WO2001061158A2 - Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs - Google Patents

Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs Download PDF

Info

Publication number
WO2001061158A2
WO2001061158A2 PCT/DE2001/000303 DE0100303W WO0161158A2 WO 2001061158 A2 WO2001061158 A2 WO 2001061158A2 DE 0100303 W DE0100303 W DE 0100303W WO 0161158 A2 WO0161158 A2 WO 0161158A2
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
combustion engine
internal combustion
operating
temperature
Prior art date
Application number
PCT/DE2001/000303
Other languages
English (en)
French (fr)
Other versions
WO2001061158A3 (de
Inventor
Andreas Roth
Andreas Koring
Beate Rittmann
Holger Bellmann
Klaus Winkler
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to US10/204,008 priority Critical patent/US6813881B2/en
Priority to EP01916882A priority patent/EP1257735B1/de
Priority to KR1020027010273A priority patent/KR20020076295A/ko
Priority to DE10190514T priority patent/DE10190514D2/de
Priority to DE50106888T priority patent/DE50106888D1/de
Priority to AU2001244067A priority patent/AU2001244067A1/en
Priority to BR0108352-0A priority patent/BR0108352A/pt
Priority to JP2001559984A priority patent/JP2003522892A/ja
Publication of WO2001061158A2 publication Critical patent/WO2001061158A2/de
Publication of WO2001061158A3 publication Critical patent/WO2001061158A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/021Introducing corrections for particular conditions exterior to the engine
    • F02D41/0235Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus
    • F02D41/024Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus
    • F02D41/025Introducing corrections for particular conditions exterior to the engine in relation with the state of the exhaust gas treating apparatus to increase temperature of the exhaust gas treating apparatus by changing the composition of the exhaust gas, e.g. for exothermic reaction on exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/405Multiple injections with post injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1446Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being exhaust temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the invention relates to a method for operating an internal combustion engine, in particular a motor vehicle, in which fuel is injected into a combustion chamber of the internal combustion engine in a first operating mode during an intake phase or in a second operating mode during a compression phase, and in which exhaust gas is applied to a catalytic converter.
  • the invention also relates to a control device for an internal combustion engine, in particular of a motor vehicle, and an internal combustion engine, in particular for a motor vehicle.
  • Such a method, such a control device and such an internal combustion engine are known, for example, in a so-called gasoline direct injection.
  • the fuel is injected into the combustion chamber of the internal combustion engine in homogeneous operation during the intake phase or in stratified operation during the compression phase.
  • Homogeneous operation is preferably provided for full-load operation of the internal combustion engine, while stratified operation is suitable for idling and part-load operation.
  • the requested torque is switched between the aforementioned operating modes.
  • the catalytic converter For the conversion of exhaust gases in the catalytic converter of the internal combustion engine described above, it is necessary for the catalytic converter to have a predetermined operating temperature.
  • the internal combustion engine described can be in one
  • Operating point are operated at a low exhaust gas temperature. Such an operating point is e.g. in idle mode, in which the internal combustion engine is operated at a low idle speed.
  • the object of the invention is to provide a method for operating an internal combustion engine, with which sufficient cleaning of the exhaust gases is ensured even at operating points with a low exhaust gas temperature.
  • This object is achieved according to the invention in a method of the type mentioned at the outset by determining a temperature difference between an actual exhaust gas temperature and a target exhaust gas temperature at an operating point with a low exhaust gas temperature, and by at least one additional injection after a Combustion is carried out depending on the temperature difference.
  • the task is solved accordingly.
  • the additional injection creates a combustible mixture in the area of the exhaust manifold or the catalytic converter.
  • This mixture is ignited and burned by the still hot exhaust manifold or catalytic converter.
  • the heat generated in this way prevents the catalyst from cooling down.
  • the convertibility of the catalytic converter is retained and cleaning of the exhaust gases is thus guaranteed even at operating points with a low exhaust gas temperature.
  • a minimum lambda of the exhaust gas is defined, and the at least one additional injection after combustion is limited as a function of this minimum lambda. This ensures that the lambda of the exhaust gas does not become too rich and therefore has an excessively high proportion of pollutants.
  • a fixed lambda of the exhaust gas is specified, the at least one additional injection is carried out after combustion as a function of this fixed lambda, and the start of injection of the additional injection changed.
  • the start of injection of the additional injection may be changed.
  • start of injection is changed as a function of the actual exhaust gas temperature. This enables control and / or regulation of the start of injection to be achieved.
  • the number and / or the times of the additional injections are selected such that the operating temperature of the catalytic converter is not fallen below and / or the catalytic converter does not overheat.
  • This number and / or the times can be determined in advance. Alternatively or additionally, it is possible to control and / or regulate the number and / or the times depending on the current temperature of the catalyst.
  • the temperature of the catalytic converter is measured or modeled, and for the additional injections to be carried out only when the temperature falls below a limit temperature. This saves fuel and avoids pollutant emissions.
  • Idling represents an operating point at which a low exhaust gas temperature can occur and at which the catalytic converter is therefore at its own
  • the Ver drive according to the invention is therefore preferably used in shift operation and idling of the internal combustion engine.
  • control element which is provided for a control device of an internal combustion engine, in particular a motor vehicle.
  • a program is stored on the control element, which is executable on a computing device, in particular on a microprocessor, and is suitable for executing the method according to the invention.
  • the invention is thus implemented by a program stored on the control element, so that this control element provided with the program represents the invention in the same way as the method, for the execution of which the program is suitable.
  • an electrical storage medium can be used as the control element, for example a read-only memory or a flash memory.
  • FIG. 1 The only figure of the drawing shows a schematic representation of an embodiment of an internal combustion engine according to the invention.
  • the figure shows an internal combustion engine 1 of a motor vehicle in which a piston 2 can be moved back and forth in a cylinder 3.
  • the cylinder 3 is provided with a combustion chamber 4, which is delimited inter alia by the piston 2, an inlet valve 5 and an outlet valve 6.
  • An intake pipe 7 is coupled to the inlet valve 5 and an exhaust pipe 8 is coupled to the exhaust valve 6.
  • Combustion chamber 4 Fuel can be injected into combustion chamber 4 via injection valve 9. The fuel in the combustion chamber 4 can be ignited with the spark plug 10.
  • the internal combustion engine 1 has a plurality of such cylinders 3 with associated combustion chambers 4, pistons 2, intake valves 5 and exhaust valves 6. Each of the cylinders 3 is also assigned an injection valve 9 and a spark plug 10.
  • a rotatable throttle valve 11 is accommodated, via which air can be fed to the intake pipe 7.
  • the amount of air supplied is dependent on the angular position of the throttle valve 11.
  • a catalytic converter 12 is accommodated in the exhaust pipe 8 and serves to clean the exhaust gases resulting from the combustion of the fuel.
  • the catalytic converter 12 is a storage catalytic converter 12 ′ which is coupled to a three-way catalytic converter 12 ′′.
  • the catalytic converter 12 is thus intended, inter alia, to temporarily store nitrogen oxides (NOx) and to convert them as well as hydrocarbons (HC).
  • NOx nitrogen oxides
  • HC hydrocarbons
  • a control device 18 is acted upon by input signals 19, which represent operating variables of the internal combustion engine 1 measured by sensors.
  • the control unit 18 generates output signals 20 with which the behavior of the internal combustion engine 1 can be influenced via actuators or actuators.
  • the control unit 18 is provided to control and / or regulate the operating variables of the internal combustion engine 1. For that purpose it is
  • Control unit 18 is provided with a microprocessor, which has stored a program in a storage medium, in particular in a flash memory, which is suitable for carrying out the aforementioned control and / or regulation.
  • a so-called homogeneous operation of the internal combustion engine 1 the throttle valve 11 is partially opened or closed depending on the desired torque.
  • the fuel is injected into the combustion chamber 4 by the injection valve 9 during an induction phase caused by the piston 2.
  • the injected fuel is swirled by the air sucked in simultaneously via the throttle valve 11 and is thus distributed substantially uniformly in the combustion chamber 4.
  • the fuel / air mixture is compressed during the compression phase in order to then be ignited by the spark plug 10.
  • the piston 2 is driven by the expansion of the ignited fuel.
  • the resulting torque depends, among other things, on the position of the throttle valve 11 in homogeneous operation. In view of a low pollutant development, the fuel / air mixture is set to lambda equal to one if possible.
  • the Throttle valve 11 wide open.
  • the fuel is injected from the injection valve 9 into the combustion chamber 4 during a compression phase caused by the piston 2, specifically locally in the immediate vicinity of the spark plug 10 and at a suitable time before the ignition point.
  • the fuel is ignited with the aid of the spark plug 10, so that the piston 2 is driven in the now following working phase by the expansion of the ignited fuel.
  • the resulting torque largely depends on the injected fuel mass in shift operation.
  • the shift operation is provided for the idle operation and the partial load operation of the internal combustion engine 1.
  • the catalytic converter 12 maintains its operating temperature required for a conversion.
  • Catalyst 12 is not reached or undercut. This would lead to a deterioration in exhaust gas purification.
  • At least one additional injection after combustion that is carried out in the expansion phase.
  • This additional injection which can also be referred to as double injection, passes unburned into the exhaust pipe 8 and to the catalytic converter 12.
  • the additionally injected fuel is burned on the hot exhaust pipe 8 and / or on the still hot catalytic converter 12. This combustion generates heat which prevents the catalytic converter 12 from cooling down.
  • the number and / or the times of such double injections can be selected by the control unit 18 such that on the one hand the operating temperature of the catalytic converter 12 required for conversion is not undercut, but on the other hand that the catalytic converter 12 does not overheat.
  • control unit 18 specifies a target exhaust gas temperature, for example the required one
  • Temperature sensor 13 assigned to catalytic converter 12 is measured or modeled from other operating variables of internal combustion engine 1.
  • the determined temperature difference is shown with a
  • Weighted conversion factor which corresponds to the heating energy of the fuel. Also the
  • Efficiency can be stored in a map that by the supplied air mass and / or the speed of the internal combustion engine 1 and / or the time of injection of the injected fuel. As a result, the fuel mass is obtained that is required to the actual exhaust gas temperature by the determined
  • a minimum permissible lambda of the exhaust gas is specified so that the lambda in the exhaust gas does not become too small and therefore too rich.
  • the current total value of the fuel to be supplied is determined from this minimum lambda and the air mass currently drawn in by the internal combustion engine 1. From this current total value, the torque to be generated via the
  • Injector 9 injected fuel mass withdrawn. Other, e.g. fuel masses deducted from a tank vent. The remaining fuel mass then represents a maximum value for the fuel mass to be supplied after the combustion for heating the catalytic converter 12.
  • a lambda of the exhaust gas it is possible for a lambda of the exhaust gas to be predetermined. From this lambda - as explained above - a remaining fuel mass can then be determined, which in this case, however, does not represent a maximum value, but rather exactly the fuel mass that is supplied to the internal combustion engine 1 for heating the catalytic converter 12.
  • provision can be made to change the start of injection of the additional injection accordingly in the expansion phase. This change can be controlled and / or regulated using the temperature sensor 13 or the modeled temperature.
  • a further fuel mass can be subtracted from the total value determined, provided that the fuel mass supplied to the internal combustion engine 1 for heating the catalytic converter 12 makes a contribution to the torque of the internal combustion engine 1.
  • the idling of the internal combustion engine 1 represents an operating point with a low exhaust gas temperature
  • Control unit 18 is therefore carried out, in particular, when the internal combustion engine 1 is idling.
  • idling is preferably carried out in shift operation.
  • the idling can also be carried out in homogeneous operation.
  • the described method can be used accordingly.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Es wird eine Brennkraftmaschine (1) insbesondere für ein Kraftfahrzeug beschrieben, bei der Kraftstoff in einer ersten Betriebsart während einer Ansaugphase oder in einer zweiten Betriebsart während einer Verdichtungsphase in einen Brennraum (4) einspritzbar ist, und bei der ein Katalysator (12) mit Abgasen beaufschlagbar ist. Durch ein Steuergerät (18) wird in einem Betriebspunkt mit einer niedrigen Abgastemperatur eine Temperaturdifferenz zwischen einer Istabgastemperatur und einer Sollabgastemperatur ermittelt. Des Weiteren wird durch das Steuergerät (18) zumindest eine zusätzliche Einspritzung nach einer Verbrennung in Abhängigkeit von der Temperaturdifferenz durchgeführt.

Description

Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
Stand der Technik
Die Erfindung betrifft ein Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff in einer ersten Betriebsart während einer Ansaugphase oder in einer zweiten Betriebsart während einer Verdichtungsphase in einen Brennraum der Brennkraftmaschine eingespritzt wird, und bei dem ein Katalysator mit Abgasen beaufschlagt wird. Ebenfalls betrifft die Erfindung ein Steuergerät für eine Brennkraftmaschine insbesondere eines Kraftfahrzeugs sowie eine Brennkraftmaschine insbesondere für ein Kraftfahrzeug.
Ein derartiges Verfahren, ein derartiges Steuergerät und eine derartige Brennkraftmaschine sind beispielsweise bei einer sogenannten Benzin-Direkteinspritzung bekannt. Dort wird der Kraftstoff in einem Homogenbetrieb während der Ansaugphase oder in einem Schichtbetrieb während der Verdichtungsphase in den Brennraum der Brennkraftmaschine eingespritzt . Der Homogenbetrieb ist vorzugsweise für den Vollastbetrieb der Brennkraftmaschine vorgesehen, während der Schichtbetrieb für den Leerlauf- und Teillastbetrieb geeignet ist. Beispielsweise in Abhängigkeit von dem angeforderten Drehmoment wird bei einer derartigen direkteinspritzenden Brennkraftmaschine zwischen den genannten Betriebsarten umgeschaltet.
Für die Konvertierung von Abgasen in dem Katalysator der vorstehend beschriebenen Brennkraftmaschine ist es erforderlich, dass der Katalysator eine vorgegebene Betriebstemperatur aufweist.
Die beschriebene Brennkraftmaschine kann in einem
Betriebspunkt betrieben werden, bei dem eine niedrige Abgastemperatur vorhanden ist. Ein derartiger Betriebspunkt liegt z.B. im Leerlaufbetrieb vor, bei dem die Brennkraftmaschine auf einer niedrigen Leerlaufdrehzahl betrieben wird.
In einem derartigen Leerlaufbetrieb wird wenig Kraftstoff in die Brennkraftmaschine eingespritzt. Dies kann zur Folge haben, dass der Katalysator aufgrund der geringen, entstehenden Abgastemperatur auskühlt. Damit ist eine Konvertierung und damit Reinigung der Abgase der Brennkraftmaschine nicht mehr gewährleistet.
Aufgabe und Vorteile der Erfindung
Aufgabe der Erfindung ist es, ein Verfahren zum Betreiben einer Brennkraftmaschine zu schaffen, mit dem auch in Betriebspunkten mit einer niedrigen Abgastemperatur eine ausreichende Reinigung der Abgase gewährleistet ist.
Diese Aufgabe wird bei einem Verfahren der eingangs genannten Art erfindungsgemäß dadurch gelöst, dass in einem Betriebspunkt mit einer niedrigen Abgastemperatur eine Temperaturdifferenz zwischen einer Istabgastemperatur und einer Sollabgastemperatur ermittelt wird, und dass zumindest eine zusätzliche Einspritzung nach einer Verbrennung in Abhängigkeit von der Temperaturdifferenz durchgeführt wird. Bei einem Steuergerät und einer Brennkraftmaschine der jeweils eingangs genannten Art wird die Aufgabe entsprechend gelöst.
Durch die zusätzliche Einspritzung wird ein brennfähiges Gemisch im Bereich des Auspuffkrümmers oder des Katalysators erzeugt. Durch den noch heissen Auspuffkrümmer oder Katalysator wird dieses Gemisch entzündet und verbrannt. Die auf diese Weise erzeugte Wärme verhindert ein Auskühlen des Katalysators . Die Konvertierungsfähigkeit des Katalysators bleibt erhalten und eine Reinigung der Abgase ist somit auch in Betriebspunkten mit einer niedrigen Abgastemperatur gewährleistet.
Durch die Abhängigkeit der zusätzlichen Einspritzung von der Temperaturdifferenz zwischen der Istabgastemperatur und der Sollabgastemperatur wird gewährleistet, dass nur ein minimaler Mehrverbrauch durch das Aufheizen des Katalysators entsteht. Dies ist gleichbedeutend mit einer geringen zusätzlichen Abgas- bzw. Schadstofferzeugung durch das Katatlysatorheizen.
Bei einer vorteilhaften ersten Ausgestaltung der Erfindung wird ein minimales Lambda des Abgases festgelegt, und es wird die zumindest eine zusätzliche Einspritzung nach einer Verbrennung in Abhängigkeit von diesem minimalen Lambda begrenzt. Damit wird gewährleistet, dass das Lambda des Abgases nicht zu fett wird und damit einen zu hohen Schadstoffanteil aufweist.
Bei einer vorteilhaften zweiten Ausgestaltung der Erfindung wird ein festes Lambda des Abgases vorgegeben, es wird die zumindest eine zusätzliche Einspritzung nach einer Verbrennung in Abhängigkeit von diesem festen Lambda durchgeführt, und es wird der Einspritzbeginn der zusätzlichen Einspritzung verändert. Auf diese Weise wird ein vorgegebenes Lambda des Abgases gewährleistet. Damit der Katalysator in jedem Fall nicht überhitzt, wird gegebenenfalls der Einspritzbeginn der zusätzlichen Einspritzung verändert.
Besonders vorteilhaft ist es, wenn der Einspritzbeginn in Abhängigkeit von der Istabgastemperatur verändert wird. Damit kann eine Steuerung und/oder Regelung des Einspritzbeginns erreicht werden.
Bei einer vorteilhaften Weiterbildung der Erfindung werden die Anzahl und/oder die Zeitpunkte der zusätzlichen Einspritzungen derart gewählt, dass eine Betriebstemperatur des Katalysators nicht unterschritten wird und/oder der Katalysator nicht überhitzt. Diese Anzahl und/oder die Zeitpunkte können vorab ermittelt werden. Alternativ oder zusätzlich ist es möglich, die Anzahl und/oder die Zeitpunkte in Abhängigkeit von der aktuellen Temperatur des Katalysators zu steuern und/oder zu regeln.
Weiterhin ist es möglich, dass die Temperatur des Katalysators gemessen oder modelliert wird, und dass die zusätzlichen Einspritzungen nur dann durchgeführt werden, wenn eine Grenztemperatur unterschritten wird. Damit können Kraftstoff eingespart und Schadstoffemissionen vermieden werden.
Besonders vorteilhaft ist die Anwendung der Erfindung im Leerlauf und/oder in der zweiten Betriebsart der
Brennkraftmaschine. Der Leerlauf stellt einen Betriebspunkt dar, bei dem eine niedrige Abgastemperatur auftreten kann, und bei dem der Katalysator deshalb seine
Betriebstemperatur unterschreiten kann. Üblicherweise wird der Leerlauf bei einer direkteinspritzenden
Brennkraftmaschine im Schichtbetrieb durchgeführt. Das erfindungsgemäße Ver fahren kommt deshalb vorzugsweise im Schichtbetrieb und i Leerlauf der Brennkraftmaschine zum Einsatz .
Von besonderer Bedeutung ist die Realisierung des erfindungsgemäßen Verfahrens in der Form eines Steuerelements, das für ein Steuergerät einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs, vorgesehen ist. Dabei ist auf dem Steuerelement ein Programm abgespeichert, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor, ablauffähig und zur Ausführung des erfindungsgemäßen Verfahrens geeignet ist. In diesem Fall wird also die Erfindung durch ein auf dem Steuerelement abgespeichertes Programm realisiert, so dass dieses mit dem Programm versehene Steuerelement in gleicher Weise die Erfindung darstellt wie das Verfahren, zu dessen Ausführung das Programm geeignet ist. Als Steuerelement kann insbesondere ein elektrisches Speichermedium zur Anwendung kommen, beispielsweise ein Read-Only-Memory oder ein Flash-Memory.
Weitere Merkmale, Anwendungsmöglichkeiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Beschreibung von Ausführungsbeispielen der Erfindung, die in der Zeichnung dargestellt sind. Dabei bilden alle beschriebenen oder dargestellten Merkmale für sich oder in beliebiger Kombination den Gegenstand der Erfindung, unabhängig von ihrer Zusammenfassung in den Patentansprüchen oder deren Rückbeziehung sowie unabhängig von ihrer Formulierung bzw. Darstellung in der Beschreibung bzw. in der Zeichnung.
Ausführungsbeispiele der Erfindung
Die einzige Figur der Zeichnung zeigt eine schematische Darstellung eines Ausführungsbeispiels einer erfindungsgemäßen Brennkraftmaschine . In der Figur ist eine Brennkraftmaschine 1 eines Kraftfahrzeugs dargestellt, bei der ein Kolben 2 in einem Zylinder 3 hin- und herbewegbar ist. Der Zylinder 3 ist mit einem Brennraum 4 versehen, der unter anderem durch den Kolben 2, ein Einlassventil 5 und ein Auslassventil 6 begrenzt ist. Mit dem Einlassventil 5 ist ein Ansaugrohr 7 und mit dem Auslassventil 6 ist ein Abgasrohr 8 gekoppelt.
Im Bereich des Einlassventils 5 und des Auslassventils 6 ragen ein Einspritzventil 9 und eine Zündkerze 10 in den
Brennraum 4. Über das Einspritzventil 9 kann Kraftstoff in den Brennraum 4 eingespritzt werden. Mit der Zündkerze 10 kann der Kraftstoff in dem Brennraum 4 entzündet werden.
Die Brennkraftmaschine 1 weist mehrere derartige Zylinder 3 mit zugehörigen Brennräumen 4, Kolben 2, Einlassventilen 5 und Auslassventilen 6 auf. Ebenfalls ist jedem der Zylinder 3 ein Einspritzventil 9 und eine Zündkerze 10 zugeordnet.
In dem Ansaugrohr 7 ist eine drehbare Drosselklappe 11 untergebracht, über die dem Ansaugrohr 7 Luft zuführbar ist. Die Menge der zugeführten Luft ist abhängig von der Winkelstellung der Drosselklappe 11. In dem Abgasrohr 8 ist ein Katalysator 12 untergebracht, der der Reinigung der durch die Verbrennung des Kraftstoffs entstehenden Abgase dient .
Bei dem Katalysator 12 handelt es sich um einen Speicherkatalysator 12' , der mit einem Dreiwegekatalysator 12'' gekoppelt ist. Der Katalysator 12 ist damit unter anderem dazu vorgesehen, Stickoxide (NOx) zwischenzuspeichern und diese sowie Kohlenwasserstoffe (HC) zu konvertieren. Für die Konvertierung ist es erforderlich, dass der Katalysator 12 eine Betriebstemperatur von mindestens etwa 350 Grad Celsius aufweist. Unterhalb dieser Betriebstemperatur ist gar keine oder nur eine unvollständige Konvertierung vorhanden.
Ein Steuergerät 18 ist von Eingangssignalen 19 beaufschlagt, die mittels Sensoren gemessene Betriebsgrößen der Brennkraftmaschine 1 darstellen. Das Steuergerät 18 erzeugt Ausgangssignale 20, mit denen über Aktoren bzw. Steller das Verhalten der Brennkraftmaschine 1 beeinflusst werden kann. Unter anderem ist das Steuergerät 18 dazu vorgesehen, die Betriebsgrößen der Brennkraftmaschine 1 zu steuern und/oder zu regeln. Zu diesem Zweck ist das
Steuergerät 18 mit einem Mikroprozessor versehen, der in einem Speichermedium, insbesondere in einem Flash-Memory ein Programm abgespeichert hat, das dazu geeignet ist, die genannte Steuerung und/oder Regelung durchzuführen.
In einer ersten Betriebsart, einem sogenannten Homogenbetrieb der Brennkraftmaschine 1, wird die Drosselklappe 11 in Abhängigkeit von dem erwünschten Drehmoment teilweise geöffnet bzw. geschlossen. Der Kraftstoff wird von dem Einspritzventil 9 während einer durch den Kolben 2 hervorgerufenen Ansaugphase in den Brennraum 4 eingespritzt. Durch die gleichzeitig über die Drosselklappe 11 angesaugte Luft wird der eingespritzte Kraftstoff verwirbelt und damit in dem Brennraum 4 im Wesentlichen gleichmäßig verteilt. Danach wird das
Kraftstoff/Luft-Gemisch während der Verdichtungsphase verdichtet, um dann von der Zündkerze 10 entzündet zu werden. Durch die Ausdehnung des entzündeten Kraftstoffs wird der Kolben 2 angetrieben. Das entstehende Drehmoment hängt im Homogenbetrieb unter anderem von der Stellung der Drosselklappe 11 ab. Im Hinblick auf eine geringe Schadstoffentwicklung wird das Kraftstoff/Luft-Gemisch möglichst auf Lambda gleich Eins eingestellt.
In einer zweiten Betriebsart, einem sogenannten
Schichtbetrieb der Brennkraftmaschine 1, wird die Drosselklappe 11 weit geöffnet. Der Kraftstoff wird von dem Einspritzventil 9 während einer durch den Kolben 2 hervorgerufenen Verdichtungsphase in den Brennraum 4 eingespritzt, und zwar örtlich in die unmittelbare Umgebung der Zündkerze 10 sowie zeitlich in geeignetem Abstand vor dem Zündzeitpunkt. Dann wird mit Hilfe der Zündkerze 10 der Kraftstoff entzündet, so dass der Kolben 2 in der nunmehr folgenden Arbeitsphase durch die Ausdehnung des entzündeten Kraftstoffs angetrieben wird. Das entstehende Drehmoment hängt im Schichtbetrieb weitgehend von der eingespritzten Kraftstoffmasse ab. Im Wesentlichen ist der Schichtbetrieb für den Leerlaufbetrieb und den Teillastbetrieb der Brennkraf maschine 1 vorgesehen.
Bei einem Betrieb der Brennkraftmaschine 1, bei dem
Kraftstoff im Homogenbetrieb oder im Schichtbetrieb in den Brennräumen 4 verbrannt wird, entstehen Abgase, die den Katalysator 12 beaufschlagen. Die daraus resultierende Konvertierung der Abgase stellt eine exotherme Reaktion dar, die zu einer Erwärmung des Katalysators 12 führt.
Durch diese Erwärmung behält der Katalysator 12 seine für eine Konvertierung erforderliche Betriebstemperatur bei .
Bei der Steuerung und/oder Regelung der Brennkraftmaschine 1 durch das Steuergerät 18 sind im Homogenbetrieb und insbesondere im Schichtbetrieb Betriebspunkte vorhanden, in denen von der Brennkraftmaschine 1 nur eine niedrige Abgastemperatur erzeugt wird. Diese niedrige Abgastemperatur kann zur Folge haben, dass die für die Konvertierung erforderliche Betriebstemperatur des
Katalysators 12 nicht erreicht oder unterschritten wird. Dies würde zu einer Verschlechterung der Abgasreinigung führen.
Zur Vermeidung einer derartigen Auskühlung des Katalysators 12 wird im Schichtbetrieb der Brennkraftmaschine in einem Betriebspunkt mit einer niedrigen Abgastemperatur zumindest eine zusätzliche Einspritzung nach einer Verbrennung, also in der Expansionsphase durchgeführt. Diese zusätzliche Einspritzung, die auch als Doppeleinspritzung bezeichnet werden kann, gelangt unverbrannt in das Abgasrohr 8 und zu dem Katalysator 12. Dort wird der zusätzlich eingespritzte Kraftstoff an dem heissen Abgasrohr 8 und/oder an dem noch heissen Katalysator 12 verbrannt. Durch diese Verbrennung wird Wärme erzeugt, die eine Auskühlung des Katalysators 12 verhindert.
Die Anzahl und/oder die Zeitpunkte derartiger Doppeleinspritzungen können von dem Steuergerät 18 derart gewählt werden, dass einerseits die für eine Konvertierung erforderliche Betriebstemperatur des Katalysators 12 nicht unterschritten wird, dass aber andererseits keine Überhitzung des Katalysators 12 stattfindet.
Hierzu wird von dem Steuergerät 18 eine Sollabgastemperatur vorgegeben, die beispielsweise der erforderlichen
Betriebstemperatur des Katalysators 12 oder einer etwas größeren Grenztemperatur von beispielsweise 400 Grad Celsius entsprechen kann, und die in einem Kennfeld abgelegt sein kann. Diese Sollabgastemperatur wird mit der Istabgastemperatur verglichen, die von einem dem
Katalysator 12 zugeordneten Temperatursensor 13 gemessen oder aus sonstigen Betriebsgrößen der Brennkraftmaschine 1 modelliert wird.
Die ermittelte Temperaturdifferenz wird mit einem
Konvertierungsfaktor gewichtet, der der Heizenergie des Kraftstoffs entspricht. Ebenfalls wird die
Temperaturdifferenz mit einem Energieumsetzungswirkungsgrad gewichtet, mit dem die Energieumsetzung in der Brennkraftmaschine 1 berücksichtigt wird. Dieser
Wirkungsgrad kann in einem Kennfeld abgelegt sein, das von der zugeführten Luftmasse und/oder von der Drehzahl der Brennkraftmaschine 1 und/oder von dem EinspritzZeitpunkt des eingespritzten Kraftstoffs abhängig ist. Als Ergebnis wird diejenige Kraftstoffmasse erhalten, die erforderlich ist, um die Istabgastemperatur um die ermittelte
Temperaturdifferenz auf die Sollabgastemperatur zu erhöhen, um also den Katalysator 12 aufzuheizen.
Damit das Lambda im Abgas nicht zu klein und damit zu fett wird, wird ein minimal zulässiges Lambda des Abgases vorgegeben. Aus diesem minimalen Lambda und der von der Brennkraftmaschine 1 aktuell angesaugten Luftmasse wird der jeweils aktuelle Gesamtwert der zuzuführenden Kraftstoff asse ermittelt. Von diesem aktuellen Gesamtwert wird die zur Erzeugung des Drehmoments über das
Einspritzventil 9 eingespritzte Kraftstoffmasse abgezogen. Ebenfalls werden gegebenenfalls weitere, z.B. von einer Tankentlüftung herrührende Kraftstoffmassen abgezogen. Die verbleibende Kraftstoffmasse stellt dann einen Maximalwert für die nach der Verbrennung zum Aufheizen des Katalysators 12 zuzuführende Kraftstoffmasse dar.
Alternativ ist es möglich, dass ein Lambda des Abgases fest vorgegeben wird. Aus diesem Lambda kann dann - wie vorstehend erläutert - eine verbleibende Kraftstoffmasse ermittelt werden, die jedoch in diesem Fall keinen Maximalwert, sondern genau diejenige Kraftstoffmasse darstellt, die zum Aufheizen des Katalysators 12 der Brennkraftmaschine 1 zugeführt wird. Zur Einhaltung der erwünschten Istabgastemperatur, insbesondere zur Vermeidung einer Überhitzung des Katalysators 12 kann vorgesehen sein, den Einspritzbeginn der zusätzlichen Einspritzung in der Expansionsphase entsprechend zu verändern. Diese Veränderung kann mit Hilfe des Temperatursensors 13 oder der modellierten Temperatur gesteuert und/oder geregelt werden . Bei beiden Vorgehensweisen, also bei beschränktem oder bei festem Lambda, kann eine weitere Kraftstoffmasse von dem ermittelten Gesamtwert abgezogen werden, sofern die der Brennkraftmaschine 1 für das Aufheizen des Katalysators 12 zugeführte Kraftstoffmasse einen Beitrag zum Drehmoment der Brennkraftmaschine 1 leistet.
Der Leerlauf der Brennkraftmaschine 1 stellt einen Betriebspunkt mit einer niedrigen Abgastemperatur dar. Die vorstehend beschriebenen Verfahren werden von dem
Steuergerät 18 deshalb insbesondere im Leerlauf der Brennkraftmaschine 1 durchgeführt. Der Leerlauf wird dabei bei der beschriebenen direkteinspritzenden Brennkraftmaschine vorzugsweise im Schichtbetrieb ausgeführt.
Gegebenenfalls, beispielsweise während des Warmlaufens der Brennkraftmaschine, kann der Leerlauf aber auch im Homogenbetrieb ausgeführt werden. In diesem Fall kann das beschriebene Verfahren entsprechend angewendet werden.

Claims

Ansprüche
1. Verfahren zum Betreiben einer Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, bei dem Kraftstoff in einer ersten Betriebsart während einer Ansaugphase oder in einer zweiten Betriebsart während einer Verdichtungsphase in einen Brennraum (4) der Brennkraftmaschine (1) eingespritzt wird, und bei dem ein Katalysator (12) mit
Abgasen beaufschlagt wird, dadurch gekennzeichnet, dass in einem Betriebspunkt mit einer niedrigen Abgastemperatur eine Temperaturdifferenz zwischen einer Istabgastemperatur und einer Sollabgastemperatur ermittelt wird, und dass zumindest eine zusätzliche Einspritzung nach einer
Verbrennung in Abhängigkeit von der Temperaturdifferenz durchgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein minimales Lambda des Abgases festgelegt wird, und dass die zumindest eine zusätzliche Einspritzung nach einer Verbrennung in Abhängigkeit von diesem minimalen Lambda begrenzt wird.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ein festes Lambda des Abgases vorgegeben wird, dass die zumindest eine zusätzliche Einspritzung nach einer Verbrennung in Abhängigkeit von diesem festen Lambda durchgeführt wird, und dass der Einspritzbeginn der zusätzlichen Einspritzung verändert wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der Einspritzbeginn In Abhängigkeit von der Istabgastemperatur verändert wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Anzahl und/oder die Zeitpunkte der zusätzlichen Einspritzungen derart gewählt werden, dass eine Betriebstemperatur des Katalysators (12) nicht unterschritten wird und/oder der Katalysator (12) nicht überhitzt.
6. Verfahren nach einem der Ansprüche 1 bis 5, gekennzeichnet durch die Anwendung im Leerlauf der Brennkraftmaschine (1) oder in einem Betriebspunkt, in dem der Katalysator seine minimale Betriebstemperatur unterschreiten könnte .
7. Verfahren nach einem der Ansprüche 1 bis 6, gekennzeichnet durch die Anwendung in der zweiten Betriebsart der Brennkraftmaschine (1) .
8. Steuerelelement, insbesondere Flash-Memory, für ein Steuergerät (18) einer Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, auf dem ein Programm abgespeichert ist, das auf einem Rechengerät, insbesondere auf einem Mikroprozessor, ablauffähig und zur Ausführung eines Verfahrens nach einem der Ansprüche 1 bis 7 geeignet ist.
9. Steuergerät (18) für eine Brennkraftmaschine (1) insbesondere eines Kraftfahrzeugs, wobei bei der
Brennkraftmaschine (1) Kraftstoff in einer ersten Betriebsart während einer Ansaugphase oder in einer zweiten Betriebsart während einer Verdichtungsphase in einen Brennraum (4) einspritzbar ist und ein Katalysator (12) mit Abgasen beaufschlagbar ist, dadurch gekennzeichnet, dass durch das Steuergerät (18) in einem Betriebspunkt mit einer ermittelbar ist, und dass zumindest eine zusätzliche Einspritzung nach einer Verbrennung in Abhängigkeit von der Temperaturdifferenz durchführbar ist.
10. Brennkraftmaschine (1) insbesondere für ein
Kraftf hrzeug, bei der Kraftstoff in einer ersten Betriebsart während einer Ansaugphase oder in einer zweiten Betriebsart während einer Verdichtungsphase in einen Brennraum (4) einspritzbar ist, bei der ein Katalysator (12) mit Abgasen beaufschlagbar ist, und mit einem
Steuergerät (18), dadurch gekennzeichnet, dass durch das Steuergerät (18) in einem Betriebspunkt mit einer niedrigen Abgastemperatur eine Temperaturdifferenz zwischen einer Istabgastemperatur und einer Sollabgastemperatur ermittelbar ist, und dass zumindest eine zusätzliche
Einspritzung nach einer Verbrennung in Abhängigkeit von der Temperaturdifferenz durchführbar ist.
PCT/DE2001/000303 2000-02-15 2001-01-26 Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs WO2001061158A2 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US10/204,008 US6813881B2 (en) 2000-02-15 2001-01-26 Method of operating an internal combustion engine
EP01916882A EP1257735B1 (de) 2000-02-15 2001-01-26 Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
KR1020027010273A KR20020076295A (ko) 2000-02-15 2001-01-26 자동차 내연 기관 작동 방법
DE10190514T DE10190514D2 (de) 2000-02-15 2001-01-26 Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE50106888T DE50106888D1 (de) 2000-02-15 2001-01-26 Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
AU2001244067A AU2001244067A1 (en) 2000-02-15 2001-01-26 Method for operating an internal combustion engine, especially in a motor vehicle
BR0108352-0A BR0108352A (pt) 2000-02-15 2001-01-26 Processo para a operação de uma máquina de combustão interna, especialmente de um veìculo
JP2001559984A JP2003522892A (ja) 2000-02-15 2001-01-26 特に自動車の内燃機関を運転するための方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10006609.7 2000-02-15
DE10006609A DE10006609A1 (de) 2000-02-15 2000-02-15 Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs

Publications (2)

Publication Number Publication Date
WO2001061158A2 true WO2001061158A2 (de) 2001-08-23
WO2001061158A3 WO2001061158A3 (de) 2002-02-14

Family

ID=7630922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000303 WO2001061158A2 (de) 2000-02-15 2001-01-26 Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs

Country Status (9)

Country Link
US (1) US6813881B2 (de)
EP (1) EP1257735B1 (de)
JP (1) JP2003522892A (de)
KR (1) KR20020076295A (de)
AU (1) AU2001244067A1 (de)
BR (1) BR0108352A (de)
DE (3) DE10006609A1 (de)
RU (1) RU2002123333A (de)
WO (1) WO2001061158A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831208A1 (fr) * 2001-10-19 2003-04-25 Toyota Motor Co Ltd Dispositif de maitrise pour les emissions d'echappement pour un moteur a combustion interne
WO2010124759A1 (de) * 2009-04-29 2010-11-04 Daimler Ag Betriebsverfahren für eine brennkraftmaschine

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10163022B4 (de) 2001-12-19 2008-12-04 Robert Bosch Gmbh Verfahren zum Betreiben einer Brennkraftmaschine für Kraftfahrzeuge. Computerprogramm, Steuer- und/oder Regelgerät sowie Brennkraftmaschine
DE10253932B4 (de) * 2002-11-19 2013-04-04 Continental Automotive Gmbh Verfahren zur Ermittlung der Einspritzmenge einer Brennkraftmaschine
DE102007042818A1 (de) 2007-09-07 2009-03-12 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum Aufheizen einer mit Kohlenwasserstoffen beaufschlagten Katalysatoreinrichtung
DE102009000076A1 (de) 2009-01-08 2010-07-15 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für einen Reagenzmitteltropfeneintrag in den Abgaskanal einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102009028953A1 (de) 2009-08-27 2011-03-03 Robert Bosch Gmbh Verfahren zum Ermitteln eines Maßes für das Auftreten von Reagenzmitteltropfen im Abgasbereich einer Brennkraftmaschine und Vorrichtung zur Durchführung des Verfahrens
DE102019113735A1 (de) * 2019-05-23 2020-11-26 Volkswagen Aktiengesellschaft Verfahren zum Betreiben einer Brennkraftmaschine mit variabler und temperaturgeregelter Auslassventilbetätigung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642705A (en) * 1994-09-29 1997-07-01 Fuji Jukogyo Kabushiki Kaisha Control system and method for direct fuel injection engine
US5910096A (en) * 1997-12-22 1999-06-08 Ford Global Technologies, Inc. Temperature control system for emission device coupled to direct injection engines

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19547646A1 (de) * 1995-12-20 1997-06-26 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
JP3750195B2 (ja) * 1996-05-30 2006-03-01 株式会社デンソー 内燃機関の窒素酸化物浄化装置
CN1077212C (zh) * 1996-07-02 2002-01-02 三菱自动车工业株式会社 缸内喷射内燃机用废气加热系统
JP3052856B2 (ja) * 1996-10-24 2000-06-19 三菱自動車工業株式会社 排気昇温装置
DE19644407C2 (de) * 1996-10-25 1999-09-23 Daimler Chrysler Ag Verfahren zur Reduzierung der Emissionen einer Brennkraftmaschine
DE19746519A1 (de) * 1997-10-22 1999-04-29 Bosch Gmbh Robert Verfahren zur Einbringung von Kraftstoff in den Brennraum einer direkt einspritzenden Viertakt-Otto-Brennkraftmaschine
DE19823513C1 (de) * 1998-05-26 1999-07-29 Siemens Ag Verfahren zum Aufheizen eines Katalysators
DE19824915C1 (de) * 1998-06-04 1999-02-18 Daimler Benz Ag Verfahren zum Wechseln der Betriebsart einer direkt-einspritzenden Otto-Brennkraftmaschine
JP3584738B2 (ja) * 1998-06-29 2004-11-04 日産自動車株式会社 筒内直噴式火花点火エンジン

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5642705A (en) * 1994-09-29 1997-07-01 Fuji Jukogyo Kabushiki Kaisha Control system and method for direct fuel injection engine
US5910096A (en) * 1997-12-22 1999-06-08 Ford Global Technologies, Inc. Temperature control system for emission device coupled to direct injection engines

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANDO H ET AL: "MITSUBISHI GDI ENGINE STRATEGIES TO MEET THE EUROPEAN REQUIREMENTS" AVL TAGUNG MOTOR UND UMWELT - CONFERENCE ENGINE AND ENVIRONMENT,XX,XX, 1997, Seiten 55,57-70, XP000669906 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2831208A1 (fr) * 2001-10-19 2003-04-25 Toyota Motor Co Ltd Dispositif de maitrise pour les emissions d'echappement pour un moteur a combustion interne
WO2010124759A1 (de) * 2009-04-29 2010-11-04 Daimler Ag Betriebsverfahren für eine brennkraftmaschine

Also Published As

Publication number Publication date
US6813881B2 (en) 2004-11-09
US20030115853A1 (en) 2003-06-26
WO2001061158A3 (de) 2002-02-14
AU2001244067A1 (en) 2001-08-27
BR0108352A (pt) 2003-03-11
DE50106888D1 (de) 2005-09-01
EP1257735A2 (de) 2002-11-20
JP2003522892A (ja) 2003-07-29
KR20020076295A (ko) 2002-10-09
DE10190514D2 (de) 2003-04-03
DE10006609A1 (de) 2001-08-30
EP1257735B1 (de) 2005-07-27
RU2002123333A (ru) 2004-03-10

Similar Documents

Publication Publication Date Title
DE19936201A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1381763B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE10043375A1 (de) Verfahren zur Aufheizung eines Katalysators bei Verbrennungsmotoren mit Benzindirekteinspritzung
DE19850584A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1322850B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1257735B1 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE19928825C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine, Steuergerät für eine Brennkraftmaschine sowie Brennkraftmaschine insbesondere für ein Kraftfahrzeug
DE10043366A1 (de) Verfahren zur Aufheizung von Katalysatoren im Abgas von Verbrennungsmotoren
EP1144828B1 (de) Verfahren zum betreiben einer brennkraftmaschine
EP1165953A1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE19928824C2 (de) Verfahren zum Betreiben einer Brennkraftmaschine
WO2001050002A2 (de) Verfahren zum betrieben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
EP1247015B1 (de) Verfahren zum warmlaufen einer brennkraftmaschine
DE19828085A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19958465A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1081363B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
WO2001002710A1 (de) Verfahren zum betreiben einer brennkraftmaschine
WO2001050005A2 (de) Verfahren zum betreiben einer brennkraftmaschine insbesondere eines kraftfahrzeugs
DE19963929A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE19954463A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19908726A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
WO2005113967A1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE10137134A1 (de) Verfahren zum Betreiben einer Brennkraftmaschime insbesondere eines Kraftfahrzeugs
DE10052344A1 (de) Verfahren zum Starten einer Brennkraftmaschine
DE102004024568A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2001916882

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027010273

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 559984

Kind code of ref document: A

Format of ref document f/p: F

ENP Entry into the national phase

Ref country code: RU

Ref document number: 2002 2002123333

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1020027010273

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10204008

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001916882

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001916882

Country of ref document: EP