47. However, also in this case, the variable system heating element 47
3制御型正温度係数特性を含む抵抗体は、 自己飽和安定温度である 5 0 °Cの一定温度に維持されてそれ以上に温度上昇することはなく、 特別 な安全装置を用いなくても過熱事故が防がれる。 (3) The resistor including the control-type positive temperature coefficient characteristic is maintained at a constant temperature of 50 ° C, which is the self-saturation stable temperature, does not rise any more, and overheats without using a special safety device. Accidents are prevented.
なお、ダイァフラム 2 6の中心部から見て冷接合部領域 2 2の外側に、 冷接合部測温素子領域 3 0、 発熱素子領域 2 9の順に配置したが、 これ らの順序を発熱素子領域 2 9、冷接合部測温素子領域 3 0としてもよく、 この場合には冷接合部領域 2 2に対してバイァス温度を与える場合にお いてより短時間に一定温度に到達せしめることが可能となる点は第七の 実施形態と同様である。 In addition, outside the cold junction area 22 when viewed from the center of the diaphragm 26, Although the cold junction temperature measuring element area 30 and the heating element area 29 are arranged in this order, the order may be the heating element area 29 and the cold junction temperature measuring element area 30. As in the seventh embodiment, it is possible to reach a constant temperature in a shorter time when a bias temperature is applied to the junction region 22.
次に本願発明第九の実施の形態を図を参照して説明する。 但し、 上述 した実施の形態と重複する部分については説明を省略し、 相違する部分 についてのみ説明する。  Next, a ninth embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
本実施形態にかかる赤外線温度計のサ一モパイルセンサ部を第 1 8図 に示す。 本実施形態においては第 1 8図に示すように、 冷接合部測温素 子 2 5、 定常温度系統発熱素子 4 6、 及び可変温度系統発熱素子 4 7が 積層して配置される。  FIG. 18 shows a thermopile sensor section of the infrared thermometer according to the present embodiment. In the present embodiment, as shown in FIG. 18, a cold junction temperature measuring element 25, a steady temperature system heating element 46, and a variable temperature system heating element 47 are stacked and arranged.
上記サーモパイルセンサ 6の製造プロセスについて説明する。 まず C V D装置等により、 ヒートシンク 1 2となるシリコンペレッ ト、 又はシ リコンチヅプ、 又はシリコンウェハの両面に酸化シリコンあるいは窒化 シリコンからなる温接合部支持膜 1 4を数ミクロンの厚さに形成する。 次にヒートシンク 1 2上面側の温接合部支持膜 1 4上に、 蒸着法、 ある いはペース ト焼付け法、 あるいは面状印刷法等により冷接合部測温素子 2 5の自己制御型正温度係数特性を含む抵抗体を形成し、 その上に再び C V D装置等により、 酸化シリコンあるいは窒化シリコンからなる温接 合部支持膜 1 4を数ミクロンの厚さに形成する。  The manufacturing process of the thermopile sensor 6 will be described. First, a thermal bonding portion support film 14 made of silicon oxide or silicon nitride and having a thickness of several microns is formed on both surfaces of a silicon pellet or silicon chip to be a heat sink 12 or a silicon wafer by a CVD apparatus or the like. Next, the self-controlling positive temperature of the cold junction temperature measuring element 25 is deposited on the hot junction support film 14 on the upper surface side of the heat sink 12 by vapor deposition, paste baking, or sheet printing. A resistor having a coefficient characteristic is formed, and a thermal junction supporting film 14 made of silicon oxide or silicon nitride is formed thereon to a thickness of several microns again by a CVD apparatus or the like.
次にヒートシンク 1 2の表面に異種金属 (第一熱電対材料 1 5及び第 二熱電対材料 1 6 ) からなりこれらを直列に接続することによって冷接 合部 1 7及び温接合部 1 8が形成されたサ一モパイル 1 9を形成する。 次にヒートシンク 1 2の表面に可変温度系統発熱素子 4 7の自己制御型 正温度係数特性を含む抵抗体を蒸着法、 あるいはペース ト焼付け法、 あ るいは面状印刷法等により形成する。  Next, the dissimilar metals (the first thermocouple material 15 and the second thermocouple material 16) are formed on the surface of the heat sink 12 and connected in series to form the cold junction 17 and the hot junction 18. The formed thermopile 19 is formed. Next, a resistor having a self-controlling positive temperature coefficient characteristic of the variable temperature system heating element 47 is formed on the surface of the heat sink 12 by a vapor deposition method, a paste baking method, a sheet printing method, or the like.
次に再び C V D装置等により、 酸化シリコンあるいは窒化シリコンか らなる温接合部支持膜 1 4を数ミクロンの厚さに形成する。 そしてヒー トシンク 1 2の表面に定常温度系統発熱素子 4 6の自己制御型正温度係 数特性を含む抵抗体を蒸着法、 あるいはペース ト焼付け法、 あるいは面 状印刷法等により形成する。 さらにヒートシンク 1 2の上面に C V D装 置等により温接合部支持膜 1 4を、 下面に絶縁薄膜 3 2を堆積させて覆 つた後、 サ一モパイル 1 9の下の領域をゥエツ トエッチングにより除去 する。 その後、 酸化膜をウエッ トエッチングにより除去するとサーモパ ィルセンサ 6が形成される。 Next, a thermal bonding support film 14 made of silicon oxide or silicon nitride is formed again to a thickness of several microns by a CVD apparatus or the like. On the surface of the heat sink 12, a self-regulating positive temperature control A resistor having numerical characteristics is formed by a vapor deposition method, a paste baking method, a sheet printing method, or the like. Further, after covering the thermal bonding support film 14 on the upper surface of the heat sink 12 with a CVD device or the like and depositing and covering the insulating thin film 32 on the lower surface, the region below the thermopile 19 is removed by jet etching. I do. Thereafter, when the oxide film is removed by wet etching, a thermopile sensor 6 is formed.
以上のようにして冷接合部測温素子 2 5、定常温度系統発熱素子 4 6、 及び可変温度系統発熱素子 4 7は積層配置されるが、 これらの間にそれ それ絶縁性の温接合部支持膜 1 4を介在させることにより、 お互いに電 気的に絶縁され、 温度測定に際しては第八の実施形態と全く同様の動作 を示す。 しかも装置構成がコンパク トになるという特長を有する。  As described above, the cold junction temperature measuring element 25, the steady temperature system heating element 46, and the variable temperature system heating element 47 are stacked and arranged. By interposing the film 14, they are electrically insulated from each other, and exhibit exactly the same operation as the eighth embodiment when measuring the temperature. Moreover, it has the feature that the device configuration is compact.
次に本願発明の第十の実施形態について説明する。 但し、 上述した実 施の形態と重複する部分については説明を省略し、 相違する部分につい てのみ説明する。  Next, a tenth embodiment of the present invention will be described. However, description of the same parts as those in the above-described embodiment will be omitted, and only different parts will be described.
上述のとおり第七乃至第九の実施形態においては、 発熱素子加熱時間 に対してサ一パイル出力電圧値が一定勾配で一次間数的に減少するよう にしてサーモパイル出力電圧の零点を強制通過させたときの電圧値正負 領域間の相反転を相検出器により検出し、 相反転 「有」 と 「無 j との 2 ビッ トデジタル信号として情報処理装置 3 4に送る。  As described above, in the seventh to ninth embodiments, the thermopile output voltage is forcibly passed through the zero point of the thermopile output voltage so that the output value of the thermopile decreases linearly with a constant gradient with respect to the heating time of the heating element. The phase inversion between the positive and negative voltage values is detected by a phase detector and sent to the information processing device 34 as a two-bit digital signal of "in" and "no j".
これに対して本実施形態は、 基準電圧値となる電圧閾値を設定してお き、 この電圧閾値に対してサ一モパイル出力電圧値が一定勾配で一時関 数的に減少するようにして強制通過させ、 電圧閾値に対するサーモパイ ル出力電圧値の相反転を相検出器 4 5により検出し、相反転「有」と「無」 との 2 ビッ トデジタル信号として情報処理装置 3 4に送る。 この電圧闘 値は、 サーモパイル出力電圧の電圧値正領域あるいは負領域において、 零点近傍に設置されるが、 特に正領域と負領域の双方に設けて一対の電 圧閾値対とすることが好ましい。 その理由を以下に述べる。  On the other hand, in the present embodiment, a voltage threshold value serving as a reference voltage value is set, and the thermopile output voltage value is forced to decrease temporarily with a constant gradient to this voltage threshold value. The phase detector 45 detects the phase inversion of the thermopile output voltage value with respect to the voltage threshold, and sends it to the information processing device 34 as a two-bit digital signal of “presence” and “absence”. This voltage threshold value is set near the zero point in the positive or negative region of the thermopile output voltage, but is preferably provided in both the positive and negative regions to form a pair of voltage thresholds. The reason is described below.
相検出器 4 5は、 前記電圧閾値に対する相反転 「有」 と 「無」 との 2 ビッ トデジタル信号として情報処理装置 3 4に送る。 また、 情報処理装 置 3 4には、 相反転 「有」 の信号に同期して冷接合部測温素子 2 5の出 力が増幅器 3 3を介して入力され、 内蔵の A Z D変換器により温度換算 が行われて冷接合部領域 2 2の温度を得る。 情報処理装置 3 4に内蔵さ れた記憶装置には、 サ一モパイル出力電圧値の零点に対応する温度と前 記電圧閾値に対応する温度との関係式が予め入力されており、 この関係 式に対して前記冷接合部領域 2 2の温度デ一夕を入力することにより、 温接合部領域 2 3の温度すなわち測定夕ーゲッ トの温度を演算により求' めることができる。 電圧閾値をサーモパイル電圧出力値の正領域と負領 域の双方に設けた場合には、 上記の操作を 2度にわたって行うことがで き、 従って誤差が少なく精度の高い測定を行うことができる。 The phase detector 45 sends the information to the information processing device 34 as a 2-bit digital signal of “presence” and “absence” of the phase inversion with respect to the voltage threshold. In addition, the information processing device 34 outputs the cold junction temperature measuring element 25 in synchronization with the phase inversion “Yes” signal. The force is input via the amplifier 33, and the temperature is converted by the built-in AZD converter to obtain the temperature of the cold junction region 22. The relational expression between the temperature corresponding to the zero point of the thermopile output voltage value and the temperature corresponding to the voltage threshold is input in advance to the storage device built in the information processing device 34, and this relational expression is obtained. By inputting the temperature data of the cold junction region 22 to the temperature, the temperature of the hot junction region 23, that is, the temperature of the measurement target, can be obtained by calculation. When the voltage threshold is provided in both the positive and negative regions of the thermopile voltage output value, the above operation can be performed twice, and therefore, measurement with less error and high accuracy can be performed.
さらにこのような電圧閾値対を一対のみ設けるのではなく複数対設け れば、 測定データが増加するのでさらに測定精度が向上し、 より好まし い。  Furthermore, if a plurality of such voltage threshold pairs are provided instead of only one pair, the measurement data increases, and the measurement accuracy is further improved, which is more preferable.
またこれら電圧閾値対において、 一対の電圧閾値における電圧閾値間 の絶対値を等しく した場合には、 正領域及び負領域それぞれの電圧閾値 に対応して得られた温度の平均値を求めることにより、 温接合部領域 2 3の温度すなわち測定ターゲッ トの温度を得る。 従って、 演算処理を簡 便なものとして測定の効率を上げることができる点から好ましい。  In addition, when the absolute value between the voltage thresholds in the pair of voltage thresholds is made equal in these voltage threshold pairs, the average value of the temperature obtained for each of the voltage thresholds in the positive region and the negative region is obtained. The temperature of the hot junction region 23, that is, the temperature of the measurement target is obtained. Therefore, it is preferable because the arithmetic processing can be simplified and the measurement efficiency can be increased.
次に本願発明の第十一の実施形態を説明する。 但し、 上述した実施の 形態と重複する部分については説明を省略し、 相違する部分についての み説明する。  Next, an eleventh embodiment of the present invention will be described. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
本実施形態にかかる赤外線温度計は、 第一乃至第十の実施形態におい て示した赤外線温度計に対して装置固有の温度特性に起因する測定誤差 を構成する自己校正機能を付加したものである。  The infrared thermometer according to the present embodiment is obtained by adding a self-calibration function that configures a measurement error caused by a temperature characteristic unique to the device to the infrared thermometer described in the first to tenth embodiments. .
この自己校正機能について以下に説明する。 赤外線温度計が製品とし て完成した段階において、 装置個々に対して複数の基準温度の黒体炉に ついての温度測定を行う。 例えば耳式体温計においては、 先述したバイ ァス温度である 3 4 °Cから 4 2。C程度の範囲において数点の基準温度を 決め、 これら各温度の黒体炉について順に温度測定を行う。  This self-calibration function will be described below. At the stage when the infrared thermometer is completed as a product, the temperature of a blackbody furnace with multiple reference temperatures is measured for each device. For example, in ear thermometers, the temperature ranges from 34 ° C, which is the aforementioned bias temperature, to 42. Several reference temperatures are determined in the range of about C, and the temperature is measured sequentially for the blackbody furnace at each of these temperatures.
温度測定の結果は情報処理装置 3 4に内蔵の記憶装置内に格納し、 基 準温度に対して目盛付けを行う。 さらに情報処理装置 3 4には予めこの ようにして目盛付けされた各デ一夕についてデータ間を曲線により補間 処理するプログラムを内蔵しておき、 このプログラムにより上記各デ一 夕を連続曲線化して上述の記憶装置内に格納し、 ここまでの処理が終了 した段階で製品が出荷される。 すなわちこの段階で、 サ一モパイルセン サ又はサーモパイルセンサを組み込んだ耳式体温計等の装置は、 個々の 温度特性に対応した基準連続曲線が内蔵され-る。 The results of the temperature measurement are stored in a storage device built in the information processing device 34, and the reference temperature is graduated. Furthermore, this information processing device 3 4 A program for interpolating between the data with a curve for each of the data graduated as described above is built in, and the program is converted into a continuous curve by this program and stored in the storage device. The product is shipped when the processing up to is completed. That is, at this stage, a device such as an ear thermometer incorporating a thermopile sensor or a thermopile sensor has a built-in reference continuous curve corresponding to each temperature characteristic.
これらサーモパイルセンサ又はサ一モパイルセンサを組み込んだ耳式 体温計等の装置を用いて温度測定を行うと、 情報処理装置 3 4が上記基 準連続曲線に基づいて測定夕一ゲッ トの温度値を直接的に導き出すこと ことにより、 装置間の固有誤差が自己校正され、 高精度な測定を行うこ とが可能となる。  When the temperature is measured using a device such as an ear thermometer incorporating the thermopile sensor or the thermopile sensor, the information processing device 34 directly obtains the temperature value of the measurement target based on the above standard continuous curve. By doing so, the inherent error between the devices is self-calibrated, and high-precision measurement can be performed.

Claims

請求の範囲 The scope of the claims
自己制御型正温度係数特性を含む抵抗体を内部に有するサ一モ パイルセンサを組込んでなることを特徴とする赤外線温度計。 冷接合部領域に自己制御型正温度係数特性を含む抵抗体を有す るサ一モパイルセンサを組込んでなることを特徴とする請求項 1 に記載の赤外線温度計。 An infrared thermometer incorporating a thermopile sensor having a resistance element having a self-controlling positive temperature coefficient characteristic therein. 2. The infrared thermometer according to claim 1, wherein a thermopile sensor having a resistor including a self-controlling positive temperature coefficient characteristic is incorporated in the cold junction region.
前記自己制御型正温度係数特性を含む抵抗体が、 冷接合部領域 と熱的に直結した構造を有することを特徴とする請求項 2に記載 の赤外線温度計。  The infrared thermometer according to claim 2, wherein the resistor including the self-control type positive temperature coefficient characteristic has a structure that is thermally directly connected to the cold junction region.
冷接合部領域を加熱するための発熱素子系統と、 冷接合部領域 の温度を測定するための冷接合部測温素子系統とを有するサーモ パイルセンサを組込んだ赤外線温度計において、 前記発熱素子系 銃と、 前記冷接合部測温素子系統のうち少なく ともいずれか一方 がサーモパイル出力と熱応答速度において同期していることを特 徴とする請求項 3に記載の赤外線温度計。  An infrared thermometer incorporating a thermopile sensor having a heating element system for heating the cold junction area and a cold junction temperature measuring element system for measuring the temperature of the cold junction area, wherein the heating element 4. The infrared thermometer according to claim 3, wherein at least one of the system gun and the cold junction temperature measuring element system is synchronized in thermopile output and thermal response speed.
前記発熱素子系統と、 前記冷接合部測温素子系統のうち少なく ともいずれか一方が冷接合部領域と熱的に直結した構造を有する ことを特徴とする請求項 4に記載の赤外線温度計。  5. The infrared thermometer according to claim 4, wherein at least one of the heating element system and the cold junction temperature measuring element system has a structure thermally connected directly to the cold junction region.
冷接合部領域を加熱するための発熱素子系統と、 冷接合部領域 の温度を測定するための冷接合部測温素子系統とを有するサーモ パイルセンサを組込んだ赤外線温度計において、 前記発熱素子系 統として自己制御型正温度係数特性を含む抵抗体を配し、 前記冷 接合部測温素子系統としてサ一ミス夕測温素子を配してなること を特徴とする請求項 4に記載の赤外線温度計。  An infrared thermometer incorporating a thermopile sensor having a heating element system for heating the cold junction area and a cold junction temperature measuring element system for measuring the temperature of the cold junction area, wherein the heating element The system according to claim 4, wherein a resistor including a self-controlling positive temperature coefficient characteristic is arranged as a system, and a thermometer is arranged as the cold junction temperature measuring element system. Infrared thermometer.
前記サ一ミス夕測温素子が、 N T C ( Negative Temperature Coefficient)抵抗体であることを特徴とする請求項 6に記載の赤外
Figure imgf000061_0001
前記サ一ミ ス夕測温素子が、 P T C ( Positive Temperature Coefficient)抵抗体であることを特徴とする請求項 6に記載の赤外 線温度計。
The infrared ray sensor according to claim 6, wherein the thermometer is a NTC (Negative Temperature Coefficient) resistor.
Figure imgf000061_0001
7. The infrared thermometer according to claim 6, wherein the thermometer is a positive temperature coefficient (PTC) resistor.
前記発熱素子系統として半導体発熱素子を配し、 前記冷接合部 測温素子系統として自己制御型正温度係数特性を含む抵抗体を配 してなることを特徴とする請求項 4に記載の赤外線温度計。  The infrared temperature according to claim 4, wherein a semiconductor heating element is arranged as the heating element system, and a resistor including a self-controlling positive temperature coefficient characteristic is arranged as the cold junction temperature measuring element system. Total.
自己制御型正温度係数特性を含む抵抗体を、 自己発熱して冷接 合部領域を加熱する発熱素子系統と、 自己発熱せずかつ冷接合部 領域の温度を測定する非加熱の冷接合部測温素子系統とに機能分 割したことを特徴とする請求項 4に記載の赤外線温度計。  A heating element system that heats the cold junction area by self-heating a resistor with a self-control type positive temperature coefficient characteristic, and an unheated cold junction that does not generate heat and measures the temperature of the cold junction area 5. The infrared thermometer according to claim 4, wherein the function is divided into a temperature measuring element system.
冷接合部領域表面に電気絶縁皮膜を持った面状自己制御型正 温度係数特性を含む抵抗体を配置してなることを特徴とする請求 項 4に記載の赤外線温度計。  5. The infrared thermometer according to claim 4, wherein a resistor having a planar self-controlling positive temperature coefficient characteristic having an electric insulating film is disposed on the surface of the cold junction region.
自己制御型正温度係数特性を含む抵抗体を、 自己発熱せずかつ 冷接合部の温度を測定する非加熱の冷接合部測温素子系統と、 自 己発熱して前記冷接合部測温素子系統を配置した冷接合部測温素 子領域と冷接合部領域とを加熱する発熱素子系統とに機能分割し、 かつ前記発熱素子系統の自己制御型正温度係数特性を含む抵抗体 の形状が面状であり、 かつ前記面状自己制御型正温度係数特性を 含む抵抗体の表面に正電極と負電極とが交互に多数配置された水 平方向作用の櫛形アナログサ一モス夕ッ トを水平配置してなるこ とを特徴とする請求項 4に記載の赤外線温度計。 A non-heated cold junction temperature measuring element system that measures the temperature of the cold junction without self-heating a resistor including a self-controlling positive temperature coefficient characteristic; and a cold junction temperature measuring element that generates heat by itself. The function is divided into a cold junction temperature measuring element region in which the system is arranged and a heating element system for heating the cold junction region, and the shape of the resistor including the self-control type positive temperature coefficient characteristic of the heating element system is changed. A horizontal comb-like analog thermostat in which a large number of positive electrodes and negative electrodes are alternately arranged on the surface of a resistor having a planar shape and having the planar self-controlling positive temperature coefficient characteristic is horizontally arranged. The infrared thermometer according to claim 4, wherein the infrared thermometer is arranged.
自己制御型正温度係数特性を含む抵抗体を、 自己発熱せずかつ 冷接合部の温度を測定する非加熱の冷接合部測温素子系統と、 自 3発熱して前記冷接合部測温素子系統を配置した冷接合部測温素 子領域と冷接合部領域とを加熱する発熱素子系統とに機能分割し、 かつ前記発熱素子系統の自己制御型正温度係数特性を含む抵抗体 が所定の厚さを有する面状であり、 かつ面状の正電極と負電極と からなるアナログサ一モス夕ッ トの正電極と負電極とを前記面状 自己制御型正温度係数特性発熱体の表裏面を挟むように配置して なることを特徴とする請求項 4に記載の赤外線温度計。 A non-heated cold junction temperature measuring element system that measures the temperature of the cold junction without self-heating a resistor including a self-controlling positive temperature coefficient characteristic; A function element is divided into a cold junction temperature measuring element region in which the system is arranged and a heating element system for heating the cold junction region, and a resistor including a self-controlling positive temperature coefficient characteristic of the heating element system has a predetermined resistance. The positive electrode and the negative electrode of the analog thermostat having a planar, thick and planar positive electrode and a negative electrode are connected to the front and back surfaces of the planar self-control type positive temperature coefficient characteristic heating element. The infrared thermometer according to claim 4, wherein the infrared thermometer is arranged so as to sandwich the thermometer.
前記発熱素子系統により冷接合部を一方的かつ強制的に加熱 したときのサ一モパイル出力の正負電圧値領域反転の有無を検出 する検出器と、 前記相反転の有無を 2ビッ トデジタル信号に変換 する変換器とを有し、 このデジタル信号に同期して冷接合部測温 素子温度を検出することを特徴とする請求項 4に記載の赤外線温 度計。  A detector for detecting the presence / absence of the positive / negative voltage value area inversion of the thermopile output when the cold junction is unilaterally and forcibly heated by the heating element system; and a 2-bit digital signal for the presence / absence of the phase inversion. The infrared thermometer according to claim 4, further comprising a converter for converting, and detecting the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
前記発熱素子系統により冷接合部を一方的かつ強制的に加熱 したときのサーモパイル出力の電圧値が、 予め設定されかつ基準 電圧値となる電圧閾値に対して相反転したか否かを検出する検出 器と、 前記相反転の有無を 2 ビッ トデジタル信号に変換する変換 器とを有し、 このデジタル信号に同期して冷接合部測温素子温度 を検出することを特徴とする請求項 4に記載の赤外線温度計。  Detection for detecting whether or not the voltage value of the thermopile output when the cold junction is unilaterally and forcibly heated by the heating element system is in phase inversion with respect to a voltage threshold value which is a preset and reference voltage value. And a converter for converting the presence or absence of the phase inversion into a 2-bit digital signal, and detecting the temperature of the cold junction temperature measuring element in synchronization with the digital signal. Infrared thermometer as described.
前記発熱素子系統が、 発熱して一定温度に維持される定常温度 系統と、 一定の温度範囲において温度可変とする可変温度系統と からなることを特徴とする請求項 1 4に記載の赤外線温度計。  The infrared thermometer according to claim 14, wherein the heating element system comprises: a steady-state temperature system that generates heat and is maintained at a constant temperature; and a variable temperature system that changes the temperature in a certain temperature range. .
前記発熱素子系統が、 発熱して一定温度に維持される定常温度 系統と、 一定の温度範囲において温度可変とする可変温度系統と からなることを特徴とする請求項 1 5に記載の赤外線温度計。  16. The infrared thermometer according to claim 15, wherein the heating element system comprises: a steady-state temperature system that generates heat and is maintained at a constant temperature; and a variable temperature system that varies the temperature within a certain temperature range. .
前記発熱素子系統として、 異なる自己飽和安定温度を有する 2 種類の自己制御型正温度係数特性を含む抵抗体を'配置してなるこ とを特徴とする請求項 1 6に記載の赤外線温度計。 前記発熱素子系統として、 異なる自己飽和安定温度を有する 2 種類の自己制御型正温度係数特性を含む抵抗体を配置してなるこ とを特徴とする請求項 1 7に記載の赤外線温度計。 17. The infrared thermometer according to claim 16, wherein a resistor having two kinds of self-control positive temperature coefficient characteristics having different self-saturation stable temperatures is arranged as the heating element system. 18. The infrared thermometer according to claim 17, wherein resistors including two types of self-control type positive temperature coefficient characteristics having different self-saturation stable temperatures are arranged as the heating element system.
冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁され た複数の同一抵抗の自己制御型正温度係数特性を含む抵抗体から なる系統を、 前記冷接合部領域に対して複数系統組込んだ構造を 有することを特徴とする請求項 1 0に記載の赤外線温度計。  A plurality of systems composed of a plurality of resistors including a self-controllable positive temperature coefficient characteristic of the same resistance that is thermally directly connected to the cold junction region and electrically insulated between elements are provided for the cold junction region. The infrared thermometer according to claim 10, wherein the infrared thermometer has a structure incorporated in a system.
冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁され た異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個から なる対を、 前記冷接合部領域に対して一対以上組込んだ構造を有 することを特徴とする請求項 1 0に記載の赤外線温度計。  A pair of two resistors, which are thermally directly connected to the cold junction region and are electrically insulated between the elements and include self-controlled positive temperature coefficient characteristics of different resistances, are paired with the cold junction region. The infrared thermometer according to claim 10, wherein the infrared thermometer has a structure incorporated as above.
冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁され た異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個から なる対を複数対組み合わせてなる系統を、 前記冷接合部領域に対 して複数系統組込んだ構造を有することを特徴とする請求項 1 0 に記載の赤外線温度計。  A system formed by combining a plurality of pairs of two resistors each including a self-controlling positive temperature coefficient characteristic of a different resistance, which is thermally directly connected to the cold junction region and electrically insulated between the elements, is provided by the above-described cooling system. The infrared thermometer according to claim 10, wherein the infrared thermometer has a structure in which a plurality of systems are incorporated in the joint region.
'冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁され た複数の同一抵抗の自己制御型正温度係数特性を含む抵抗体から なる系統を、 前記冷接合部領域に対して複数系統組込んだ構造を 有することを特徴とする請求項 1 6に記載の赤外線温度計。  'A system composed of a plurality of resistors including a self-controlling positive temperature coefficient characteristic of the same resistance, which is thermally directly connected to the cold junction region and electrically insulated between the elements, 17. The infrared thermometer according to claim 16, having a structure in which a plurality of systems are incorporated.
冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁され た異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個から なる対を、 前記冷接合部領域に対して一対以上組込んだ構造を有 することを特徴とする請求項 1 6に記載の赤外線温度計。  A pair of two resistors, which are thermally directly connected to the cold junction region and are electrically insulated between the elements and include self-controlled positive temperature coefficient characteristics of different resistances, are paired with the cold junction region. 17. The infrared thermometer according to claim 16, wherein the infrared thermometer has a structure incorporated therein.
冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁され た異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個から なる対を複数対組み合わせてなる系統を、 前記冷接合部領域に対 して複数系統組込んだ構造を有することを特徴とする請求項 1 6 に記載の赤外線温度計。 A system formed by combining a plurality of pairs of two resistors each including a self-controlling positive temperature coefficient characteristic of a different resistance, which is thermally directly connected to the cold junction region and electrically insulated between the elements, is provided by the above-described cooling system. 17. The infrared thermometer according to claim 16, wherein the infrared thermometer has a structure in which a plurality of systems are incorporated in the joint region.
. 冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁され た複数の同一抵抗の自己制御型正温度係数特性を含む抵抗体から なる系統を、 前記冷接合部領域に対して複数系統組込んだ構造を 有することを特徴とする請求項 1 7に記載の赤外線温度計。A system composed of a plurality of resistors including a self-controlling positive temperature coefficient characteristic of the same resistance, which is thermally directly connected to the cold junction region and electrically insulated between the elements, with respect to the cold junction region. 18. The infrared thermometer according to claim 17, having a structure in which a plurality of systems are incorporated.
. 冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁され た異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個から なる対を、 前記冷接合部領域に対して一対以上組込んだ構造を有 することを特徴とする請求項 1 Ίに記載の赤外線温度計。  A pair of two resistors, which are thermally connected directly to the cold junction region and are electrically insulated between the elements and include self-regulating positive temperature coefficient characteristics of different resistances, are connected to the cold junction region. The infrared thermometer according to claim 1, wherein the infrared thermometer has a structure in which at least one pair is incorporated.
8 . 冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁され た異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個から なる対を複数対組み合わせてなる系統を、 前記冷接合部領域に対 して複数系統組込んだ構造を有することを特徴とする請求項 1 7 に記載の赤外線温度計。 8. A system consisting of a combination of multiple pairs of two resistors that are thermally connected directly to the cold junction region and that are electrically insulated between elements and that include self-controlling positive temperature coefficient characteristics of different resistances, 18. The infrared thermometer according to claim 17, wherein the infrared thermometer has a structure in which a plurality of systems are incorporated in the cold junction region.
9 . 前記自己制御型正温度係数特性を含む抵抗体が、 基板表面に蒸 着により組成されてなることを特徴とする請求項 4 に記載の赤外 線温度計。 9. The infrared thermometer according to claim 4, wherein the resistor having the self-controlling positive temperature coefficient characteristic is formed on a substrate surface by vapor deposition.
0 . 前記自己制御型正温度係数特性を含む抵抗体が、 基板表面にぺ 一ス ト焼き付けにより形成されてなることを特徴とする請求項 4 に記載の赤外線温度計。 5. The infrared thermometer according to claim 4, wherein the resistor including the self-control type positive temperature coefficient characteristic is formed on the surface of the substrate by first-storage baking.
1 . 前記自己制御型正温度係数特性を含む抵抗体が、 基板表面に面 状印刷されてなることを特徴とする請求項 4に記載の赤外線温度 計。 5. The infrared thermometer according to claim 4, wherein the resistor including the self-control type positive temperature coefficient characteristic is printed on a surface of a substrate in a planar manner.
2 . 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素 子系統を配置した冷接合部測温素子領域とが、 温接合部を中心と して冷接合部の外側に、 かつ冷接合部が配置された基板上に、 か つお互いが水平方向に並ぶようにして配置されてなることを特徴 とする請求項 4に記載の赤外線温度計。 2. The heating element area where the heating element system is arranged and the cold junction temperature measuring element area where the cold junction temperature measuring element system is arranged are located outside the cold junction with the hot junction as the center, and 5. The infrared thermometer according to claim 4, wherein the infrared thermometers are arranged on a substrate on which the cold junctions are arranged, so that they are arranged in a horizontal direction.
. 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素 子系統を配置した冷接合部測温素子領域とが、 温接合部を中心と して冷接合部の外側に、 かつ冷接合部が配置された基板上に、 か つお互いが垂直方向に並ぶようにして配置されてなることを特徴 とする請求項 4に記載の赤外線温度計。 The heating element area in which the heating element system is arranged and the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are located outside the cold junction with the hot junction as the center. 5. The infrared thermometer according to claim 4, wherein the infrared thermometer is arranged on the substrate on which the joints are arranged so that they are arranged in a vertical direction.
4 . 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素 子系統を配置した冷接合部測温素子領域とが、 温接合部を中心と して冷接合部の外側に、 かつ冷接合部が配置された基板の外部に、 かつお互いが垂直方向に並ぶようにして配置されてなることを特 徵とする請求項 4に記載の赤外線温度計。 4. The heating element area in which the heating element system is arranged and the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are located outside the cold junction with the hot junction as the center, and 5. The infrared thermometer according to claim 4, wherein the infrared thermometer is arranged outside the substrate on which the cold junction is arranged, and is arranged so as to be vertically aligned with each other.
5 . 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素 子系統を配置した冷接合部測温素子領域との形状が、 連続する角 形であることを特徴とする請求項 3 2乃至請求項 3 4のいずれか 一項に記載の赤外線温度計。 5. The shape of the heating element region in which the heating element system is arranged and the shape of the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged are continuous squares. The infrared thermometer according to any one of claims 2 to 34.
6 . 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素 子系統を配置した冷接合部測温素子領域との形状が、 一定角度で 区切られた不連続の多角形であることを特徴とする請求項 3 2乃 至請求項 3 4のいずれか一項に記載の赤外線温度計。 6. The shape of the heating element area in which the heating element system is arranged and the temperature of the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are discontinuous polygons separated by a certain angle. The infrared thermometer according to any one of claims 32 to 34, characterized in that:
7 . 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素 子系統を配置した冷接合部測温素子領域との形状が、 連続する円 であることを特徴とする請求項 3 2乃至請求項 3 4のいずれか一 項に記載の赤外線温度計。 7. The shape of the heating element area where the heating element system is arranged and the shape of the cold junction temperature measuring element area where the cold junction temperature measuring element system is arranged are continuous circles. 35. The infrared thermometer according to claim 34.
8 . 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素 子系統を配置した冷接合部測温素子領域との形状が、 一定角度で 区切られた不連続の円であることを特徴とする請求項 3 2乃至請 求項 3 4のいずれか一項に記載の赤外線温度計。 8. The shape of the heating element area where the heating element system is arranged and the temperature of the cold junction temperature measuring element area where the cold junction temperature measuring element system is arranged are discontinuous circles separated by a certain angle. The infrared thermometer according to any one of claims 32 to 34, characterized in that:
. 冷接合部がシリコンペレッ ト又はシリコンチヅプの内部又は 表面に組込まれた構造を有するサーモパイルセンサを組込んだ赤 外線温度計において、 このシリコンペレヅ ト又はシリコンチップ に埋込み層 (buried layer) 構造であり、 かつ自己制御型正温度係 数特性を含む抵抗体が前記冷接合部との混成(hybrid)構造を有す ることを特徴とする請求項 4に記載の赤外線温度計。 An infrared thermometer incorporating a thermopile sensor having a structure in which a cold junction is incorporated in or on a silicon pellet or a silicon chip, wherein the silicon pellet or the silicon chip has a buried layer structure, 5. The infrared thermometer according to claim 4, wherein the resistor having a self-controlling positive temperature coefficient characteristic has a hybrid structure with the cold junction.
0 . 冷接合部がシリコンペレッ ト又はシリコンチップの内部又は 表面に組込まれた構造を有するサ一モパイルセンサを組込んだ赤 外線温度計において、 このシリコンペレツ ト又はシリコンチップ の表面に形成された薄膜に自己制御型正温度係数特性を含む抵抗 体が組成された構造を有することを特徴とする請求項 4に記載の 赤外線温度計。0. A thin film formed on the surface of a silicon pellet or silicon chip in an infrared thermometer incorporating a thermopile sensor having a structure in which the cold junction is built in or on the silicon pellet or silicon chip. 5. The infrared thermometer according to claim 4, wherein the infrared thermometer has a structure in which a resistor having a self-controlling positive temperature coefficient characteristic is formed.
1 . 冷接合部が、 絶縁物からなるチップ基板の表面に厚膜形成され た構造を有するサ一モパイルセンサを組込んだ赤外線温度計にお いて、 自己制御型正温度係数特性を含む抵抗体が前記冷接合部と 混成(hybrid) した厚膜ハイプリヅ ド構造を有することを特徴とす る請求項 4に記載の赤外線温度計。 1. In an infrared thermometer incorporating a thermopile sensor whose cold junction is a thick film formed on the surface of a chip substrate made of an insulator, a resistor with a self-controlling positive temperature coefficient 5. The infrared thermometer according to claim 4, wherein the infrared thermometer has a thick film hybrid structure hybridized with the cold junction.
2 . 基準温度としての複数の異なる温度の黒体炉に対して順次温 度測定を行ったときの温度測定デ一夕を格納するための記憶装置 を有し、 かつ前記記憶装置に格納された固有の温度測定データを 不連続のプロヅ ト温度特性として作成し、 更にそれそれのプロヅ ト間毎にその前後の複数プロッ トデ一夕を使用してプロヅ ト間曲 線特性処理を順次行い、 これらプロッ ト間曲線どうしを連続的に 繋いだ自由曲線温度特性を固有の温度特性基準として前記記憶装 置に内蔵するプログラムを記録した記録媒体と、 前記プログラム を実行するための情報処理装置とを有することを特徴とする請求 項 1乃至請求項 2 8のいずれか一項に記載の赤外線温度計。 冷接合部領域を加熱する発熱素子系統と冷接合部領域の温度 を測定する冷接合部測温素子系統とを有するサーモパイルセンサ を組込んだ赤外線温度計により、 測定夕一ゲッ トから放射される 赤外線を検知して温度測定を行う赤外線温度計の温度測定方法に おいて、 前記発熱素子系統と冷接合部測温素子系統のうち少なく ともいずれか一方に自己制御型正温度係数特性を含む抵抗体を配 置し、 かつ少なく ともいずれか一方を冷接合部領域に対して熱的 に直結させることによりサ一モパイル出力と熱応答速度において 同期させることを特徴とする赤外線温度計の温度測定方法。 2. It has a storage device for storing temperature measurement data when temperature measurements are sequentially performed on a plurality of blackbody furnaces having different temperatures as reference temperatures, and is stored in the storage device. Unique temperature measurement data is created as discontinuous plot temperature characteristics, and inter-protocol curve characteristic processing is sequentially performed for each plot using a plurality of plot data before and after the plot. It has a recording medium in which a program built in the storage device is recorded with a free curve temperature characteristic in which plot-to-plot curves are continuously connected to each other as a unique temperature characteristic reference, and an information processing device for executing the program The infrared thermometer according to any one of claims 1 to 28, characterized in that: Radiated from the measurement target by an infrared thermometer incorporating a thermopile sensor with a heating element system that heats the cold junction area and a cold junction temperature measuring element system that measures the temperature of the cold junction area In a temperature measuring method of an infrared thermometer for detecting a temperature by detecting infrared rays, at least one of the heating element system and the cold junction temperature measuring element system includes a self-controlling positive temperature coefficient characteristic. A method for measuring the temperature of an infrared thermometer, comprising arranging a body and at least one of them being thermally connected directly to the cold junction area to synchronize the thermopile output with the thermal response speed. .
前記発熱系統により冷接合部領域を一定温度のバイアス温度 に維持し、 サ一モパイル出力を検出してこれを温度値に換算する とともに、 前記冷接合部測温素子系統により冷接合部領域の温度 をその都度測定し.、 前記冷接合部温度を基準温度としてサ一モパ ィル出力により求められた温度値を加算して測定夕一ゲッ トの温 度を求めることを特徴とする請求項 4 3に記載の赤外線温度計の 温度測定方法。  The cold junction region is maintained at a constant bias temperature by the heating system, a thermopile output is detected and converted into a temperature value, and the temperature of the cold junction region is detected by the cold junction temperature measuring element system. The temperature of the measurement target is obtained by adding the temperature value obtained by the thermo-modal output using the cold junction temperature as a reference temperature. 43 Method for measuring the temperature of the infrared thermometer described in 3.
前記発熱素子系統により冷接合部領域を一定温度のバイァス 温度に維持してこれを規定値として扱い、 サーモパイル出力だけ を検出してこれを温度値に換算し、 前記一定バイァス温度既定値 とサ一モパイル出力により求められた温度値とを加算して測定夕 —ゲッ トの温度を求めることを特徴とする請求項 4 3に記載の赤 外線温度計の温度測定方法。 The heating element system keeps the cold junction region at a constant bias temperature and treats it as a specified value, detects only the thermopile output, converts it to a temperature value, and converts it into a temperature value. 44. The temperature measuring method for an infrared thermometer according to claim 43, wherein a temperature of the target is obtained by adding the temperature value obtained by the mopile output.
6 . 自己制御型正温度係数特性を含む抵抗体を、 自己発熱せずかつ 冷接合部の温度を測定する非加熱の冷接合部測温素子系統と、 自 己発熱して前記冷接合部測温素子系統を配置した冷接合部測温素 子領域と冷接合部領域とを加熱する発熱素子系統とに機能分割し、 かつ前記発熱素子系統の自己制御型正温度係数特性を含む抵抗体 としてその形状が面状である自己制御型正温度係数特性を含む抵 抗体を配置し、 かつ前記面状の自己制御型正温度係数を含む抵抗 体の表面に正電極と負電極とが交互に多数配置された水平方向作 用の櫛形アナログサーモスタツ トを配置して、 前記発熱素子によ り前記冷接合部測温素子領域と冷接合部領域とを加熱して自己飽 和安定温度の一定温度に維持するとともに、 前記水平方向作用の 櫛形アナログサ一モス夕ッ トにより前記冷接合部測温素子領域と 冷接合部領域の部分的な温度変化をアナログ的に連続補正するこ とを特徴とする請求項 4 4又は請求項 4 5に記載の赤外線温度計 の温度測定方法。 6. A non-heating cold-junction temperature measuring element system that measures the temperature of the cold-junction without self-heating the resistor including the self-control type positive temperature coefficient characteristic; A function element is divided into a cold junction temperature measuring element region in which a heating element system is arranged and a heating element system for heating the cold junction region, and a self-controlling positive temperature coefficient characteristic of the heating element system is used as a resistor. A resistor having a planar self-control type positive temperature coefficient characteristic is disposed, and a large number of positive electrodes and negative electrodes are alternately provided on the surface of the resistor including the planar self-control type positive temperature coefficient. The arranged comb-shaped analog thermostat for horizontal operation is arranged, and the heating element heats the cold junction temperature measuring element area and the cold junction area to maintain a constant temperature of the self-saturation stable temperature. And the comb-shaped analog sensor acting in the horizontal direction. The infrared ray according to claim 44 or claim 45, wherein a partial temperature change in the cold junction temperature measuring element region and the cold junction region is continuously corrected in an analog manner by using a MOS unit. How to measure the temperature of the thermometer.
7 . 自己制御型正温度係数特性を含む抵抗体を、 自己発熱せずかつ 冷接合部の温度を測定する非加熱の冷接合部測温素子系統と、 自 己発熱して前記冷接合部測温素子系統を配置した冷接合部測温素 子領域と冷接合部領域とを加熱する発熱素子系統とに機能分割し、 かつ前記発熱素子系統の自己制御型正温度係数特性を含む抵抗体 として所定の厚さを有する面状の自己制御型正温度係数特性を含 む抵抗体を配置し、 かつ面状の正電極と負電極が前記面状の自己 制御型正温度係数特性を含む抵抗体の表裏面を挟むように配置し てなる垂直方向作用のアナログサーモスタッ トを配置したことを 特徴とする請求項 4 4又は請求項 4 5に記載の赤外線温度計の温 度測定方法。 前記発熱素子系統を加熱して冷接合部領域に対して温度上昇 を一方的かつ強制的に加えることにより、 前記発熱素子系統加熱 時間に対してサ一モパイル出力電圧値を関数的に減少せしめてサ ーモパイル出力電圧の零点を強制通過させ、 サ一モパイル出力に 対して正負の電圧値領域反転を一方的かつ強制的に発生させなが ら、 この電圧値正負領域間の相反転を検出し、 この相反転に同期 して前記冷接合部測温素子により冷接合部領域の温度を検知する ことにより、 測定夕一ゲッ 卜の温度を測定することを特徴とする 請求項 4 3に記載の赤外線温度計の温度測定方法。 7. A non-heated cold-junction temperature measuring element system that measures the temperature of the cold-junction without self-heating the resistor including the self-control type positive temperature coefficient characteristic, A function element is divided into a cold junction temperature measuring element region in which a heating element system is arranged and a heating element system for heating the cold junction region, and a self-controlling positive temperature coefficient characteristic of the heating element system is used as a resistor. A resistor having a predetermined thickness and having a planar self-controlling positive temperature coefficient characteristic is provided, and a planar positive electrode and a negative electrode including the planar self-controlling positive temperature coefficient characteristic are provided. 46. The temperature measuring method for an infrared thermometer according to claim 44, wherein an analog thermostat acting in a vertical direction is disposed so as to sandwich the front and back surfaces of the thermometer. By heating the heating element system and unilaterally and forcibly applying a temperature increase to the cold junction region, the thermopile output voltage value is reduced functionally with respect to the heating element system heating time. By forcibly passing the zero point of the thermopile output voltage and unilaterally and forcibly inverting the positive / negative voltage value area with respect to the thermopile output, the phase inversion between the positive and negative voltage values is detected. The infrared ray according to claim 43, wherein the temperature of the cold junction area is measured by detecting the temperature of the cold junction area by the cold junction temperature measuring element in synchronization with the phase inversion. How to measure the temperature of the thermometer.
前記発熱素子系統を加熱して冷接合部領域に対して温度上昇 を一方的かつ強制的に加えることにより、 前記発熱素子系統加熱 時間に対してサーモパイル出力電圧値を関数的に減少せしめて、 予め設定された基準電圧値となる電圧閾値に対してサ一モパイル 出力電圧を強制通過させ、 前記電圧閾値に対するサーモパイル出 力電圧の相反転を検出し、 この相反転に同期して前記冷接合部測 温素子により冷接合部領域の温度を検知することにより、 測定夕 ーゲッ 卜の温度を測定することを特徴とする請求項 4 3に記載の 赤外線温度計の温度測定方法。  By heating the heating element system and unilaterally and forcibly applying a temperature increase to the cold junction region, the thermopile output voltage value is reduced functionally with respect to the heating element system heating time, and The thermopile output voltage is forcibly passed with respect to the voltage threshold value that becomes the set reference voltage value, phase inversion of the thermopile output voltage with respect to the voltage threshold value is detected, and the cold junction measurement is synchronized with this phase inversion. 44. The temperature measuring method for an infrared thermometer according to claim 43, wherein the temperature of the measurement target is measured by detecting the temperature of the cold junction region by the temperature element.
冷接合部領域の温度を変化させたときのサーモパイル出力電 圧値が電圧値正負領域間で相反転したか否かを相検出器により判 定して相反転 「有」 か 「無」 かの 2 ビヅ トデジタル信号とし、 こ の 2 ビッ トデジタル信号に同期して冷接合部測温素子温度を検出 することにより、 冷接合部領域の温度を検出することを特徴とす る請求項 4 8に記載の赤外線温度計の温度測定方法。 The phase detector determines whether the thermopile output voltage value when the temperature of the cold junction region is changed between the positive and negative voltage values is determined by the phase detector. The temperature of the cold junction area is detected by detecting the temperature of the cold junction temperature measuring element in synchronization with the two-bit digital signal and synchronizing with the two-bit digital signal. 8. The method for measuring the temperature of the infrared thermometer according to 8.
1 . 冷接合部領域の温度を変化させたときのサ一モパイル出力電 圧値が基準電圧値となる電圧閾値に対して相反転したか否かを相 検出器により判定して相反転 「有」 か 「無」 かの 2ビッ トデジ夕 ル信号とし、 この 2ビッ トデジタル信号に同期して冷接合部測温 素子温度を検出することにより、 冷接合部領域の温度を検出する ことを特徴とする請求項 4 9に記載の赤外線温度計の温度測定方 法。 1. The phase detector determines whether or not the thermopile output voltage value when the temperature of the cold junction region is changed is inverted with respect to the voltage threshold value that becomes the reference voltage value. It is characterized by detecting the temperature of the cold junction area by detecting the temperature of the cold junction temperature measuring element temperature in synchronization with the 2-bit digital signal of "" or "none". A method for measuring the temperature of an infrared thermometer according to claim 49.
2 . 前記電圧閾値をサーモパイル出力電圧値の正領域と負領域と に一ずつ設定し、 一対の電圧閾値対となすことを特徴とする請求 項 4 9に記載の赤外線温度計の温度測定方法。 42. The temperature measuring method for an infrared thermometer according to claim 49, wherein the voltage threshold is set for each of a positive region and a negative region of a thermopile output voltage value, and a pair of voltage thresholds is formed.
3 . 前記電圧閾値をサ一モパイル出力電圧値の正領域と負領域と に一ずつ設定してなる電圧閾値対を、 複数対設けることを特徴と する請求項 4 9に記載の赤外線温度計の温度測定方法。 30. The infrared thermometer according to claim 49, wherein a plurality of pairs of voltage thresholds are provided in which the voltage threshold is set for each of a positive region and a negative region of a thermopile output voltage value. Temperature measurement method.
4 . 前記電圧閾値対において、 対となる正領域の電圧閾値と負領域 の電圧閾値との絶対値を等しくすることを特徴とする請求項 5 2 又は請求項 5 3に'記載の赤外線温度計の温度測定方法。 4. The infrared thermometer according to claim 52 or claim 53, wherein, in the pair of voltage thresholds, the absolute value of the voltage threshold in the positive region and the absolute value of the voltage threshold in the negative region are equal. Temperature measurement method.
5 . 前記発熱素子系統を、 発熱して一定温度に維持される定常温度 系統と、 一定の温度範囲において温度可変とする可変温度系統と に系統分離し、 前記定常温度系統により温度測定開始前に予め冷 接合部領域を一定温度に維持し、 前記可変温度系統は温度測定開 始後に冷接合部領域の温度を一方的かつ強制的に変化させること を特徴とする請求項 4 8又は請求項 4 9に記載の赤外線温度計の 温度測定方法。 5. The heating element system is separated into a steady temperature system that generates heat and is maintained at a constant temperature, and a variable temperature system that varies the temperature within a certain temperature range, and before the temperature measurement is started by the steady temperature system. The cold junction area is maintained at a constant temperature in advance, and the variable temperature system unilaterally and forcibly changes the temperature of the cold junction area after the start of temperature measurement. 9. The temperature measurement method of the infrared thermometer described in 9.
6 . 前記発熱素子系統として自己制御型正温度係数特性を含む抵 抗体を配し、 かつ前記測温素子系統としてサ一ミス夕測温素子を 配することを特徴とする請求項 4 4に記載の赤外線温度計の温度 測定方法。 前記発熱素子系統として自己制御型正温度係数特性を含む抵 抗体を配し、 かつ前記測温素子系統としてサ一ミス夕測温素子を 配することを特徴とする請求項 4 5に記載の赤外線温度計の温度 測定方法。 6. The heating element system according to claim 44, wherein a resistor having a self-controlling positive temperature coefficient characteristic is arranged as the heating element system, and a thermometer is arranged as the temperature measuring element system. Method for measuring the temperature of infrared thermometers. The infrared ray according to claim 45, wherein a resistor having a self-controlling positive temperature coefficient characteristic is arranged as the heating element system, and a thermometer is arranged as the temperature measuring element system. How to measure the temperature of the thermometer.
前記発熱素子系統として自己制御型正温度係数特性を含む抵 抗体を配し、 かつ前記測温素子系統としてサーミス夕測温素子を 配することを特徴とする請求項 4 8に記載の赤外線温度計の温度 測定方法。  49. The infrared thermometer according to claim 48, wherein a resistor having a self-controlling positive temperature coefficient characteristic is arranged as the heating element system, and a thermistor temperature measuring element is arranged as the temperature measuring element system. Temperature measurement method.
前記発熱素子系統として自己制御型正温度係数特性を含む抵 抗体を配し、 かつ前記測温素子系統としてサーミスタ測温素子を 配することを特徴とする請求項 4 9に記載の赤外線温度計の温度 測定方法。  The infrared thermometer according to claim 49, wherein a resistor having a self-controlling positive temperature coefficient characteristic is arranged as the heating element system, and a thermistor temperature measuring element is arranged as the temperature measuring element system. Temperature measurement method.
前記サ一ミス夕測温素子として N T C ( Negative Temperature NTC (Negative Temperature)
Coefficient)抵抗体を用いることを特徴とする請求項 5 8乃至請求 項 6 1のいずれか一項に記載の赤外線温度計の温度測定方法。 The method for measuring the temperature of an infrared thermometer according to any one of claims 58 to 61, wherein a resistor is used.
前記サ一ミス夕測温素子として; P T C ( Positive Temperature Coefficient)抵抗体を用いることを特徴とする請求項 5 8乃至請求 項 6 1のいずれか一項に記載の赤外線温度計の温度測定方法。  The method of measuring a temperature of an infrared thermometer according to any one of claims 58 to 61, wherein a PTC (Positive Temperature Coefficient) resistor is used as the thermometer.
前記発熱素子系統として半導体発熱素子を配し、 かつ前記冷接 合部測温素子系統として自己制御型正温度係数特性を含む抵抗体 を配することを特徴とする請求項 4 4又は請求項 4 5又は請求項 4 8又は請求項 4 9に記載の赤外線温度計の温度測定方法。  The semiconductor heating element is arranged as the heating element system, and a resistor having a self-controlling positive temperature coefficient characteristic is arranged as the cold junction temperature measuring element system. The method for measuring the temperature of an infrared thermometer according to claim 5 or claim 48 or claim 49.
自己制御型正温度係数特性を含む抵抗体を、 所定電圧を印加し て自己発熱させる発熱素子系統と、 冷接合部測温素子系統とに分 離して配することを特徴とする請求項 4 4又は請求項 4 5又は請 求項 4 8又は請求項 4 9に記載の赤外線温度計の温度測定方法。 電気的に素子間絶縁された複数の同一抵抗特性の自己制御型 正温度係数特性を含む抵抗体からなる系統を、 冷接合部領域と熱 的に直結するようにして複数系統組込み、 これらに対してサ一モ パイル外部からそれそれ異なる電圧を印加し、 系統別に異なる発 熱温度を冷接合部領域に発生させることを特徴とする請求項 4 4 又は請求項 4 5又は請求項 4 8又は請求項 4 9に記載の赤外線温 度計の温度測定方法。 The resistor having the self-control type positive temperature coefficient characteristic is separated into a heating element system that generates heat by applying a predetermined voltage and a cold junction temperature measuring element system. Or the method for measuring a temperature of an infrared thermometer according to claim 45 or claim 48 or claim 49. A plurality of systems consisting of a plurality of self-regulating resistors with the same resistance characteristics and electrically insulated between elements and including a positive temperature coefficient characteristic are incorporated in such a way that they are thermally connected directly to the cold junction area. Claim 44, Claim 45, Claim 48, or Claim 45, wherein different voltages are applied from outside the thermopile to generate different heating temperatures for each system in the cold junction region. Item 49. The method for measuring the temperature of an infrared thermometer according to Item 9.
電気的に素子間絶縁された異なる抵抗特性の自己制御型正温 度係数特性を含む抵抗体からなる系統を、 冷接合部領域と熱的に 直結するようにして複数系統組込み、 これらに対してサーモパイ ル外部から同一の電圧を印加し、 系統別に異なる発熱温度を冷接 合部に発生させることを特徴とする請求項 4 4又は請求項 4 5又 は請求項 4 8又は請求項 4 9に記載の赤外線温度計の温度測定方 法。  A plurality of systems consisting of resistors with self-controlling positive temperature coefficient characteristics with different resistance characteristics that are electrically insulated between elements are directly connected to the cold junction area, and multiple systems are incorporated. The same voltage is applied from the outside of the thermopile to generate a different heat generation temperature for each system in the cold junction part. How to measure the temperature of the infrared thermometer described.
電気的に素子間絶縁された異なる抵抗特性の自己制御型正温 度係数特性を含む抵抗体 2個からなる対複数対組み合わせてなる 系統を複数作製し、 これらを冷接合部領域と熱的に直結するよう にして複数系統組込み、 これらに対してサ一モパイル外部から同 一の電圧を印加し、 系統別に異なる発熱温度を冷接合部に発生さ せることを特徴とする請求項 4 4又は請求項 4 5又は請求項 4 8 又は請求項 4 9に記載の赤外線温度計の温度測定方法。  A plurality of pairs of pairs consisting of two resistors with self-controlling positive temperature coefficient characteristics with different resistance characteristics electrically insulated from each other are fabricated, and these are thermally combined with the cold junction region. Claim 44 or Claim wherein a plurality of systems are incorporated so as to be directly connected, and the same voltage is applied to them from outside the thermopile to generate different heat generation temperatures in the cold junction for each system. The method for measuring the temperature of an infrared thermometer according to claim 45 or claim 48 or claim 49.
前記発熱素子において、 異なる自己飽和安定温度を有する 2種 類の自己制御型正温度係数特性を含む抵抗体を用い、 自己飽和安 定温度が低温であるほうの自己制御型正温度係数特性を含む抵抗 体に対しては所定電圧を印加して自己飽和安定温度の一定温度で 安定させ、 一方、 自己飽和安定温度が高温であるほうの自己制御 型正温度係数特性を含む抵抗体は自己飽和安定温度以下において 任意温度に変化させることを特徴とする請求項 4 8又は請求項 4 9に記載の赤外線温度計の温度測定方法。 基準温度として複数の異なる温度の黒体炉を設置し、 赤外線温 度計を上記黒体炉の異なる温度に対して順次温度測定をさせ、 赤 外線温度計の個体差に基づく固有の温度測定結果を、 赤外線温度 計内部に設けられた記憶装置に記憶させ、 しかる後に赤外線温度 計内部に設けられた C P Uプログラムにより、 前記記憶装置に格 納された黒体炉基準温度デ一夕を基にした固有の温度測定データ を不連続のプロッ ト温度特性として作成し、 更にそれそれのプロ ッ ト間毎にその前後の複数プロッ トデ一夕を使用してプロッ ト間 曲線特性処理を順次行い、 これらプロッ ト間曲線どうしを連続的 に繋いだ自由曲線温度特性を赤外線温度計の固有の温度特性基準 とし、 これを赤外線温度計内部に設けられた記憶装置に内蔵させ ることにより、 赤外線温度計の装置間個体差を自動校正すること を特徴とする請求項 4 4又は請求項 4 5又は請求項 4 8又は請求 項 4 9に記載の赤外線温度計の温度測定方法。 In the heating element, a resistor having two types of self-control type positive temperature coefficient characteristics having different self-saturation stable temperatures is used, and a self-control type positive temperature coefficient characteristic having a lower self-saturation stable temperature is included. A predetermined voltage is applied to the resistor to stabilize it at a constant self-saturation stable temperature.On the other hand, a resistor with a higher self-saturation stable temperature that has a self-controlled positive temperature coefficient characteristic is self-saturation stable. The method for measuring the temperature of an infrared thermometer according to claim 48 or claim 49, wherein the temperature is changed to an arbitrary temperature below the temperature. A blackbody furnace with a plurality of different temperatures was installed as a reference temperature, and an infrared thermometer was sequentially measured for the different temperatures of the above blackbody furnace, and a unique temperature measurement result based on the individual difference of the infrared thermometer Is stored in a storage device provided inside the infrared thermometer, and thereafter, based on the black body furnace reference temperature data stored in the storage device by a CPU program provided inside the infrared thermometer. Unique temperature measurement data is created as discontinuous plot temperature characteristics, and furthermore, plot-to-plot curve characteristic processing is sequentially performed for each plot using multiple plot data before and after the plot. The free-curve temperature characteristic, which continuously connects the plot-to-plot curves, is used as the reference for the characteristic temperature characteristic of the infrared thermometer, and is stored in the storage device inside the infrared thermometer. 4. 4 or claim 4 5 or claim 4 8 or temperature measuring method of the infrared thermometer according to claim 4 9, characterized in that Calibrating device between individual difference line thermometer.
PCT/JP2000/002597 2000-04-20 2000-04-20 Infrared thermometer and method of measuring temperature with infrared thermometer WO2001088495A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2000/002597 WO2001088495A1 (en) 2000-04-20 2000-04-20 Infrared thermometer and method of measuring temperature with infrared thermometer
AU2000238408A AU2000238408A1 (en) 2000-04-20 2000-04-20 Infrared thermometer and method of measuring temperature with infrared thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/002597 WO2001088495A1 (en) 2000-04-20 2000-04-20 Infrared thermometer and method of measuring temperature with infrared thermometer

Publications (1)

Publication Number Publication Date
WO2001088495A1 true WO2001088495A1 (en) 2001-11-22

Family

ID=11735946

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/002597 WO2001088495A1 (en) 2000-04-20 2000-04-20 Infrared thermometer and method of measuring temperature with infrared thermometer

Country Status (2)

Country Link
AU (1) AU2000238408A1 (en)
WO (1) WO2001088495A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485166A (en) * 2010-12-03 2012-06-06 优盛医学科技股份有限公司 Method for measuring temperature by infrared ray temperature indicator
CN103256989A (en) * 2013-05-07 2013-08-21 江苏物联网研究发展中心 Structure for improving heat conduction stability of closed membrane type thermopile detector
CN103398784A (en) * 2013-07-26 2013-11-20 江苏物联网研究发展中心 Self-rectification circuit for infrared thermopile temperature sensor

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127368U (en) * 1977-03-18 1978-10-09
JPS63106129U (en) * 1986-12-26 1988-07-08
US4900162A (en) * 1989-03-20 1990-02-13 Ivac Corporation Infrared thermometry system and method
US4904090A (en) * 1986-11-29 1990-02-27 Thorn Emi Plc Temperature sensing arrangement
JPH03189526A (en) * 1989-12-20 1991-08-19 Tokin Corp Thermopile
JPH03273689A (en) * 1990-03-23 1991-12-04 Tokin Corp Highly sensitive thermopile
JPH0417301A (en) * 1990-05-10 1992-01-22 Mitsui Toatsu Chem Inc Positive temperature coefficient thin-film thermistor
JPH0590646A (en) * 1991-03-05 1993-04-09 Citizen Watch Co Ltd Thermopile type infrared sensor and its manufacture
JPH07181082A (en) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd Infrared detector
JPH09292283A (en) * 1996-04-26 1997-11-11 Nippon Avionics Co Ltd Automatic forming device for temperature table for infrared thermal image device
JPH10115556A (en) * 1996-10-11 1998-05-06 Mitsubishi Electric Corp Infrared detector
JPH11123180A (en) * 1997-10-21 1999-05-11 Terumo Corp Infrared clinical thermometer
JPH11258055A (en) * 1998-03-12 1999-09-24 Omron Corp Thermopile type temperature sensor

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127368U (en) * 1977-03-18 1978-10-09
US4904090A (en) * 1986-11-29 1990-02-27 Thorn Emi Plc Temperature sensing arrangement
JPS63106129U (en) * 1986-12-26 1988-07-08
US4900162A (en) * 1989-03-20 1990-02-13 Ivac Corporation Infrared thermometry system and method
JPH03189526A (en) * 1989-12-20 1991-08-19 Tokin Corp Thermopile
JPH03273689A (en) * 1990-03-23 1991-12-04 Tokin Corp Highly sensitive thermopile
JPH0417301A (en) * 1990-05-10 1992-01-22 Mitsui Toatsu Chem Inc Positive temperature coefficient thin-film thermistor
JPH0590646A (en) * 1991-03-05 1993-04-09 Citizen Watch Co Ltd Thermopile type infrared sensor and its manufacture
JPH07181082A (en) * 1993-12-22 1995-07-18 Nissan Motor Co Ltd Infrared detector
JPH09292283A (en) * 1996-04-26 1997-11-11 Nippon Avionics Co Ltd Automatic forming device for temperature table for infrared thermal image device
JPH10115556A (en) * 1996-10-11 1998-05-06 Mitsubishi Electric Corp Infrared detector
JPH11123180A (en) * 1997-10-21 1999-05-11 Terumo Corp Infrared clinical thermometer
JPH11258055A (en) * 1998-03-12 1999-09-24 Omron Corp Thermopile type temperature sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102485166A (en) * 2010-12-03 2012-06-06 优盛医学科技股份有限公司 Method for measuring temperature by infrared ray temperature indicator
CN103256989A (en) * 2013-05-07 2013-08-21 江苏物联网研究发展中心 Structure for improving heat conduction stability of closed membrane type thermopile detector
CN103398784A (en) * 2013-07-26 2013-11-20 江苏物联网研究发展中心 Self-rectification circuit for infrared thermopile temperature sensor

Also Published As

Publication number Publication date
AU2000238408A1 (en) 2001-11-26

Similar Documents

Publication Publication Date Title
US5054936A (en) Sensor for active thermal detection
US6316770B1 (en) Thermal detector with bolometric effect amplification
JP4619499B2 (en) Infrared sensor capable of stabilizing temperature and infrared thermometer having this type of sensor
US8667839B2 (en) Heat conduction-type sensor for calibrating effects of temperature and type of fluid, and thermal flow sensor and thermal barometric sensor using this sensor
US6300554B1 (en) Method of fabricating thermoelectric sensor and thermoelectric sensor device
KR20000076051A (en) Thermopile sensor and radiation thermometer with a thermopile sensor
JP2002071452A (en) Thermal infrared detector
JPS6129648B2 (en)
CN105745518A (en) Internal temperature sensor
EP1333504A3 (en) Monolithically-integrated infrared sensor
US20070227575A1 (en) Thermopile element and infrared sensor by using the same
WO2001088495A1 (en) Infrared thermometer and method of measuring temperature with infrared thermometer
JPH0666639A (en) Infrared thermometer
JPS60133329A (en) Non-contact temperature detection control apparatus
JP4580562B2 (en) Non-contact temperature sensor and infrared thermometer using the same
WO2001050102A1 (en) Thermopile sensor and temperature measuring method by infrared rays
JP3303786B2 (en) Bolometer type infrared sensor
CN210487079U (en) Infrared temperature sensor, probe comprising same and infrared thermometer
JP4490580B2 (en) Infrared sensor
JP3874077B2 (en) Bolometer type infrared detector having hysteresis and driving method thereof
JP2002156283A (en) Thermopile-type infrared sensor
JP2003156395A (en) Infrared temperature sensor
WO2001061295A1 (en) Thermopile sensor, and method of measuring temperature with infrared radiation
Meinel et al. Multijunction thin-film radiation thermopile sensors
WO2002055975A1 (en) Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase