WO2001061083A1 - Modified cross-section fiber and production method therefor - Google Patents

Modified cross-section fiber and production method therefor Download PDF

Info

Publication number
WO2001061083A1
WO2001061083A1 PCT/JP2001/001195 JP0101195W WO0161083A1 WO 2001061083 A1 WO2001061083 A1 WO 2001061083A1 JP 0101195 W JP0101195 W JP 0101195W WO 0161083 A1 WO0161083 A1 WO 0161083A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polymer
cross
cloth
section
Prior art date
Application number
PCT/JP2001/001195
Other languages
French (fr)
Japanese (ja)
Inventor
Akira Ebihara
Teruyoshi Kawada
Sunao Takahira
Mamoru Harada
Masao Morioka
Toshiro Ono
Original Assignee
Kanebo, Limited
Kanebo Gohsen, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo, Limited, Kanebo Gohsen, Limited filed Critical Kanebo, Limited
Priority to AU2001232349A priority Critical patent/AU2001232349A1/en
Publication of WO2001061083A1 publication Critical patent/WO2001061083A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F8/00Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
    • D01F8/04Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/253Formation of filaments, threads, or the like with a non-circular cross section; Spinnerette packs therefor
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing

Definitions

  • the present invention relates to a modified cross-section fiber having excellent physical effects such as rubbing for liquid crystal and cleaning for a hard disk, and a method for producing the same. More specifically, the present invention relates to a modified cross-section fiber having a petal-like protrusion in cross-section of a fiber and having at least two edge angles, and a method for producing the same. Background art
  • fibers of various cross-sections have been used in various shapes for clothing and the like, and have been used for polishing because they have a better physical action than round cross-sections, and in recent years also for rubbing cloths.
  • rubbing is an alignment treatment method in which an alignment film covering a transparent electrode on a glass substrate is aligned in a certain direction using a member such as a polishing cloth in a liquid crystal display element manufacturing process.
  • a rubbing cloth a cloth obtained by raising the woven fabric surface of synthetic fibers of nylon or polyester, chemical fibers such as rayon, or natural fibers such as cotton has been generally used.
  • the conventional rubbing cloth is made by raising a large number of fibers, and the alignment film is rubbed at the fiber tip or at the fiber side close to the tip. The fiber diameter was too large to obtain a fine orientation.
  • JP-A-62-269932, JP-A-02-198420 and the like attempt to obtain fine orientation using ultrafine fibers.
  • JP-A-56-97319, JP-A-6-469692, and JP-A-2772837 disclose attempts to obtain fine orientation using not-fine fibers but irregular-shaped fibers.
  • irregular cross-section fibers Japanese Patent Publication No. 39-29636 and Japanese Patent Publication No. 60-24845 disclose a fiber having a sharp edge by division, and Japanese Patent Application Laid-Open No. 279897 discloses a tooth profile. A cross-section fiber is disclosed.
  • hard disk cleaning that is, cleaning treatment for removing fine dust and impurities adhering to the disk surface using a cloth and a liquid in the hard disk manufacturing process
  • natural fibers such as cotton, nylon or polyester.
  • Fabrics, liquids, etc., of non-synthetic cross-section ultrafine synthetic fibers, such as fabrics, nonwoven fabrics, flocky, etc. are generally used.
  • ultrafine fibers are often used in response to fine dust .
  • the fiber having a sharp edge as disclosed in Japanese Patent Publication No. 39-29636 and Japanese Patent Publication No. 60-24845 is not a multilobal fiber but a triangular shape of the divided fiber. Therefore, there is little contact between the edge of the portion that comes into contact with the material to be rubbed and the alignment film, and a precise rubbing effect cannot be expected.
  • Japanese Patent Application Laid-Open No. 279897 discloses a multi-lobed filament from which the easily soluble component has been removed. No rubbing effect requiring physical action cannot be expected because there is no clear disclosure.
  • the present invention solves the above-mentioned problems by providing excellent effects of ultrafine fibers and physical effects due to irregular cross-sections.
  • a rubbing cloth that performs fine, dense, and homogeneous orientation, and fine dust that is firmly attached
  • the present invention requires the following configuration.
  • the present invention provides a fiber cross-sectional shape comprising a central portion and a shape obtained by combining 5 to 30 petal-like projections which are continuous with the central portion and extend radially from the center toward the outer periphery of the fiber.
  • the length from the base to the tip of the petal is 3 to 45% of the maximum outer diameter of the fiber, and each petal has at least two edges of 45 to 115 degree angle. It is a cross section fiber.
  • a rubbing cloth which is a cloth used for rubbing for liquid crystal alignment, wherein the rubbing cloth uses the irregular cross-section fiber in a portion in contact with a rubbing material.
  • it is a cloth used for cleaning a hard disk, and is a cleaning cloth using the irregular cross-section fiber in a portion in contact with a disk material.
  • the composite fiber is composed of at least two polymers, and one of the two polymers is a polymer having higher solubility than the other polymer, and the cross-sectional shape of the composite fiber is The polymer with low solubility is located almost at the center, and the polymer with high solubility forms 5 to 30 independent segments exposed on the outer periphery of the conjugate fiber.
  • the bonding ratio between a polymer with a low solubility and a polymer with a high solubility is It is a composite fiber characterized by a ratio of 1: 2 to 9: 1.
  • the modified cross-section fiber according to the present invention can be produced by subjecting the conjugate fiber to conjugate spinning, and then dissolving and removing a polymer having high solubility.
  • FIG. 1 is a plan view showing an example of a cross-sectional shape of a fiber constituting a rubbing cloth of the present invention.
  • FIG. 2 is a view showing an example of a petal-like projection in a cross-sectional shape of a fiber constituting a rubbing cloth of the present invention.
  • FIG. 3 is a view showing an example of a petal-like projection in a cross-sectional shape of a fiber constituting the rubbing cloth of the present invention.
  • FIG. 4 is an example of a cross-sectional view of a conjugate fiber used in the production of the present invention.
  • FIG. 5 is an example of a cross-sectional view of a conjugate fiber outside the present invention.
  • FIG. 6 is a schematic view of a raised cloth for a liquid crystal rubbing cloth using the modified cross-section fiber of the present invention.
  • FIG. 7 is an example of a schematic diagram of a die for spinning the conjugate fiber used in the present invention.
  • FIG. 8 is an example of a schematic diagram of a die for spinning the conjugate fiber used in the present invention, and is a cross section taken along line XX ′ of FIG.
  • FIG. 9 is an example of an electron micrograph of a cross section of a fiber constituting the rubbing cloth of the present invention, showing a cross-sectional shape of the fiber.
  • A is the modified cross-section fiber of the present invention.
  • L1 is the maximum outer diameter
  • L2 is the length from the base to the tip of the petal.
  • E is the edge angle of the petals of the present invention.
  • F is the edge angle of the petal of the present invention.
  • is a pile.
  • P is a base cloth.
  • reference numeral 1 denotes an inner core orifice, which is a polymer (b) flow path.
  • 2 is a polymer (a) flow path
  • 3 is a polymer (b) flow path
  • 4 is a conducting hole
  • 5 is an orifice.
  • A is a polymer having high solubility
  • b is a polymer having low solubility.
  • the fiber used in the present invention is a synthetic fiber, and polyester, polyamide, polyolefin and the like are useful.
  • polyester include polyethylene terephthalate, polybutyrene terephthalate, polyethylene naphthalate, polyethylene oxybenzoate, poly 1,4-dimethylcyclohexane terephthalate, polypivalolactone, and copolyesters containing these as main components.
  • polyamide include nylon 6, nylon 66, nylon 1.1, nylon 12, nylon 61, and copolyamides containing these as main components.
  • polyolefin for example, polyethylene, polypropylene and the like are useful. When used for rubbing, polyester, nylon 11 and nylon 12 are preferred. When used for a cleaning cloth, polyester and nylon 6 are preferred.
  • FIG. 1 shows the cross-sectional shape of the modified cross-section fiber of the present invention
  • FIGS. 2 and 3 show an example of the tip of a petal-like projection.
  • the cross-sectional shape of the irregular cross-section fiber in the present invention is continuous with the center portion (A) of the fiber and the center portion (A) of the fiber, that is, a plurality of petal-like projections (B) connected to the center portion (A).
  • Each petal-like projection (B) has a shape extending radially from the center (A) toward the tip of the fiber.
  • each protrusion (B) has at least two edges. That is, each protrusion
  • the starting point of the protrusion which is the overlapping part of the protrusion (B) and the center of the fiber (A) If the two parts are (e) and (f), respectively, and the end points of the outer periphery extending toward the outer periphery of the fiber are (e,) and (f '), respectively, then (e) (e,) and (f)
  • the line connecting (f ') and (e') (f ') on the outer periphery of the protrusion is a straight line or a curve close to a straight line, and (e) (e') (f ') and ( ⁇ ) (f ') (e') is at least two edges.
  • any of (f ') is a curve
  • angle (E) The angle between the tangent s at (e ') to (e') and the line connecting (e ') and (f') to the inside of the projection of the edge is defined as angle (E). . If the line (e ') (f') is a curve, the tangent t at (e ') to the curve (e') (f ') and the line connecting the line (e) (e') Angle (E) is the angle of the edge projection toward the inside. Line (e) (e ') and line
  • the tangent s at (e ') to the curve (e) (e') and the curve (e ') (f') Let the angle (E) be the inward angle of the protrusion of the edge with the tangent t at (e '). Similarly, if the angle (F) is a curve, its tangent is used for calculating the angle.
  • (G) may be V-shaped or U-shaped.
  • the central portion of the cross-sectional shape may have a hollow portion.
  • the length (L2) from the base to the tip of each petal-like projection on the fiber section of the rubbing material to be raised or on the fiber cross section of the fabric of the cleaning cloth is 3 to 45 times the maximum fiber outer diameter (L1). %, And by specifying the ratio of (L 2) and (L 1) in this way, it is possible to increase the rubbing effect without breaking down the hair, and to suppress the deviation of the fibers in the woven fabric and provide a strong It can demonstrate cleaning power.
  • the length (L 2) from the center to the tip of each petal on the fiber cross section means the length between (e) and (e ') or the length between (f) and (f') I do.
  • the starting point of the projection which is the overlapping portion of the projection (B) and the center (A) of the fiber, is used as the base, and the curve connecting the starting points is used as the center.
  • the number of the petals of the present invention needs to be 5 to 30, preferably 5 to 10. If the number of petals is less than 5, the number of edges is small, and precise orientation cannot be obtained even when rubbing is performed. In addition, the capture of fine dust is reduced, and a sufficient cleaning effect cannot be obtained. If the number is more than 30, the interval between the projections becomes narrow, and a precise orientation cannot be obtained even when rubbing is performed. Also, the petals become too small, and the petals are crushed by friction during cleaning.
  • the maximum outer diameter (L 1) of the modified cross-section fiber fiber of the present invention is preferably 7 to 30 m when used for a rubbing cloth.
  • the maximum outer diameter is in this range, an optimum pile density for rubbing is obtained, hair is hardly broken down, and a dense orientation is obtained at the time of rubbing. That is, the length is preferably 7 m or more from the viewpoint that hair is hard to fall, and is preferably 30 m or less from the viewpoint that an optimum pile density is obtained and a dense orientation is obtained.
  • the fiber of the present invention is used for a rubbing cloth, it is preferably used, for example, for a pile portion of a pile-like structure as shown in FIG.
  • the pile's filament density is preferably 20,000 to 50,000 filaments / cm 2
  • the pile length is preferably l to 3 mm.
  • the angle between the base fabric and the pile is not particularly limited, but is preferably 60 to 120 degrees.
  • the type of the base fabric to be used is not a problem as long as it is an ordinary woven or knitted fabric, but a woven fabric is preferable in view of dimensional stability.
  • a conductive fiber in which a conductive component is kneaded into a pile or a base cloth to make a base cloth with excellent antistatic properties, or combine the fiber used for the base cloth with polyester and a low-melting polyester to heat-treat the low-melting polyester. It is also good to dissolve and glue the base of the pile to prevent the hair from falling down.
  • the fiber of the present invention When used for a cleaning cloth, it is preferably used for the weft portion of a satin woven fabric.
  • the weft and filament density is between 100 and 100 Lament Z cm is preferred.
  • the maximum fiber outer diameter (L 1) is preferably 7 to 30 // m.
  • the maximum outer diameter is in this range, an optimum weft density for a cleaning cloth can be obtained, a sufficient grinding effect can be obtained, and fine dust can be efficiently cleaned. That is, 7 m or more is preferable from the viewpoint of obtaining a strong grinding effect, and 30 m or less is preferable from the viewpoint of increasing the weft density and increasing the efficiency of cleaning fine dust.
  • a composite fiber comprising a plurality of polymers having different solubilities in a solvent is used, and at least two edges are obtained by dissolving a polymer having a solubility in a dog.
  • a fiber having an irregular cross section is produced.
  • the conjugate fibers used in the present invention must have different solubility in a solvent.
  • a description will be given using a composite fiber composed of two types of fiber-forming polymers, wherein one of the two types of polymers is composed of a polymer that is easily dissolved in water or an aqueous solution of Alcali.
  • polymer having low solubility examples include polyester, polyamide, and polyolefin. When used for rubbing, polyester, nylon 11 and nylon 12 are preferred. When used for a cleaning cloth, polyester and nylon 6 are preferred.
  • a copolymer polyester having a high hydrolysis rate for example, a polyethylene terephthalate copolymerized with dicarbonic acid having a polyalkyleneglycol / metal sulfonate group is useful.
  • other polymers Water-soluble (including hot water-soluble) polymers are also preferred because of their versatility.
  • Polyoxyethylene, polyvinyl alcohol, water-soluble polyamide and the like are useful as the water-soluble polymer.
  • Polyoxyethylene having a relatively large molecular weight for example, 100,000 or more, particularly preferably 500,000 or more is often preferable, and polypinyl alcohol having a melting point of about 150 to 180 ° C. is preferable. .
  • water-soluble polyamide examples include a polyamide comprising a carboxylic acid and a diamine in which one or both ends of a piperazine ring are alkylaminated, and a polyamide obtained by copolymerizing a lactam and the like.
  • a polyamide composed of N, N'bisaminopropylpyrazine and adipic acid is preferable because it is soluble in hot water.
  • the bonding ratio between the polymer having low solubility and the polymer having high solubility is 1: 2 to 9: 1. If the ratio of the polymer having higher solubility than 1: 2 is large, the center of the polymer becomes small and the hair falls down, and the rubbing effect is not sufficient. If the ratio of the polymer is large, a rubbing effect cannot be sufficiently obtained because a necessary and sufficient depth and a dense alignment groove are not formed to align the liquid crystal in rubbing.
  • the viscosity ratio during melting of the polymer having high solubility and the polymer having low solubility at the time of melt spinning is preferably 0.5 to 2.0. Preferably it is 0.7 to 1.8.
  • Such a viscosity ratio can be measured by the ratio of the reciprocal of the MI value of a polymer having high solubility and the reciprocal of the MI value of a polymer having low solubility measured at a temperature equal to the melt spinning temperature. The measurement of such MI value is defined by the following method.
  • the Ml value is defined by the following equation.
  • the polymer having low solubility after removing the soluble dog polymer can be provided with an edge of 45 to 115 degree angle, If it is less than 5, the edge angle will exceed 115 degrees, and if it exceeds 2.0, the edge angle may be less than 45 degrees.
  • the conjugate fiber of the present invention uses a combination of the above-mentioned polymers and has a specific shape described below.
  • FIG. 4 shows an example of a cross section of the composite fiber of the present invention.
  • H indicates a polymer having low solubility
  • I indicates a polymer having high solubility
  • the polymer having low solubility is a fiber-forming polymer
  • the polymer having high solubility is a polymer which is a fiber-forming polymer and is easily dissolved in water or an aqueous alkaline solution.
  • the polymer with low resolvability is continuous to the center of the single yarn, that is, a core segment connected to the center and having a petal-like projection at the tip.
  • the polymer with high solubility is composed of segments that are exposed from the outer periphery of the fiber to the inside of the fiber, and the number of segments is 5 to 30 and each segment exists independently of each other. And discontinuous.
  • the core segment, a polymer having low solubility separates each segment of the polymer having high solubility.
  • the maximum outer diameter of the conjugate fiber of the present invention is 7 to 30 when used for a rubbing cloth. m is preferred. When used for a cleaning cloth for a hard disk or the like, the diameter is preferably 30 to 30 m.
  • conjugate fiber of the present invention Weaving or knitting is performed using the conjugate fiber of the present invention, and substantially all of the soluble dog polymer is dissolved and removed to obtain the above-described rubbing cloth and cleaning cloth of the present invention. Further, the conjugate fiber of the present invention can be used as a stable, processed into a non-woven fabric and dissolved and removed easily soluble components.
  • the atypical cross-section fiber of the present invention since the atypical cross-section fiber of the present invention has a plurality of petal-like projections and each petal-like projection has two or more corner edges, the portion of the fiber that comes into contact with the alignment film is the petal projection. Finer, denser and more uniform alignment can be obtained because the film is thinner by the number of layers and the edge surface has a high alignment regulating force. Further, by specifying the ratio of the length from the base to the tip of each petal-shaped protrusion of the fiber and the maximum outer diameter of the fiber, the stability of the single fiber itself is obtained, and the brushed fabric is uniform without falling down. And a fine and dense orientation action can be produced.
  • the fiber of the present invention when used for a cleaning cloth, since the atypical cross-sectional fiber of the present invention has a plurality of petals and each petal has two or more corner edges, Petals with a thickness equivalent to ultrafine fibers and with two or more sharp edges are not only fixed to the core of the filament, but also adjacent to each other.
  • the filaments in the fabric structure and thus the petal-like protrusions By preventing the filaments in the fabric structure and thus the petal-like protrusions from shifting, the grinding effect of the sharp wedges of the petal-like protrusions is effectively exerted, and sufficient cleaning is carried out even for fine dust adhered firmly. It is effective.
  • Polyethylene terephthalate (hereafter referred to as polymer P1) with an intrinsic viscosity of 0.64 measured with a mixed solution of phenol and tetrachlorene 6: 4 (weight ratio) at 20 ° C, an intrinsic viscosity of 0.688, and softening
  • polymer P2 polyethylene glycol copolymer having a temperature of 244.5 ° C and an alkali-soluble property was prepared.
  • the polymer P2 was dried to a moisture content of 54 ppm.
  • the MI values of the dried polymers PI and P2 at 290 ° C were 2.55 and 1.44, respectively.
  • Fig. 4 shows a cross-sectional view.
  • Example 2 Except that the capacity ratio was changed to PlZPZ-l0Z1, the same method as in Example 1 was used. A multifilament of a composite fiber of 1.1 cite xZ50 f was obtained. Let E be the sample name.
  • a multifilament multifilament of 111.1 dtex x50f was obtained in the same manner as in Example 1, except that the moisture content of the polymer P2 after drying was 194 ppm. Let F be the sample name.
  • Example 4 Example 4)-Nylon 6 (hereinafter referred to as polymer P3) having a relative viscosity of 2.51 and polymer P2 were prepared.
  • the polymer P2 was dried to a moisture content of 67 ppm.
  • polymer P 3 is melted at 270 ° C and polymer P 2 at 273t: using separate screw extruders, and then pumped.
  • 3? 2 371 (volume ratio), extruded into a die pack as shown in Fig. 7 and Fig.
  • Polyethylene terephthalate having an intrinsic viscosity of 0.64 as measured with a mixed solution of phenol and tetrachloroethane 6: 4 (weight ratio) at 20 ° C is melted with a 295 ° C screw extruder and metered and extruded with a gear pump. Guide to a 290 ° C yarn pack for irregular cross-section yarn, extrude from the orifice, wind at 1152m / min, then stretch 3.27 times with an 85 ° C hot-hole, and heat at 150 ° C And heat-treated to obtain 83.3 dtex / 36 mm multifilament. Let the sample name be ⁇ . Fig. 5 shows the cross-sectional view.
  • Example 1 83.3 dtex / 24 f core-sheath composite fiber composed of polyester for the core and low-melting polyester for the sheath is used for the warp of the ground yarn constituting the base fabric.
  • the weft was composed of a core-sheath composite fiber of 55.5 dtex / 12 f and a conductive composite fiber of 22.2 dtex / 6 f.
  • Velvet fabric was produced using twisted yarn.
  • the resulting woven fabric is subjected to alkali reduction at 95 ° C for 20 minutes using a 1% aqueous sodium hydroxide solution to dissolve and remove the highly soluble polymer, and heat-treated to form a rubbing cloth.
  • a rubbing treatment was applied to the polyimide film for liquid crystal.
  • the cross section of the fiber of the obtained pile was photographed by an electron microscope, and the cross section was measured.
  • An electron micrograph of Example 1 is shown in FIG.
  • Example 2 fine, dense, and uniform alignment grooves could be formed in the applied polyimide film as the rubbing member.
  • Example 3 in which the number of petals was increased to 16, a good rubbing effect was obtained, but in Comparative Example 1 in which the number of petals was increased to 32, the nurturing of the raised portion was not observed, but the space between the petals was narrow. As a result, sufficient alignment grooves could not be formed.
  • Comparative Example 2 in which the length of the petals was 2.6%, the length of the petals was too short to form a sufficient alignment groove.
  • Example 5 Using the conjugate fiber obtained in Example 1 for the weft, polyester for the warp, weaving five satin woven fabrics, using a 1% aqueous sodium hydroxide solution at 95, and reducing the alkali for 20 minutes After dissolving and removing the polymer with high solubility by carrying out, a woven fabric with a warp density of 120 threads Z 2.5 cm (120 threads Z inch) and a weft density of 150 threads / 2.5 cm (150 threads / inch) I got The obtained woven fabric was slit at a width of 40 mm in the warp direction, and then wound into a roll to obtain a tape-shaped cleaning cloth.
  • the maximum outer diameter of the obtained fiber was 14.2 rn
  • the number of petals was 8
  • the ratio of the length from the base to the tip of the petal to the maximum outer diameter of the fiber (L2ZL1) was 2 '. 4.4%
  • edge angle was 85 degrees.
  • Example 4 When the conjugate fiber obtained in Example 4 was used as a cleaning cloth in the same manner as in Example 5, fine edges of the obtained weft fibers acted, and an excellent cleaning effect was obtained.
  • the maximum outer diameter of the obtained fiber was 15.4 / m
  • the number of petals was 8
  • the ratio of the length from the base to the tip of the petal to the maximum outer diameter of the fiber (L2 / L1) was 22.2% and the edge angle was 88 degrees.
  • the fiber obtained in Comparative Example 4 was treated in the same manner as in Example 5 except for the weight loss step.
  • fine dust on the hard disk could not be removed because the number of petals was small and there were no sharp edges.
  • the irregular shaped fiber of the present invention can impart fine and uniform orientation to the material to be wrapped by performing rubbing using a liquid crystal rubbing cloth. It can also be used for hard disk cleaning to remove fine dust. In addition, it can be applied to polishing, wiping cloth, texture cloth, medical use, clothing use, etc., where the edge is effective.
  • such a modified cross-section fiber can be industrially manufactured stably.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Multicomponent Fibers (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

A modified cross-section fiber characterized in that a fiber cross-section shape is formed by combining a center element with 5 to 30 flower petal-like protrusions continuing and radially extending from the center element toward the outer periphery of the fiber, a length from the base to the tip end of each petal-like protrusion is 3 to 45% of the maximum outer diameter of the fiber, and each petal-like protrusion has at least two edges having angles of 45 to 115 degrees. The modified cross-section fiber is excellent in very-fine-fiber effect and physical effect due to a modified cross-section, and is applicable to, e.g., a rubbing cloth that is finely and uniformly oriented, and to a cleaning cloth, wiping cloth or texture cloth that can remove firmly deposited fine dust; and a production method for the fiber is provided.

Description

明 細 書 異型断面繊維およびその製造方法 技術分野  Description Unusual cross-section fiber and method for producing the same
本発明は、 液晶用ラビング、 ハードディスク用クリーニング等の物理作用に優れ た異型断面繊維とその製造方法に関する。 さらに詳しくは、 繊維横断面形状が花弁 状突起からなり少なくとも 2つのエッジ角を有する異型断面繊維とその製造方法に 関する。 背景技術  TECHNICAL FIELD The present invention relates to a modified cross-section fiber having excellent physical effects such as rubbing for liquid crystal and cleaning for a hard disk, and a method for producing the same. More specifically, the present invention relates to a modified cross-section fiber having a petal-like protrusion in cross-section of a fiber and having at least two edge angles, and a method for producing the same. Background art
従来より、 異型断面繊維は、 種々の形状のものが衣料用等に用いられ、 丸断面と 比較して物理作用に優れるため研磨用、 近年は、 ラビングクロス用途などにも用い られている。  Conventionally, fibers of various cross-sections have been used in various shapes for clothing and the like, and have been used for polishing because they have a better physical action than round cross-sections, and in recent years also for rubbing cloths.
すなわち、 ラビングとは、 液晶表示素子の製造工程においてガラス基板上の透明 電極を被覆する配向膜を、 研磨布等の部材を用いて一定方向に配向する配向処理方 法である。  That is, rubbing is an alignment treatment method in which an alignment film covering a transparent electrode on a glass substrate is aligned in a certain direction using a member such as a polishing cloth in a liquid crystal display element manufacturing process.
かかるラビングクロスとしては従来、 ナイロンやポリエステルの合成繊維や、 レ 一ヨン等の化学繊維、 コットン等の天然繊維の織物表面を起毛させたクロスが一般 に用いられている。 そして、 従来のラビングクロスは多数の繊維を起毛させたもの であって、 繊維の先端部あるいは先端部に近い繊維側部で配向膜をラビングするが、 一般の合成繊維では配向膜に接する部分の繊維径が大きすぎて微細な配向を得る事 ができなかった。  Conventionally, as such a rubbing cloth, a cloth obtained by raising the woven fabric surface of synthetic fibers of nylon or polyester, chemical fibers such as rayon, or natural fibers such as cotton has been generally used. The conventional rubbing cloth is made by raising a large number of fibers, and the alignment film is rubbed at the fiber tip or at the fiber side close to the tip. The fiber diameter was too large to obtain a fine orientation.
この問題を解決するために、 特開昭 62- 269932号公報、 特開平 02- 198420号公報 等では、 極細繊維を用いて微細な配向を得ようとしている。  In order to solve this problem, JP-A-62-269932, JP-A-02-198420 and the like attempt to obtain fine orientation using ultrafine fibers.
一方、 特開昭 56-97319号公報、 特開昭 6卜 046932号公報、 特許第 2772837号公 報では、 極細繊維ではなく異型断面繊維を用いて微細な配向を得ようとしている。 また、 異型断面繊維については、 特公昭 39 29636号公報ゃ特公昭 60-24845号公 報には、 分割により鋭いふちを有する繊維が開示されており、 特開平 1卜 279897号 公報には、 歯形断面繊維が開示されている。 On the other hand, JP-A-56-97319, JP-A-6-469692, and JP-A-2772837 disclose attempts to obtain fine orientation using not-fine fibers but irregular-shaped fibers. As for irregular cross-section fibers, Japanese Patent Publication No. 39-29636 and Japanese Patent Publication No. 60-24845 disclose a fiber having a sharp edge by division, and Japanese Patent Application Laid-Open No. 279897 discloses a tooth profile. A cross-section fiber is disclosed.
また、 ハードディスク用クリーニング、 すなわち、 ハードディスクの製造工程で ディスク表面に付着した微細なダストゃ不純物を布帛ゃ液体を用いて除去する洗浄 処理においては、 従来は、 コットン等の天然繊維や、 ナイロンやポリエステルの異 型断面極細合成繊維の織物、 不織布、 フロッキー等の布帛、 液体等が一般に用いら れており、 特に、 合成繊維の場合は、 微細なダストに対応して極細繊維を用いるこ とが多い。  Conventionally, hard disk cleaning, that is, cleaning treatment for removing fine dust and impurities adhering to the disk surface using a cloth and a liquid in the hard disk manufacturing process, has conventionally been performed using natural fibers such as cotton, nylon or polyester. Fabrics, liquids, etc., of non-synthetic cross-section ultrafine synthetic fibers, such as fabrics, nonwoven fabrics, flocky, etc., are generally used.In particular, in the case of synthetic fibers, ultrafine fibers are often used in response to fine dust .
しかしながら、 ラビングにおいて、 特開昭 62- 269932号公報、 特開平 02- 198420 号公報等のように微細な配向を得るために極細繊維を用いている場合、 繊維が細す ぎるために、 パイル等の起毛されるべき部分が倒れてしまい、 肝心のラビング効果 自体が十分に得られない。  However, in the case of rubbing, when ultrafine fibers are used to obtain a fine orientation as disclosed in JP-A-62-269932, JP-A-02-198420, etc., a pile or the like is used because the fibers are too thin. The part to be raised is collapsed, and the rubbing effect itself is not sufficiently obtained.
また、 特開昭 56-97319号公報、 特開昭 6卜 046932号公報のような長さ方向に溝 があるだけの繊維を用いた場合、 配向膜に接する部分が丸みを帯びているため、 ラ ビング効果が不十分である。 また、 特許第 2772837号公報に記載された突起の外端 部が鋭角である繊維は製造技術上の問題から現実には工業的に生産する事は困難で ある。  Further, when a fiber having only a groove in the length direction as disclosed in JP-A-56-97319 and JP-A-6-46932 is used, a portion in contact with the alignment film is rounded. The rubbing effect is insufficient. In addition, the fiber described in Japanese Patent No. 2772837 in which the outer end of the projection has an acute angle is difficult to actually produce industrially due to a problem in manufacturing technology.
一方、 特公昭 39 - 29636号公報ゃ特公昭 60-24845号公報に開示された、 分割され た鋭いふちを有する繊維は、 多葉状の繊維ではなく、 分割された繊維が三角形状に なっているため、 被ラビング材等に接触する部分のエッジと配向膜の接点が少なく 緻密なラビング効果が期待できない。 また、 特開平 1卜 279897号公報に開示された 歯形断面繊維においては、 易溶解成分を除去した多葉形フィラメントが開示されて いるが、 衣料の風合いの改善を目的としており、 エッジの技術的な開示が全くない ため、 物理的作用が必要なラビング効果は期待できない。  On the other hand, the fiber having a sharp edge as disclosed in Japanese Patent Publication No. 39-29636 and Japanese Patent Publication No. 60-24845 is not a multilobal fiber but a triangular shape of the divided fiber. Therefore, there is little contact between the edge of the portion that comes into contact with the material to be rubbed and the alignment film, and a precise rubbing effect cannot be expected. Japanese Patent Application Laid-Open No. 279897 discloses a multi-lobed filament from which the easily soluble component has been removed. No rubbing effect requiring physical action cannot be expected because there is no clear disclosure.
また、 微細なダストに対応して極細合成繊維からなる布帛をクリ一ニングクロス に用いた場合、 繊維が極細であるがためにクリーニング時の摩擦により繊維自身が 破断したり、 摩擦応力による布帛組織内での極細繊維のズレにより、 強固に付着し た微細ダストを十分除去することは期待できない。 さらに、 ダストのディスクへの 付着力が強い場合は液体では十分に除去することができない。 In addition, when a cloth made of ultrafine synthetic fibers is used for the cleaning cloth in response to fine dust, the fibers themselves are extremely fine, and the fibers themselves are rubbed by friction during cleaning. Due to the breakage or the displacement of the ultrafine fibers in the fabric structure due to the frictional stress, it is not possible to sufficiently remove the fine dust adhered firmly. Furthermore, if the dust has a strong adhesion to the disk, it cannot be sufficiently removed with a liquid.
加えて、 ハードディスク用クリーニング布帛にコットンを用いると、 その布帛自 体からダストが発生するという問題がある。  In addition, when cotton is used for the hard disk cleaning cloth, there is a problem that dust is generated from the cloth itself.
本発明は、 上述したような問題点を解決するために、 極細繊維の効果と異型断面 による物理効果に優れ、 たとえば、 微細 ·緻密で均質な配向を行うラビングクロス、 強固に付着した微細ダストをも除去できるクリーニングクロス、 また、 'ワイピング クロス、 テクスチャ一クロスなどにも使用可能な異型断面繊維とその製造方法を提 供する事を目的とするものである。 発明の開示  The present invention solves the above-mentioned problems by providing excellent effects of ultrafine fibers and physical effects due to irregular cross-sections.For example, a rubbing cloth that performs fine, dense, and homogeneous orientation, and fine dust that is firmly attached It is an object of the present invention to provide a modified cross-section fiber that can be used for a cleaning cloth that can also remove blemishes, a wiping cloth, and a textured cloth, and a method for producing the same. Disclosure of the invention
上記目的を達成するために本発明は、 次の構成を要する。  In order to achieve the above object, the present invention requires the following configuration.
すなわち、 本発明は、 繊維横断面形状が、 中心部及び当該中心部に連続し中心よ り繊維外周に向かって放射状に伸びる 5 ~ 3 0枚の花弁状突起を組み合わせた形状 からなり、 各花弁状突起の基部から先端までの長さが繊維最大外径の 3〜4 5 %で あり、 各花弁状突起が 4 5〜1 1 5度角の少なくとも 2つのエッジを有することを 特徴とする異型断面繊維である。  That is, the present invention provides a fiber cross-sectional shape comprising a central portion and a shape obtained by combining 5 to 30 petal-like projections which are continuous with the central portion and extend radially from the center toward the outer periphery of the fiber. The length from the base to the tip of the petal is 3 to 45% of the maximum outer diameter of the fiber, and each petal has at least two edges of 45 to 115 degree angle. It is a cross section fiber.
また、 液晶配向用ラビングに用いる布帛であって被ラビング材と接触する部分に 前記異型断面繊維を用いたラビングクロスである。  A rubbing cloth which is a cloth used for rubbing for liquid crystal alignment, wherein the rubbing cloth uses the irregular cross-section fiber in a portion in contact with a rubbing material.
また、 ハードディスクのクリーニングに用いる布帛であって、 ディスク材と接触 する部分に前記異型断面繊維を用いたクリーニングクロスである。  Further, it is a cloth used for cleaning a hard disk, and is a cleaning cloth using the irregular cross-section fiber in a portion in contact with a disk material.
さらに、 少なくとも 2種のポリマーからなる複合繊維であって、 2種のポリマー のうち 1種は他方のポリマーに比して溶解性の大なるポリマーであり、 当該複合繊 維の横断面形状が、 溶解性の小なるポリマーはほぼ中心部に存在し、 溶解性の大な るポリマ一は当該複合繊維の外周部に露出した互いに独立する 5〜3 0個のセグメ ント形状を成し、 溶解性の小なるポリマーと溶解性の大なるポリマ一の接合比が 1 : 2〜9 : 1であることを特徴とする複合繊維である。 Further, the composite fiber is composed of at least two polymers, and one of the two polymers is a polymer having higher solubility than the other polymer, and the cross-sectional shape of the composite fiber is The polymer with low solubility is located almost at the center, and the polymer with high solubility forms 5 to 30 independent segments exposed on the outer periphery of the conjugate fiber. The bonding ratio between a polymer with a low solubility and a polymer with a high solubility is It is a composite fiber characterized by a ratio of 1: 2 to 9: 1.
また、 本発明にかかる異型断面繊維は、 前記複合繊維を複合紡糸し、 次いで溶解 性の大なるポリマ一を溶解除去することにより製造することができる。 図面の簡単な説明  The modified cross-section fiber according to the present invention can be produced by subjecting the conjugate fiber to conjugate spinning, and then dissolving and removing a polymer having high solubility. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明のラビングクロスを構成する繊維の横断面形状の一例を示す平 面図である。  FIG. 1 is a plan view showing an example of a cross-sectional shape of a fiber constituting a rubbing cloth of the present invention.
第 2図は、 本発明のラビングクロスを構成する繊維の横断面形状において花弁状 突起の一例を示す図である。  FIG. 2 is a view showing an example of a petal-like projection in a cross-sectional shape of a fiber constituting a rubbing cloth of the present invention.
第 3図は、 本発明のラビングクロスを構成する繊維の横断面形状において花弁状 突起の一例を示す図である。  FIG. 3 is a view showing an example of a petal-like projection in a cross-sectional shape of a fiber constituting the rubbing cloth of the present invention.
第 4図は、 本発明の製造に用いる複合繊維の横断面図の一例である。  FIG. 4 is an example of a cross-sectional view of a conjugate fiber used in the production of the present invention.
第 5図は、 本発明外の複合繊維の横断面図の一例である。  FIG. 5 is an example of a cross-sectional view of a conjugate fiber outside the present invention.
第 6図は、 本発明の異型断面繊維を用いた液晶ラビングクロス用の起毛布の模式 図である。  FIG. 6 is a schematic view of a raised cloth for a liquid crystal rubbing cloth using the modified cross-section fiber of the present invention.
第 7図は、 本発明に用いられる複合繊維を紡糸する為の口金模式図の一例である。 第 8図は、 本発明に用いられる複合繊維を紡糸する為の口金模式図の一例であり、 第 7図の X— X ' 断面である。  FIG. 7 is an example of a schematic diagram of a die for spinning the conjugate fiber used in the present invention. FIG. 8 is an example of a schematic diagram of a die for spinning the conjugate fiber used in the present invention, and is a cross section taken along line XX ′ of FIG.
第 9図は、 本発明のラビングクロスを構成する繊維の横断面の電子顕微鏡写真の 一例であり、 繊維の断面形状を示すものである。  FIG. 9 is an example of an electron micrograph of a cross section of a fiber constituting the rubbing cloth of the present invention, showing a cross-sectional shape of the fiber.
次に、 符号について説明する。  Next, reference numerals will be described.
Aは、 本発明の異型断面繊維である。  A is the modified cross-section fiber of the present invention.
Bは、 花弁状突起である。  B is petals.
L 1は、 最大外径であり、 L 2は、 花弁状突起の基部から先端までの長さである。 Eは、 本発明の花弁状突起のエッジ角である。  L1 is the maximum outer diameter, and L2 is the length from the base to the tip of the petal. E is the edge angle of the petals of the present invention.
Fは、 本発明の花弁状突起のエッジ角である。  F is the edge angle of the petal of the present invention.
〇は、 パイルである。 Pは、 基布である。 · 第 7図、 第 8図において、 1は芯用内部オリフィスであり、 ポリマー (b ) 流路 である。 2はポリマー (a ) 流路、 3はポリマ一 (b ) 流路、 4は導孔、 5はオリ フィスである。 また、 aは溶解性の大なるポリマー、 bは溶解性の小なるポリマー である。 発明を実施するための最良の形態 〇 is a pile. P is a base cloth. · In FIGS. 7 and 8, reference numeral 1 denotes an inner core orifice, which is a polymer (b) flow path. 2 is a polymer (a) flow path, 3 is a polymer (b) flow path, 4 is a conducting hole, and 5 is an orifice. A is a polymer having high solubility, and b is a polymer having low solubility. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明で用いる繊維は、 合成繊維であり、 ポリエステル、 ポリアミド、 ポリオレ フィン等が有用である。 ポリエステルとしては、 たとえば、 ポリエチレンテレフタ レート、 ボリブチレンテレフ夕レート、 ポリエチレンナフタレート、 ポリエチレン ォキシベンゾェ一卜、 ポリ 1 , 4ジメチルシクロへキサンテレフ夕レート、 ポリピ バロラクトン及びそれらを主成分とするコポリエステル等がある。 ポリアミドとし ては、 たとえば、 ナイロン 6、 ナイロン 6 6、 ナイロン 1 .1、 ナイロン 1 2、 ナイ ロン 6 1 0及びそれらを主成分とするコポリアミドがある。 ポリオレフィンとして は、 たとえば、 ポリエチレン、 ポリプロピレン等が有用である。 ラビングに使用す る際、 好ましくは、 ポリエステル、 ナイロン 1 1、 ナイロン 1 2である。 クリ一二 ングクロスに使用する際、 好ましくは、 ポリエステル、 ナイロン 6である。  The fiber used in the present invention is a synthetic fiber, and polyester, polyamide, polyolefin and the like are useful. Examples of the polyester include polyethylene terephthalate, polybutyrene terephthalate, polyethylene naphthalate, polyethylene oxybenzoate, poly 1,4-dimethylcyclohexane terephthalate, polypivalolactone, and copolyesters containing these as main components. is there. Examples of the polyamide include nylon 6, nylon 66, nylon 1.1, nylon 12, nylon 61, and copolyamides containing these as main components. As the polyolefin, for example, polyethylene, polypropylene and the like are useful. When used for rubbing, polyester, nylon 11 and nylon 12 are preferred. When used for a cleaning cloth, polyester and nylon 6 are preferred.
次に、 本発明における異型断面繊維の横断面形状を第 1図、 第 2図、 第 3図を用 いて説明する。 第 1図は、 本発明における異型断面繊維の横断面形状を示し、 第 2 図および第 3図は、 花弁状突起の先端部の一例を示している。  Next, the cross-sectional shape of the modified cross-section fiber in the present invention will be described with reference to FIGS. 1, 2, and 3. FIG. FIG. 1 shows the cross-sectional shape of the modified cross-section fiber of the present invention, and FIGS. 2 and 3 show an example of the tip of a petal-like projection.
本発明における異型断面繊維の横断面形状は、 繊維の中心部 (A) と繊維の中心 部 (A) に連続し、 すなわち、 中心部 (A) に繋がった複数の花弁状突起 (B ) を 有しており、 各花弁状突起 (B) は、 中心部 (A) から繊維の先端に向かって放射 状に伸びた形状である。  The cross-sectional shape of the irregular cross-section fiber in the present invention is continuous with the center portion (A) of the fiber and the center portion (A) of the fiber, that is, a plurality of petal-like projections (B) connected to the center portion (A). Each petal-like projection (B) has a shape extending radially from the center (A) toward the tip of the fiber.
さらに、 各々の突起 (B ) .は少なくとも 2つのエッジをもつ。 すなわち、 各突起 Further, each protrusion (B) has at least two edges. That is, each protrusion
( B) において突起 (B ) と繊維の中心部 (A) との重なる部分である突起の始点 部分 2力所を各々 (e)、 (f)、 繊維外周に向かって伸びた外周の終点部分を各々 (e,)、 (f ') とすると、 (e) (e,) および ( f ) (f ') および突起外周部分の (e ') (f ') を結ぶ線は、 直線または直線に近い曲線となっており、 (e) (e ') (f ') と (ί) (f ') (e') が少なくとも 2つのエッジとなる。 In (B), the starting point of the protrusion, which is the overlapping part of the protrusion (B) and the center of the fiber (A) If the two parts are (e) and (f), respectively, and the end points of the outer periphery extending toward the outer periphery of the fiber are (e,) and (f '), respectively, then (e) (e,) and (f) The line connecting (f ') and (e') (f ') on the outer periphery of the protrusion is a straight line or a curve close to a straight line, and (e) (e') (f ') and (ί) (f ') (e') is at least two edges.
この各々のエッジの突起の内側への角度 (E:)、 (F). は 45〜115度とするこ とが必要である。 すなわち、 ラビングする際、 被ラビング部材との接触面である角 度 (E)、 (F) を 45〜1 15度とすることにより、 鋭いエッジが作用し、 均一な 配向が得られる。  The angle (E :), (F). Of each edge toward the inside of the protrusion must be between 45 and 115 degrees. That is, when rubbing, by setting the angles (E) and (F), which are the contact surfaces with the rubbed member, to 45 to 115 degrees, a sharp edge acts and uniform orientation can be obtained.
また、 角度 (E)、 (F) において、 線 (e) (e,)、 線 (e') (ί,)、 線 (f) For angles (E) and (F), line (e) (e,), line (e ') (ί,), line (f)
( f ') のいずれかが曲線の場合は、 該当する曲線の接線をエッジの角度の算出に 使用する。 すなわち、 角度 (E) において、 線 (e) (e ') が曲線の場合は曲線If any of (f ') is a curve, use the tangent of the curve to calculate the edge angle. That is, if the line (e) (e ') is a curve at the angle (E), the curve
(e) (e') に対しての (e') における接線 sと (e') (f ') を結ぶ線とののェ ッジの突起の内側への角度を角度 (E) とする。 また線 (e') ( f ') が曲線の場 合は曲線 (e') (f ') に対しての (e') における接線 tと線 (e) (e') を結ぶ 線とのエッジの突起の内側への角度を角度 (E) とする。 線 (e) (e ') と線(e) The angle between the tangent s at (e ') to (e') and the line connecting (e ') and (f') to the inside of the projection of the edge is defined as angle (E). . If the line (e ') (f') is a curve, the tangent t at (e ') to the curve (e') (f ') and the line connecting the line (e) (e') Angle (E) is the angle of the edge projection toward the inside. Line (e) (e ') and line
(e ') (f ') を結ぶ両者が曲線の場合は曲線 (e) (e') に対しての (e ') にお ける接線 sと曲線 (e') (f ') に対しての (e') における接線 tとのエッジの突 起の内側への角度を角度 (E) とする。 同様に、 角度 (F) も曲線の場合はその接 線を角度の算出に用いる。 If the two connecting (e ') and (f') are curves, the tangent s at (e ') to the curve (e) (e') and the curve (e ') (f') Let the angle (E) be the inward angle of the protrusion of the edge with the tangent t at (e '). Similarly, if the angle (F) is a curve, its tangent is used for calculating the angle.
また、 1枚の花弁状突起とその隣の突起との間すなわち各花弁状突起間のくぼみ In addition, the depression between one petal and its adjacent projection, that is, between each petal
(G) は V字状でも、 U字状でも構わない。 尚、 横断面形状の中心部分は中空部分 を有していても構わない。 (G) may be V-shaped or U-shaped. The central portion of the cross-sectional shape may have a hollow portion.
また、 ラビング材の起毛されるべき部分や、 クリーニングクロスの織物の繊維断 面における各花弁状突起の基部から先端までの長さ (L 2) は繊維最大外径 (L 1) の 3〜45 %が必要であり、 (L 2) と (L 1) の比率をこのように特定する ことにより毛倒れせずラビング効果をあげることができ、 また織物組織内での繊維 のズレを押さえ強固なクリーニング力を発揮する事ができる。 ここで、 繊維断面における各花弁状突起の中心部分から先端までの長さ (L 2 ) は、 (e ) ( e ' ) 間の長さまたは (f ) ( f ' ) 間の長さを意味する。 尚、 ここでは、 突起 (B ) と繊維の中心部 (A) との重なる部分である突起の始点部分を基部とし、 始点部分を結んだ曲線を中心部とする。 In addition, the length (L2) from the base to the tip of each petal-like projection on the fiber section of the rubbing material to be raised or on the fiber cross section of the fabric of the cleaning cloth is 3 to 45 times the maximum fiber outer diameter (L1). %, And by specifying the ratio of (L 2) and (L 1) in this way, it is possible to increase the rubbing effect without breaking down the hair, and to suppress the deviation of the fibers in the woven fabric and provide a strong It can demonstrate cleaning power. Here, the length (L 2) from the center to the tip of each petal on the fiber cross section means the length between (e) and (e ') or the length between (f) and (f') I do. Here, the starting point of the projection, which is the overlapping portion of the projection (B) and the center (A) of the fiber, is used as the base, and the curve connecting the starting points is used as the center.
—方、 本発明の花弁状突起の数は、 5〜3 0枚とすることが必要であり、 好まし くは、 5〜1 0枚である。 花弁状突起の数が 5枚よりも少ないとエッジの数が少な くなりラビングを行なっても緻密な配向が得られない。 また、 微細なダストの捕捉 が低下し十分なクリーニング効果が得られない。 3 0枚より多いと突起間の間隔が 狭くなりラビングを行なっても緻密な配向が得られない。 また、 花弁状突起が小さ くなりすぎてクリーニング時の摩擦により花弁状突起がつぶれてしまう。  On the other hand, the number of the petals of the present invention needs to be 5 to 30, preferably 5 to 10. If the number of petals is less than 5, the number of edges is small, and precise orientation cannot be obtained even when rubbing is performed. In addition, the capture of fine dust is reduced, and a sufficient cleaning effect cannot be obtained. If the number is more than 30, the interval between the projections becomes narrow, and a precise orientation cannot be obtained even when rubbing is performed. Also, the petals become too small, and the petals are crushed by friction during cleaning.
また、 本発明の異型断面繊維維における最大外径 (L 1 ) には、 ラビングクロス に用いる場合は 7〜3 0 mが好ましい。 最大外径がこの範囲にあると、 ラビング 用に最適なパイル密度が得られ、 毛倒れもし難く、 さらにラビング時には緻密な配 向が得られるので好ましい。 すなわち、 毛倒れし難いという点からは、 7 m以上 が好ましく、 最適なパイル密度が得られ緻密な配向を得るという点からは 3 0 m 以下が好ましい。  In addition, the maximum outer diameter (L 1) of the modified cross-section fiber fiber of the present invention is preferably 7 to 30 m when used for a rubbing cloth. When the maximum outer diameter is in this range, an optimum pile density for rubbing is obtained, hair is hardly broken down, and a dense orientation is obtained at the time of rubbing. That is, the length is preferably 7 m or more from the viewpoint that hair is hard to fall, and is preferably 30 m or less from the viewpoint that an optimum pile density is obtained and a dense orientation is obtained.
本発明の繊維をラビングクロスに使用する場合、 たとえば、 第 6図のようなパイ ル状構造物のパイル部分に用いることが好ましい。 この場合、 パイル 'フイラメン ト密度は、 2〜 5万フィラメント/ c m2が好ましく、 パイル長は、 l〜3 mmが 好ましい。 基布とパイルとの角度は、 特に制限はないが 6 0〜1 2 0度が好ましい。 また、 用いる基布の種類は、 通常の織編物であれば問題はないが、 寸法安定性から 織物が好ましい。 パイルや基布に導電成分を練り込んだ導電性繊維を使用し帯電防 止性に優れた基布としたり、 基布に使用する繊維にポリエステルと低融点ポリエス テルを組み合わせ熱処理し低融点ポリエステルを溶解してパイルの基部を接着し毛 倒れしにくくするのもよい。 When the fiber of the present invention is used for a rubbing cloth, it is preferably used, for example, for a pile portion of a pile-like structure as shown in FIG. In this case, the pile's filament density is preferably 20,000 to 50,000 filaments / cm 2 , and the pile length is preferably l to 3 mm. The angle between the base fabric and the pile is not particularly limited, but is preferably 60 to 120 degrees. The type of the base fabric to be used is not a problem as long as it is an ordinary woven or knitted fabric, but a woven fabric is preferable in view of dimensional stability. Use a conductive fiber in which a conductive component is kneaded into a pile or a base cloth to make a base cloth with excellent antistatic properties, or combine the fiber used for the base cloth with polyester and a low-melting polyester to heat-treat the low-melting polyester. It is also good to dissolve and glue the base of the pile to prevent the hair from falling down.
本発明の繊維をクリ一ニングクロスに使用する場合、 朱子織物の緯糸部分に用い る事が好ましい。 この場合の緯糸 ·フィラメント密度は 1 0 0 0〜1 0 0 0 0フィ ラメント Z c mが好ましい。 When the fiber of the present invention is used for a cleaning cloth, it is preferably used for the weft portion of a satin woven fabric. In this case, the weft and filament density is between 100 and 100 Lament Z cm is preferred.
また、 クリーニングクロスに用いる場合の繊維最大外径 (L 1 ) は 7〜 3 0 // m が好ましい。 最大外径がこの範囲にあると、 クリーニングクロス用に最適な緯糸密 度が得られ、 十分な研削効果が得られて微細ダストも効率良くクリ一二ングできる ので好ましい。 すなわち、 強い研削効果を得るという点からは 7 m以上が好まし く、 緯糸密度を高くして微細ダストのクリーニング効率を上げるという点からは 3 0 / m以下が好ましい。  Further, when used for a cleaning cloth, the maximum fiber outer diameter (L 1) is preferably 7 to 30 // m. When the maximum outer diameter is in this range, an optimum weft density for a cleaning cloth can be obtained, a sufficient grinding effect can be obtained, and fine dust can be efficiently cleaned. That is, 7 m or more is preferable from the viewpoint of obtaining a strong grinding effect, and 30 m or less is preferable from the viewpoint of increasing the weft density and increasing the efficiency of cleaning fine dust.
次に、 本発明の異型断面繊維の製造方法について、 以下に説明する。  Next, the method for producing the modified cross-section fiber of the present invention will be described below.
一般に、 異型断面繊維を製造する方法には、 直接紡糸する方法、 複合繊維を溶解 または分割する方法などがあるが、 前記の異型断面繊維が得られるのであればいず れの方法をとることも可能である。 ただし、 工業的に安定して前記の異型断面繊維 を得られる方法として以下の如く複合繊維を溶解して得る方法がある。  In general, there are methods for producing irregular cross-section fibers, such as direct spinning, and dissolving or splitting of conjugate fibers, but any method can be used as long as the above-mentioned irregular cross-section fibers can be obtained. It is. However, as a method for obtaining the above-mentioned irregular cross-section fiber industrially stably, there is a method of dissolving the conjugate fiber as follows.
本発明の異型断面繊維の製造方法では、 溶剤に対する溶解性が異なる複数のポリ マ一からなる複合繊維を用い、 溶剤に対する溶解性が犬なるポリマーを溶解するこ とにより少なくとも 2つのエッジを有することを特徴とする異型断面繊維を製造す る。  In the method for producing an irregular cross-section fiber according to the present invention, a composite fiber comprising a plurality of polymers having different solubilities in a solvent is used, and at least two edges are obtained by dissolving a polymer having a solubility in a dog. A fiber having an irregular cross section is produced.
本発明に使用する複合繊維では、 溶剤に対する溶解性が互いに異なるものが必要 である。 ここでは、 2種の繊維形成性ポリマーからなる複合繊維であって、 2種の ポリマーのうち 1種は水またはアル力リ水溶液に容易に溶けるポリマーから成る複 合繊維を用いて説明する。  The conjugate fibers used in the present invention must have different solubility in a solvent. Here, a description will be given using a composite fiber composed of two types of fiber-forming polymers, wherein one of the two types of polymers is composed of a polymer that is easily dissolved in water or an aqueous solution of Alcali.
溶解性の小なるポリマ一としてはポリエステル、 ポリアミド、 ポリオレフイン等 が挙げられる。 ラビングに使用する際、 好ましくは、 ポリエステル、 ナイロン 1 1、 ナイロン 1 2である。 クリーニングクロスに使用する際、 好ましくは、 ポリエステ ル、 ナイロン 6である。  Examples of the polymer having low solubility include polyester, polyamide, and polyolefin. When used for rubbing, polyester, nylon 11 and nylon 12 are preferred. When used for a cleaning cloth, polyester and nylon 6 are preferred.
また、 溶解性の大なるポリマーとしてはアル力リ加水分解性の高い共重合ポリェ ステル、 たとえばポリアルキレングリコ一ルゃ金属スルホネ一ト基を有するジカル ボン酸を共重合したポリエチレンテレフタレートが有用である。 また他のポリマー として水溶性 (熱水可溶性を含む) ポリマーも汎用性があり好ましい。 水溶性ポリ マーとしてはポリオキシエチレン、 ポリビニルアルコール、 水溶性ポリアミド等が 有用である。 ポリオキシエチレンについては分子量の比較的大きいもの、 例えば 1 0万以上、 特に 5 0万以上が好ましいことが多く、 ポリピニルアルコールは融点が 1 5 0〜1 8 0 °C程度のものが好ましい。 水溶性ポリアミドとしてはピペラジン環 の一端または両端をアルキルアミノ化したジァミンとカルボン酸よりなるポリアミ ドおよびそれにラクタム等を共重合したポリアミドが挙げられる。 例えば N, N ' ビスアミノプロピルピぺラジンとアジピン酸よりなるポリアミドは熱水可溶性であ り好ましい。 Further, as a polymer having high solubility, a copolymer polyester having a high hydrolysis rate, for example, a polyethylene terephthalate copolymerized with dicarbonic acid having a polyalkyleneglycol / metal sulfonate group is useful. . Also other polymers Water-soluble (including hot water-soluble) polymers are also preferred because of their versatility. Polyoxyethylene, polyvinyl alcohol, water-soluble polyamide and the like are useful as the water-soluble polymer. Polyoxyethylene having a relatively large molecular weight, for example, 100,000 or more, particularly preferably 500,000 or more is often preferable, and polypinyl alcohol having a melting point of about 150 to 180 ° C. is preferable. . Examples of the water-soluble polyamide include a polyamide comprising a carboxylic acid and a diamine in which one or both ends of a piperazine ring are alkylaminated, and a polyamide obtained by copolymerizing a lactam and the like. For example, a polyamide composed of N, N'bisaminopropylpyrazine and adipic acid is preferable because it is soluble in hot water.
本発明の複合繊維に用いるポリマーにおいては、 溶解性の小なるポリマ一と溶解 性の大なるポリマーの接合比が 1 : 2〜9 : 1であることが必要である。 1 : 2よ り溶解性の大なるポリマーの比率が大きいと、 ポリマーの中心部が小さくなり毛倒 れしてしまいラビング効果が十分 (こ得られない。 9 : 1より溶^ H生の小なるポリマ 一の比率が大きいと、 ラビングにおいて液晶が配向するに足る必要十分な深さと緻 密な配向溝が形成されず、 ラビング効果が十分に得られない。  In the polymer used for the conjugate fiber of the present invention, it is necessary that the bonding ratio between the polymer having low solubility and the polymer having high solubility is 1: 2 to 9: 1. If the ratio of the polymer having higher solubility than 1: 2 is large, the center of the polymer becomes small and the hair falls down, and the rubbing effect is not sufficient. If the ratio of the polymer is large, a rubbing effect cannot be sufficiently obtained because a necessary and sufficient depth and a dense alignment groove are not formed to align the liquid crystal in rubbing.
本発明の複合繊維に用いるポリマーにおいては、 溶解性の大なるポリマーと溶解 性の小なるポリマ一の溶融紡糸時における溶融中の粘度比が 0 . 5〜2 . 0である ことが好ましく、 更に好ましくは 0 . 7〜1 . 8である。 かかる粘度比は、 溶融紡 糸温度と等しい温度で測定した溶解性の大なるポリマーの M I値の逆数と溶解性の 小なるポリマーの M I値の逆数の比によつて測定することができる。 かかる M I値 の測定は以下の方法で定義する。  In the polymer used in the conjugate fiber of the present invention, the viscosity ratio during melting of the polymer having high solubility and the polymer having low solubility at the time of melt spinning is preferably 0.5 to 2.0. Preferably it is 0.7 to 1.8. Such a viscosity ratio can be measured by the ratio of the reciprocal of the MI value of a polymer having high solubility and the reciprocal of the MI value of a polymer having low solubility measured at a temperature equal to the melt spinning temperature. The measurement of such MI value is defined by the following method.
<M I値測定法 > <MI value measurement method>
メルトインデクサ一のシリンダーにオリフィス (穴の直径 0 . 5匪、 穴の長さ 1 . 0腿) とピストンを入れて、 所定の温度に設定し、 温度が設定値に上昇した後、 更 に 1 5分間以上安定させる。 Put the orifice (hole diameter 0.5, hole length 1.0 thigh) and piston in the cylinder of the melt indexer, set the temperature to a predetermined value, and after the temperature rises to the set value, Stabilize for at least 5 minutes.
ピストンをシリンダ一より抜き、 シリンダ一の試料口に口一トを使って約 3 g〜5 gのサンプルを入れる。 サンプルは押し込み棒で固く押し込み、 ピストンを入れる。 この時点を予熱開始点とし、 予熱開始点から時間の測定を始める。 Pull out the piston from the cylinder, and put about 3 g to 5 g of sample into the sample port of the cylinder using the mouth. The sample is pushed firmly with a push rod and the piston is inserted. This time is defined as the preheating start point, and time measurement is started from the preheating start point.
次にピストンに 2 1 6 0 gの重りをのせる。 Next, put a weight of 2160 g on the piston.
予熱開始点からカウントして、 6分後から 9分後の間の 3分間にォリフィスから押 出されたサンプルの重量を 1 nigまで正確に天秤で測定する。 Count from the starting point of preheating, and accurately measure the weight of the sample extruded from the orifice to 1 nig on the balance for 3 minutes between 6 and 9 minutes later.
この測定を 3回繰り返し、 3回の重量測定値の平均値を M gとした時、 This measurement is repeated three times, and when the average value of the three weight measurements is defined as Mg,
M l値を次の式で定義する。  The Ml value is defined by the following equation.
M I値 = ( 1 0 / 3 ) X M  M I value = (10/3) X M
このように粘度比を特定することにより溶解性の犬なるポリマ一を取り除いたあ との溶解性が小なるポリマーの形状に 4 5〜1 1 5度角のエッジをもたせることが でき、 0 . 5未満では、 エッジ角度が 1 1 5度を超えてしまい、 2 . 0を超えると、 エッジ角度が 4 5度より小さいものとなってしまうおそれがある。 このためには、 たとえば、 溶融紡糸時の溶解性が大なるポリマーの水分率を 1 0 0 p p m以下とす る等の方法がある。  By specifying the viscosity ratio in this manner, the polymer having low solubility after removing the soluble dog polymer can be provided with an edge of 45 to 115 degree angle, If it is less than 5, the edge angle will exceed 115 degrees, and if it exceeds 2.0, the edge angle may be less than 45 degrees. For this purpose, for example, there is a method of reducing the water content of a polymer having high solubility during melt spinning to 100 ppm or less.
本発明の複合繊維は、 上述のポリマーの組み合わせを用いてしかも、 以後に述べ る特定の形状を有するものである。  The conjugate fiber of the present invention uses a combination of the above-mentioned polymers and has a specific shape described below.
以下図面により本発明の複合繊維の形状を説明する。  Hereinafter, the shape of the composite fiber of the present invention will be described with reference to the drawings.
第 4図は本発明複合繊維の横断面の例を示すものである。  FIG. 4 shows an example of a cross section of the composite fiber of the present invention.
図面において Hは溶解性の小なるポリマーを、 Iは溶解性の大なるポリマーを示 す。 ここで溶解性の小なるポリマ一は繊維形成性ポリマ一であり、 溶解性の大なる ポリマーは、 繊維形成性ポリマ一でかつ、 水またはアルカリ水溶液等に容易に溶け るポリマーである。 ^解性の小なるポリマーは単糸の中心部に連続し、 すなわち、 中心部に繋がっていて先端部に花弁状突起を有する芯セグメントである。 溶解性の 大なるポリマーは、 繊維の外周部から繊維の内側に露出した形状のセグメントで構 成されており、 当該セグメント数は 5〜 3 0個でありかつそれぞれのセグメントは 互いに独立して存在し非連続である。 また、 芯セグメントである溶解性の小なるポ リマーは、 溶解性の大なるポリマーの各セグメントを分断している。  In the drawing, H indicates a polymer having low solubility, and I indicates a polymer having high solubility. Here, the polymer having low solubility is a fiber-forming polymer, and the polymer having high solubility is a polymer which is a fiber-forming polymer and is easily dissolved in water or an aqueous alkaline solution. The polymer with low resolvability is continuous to the center of the single yarn, that is, a core segment connected to the center and having a petal-like projection at the tip. The polymer with high solubility is composed of segments that are exposed from the outer periphery of the fiber to the inside of the fiber, and the number of segments is 5 to 30 and each segment exists independently of each other. And discontinuous. The core segment, a polymer having low solubility, separates each segment of the polymer having high solubility.
尚、 本発明の複合繊維の最大外径は、 ラビングクロスに用いる場合は 7〜3 0 mが好ましい。 また、 ハードディスク等のクリーニングクロスに用いる場合は、 Ί 〜3 0 mが好ましい。 The maximum outer diameter of the conjugate fiber of the present invention is 7 to 30 when used for a rubbing cloth. m is preferred. When used for a cleaning cloth for a hard disk or the like, the diameter is preferably 30 to 30 m.
本発明の複合繊維を用いて、 製織または製編を行ない、 ついで溶解性の犬なるポ リマーを実質的に全部溶解除去することにより前述した本発明のラビングクロスや クリーニングクロスが得られる。 又、 本発明の複合繊維をステーブルとし、 これを 不織布に加工して易溶成分を溶解除去して用いることもできる。  Weaving or knitting is performed using the conjugate fiber of the present invention, and substantially all of the soluble dog polymer is dissolved and removed to obtain the above-described rubbing cloth and cleaning cloth of the present invention. Further, the conjugate fiber of the present invention can be used as a stable, processed into a non-woven fabric and dissolved and removed easily soluble components.
く作用〉  Action)
本発明の異型断面繊維が及ぼす作用について述べる。  The effect of the modified cross-section fiber of the present invention will be described.
ラビング処理において微細 ·緻密で均質な配向を行うには、 被ラビング部材の配 向膜に接する部分が微細 ·緻密かつ被ラビング部材のラビング処理が一定のもので ある必要がある。  In order to perform fine, dense, and uniform orientation in the rubbing treatment, it is necessary that the portion in contact with the alignment film of the rubbed member is fine, dense, and the rubbing treatment of the rubbed member is constant.
本発明においては、 本発明の異型断面繊維は複数の花弁状突起を有しかつ各花弁 状突起が角エッジ 2つ以上を有しているため、 該繊維の配向膜に接する部分が花弁 突起の本数分細くなり、 かつエッジ面により配向規制力が高いため、 微細 ·緻密で 均一な配向が得られる。 さらに、 該繊維の各花弁状突起の基部から先端までの長さ と繊維最大外径の比率を特定することにより、 1本の繊維自体に安定性が得られ、 起毛布帛の毛倒れがなく均一で微細 ·緻密な配向作用を生ずることができる。 また、 本発明の繊維をクリーニングクロスに使用する場合においては、 本発明の 異型断面繊維は複数の花弁状突起を有しかつ各花弁状突起が角エッジ 2つ以上有し ているため、 それぞれの太さが極細繊維に相当し、 かつ 2つ以上のシャープなエツ ジを持つ花弁状突起がフィラメント中央の芯部に固定されているだけでなく、 隣合 ぅフィラメントの花弁状突起同士がかみ合う事により布帛組織内でのフィラメン卜 ひいては花弁状突起のズレを防止する事により、 花弁状突起のシヤープなェッジの 研削効果を有効に発揮し、 強固に付着した微細ダストに対しても十分なクリーニン グ効果を発揮する。  In the present invention, since the atypical cross-section fiber of the present invention has a plurality of petal-like projections and each petal-like projection has two or more corner edges, the portion of the fiber that comes into contact with the alignment film is the petal projection. Finer, denser and more uniform alignment can be obtained because the film is thinner by the number of layers and the edge surface has a high alignment regulating force. Further, by specifying the ratio of the length from the base to the tip of each petal-shaped protrusion of the fiber and the maximum outer diameter of the fiber, the stability of the single fiber itself is obtained, and the brushed fabric is uniform without falling down. And a fine and dense orientation action can be produced. In addition, when the fiber of the present invention is used for a cleaning cloth, since the atypical cross-sectional fiber of the present invention has a plurality of petals and each petal has two or more corner edges, Petals with a thickness equivalent to ultrafine fibers and with two or more sharp edges are not only fixed to the core of the filament, but also adjacent to each other. By preventing the filaments in the fabric structure and thus the petal-like protrusions from shifting, the grinding effect of the sharp wedges of the petal-like protrusions is effectively exerted, and sufficient cleaning is carried out even for fine dust adhered firmly. It is effective.
<実施例 > <Example>
以下、 実施例によって本発明を具体的に説明する。 (実施例 1 ) Hereinafter, the present invention will be described specifically with reference to examples. (Example 1)
20°Cのフエノールとテトラクロルェ夕ン 6 : 4 (重量比) 混合溶液で測定した 固有粘度が 0. 64であるポリエチレンテレフ夕レート (以下ポリマー P 1とい う)、 固有粘度が 0. 688、 軟化点が 244. 5°C, アルカリ易溶性のポリェチ レングリコール共重合ポリマー (以下ポリマ一 P 2という) を用意した。 ポリマー P 2を乾燥し、 水分率を 54 p pmとした。 また、 乾燥後のポリマー P I, P 2の、 290°Cにおける M I値はそれぞれ 2. 55、 1. 44であった。 次にポリマー P 1を 295°C、 ポリマ一 P 2を 280°Cで別々のスクリユー押出機で溶融し、 ギヤ プンプで P 1ZP 2 = 2ノ1 (容量比) となるように計量押出して、 290υの第 7図、 第 8図に示した口金パックに導きオリフィスから押出して両成分を複合紡糸 し、 1 152mZm i ηで巻き取り、 次いで 85°Cの熱ローラ一で 3. 27倍に延 伸し、 1 50°Cの熱板に接触させ熱処理し、 109. 8 d t e x/50 f の複合繊 維のマルチフィラメントを得た。 このマルチフィラメントのサンプル名を Aとする。 横断面図を第 4図に示す。  Polyethylene terephthalate (hereafter referred to as polymer P1) with an intrinsic viscosity of 0.64 measured with a mixed solution of phenol and tetrachlorene 6: 4 (weight ratio) at 20 ° C, an intrinsic viscosity of 0.688, and softening A polyethylene glycol copolymer (hereinafter referred to as polymer P2) having a temperature of 244.5 ° C and an alkali-soluble property was prepared. The polymer P2 was dried to a moisture content of 54 ppm. The MI values of the dried polymers PI and P2 at 290 ° C were 2.55 and 1.44, respectively. Next, polymer P1 was melted at 295 ° C and polymer P2 at 280 ° C using separate screw extruders, and metered and extruded with a gear pump so that P1ZP2 = 2 21 (volume ratio). Guided to the die pack shown in Fig. 7 and Fig. 8 at 290mm, extruded from the orifice, composite-spun both components, wound up at 1 152mZm i η, then rolled 3.27 times with a hot roller at 85 ° C. It was stretched, contacted with a hot plate at 150 ° C, and heat-treated to obtain a multifilament of 109.8 dtex / 50 f composite fiber. Let A be the sample name of this multifilament. Fig. 4 shows a cross-sectional view.
(実施例 2 )  (Example 2)
繊度を変更する以外は実施例 1と同様な方法で、 繊度 222. 3 d t e xのマル チフィラメントを得た。 サンプル名を Bとする。  Except for changing the fineness, a multifilament having a fineness of 222.3 dtex was obtained in the same manner as in Example 1. Let B be the sample name.
(実施例 3 )  (Example 3)
口金パック第 8図を 16分割用にしたものに変更し容量比を P 1ZP 2 = 3/ 1に変更した以外は実施例 1と同様な方法で、 1 1 1. l d t e x/50 f の複合 繊維のマルチフィラメントを得た。 サンプル名を Cとする。  1 11 1. Composite fiber of ldtex / 50 f in the same manner as in Example 1 except that the cap pack was changed to that of Fig. 8 for 16 divisions and the capacity ratio was changed to P1ZP2 = 3/1. Was obtained. Let C be the sample name.
(比較例 1 )  (Comparative Example 1)
口金パック第 8図を 32分割用にしたものに変更し容量比を P 1/P 2 = 3X1 に変更した以外は実施例 1と同様な方法で、 1 1 1. l d t e xZ50 f の複合繊 維のマルチフィラメントを得た。 サンプル名を Dとする。  11 1 1.The composite fiber of ldte xZ50 f was prepared in the same manner as in Example 1 except that the cap pack was changed to one for 32 splits and the capacity ratio was changed to P1 / P2 = 3X1. Was obtained. Let D be the sample name.
(比較例 2)  (Comparative Example 2)
容量比を PlZPZ-l 0Z1に変更した以外は実施例 1と同様な方法で、 1 1 1. 1 ci t e xZ50 fの複合繊維のマルチフィラメントを得た。 サンプル名を E とする。 Except that the capacity ratio was changed to PlZPZ-l0Z1, the same method as in Example 1 was used. A multifilament of a composite fiber of 1.1 cite xZ50 f was obtained. Let E be the sample name.
(比較例 3)  (Comparative Example 3)
ポリマー P 2の乾燥後の水分率を 194 p pmにした以外は実施例 1と同様な方 法で、 111. 1 d t e xZ50 f の複合繊維のマルチフィラメントを得た。 サン プル名を Fとする。  A multifilament multifilament of 111.1 dtex x50f was obtained in the same manner as in Example 1, except that the moisture content of the polymer P2 after drying was 194 ppm. Let F be the sample name.
(実施例 4) - 相対粘度が 2. 51のナイロン 6 (以下ポリマー P 3と云う) とポリマ一 P 2を 用意した。 ポリマー P 2を乾燥し、 水分率を 67 p pmとした。 次にポリマー P 3 を 270°C、 ポリマー P 2を 273t:で別々のスクリユー押出機で溶融し、 ギヤプ ンプで?3 ?2 = 371 (容量比) となるように計量押出して、 270°Cの第 7 図、 第 8図に示した口金パックに導きオリフィスから押出して両成分を複合紡糸し、 1152m/m i nで巻き取り、 次いで 77°Cの熱口一ラーで 2. 75倍に延伸し、 160°Cの熱板に接触させ熱処理し 111. l d t e x/50 f の複合繊維のマル チフィラメントを得た。 サンプル名を Gとする。  (Example 4)-Nylon 6 (hereinafter referred to as polymer P3) having a relative viscosity of 2.51 and polymer P2 were prepared. The polymer P2 was dried to a moisture content of 67 ppm. Next, polymer P 3 is melted at 270 ° C and polymer P 2 at 273t: using separate screw extruders, and then pumped. 3? 2 = 371 (volume ratio), extruded into a die pack as shown in Fig. 7 and Fig. 8 at 270 ° C, extruded from the orifice and combined spinning both components, at 1152m / min The film was wound up, stretched 2.75 times with a hot mouth at 77 ° C., contacted with a hot plate at 160 ° C., and heat-treated to obtain a multifilament of 111. ldtex / 50 f conjugate fiber. Let G be the sample name.
(比較例 4)  (Comparative Example 4)
20°Cのフエノールとテトラクロルェタン 6 : 4 (重量比) 混合溶液で測定した 固有粘度が 0. 64であるポリエチレンテレフタレ一卜を 295°Cスクリユー押出 機で溶融し、 ギヤプンプで計量押出して、 290°Cの異型断面糸用の口金パックに 導きオリフィスから押出して 1152m/m i nで巻き取り、 次いで 85°Cの熱口 一ラーで 3. 27倍に延伸し、 150°Cの熱板に接触させ熱処理し、 83. 3 d t e x/36 ίのマルチフィラメントを得た。 サンプル名を Ηとする。 横断面図を第 5図に示す。  Polyethylene terephthalate having an intrinsic viscosity of 0.64 as measured with a mixed solution of phenol and tetrachloroethane 6: 4 (weight ratio) at 20 ° C is melted with a 295 ° C screw extruder and metered and extruded with a gear pump. Guide to a 290 ° C yarn pack for irregular cross-section yarn, extrude from the orifice, wind at 1152m / min, then stretch 3.27 times with an 85 ° C hot-hole, and heat at 150 ° C And heat-treated to obtain 83.3 dtex / 36 mm multifilament. Let the sample name be Η. Fig. 5 shows the cross-sectional view.
次に、 基布を構成する地糸の経糸に芯部はポリエステル、 鞘部は低融点ポリエス テルから構成される 83. 3 d t e x/24 fの芯鞘複合繊維を用い、 パイル糸に 上記の実施例 1〜 3及び比較例 1〜 4で得られた複合繊維を用い、 緯糸に 55. 5 d t e x/12 f の芯鞘複合繊維と 22. 2 d t e x/6 f の導電性複合繊維の合 撚糸を用いてベルベット織物を製造した。 得られた織物を、 1 %濃度の水酸化ナト リウム水溶液を用いて 9 5 °C、 2 0分間のアルカリ減量を行なうことにより、 溶解 性の大なるボリマーを溶解除去し、 熱処理、 ラビングクロスとし、 液晶用のポリィ ミド膜にラビング処理を施した。 また、 得られたパイルの繊維の横断面部分を、 電 子顕微鏡写真に撮り、 横断面形状を測定した。 実施例 1の電子顕微鏡写真を第 9図 に示す。 Next, 83.3 dtex / 24 f core-sheath composite fiber composed of polyester for the core and low-melting polyester for the sheath is used for the warp of the ground yarn constituting the base fabric. Using the composite fibers obtained in Examples 1 to 3 and Comparative Examples 1 to 4, the weft was composed of a core-sheath composite fiber of 55.5 dtex / 12 f and a conductive composite fiber of 22.2 dtex / 6 f. Velvet fabric was produced using twisted yarn. The resulting woven fabric is subjected to alkali reduction at 95 ° C for 20 minutes using a 1% aqueous sodium hydroxide solution to dissolve and remove the highly soluble polymer, and heat-treated to form a rubbing cloth. A rubbing treatment was applied to the polyimide film for liquid crystal. The cross section of the fiber of the obtained pile was photographed by an electron microscope, and the cross section was measured. An electron micrograph of Example 1 is shown in FIG.
これらの結果を表 1に示す。  Table 1 shows the results.
表 1  table 1
Figure imgf000016_0001
Figure imgf000016_0001
実施例 2では被ラビング部材である塗布したポリイミド膜に微細 ·緻密で均 質な配向溝を形成する事が出来た。 花弁状突起の数を 1 6に増やした実施例 3では 良好なラビング効果が有ったが、 3 2に増やした比較例 1では、 起毛部の毛倒れは 無かったものの花弁状突起間が狭すぎて十分な配向溝を形成することが出来なかつ た。 また花弁状突起の長さが 2 . 6 %である比較例 2では花弁状突起の長さが短す ぎて十分な配向溝が形成されなかった。 P 2ポリマーの水分率を 1 9 4 p p mにし た比較例 3では溶融中の 2種のポリマーの粘度バランスに差が出過ぎた結果、 横断 面形状において P 2ポリマーの繊維表面への露出が多くなりそのためエツジ角度が 1 3 0度と大きく、 ラビングの効果は低下した。 比較例 4のように花弁状突起を有 していても、 花弁状突起数が少なく、 かつ、 エッジが全く形成されない繊維では必 要十分な緻密な配向溝が形成されなかった。  In Example 2, fine, dense, and uniform alignment grooves could be formed in the applied polyimide film as the rubbing member. In Example 3 in which the number of petals was increased to 16, a good rubbing effect was obtained, but in Comparative Example 1 in which the number of petals was increased to 32, the nurturing of the raised portion was not observed, but the space between the petals was narrow. As a result, sufficient alignment grooves could not be formed. In Comparative Example 2 in which the length of the petals was 2.6%, the length of the petals was too short to form a sufficient alignment groove. In Comparative Example 3, in which the moisture content of the P2 polymer was set to 194 ppm, the difference in viscosity balance between the two polymers during melting was too large, resulting in increased exposure of the P2 polymer to the fiber surface in the cross-sectional shape. As a result, the edge angle was as large as 130 degrees, and the rubbing effect was reduced. Even if it has petal-like protrusions as in Comparative Example 4, a fiber having a small number of petal-like protrusions and no edge formed at all did not form a necessary and sufficient dense alignment groove.
(実施例 5 ) 実施例 1で得られた複合繊維を緯糸に用い、 経糸にポリエステルを用いて、 5枚 朱子の織物を製織し、 1%濃度の水酸化ナトリウム水溶液を用いて 95で、 20分 間のアルカリ減量を行うことにより溶解性の大なるポリマーを溶解除去した後、 経 糸密度 120本 Z 2. 5 cm (120本 Zインチ)、 緯糸密度 150本 /2. 5 c m (150本/インチ) の織物を得た。 得られた織物を経糸方向に 40mm巾でス リットした後ロール状に巻き取りテープ状クリーニングクロスとした。 (Example 5) Using the conjugate fiber obtained in Example 1 for the weft, polyester for the warp, weaving five satin woven fabrics, using a 1% aqueous sodium hydroxide solution at 95, and reducing the alkali for 20 minutes After dissolving and removing the polymer with high solubility by carrying out, a woven fabric with a warp density of 120 threads Z 2.5 cm (120 threads Z inch) and a weft density of 150 threads / 2.5 cm (150 threads / inch) I got The obtained woven fabric was slit at a width of 40 mm in the warp direction, and then wound into a roll to obtain a tape-shaped cleaning cloth.
得られたクリ一ニングク口スをハードディスクのクリ一ニング工程に使用すると、 得られた緯糸繊維の微細なエッジが作用し優れたクリーニング効果が得られた。 尚、 得られた繊維の最大外径は、 14. 2 rn, 花弁状突起の数は 8、 繊維最大外径に 対する花弁状突起の基部から先端までの長さの比率 (L2ZL1) は 2'4. 4%, エッジの角度は 85度であった。 When the obtained cleaning cloth was used in a hard disk cleaning process, the fine edges of the obtained weft fibers acted, and an excellent cleaning effect was obtained. The maximum outer diameter of the obtained fiber was 14.2 rn, the number of petals was 8, and the ratio of the length from the base to the tip of the petal to the maximum outer diameter of the fiber (L2ZL1) was 2 '. 4.4%, edge angle was 85 degrees.
(実施例 6)  (Example 6)
実施例 4で得られた複合繊維を実施例 5と同様にクリーニングクロスとしたとこ ろ、 得られた緯糸繊維の微細なエッジが作用し優れたクリ一ニング効果が得られた。 尚、 得られた繊維の最大外径は、 15. 4 /m, 花弁状突起の数は 8、 繊維最大外 径に対する花弁状突起の基部から先端までの長さの比率 (L2/L 1) は 22. 2 %、 エッジの角度は 88度であった。  When the conjugate fiber obtained in Example 4 was used as a cleaning cloth in the same manner as in Example 5, fine edges of the obtained weft fibers acted, and an excellent cleaning effect was obtained. The maximum outer diameter of the obtained fiber was 15.4 / m, the number of petals was 8, and the ratio of the length from the base to the tip of the petal to the maximum outer diameter of the fiber (L2 / L1) Was 22.2% and the edge angle was 88 degrees.
(比較例 5)  (Comparative Example 5)
比較例 2で得られた複合繊維を実施例 5と同様にクリーニングクロスとしたとこ ろ、 花弁状突起間の溝深さが十分でなく、 隣合うフィラメント間の花弁状突起同士 の嚙み合いによる研削力アップが見られず、 強固に付着した微細なダストを取り除 くことができず、 クリーニング効果は十分ではなかった。 尚、 得られた繊維の最大 外径は、 14. 3 m、 花弁状突起の数は 8、 繊維最大外径に対する花弁状突起の 基部から先端までの長さの比率 (L2ZL1) は 2. 6%、 エッジの角度は 91度 であった。  When the conjugate fiber obtained in Comparative Example 2 was used as a cleaning cloth in the same manner as in Example 5, the groove depth between the petal-like projections was not sufficient, and the petal-like projections between adjacent filaments were interlocked. No increase in grinding power was observed, and fine dust adhered firmly could not be removed, and the cleaning effect was not sufficient. The maximum outer diameter of the obtained fiber is 14.3 m, the number of petals is 8, and the ratio of the length from the base to the tip of the petal to the maximum outer diameter of the fiber (L2ZL1) is 2.6. %, The edge angle was 91 degrees.
(比較例 6)  (Comparative Example 6)
比較例 4で得られた繊維を、 アル力リ減量工程を除き実施例 5と同様の方法でク リーニングクロスとしたところ、 花弁状突起数が少なく、 シャープなエッジもない ためハードディスク上の微細なダストを除去する事ができなかった。 産業上の利用可能性 The fiber obtained in Comparative Example 4 was treated in the same manner as in Example 5 except for the weight loss step. When used as a leaning cloth, fine dust on the hard disk could not be removed because the number of petals was small and there were no sharp edges. Industrial applicability
以上説明したように本発明の異型断面繊維は、 液晶ラビングクロスに用いてラビ ングを行うことにより被ラピング材に微細で均一な配向性をもたせることができる。 また、 ハードディスクのクリ一ニング用に使用し微細なダストを除くことができる。 他にも、 エッジが作用し効果を奏する研磨用、 ワイピングクロス用、 テクスチャー クロス用、 医療用、 衣料用などの用途にも適用できる。  As described above, the irregular shaped fiber of the present invention can impart fine and uniform orientation to the material to be wrapped by performing rubbing using a liquid crystal rubbing cloth. It can also be used for hard disk cleaning to remove fine dust. In addition, it can be applied to polishing, wiping cloth, texture cloth, medical use, clothing use, etc., where the edge is effective.
また、 本発明の複合繊維によれば、 かかる異型断面繊維を工業的に安定して製造 することができる。  Further, according to the conjugate fiber of the present invention, such a modified cross-section fiber can be industrially manufactured stably.

Claims

1 . 繊維横断面形状が、 中心部及び当該中心部に連続し中心より繊維外周に向かつ て放射状に伸びる 5〜 3 0枚の花弁状突起を組み合わせた形状からなり、 各花弁状 突起の基部から先端までの長さが繊維最大外径の 3〜4 5 %であり、 各花弁状突起 が 4 5〜1 1 5度角の少なくとも 2つのエッジを有することを特徴とする異型断面 請 1. The cross-sectional shape of the fiber is composed of a combination of a central portion and 5 to 30 petal-like projections that are continuous with the central portion and extend radially from the center toward the outer periphery of the fiber. Characterized in that the length from the tip to the tip is 3 to 45% of the maximum outer diameter of the fiber, and each petal has at least two edges of 45 to 115 degrees.
繊維。 'fiber. '
2 . 液晶配向用ラビングに用いる布帛であのって被ラビング材と接触する部分に請求 の範囲第 1項記載の異型断面繊維を用いたラビングクロス。 2. A rubbing cloth which is a cloth used for rubbing for liquid crystal alignment, wherein the rubbing cloth uses the modified cross-section fiber according to claim 1 in a portion which comes into contact with a rubbing material.
 Enclosure
3 . ハードディスクのクリーニングに用いる布帛であって、 ディスク材と接触する 部分に請求の範囲第 1項記載の異型断面繊維を用いたクリ一ニングクロス。  3. A cleaning cloth for cleaning a hard disk, wherein the cleaning cloth uses the irregular cross-section fiber according to claim 1 in a portion in contact with the disk material.
4 . 少なくとも 2種のポリマ一からなる複合繊維であって、 2種のポリマ一のうち 1種は他方のポリマ一に比して溶解性の大なるポリマ一であり、 当該複合繊維の横 断面形状が、 溶解性の小なるポリマーはほぼ中心部に存在し、 溶解性の大なるポリ マーは当該複合繊維の外周部に露出した互いに独立する 5〜 3 0個のセグメント形 状を成し、 溶解性の小なるポリマ一と溶解性の大なるポリマ一の接合比が 1 : 2〜 9 : 1であることを特徴とする複合繊維。  4. A composite fiber composed of at least two polymers, one of the two polymers being a polymer having a higher solubility than the other polymer, and the cross section of the composite fiber The polymer having a low solubility is located almost at the center, and the polymer having a high solubility has a shape of 5 to 30 independent segments exposed to the outer periphery of the composite fiber. A composite fiber, wherein the bonding ratio between the polymer having low solubility and the polymer having high solubility is 1: 2 to 9: 1.
5 . 請求の範囲第 4項記載の複合繊維を複合紡糸し、 次いで溶解性の大なるポリマ 一を溶解除去すること特徴とする異型断面繊維の製造方法。  5. A method for producing a fiber having a modified cross section, comprising conjugate spinning the conjugate fiber according to claim 4, and then dissolving and removing a polymer having high solubility.
PCT/JP2001/001195 2000-02-21 2001-02-20 Modified cross-section fiber and production method therefor WO2001061083A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001232349A AU2001232349A1 (en) 2000-02-21 2001-02-20 Modified cross-section fiber and production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-43076 2000-02-21
JP2000043076 2000-02-21

Publications (1)

Publication Number Publication Date
WO2001061083A1 true WO2001061083A1 (en) 2001-08-23

Family

ID=18566051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/001195 WO2001061083A1 (en) 2000-02-21 2001-02-20 Modified cross-section fiber and production method therefor

Country Status (2)

Country Link
AU (1) AU2001232349A1 (en)
WO (1) WO2001061083A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049589A1 (en) * 2001-12-12 2003-06-19 Kimberly-Clark Worldwide, Inc. Cleaning sheet, system and apparatus
JP2005120169A (en) * 2003-10-15 2005-05-12 Lintec Corp Double-sided adhesive tape for adhering rubbing cloth and rubbing sheet adhered to the same and used for being wound and adhered to roller
WO2008056584A1 (en) * 2006-11-07 2008-05-15 Kuraray Trading Co., Ltd. Rubbing cloth
JP2009015317A (en) * 2007-06-06 2009-01-22 Toray Ind Inc Rubbing cloth
JP2012021160A (en) * 2011-08-29 2012-02-02 Lintec Corp Double-sided adhesive tape for adhering rubbing cloth and roller-winding rubbing sheet having the tape adhered thereto
TWI384100B (en) * 2010-01-25 2013-02-01 Tai Yuen Textile Co Ltd Rubbing cloth and rubbing apparatus utilizing the same
CN104451921A (en) * 2013-09-22 2015-03-25 东丽纤维研究所(中国)有限公司 Water-absorption quick-dry long fiber, fabric and manufacturing methods of water-absorption quick-dry long fiber and fabric
CN107208322A (en) * 2015-02-13 2017-09-26 东丽株式会社 The manufacture method of core sheath composite fibre and breach fiber and these fibers

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146932A (en) * 1984-08-10 1986-03-07 Sharp Corp Rubbing device of oriented film for liquid crystal display
JPH062234A (en) * 1992-06-17 1994-01-11 Toray Ind Inc Combined polyester filament yarn, having different yarn length and good in color developing property
JPH07109665A (en) * 1993-10-06 1995-04-25 Unitika Ltd Production of knit or woven fabric
JPH0835114A (en) * 1994-07-18 1996-02-06 Kuraray Co Ltd Yarn having excellent coloring property

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6146932A (en) * 1984-08-10 1986-03-07 Sharp Corp Rubbing device of oriented film for liquid crystal display
JPH062234A (en) * 1992-06-17 1994-01-11 Toray Ind Inc Combined polyester filament yarn, having different yarn length and good in color developing property
JPH07109665A (en) * 1993-10-06 1995-04-25 Unitika Ltd Production of knit or woven fabric
JPH0835114A (en) * 1994-07-18 1996-02-06 Kuraray Co Ltd Yarn having excellent coloring property

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003049589A1 (en) * 2001-12-12 2003-06-19 Kimberly-Clark Worldwide, Inc. Cleaning sheet, system and apparatus
JP2005120169A (en) * 2003-10-15 2005-05-12 Lintec Corp Double-sided adhesive tape for adhering rubbing cloth and rubbing sheet adhered to the same and used for being wound and adhered to roller
WO2008056584A1 (en) * 2006-11-07 2008-05-15 Kuraray Trading Co., Ltd. Rubbing cloth
JP5009300B2 (en) * 2006-11-07 2012-08-22 クラレトレーディング株式会社 Rubbing cloth
TWI393811B (en) * 2006-11-07 2013-04-21 Kuraray Trading Co Ltd Rubbing cloth
KR101494018B1 (en) 2006-11-07 2015-02-16 구라레 트레이딩 가부시키가이샤 Rubbing cloth
JP2009015317A (en) * 2007-06-06 2009-01-22 Toray Ind Inc Rubbing cloth
TWI384100B (en) * 2010-01-25 2013-02-01 Tai Yuen Textile Co Ltd Rubbing cloth and rubbing apparatus utilizing the same
JP2012021160A (en) * 2011-08-29 2012-02-02 Lintec Corp Double-sided adhesive tape for adhering rubbing cloth and roller-winding rubbing sheet having the tape adhered thereto
CN104451921A (en) * 2013-09-22 2015-03-25 东丽纤维研究所(中国)有限公司 Water-absorption quick-dry long fiber, fabric and manufacturing methods of water-absorption quick-dry long fiber and fabric
CN107208322A (en) * 2015-02-13 2017-09-26 东丽株式会社 The manufacture method of core sheath composite fibre and breach fiber and these fibers
EP3257976A4 (en) * 2015-02-13 2018-09-12 Toray Industries, Inc. Core-sheath conjugated fiber, slit fiber, and method for manufacturing these fibers

Also Published As

Publication number Publication date
AU2001232349A1 (en) 2001-08-27

Similar Documents

Publication Publication Date Title
JP4011584B2 (en) Method for producing continuous filament made of nanofiber
TWI551738B (en) Sea-island type composite fiber, ultrafine fiber and composite spinneret
TWI658182B (en) Island composite fiber, composite ultrafine fiber and fiber products
US9663876B2 (en) Sea-island composite fiber, mixed yarn and fiber product
TWI541399B (en) Composite fiber
JP3827672B2 (en) Polyester-based composite fiber pan
JP4223367B2 (en) High pile for paint roller
CN106661771B (en) Gloss pilling-resistant acrylic fiber, process for producing the same, and yarn and knitted fabric comprising the same
JP2019500515A (en) Lyocell fiber and method for producing the same
WO2001061083A1 (en) Modified cross-section fiber and production method therefor
TW200307068A (en) Polyester fine multifilament yarn and polyester fine false twisting textured yarn, and methods for producing the same
JP5740877B2 (en) Extra fine fiber
JP5275587B2 (en) Ultra-fine two-layer structure yarn and wiping cloth comprising the same
JP2010024570A (en) Woven fabric for wiping and wiping product
JP4598600B2 (en) Wiping cloth
JP3764132B2 (en) Special cross-section fiber
JP5662007B2 (en) Standing fabric and standing fabric product
JPH0651925B2 (en) Fiber with special cross-sectional shape
JP2011157647A (en) Wiping cloth
TW200407472A (en) Entangled bicomponent yarn and process to make the same
JP4700238B2 (en) Polyester false twisted yarn and method for producing the same
JPH0726248B2 (en) Method for producing polyester staple fiber
JP6068868B2 (en) Shortcut fiber for wet nonwoven fabric
JP4021794B2 (en) Composite fiber for textile and its manufacturing method
JP2018071014A (en) Sea-island composite fiber and method for producing the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 559916

Kind code of ref document: A

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase