JP5275587B2 - Ultra-fine two-layer structure yarn and wiping cloth comprising the same - Google Patents

Ultra-fine two-layer structure yarn and wiping cloth comprising the same Download PDF

Info

Publication number
JP5275587B2
JP5275587B2 JP2007170305A JP2007170305A JP5275587B2 JP 5275587 B2 JP5275587 B2 JP 5275587B2 JP 2007170305 A JP2007170305 A JP 2007170305A JP 2007170305 A JP2007170305 A JP 2007170305A JP 5275587 B2 JP5275587 B2 JP 5275587B2
Authority
JP
Japan
Prior art keywords
multifilament
yarn
dtex
sea
layer structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007170305A
Other languages
Japanese (ja)
Other versions
JP2009007705A (en
Inventor
卓 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2007170305A priority Critical patent/JP5275587B2/en
Publication of JP2009007705A publication Critical patent/JP2009007705A/en
Application granted granted Critical
Publication of JP5275587B2 publication Critical patent/JP5275587B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高い吸水性を有し、ふき取り性に優れ、発塵の少ない、ワイピングクロスに適した極細二層構造糸及びそれからなるワイピングクロスに関するものである。   The present invention relates to an ultrafine two-layer structured yarn suitable for a wiping cloth having high water absorption, excellent wiping property and low dust generation, and a wiping cloth comprising the same.

従来より、ワイピングクロスは、清掃用布帛、眼鏡やレンズ拭きなどの用途に使用されてきた。そして、その多くは、吸水性良好な繊維素材として木綿繊維などの天然繊維や、布帛内の繊維表面積を大きくすることにより、吸着力が高まることを期待した極細繊維が使用されてきた。今日、ワイピングクロスはICや半導体の製造工場やクリーンルームなど、産業分野でも幅広く展開されている。   Conventionally, wiping cloths have been used for applications such as cleaning cloths, eyeglasses and lens wiping. And many of them have used natural fibers such as cotton fibers as fiber materials with good water absorption, and ultrafine fibers that are expected to increase the adsorption power by increasing the fiber surface area in the fabric. Today, wiping cloth is widely deployed in industrial fields such as IC and semiconductor manufacturing factories and clean rooms.

特許文献1(特開昭61−228821号公報)に記載されているような、セルロース系天然繊維が布帛の表面に多量に位置するようなワイピングクロスは、油、水などの拭取り性、捕塵力は良いものの、拭き取り対象物の表面に毛羽が落ち、発塵するという問題点やICや半導体の製造工場やクリーンルームなど産業用には限界があった。また、特許文献2(特開昭63−211364号公報)に記載されているような、0.2dtex以下の超極細糸と0.5〜10dtexの繊維からなる糸を主体とした高密度な交絡織編物では、油、水などの拭取り性、捕塵力は良いものの、超極細糸とする為又収縮させるためにウォータージェットパンチを行っているが、繊維の切断や強度が低下したり、発塵する為ICや半導体の製造工場やクリーンルームなどの使用には問題があった。   As described in Patent Document 1 (Japanese Patent Laid-Open No. 61-228821), a wiping cloth in which a large amount of cellulose-based natural fibers are located on the surface of a fabric is used for wiping with oil, water, etc. Although the dust force is good, there is a problem that fluff falls on the surface of the object to be wiped and generates dust, and there are limits to industrial use such as IC and semiconductor manufacturing factories and clean rooms. Further, as described in Patent Document 2 (Japanese Patent Application Laid-Open No. 63-212364), high-density entanglement mainly composed of ultrafine yarns of 0.2 dtex or less and yarns of 0.5 to 10 dtex fibers. In woven and knitted fabrics, although wiping properties such as oil and water are good, the water jet punch is used to make the ultra-fine yarn and shrink, but the fiber cutting and strength are reduced. Due to the generation of dust, there were problems in the use of IC and semiconductor manufacturing factories and clean rooms.

同様に特開2004−8501号公報にはワイピングクロス用極細繊維不織布が提案されているが、剥離分割型複合繊維を水存在下で高圧水流処理して極細化するため高圧水流処理により極細繊維の損傷、切断が避けられず強度の低下や発塵の問題があった。
こうした状況に鑑み、より高性能の油、水分、塵等を捕捉、吸収するワイピングクロス用素材が求められている。
Similarly, Japanese Patent Application Laid-Open No. 2004-8501 proposes an ultrafine fiber nonwoven fabric for wiping cloth. However, in order to make the separation split type composite fiber ultrafine by high pressure water flow treatment in the presence of water, Damage and cutting were inevitable, and there were problems of reduced strength and dust generation.
In view of these circumstances, there is a need for a wiping cloth material that captures and absorbs higher performance oil, moisture, dust, and the like.

特開昭61−228821号公報Japanese Patent Laid-Open No. 61-228821 特開昭63−211364号公報JP 63-2111364 A 特開2004−8501号公報JP 2004-8501 A

本発明は、上記の問題点を克服し、油、水などの拭取り性、捕塵力が高く、産業用途にも使用可能な発塵性の少ないワイピングクロスに適した極細二層構造糸及びそれからなるワイピングクロスを提供することにある。   The present invention overcomes the above-mentioned problems, and has an ultra-fine two-layer structure yarn suitable for wiping cloth that has high wiping property for oil, water, etc., high dust trapping power, and can be used for industrial applications, and has little dusting property It is to provide a wiping cloth comprising the same.

本発明者らは、上記目的を達成するために鋭意検討した結果、本発明に到達した。即ち、単糸繊度が0.001〜0.01dtexであるマルチフィラメントAと、単糸繊度が0.1〜10dtexであるマルチフィラメントBとが混繊された二層構造糸であって、その交絡部において、マルチフィラメントBが繊維表面に現れている箇所が20個/m以下であり、マルチフィラメントAが主として鞘部に配置され、マルチフィラメントBが主として芯部に配置されてなる、下記要件を満足する極細二層構造糸。
(1)マルチフィラメントAの強度≧3.0cN/dtex
(2)20個/m≦二層構造糸の交絡個数≦100個/m
The inventors of the present invention have arrived at the present invention as a result of intensive studies to achieve the above object. That is, a double-layer structure yarn in which a multifilament A having a single yarn fineness of 0.001 to 0.01 dtex and a multifilament B having a single yarn fineness of 0.1 to 10 dtex are mixed, In the part, the number of places where the multifilament B appears on the fiber surface is 20 pieces / m or less, the multifilament A is mainly arranged in the sheath part, and the multifilament B is mainly arranged in the core part. Satisfactory ultra-thin bilayer yarn
(1) Strength of multifilament A ≧ 3.0 cN / dtex
(2) 20 / m ≦ entangled number of double-layer structure yarn ≦ 100 / m

本発明によれば、極細繊維マルチフィラメントを二層構造糸の表層部に配置する構造とすることにより、シャープ・マルチシェービング効果、インナートラップ効果が発揮され、油、水などの拭取り性、捕塵力が高く、且つ発塵性の少ない、産業用途にも使用可能なワイピングクロスが提供される。   According to the present invention, by arranging the ultrafine fiber multifilament in the surface layer portion of the two-layer structure yarn, the sharp multi-shaving effect and the inner trap effect are exhibited, and the wiping property of oil, water, etc. Provided is a wiping cloth that can be used for industrial applications with high dust force and low dust generation.

以下に本発明について詳細に説明する。
従来、ワイピングクロスの多くは、布帛内の繊維表面積を大きくすることにより、吸着力が高まることを期待した極細繊維が使用されてきた。極細繊維を用いたワイピングクロスの特徴としては、繊維間隙の毛細管現象により吸水性や吸油性が高まること、また、極細繊維特有のシャープ・マルチシェービング効果、インナートラップ効果が期待できることがある。一方で、繊維が細いために単糸切れし、発塵するという問題点がある。
The present invention is described in detail below.
Conventionally, many wiping cloths have used ultrafine fibers that are expected to increase the adsorptive power by increasing the fiber surface area in the fabric. The characteristics of the wiping cloth using ultrafine fibers are that water absorption and oil absorption increase due to the capillary phenomenon of the fiber gap, and that the sharp multi-shaving effect and inner trap effect peculiar to ultrafine fibers can be expected. On the other hand, since the fibers are thin, there is a problem that single yarn breaks and dust is generated.

本発明は、極細繊維の特徴を活かし、且つ発塵を防ぐことを目的として、沸水収縮率の大きいマルチフィラメントBが芯部に、マルチフィラメントAが鞘部に位置する芯鞘型二層構造糸をワイピングクロス用糸条とした点が特徴である。拭取った汚れが鞘の繊維の間に吸収された後、シャープ・マルチシェービング効果により鞘部から芯部へ汚れが押し上げられ、芯部の極細繊維の毛細管現象やインナートラップ効果により、吸水性が高まり、拭取り性が高くなる。本発明は、油、水などの拭取り性が高く、捕塵力に優れた、産業用途にも使用可能な発塵性の少ないワイピングクロスを提供することが可能となる。   The present invention is a core-sheath type two-layer structure yarn in which a multifilament B having a large boiling water shrinkage is located in the core and a multifilament A is located in the sheath for the purpose of making use of the features of ultrafine fibers and preventing dust generation. The point is that it is used as a yarn for wiping cloth. After the wiped dirt is absorbed between the sheath fibers, the dirt is pushed up from the sheath to the core by the sharp multi-shaving effect, and the water absorption is improved by the capillary action and inner trap effect of the ultrafine fibers in the core. Increases wiping performance. INDUSTRIAL APPLICABILITY The present invention can provide a wiping cloth that has high wiping properties for oil, water, etc., has excellent dust capturing power, and can be used for industrial applications with little dust generation.

ここで、本発明におけるシャープ・マルチシェービング効果とは、表面積が大きいことと一定面積における繊維数の多さを利用した効果である。対象物への繊維接触回数が遥かに多くなることにより極細繊維が脂膜をそぎとり、上部の超極細繊維群へと押し上げる。太い繊維で拭くと、繊維の移動により繊維の全体に溜まった脂が再び繊維の下へ巻き込まれ、除去機能が劣る。また、インナートラップ効果とは、超極細繊維間の空間(ミクロポケット)を利用した効果である。対象物を拭き取る時、繊維群は指でプレスされた状態にあり脂は吸い込まれていくが、プレス状態を開放したとき、織物の内部の繊維密度が高いと脂は内部へと移動する。移動後の表面は脂が少なく、次のふき取り効果を高める。   Here, the sharp multi-shaving effect in the present invention is an effect utilizing a large surface area and a large number of fibers in a certain area. When the number of times of fiber contact with the object is much increased, the ultrafine fibers scrape the oil film and push it up to the upper superfine fiber group. When wiping with a thick fiber, the fat accumulated in the entire fiber due to the movement of the fiber is caught again under the fiber, and the removal function is inferior. The inner trap effect is an effect using a space (micro pocket) between ultrafine fibers. When the object is wiped off, the fiber group is pressed with the finger and the fat is sucked in. However, when the pressed state is released, the fat moves to the inside if the fiber density inside the fabric is high. The surface after movement has less fat and enhances the next wiping effect.

本発明のワイピングクロスの外層部に位置するマルチフィラメントAの単糸繊度は、0.001dtex〜0.01dtexであり、さらに好ましくは、0.004〜0.009dtexの範囲のものがより好ましい。単糸繊度が0.01dtex以上であると、吸水性や拭取り性などワイピングクロスの性能に支障をきたす。一方、単糸繊度が0.001dtex未満では、フィラメントのシルクファクターが小さくなるため、ワイピングクロスの耐久性に問題が生じる。 Single fineness multifilament A located in the outer layer portion of the wiping cloth of the present invention, Ri 0.001 Dtex~0.01Dtex der, preferably in the al, is in the range of 0.004~0.009dtex More preferred. When the single yarn fineness is 0.01 dtex or more, the performance of the wiping cloth such as water absorption and wiping properties is hindered. On the other hand, when the single yarn fineness is less than 0.001 dtex, the silk factor of the filament becomes small, which causes a problem in durability of the wiping cloth.

マルチフィラメントAの強度は3.0cN/dtex以上である必要があり、3.0cN/dtex未満ではワイピングクロスとしたとき強度が不足し、破れや破損が生じやすくなる。好ましくは4cN/dtex以上である。   The strength of the multifilament A needs to be 3.0 cN / dtex or more. If it is less than 3.0 cN / dtex, the strength is insufficient when a wiping cloth is used, and breakage or breakage is likely to occur. Preferably it is 4 cN / dtex or more.

マルチフィラメントAの出発材料となる極細繊維化前の海島型複合繊維マルチフィラメント(以下マルチフィラメントA’ともいう)は、通常、総繊度が10〜50dtex、好ましくは20〜40dtex、フィラメント数が5〜40フィラメント、好ましくは6〜30フィラメントである。   The sea-island composite fiber multifilament (hereinafter also referred to as “multifilament A ′”), which is used as the starting material for the multifilament A, is usually 10 to 50 dtex, preferably 20 to 40 dtex, and 5 to 5 filaments. 40 filaments, preferably 6-30 filaments.

一方、極細混繊糸の芯部に位置するマルチフィラメントBは、単糸繊度が0.1〜10dtexであることが必要である。好ましくは、0.4〜4dtexの範囲である。単糸繊度が0.1dtexよりも小さくなればなるほどワイピングクロスの張り、腰、寸法安定性が低下し、一方、10dtexを超えると、硬くなりワイピングクロス性能が低下する。   On the other hand, the multifilament B positioned at the core of the ultra-fine mixed yarn needs to have a single yarn fineness of 0.1 to 10 dtex. Preferably, it is in the range of 0.4 to 4 dtex. As the single yarn fineness becomes smaller than 0.1 dtex, the tension, waist and dimensional stability of the wiping cloth decrease. On the other hand, when it exceeds 10 dtex, it becomes hard and the wiping cloth performance decreases.

また、マルチフィラメントBが芯部に、マルチフィラメントAが鞘部に位置する芯鞘型二層構造糸とするためには、以下の方法で行うことが好ましい。
即ち、沸水収縮率差が下記条件を満足するマルチフィラメントA’とマルチフィラメントBを引き揃え交絡した後収縮処理してマルチフィラメントA’が鞘部、マルチフィラメントBが芯部に配置した芯鞘構造二層構造糸とした後、マルチフィラメントA’の海成分を溶解除去して極細化することによりマルチフィラメントAを鞘部、マルチフィラメントBを芯部とする芯鞘型極細二層構造糸とする。
10%≦Δ沸水収縮率≦40%
[Δ沸水収縮率:マルチフィラメントBの沸水収縮率−マルチフィラメントA’の沸水収縮率]
In order to obtain a core-sheath type two-layer structure yarn in which the multifilament B is located in the core and the multifilament A is located in the sheath, the following method is preferable.
That is, the core-sheath structure in which the multifilament A ′ and the multifilament B are aligned and entangled after the shrinkage difference in boiling water satisfies the following conditions and then contracted to arrange the multifilament A ′ in the sheath and the multifilament B in the core After forming the two-layer structure yarn, the sea component of the multifilament A ′ is dissolved and removed to make it ultrafine to obtain a core-sheath type ultrafine double-layer structure yarn having the multifilament A as the sheath and the multifilament B as the core. .
10% ≦ Δ boiling water shrinkage ≦ 40%
[Δ Boiling Water Shrinkage: Boiling Water Shrinkage of Multifilament B−Boiling Water Shrinkage of Multifilament A ′]

マルチフィラメントBの沸水収縮率とマルチフィラメントA’の沸水収縮率の差〔Δ沸水収縮率:マルチフィラメントBの沸水収縮率−マルチフィラメントA’の沸水収縮率〕が重要で、10%≦Δ沸水収縮率≦40%とする必要がある。Δ沸水収縮率が10%より小さい場合にはマルチフィラメントBがワイピングクロスの外層部に現れて、拭取り性が低下し好ましくない。一方、Δ沸水収縮率が40%より大きい場合には、風合いが硬くなり、商品として好ましくない。   The difference between the boiling water shrinkage of the multifilament B and the boiling water shrinkage of the multifilament A ′ [Δ boiling water shrinkage: the boiling water shrinkage of the multifilament B−the boiling water shrinkage of the multifilament A ′] is important, and 10% ≦ Δ boiling water It is necessary to set the shrinkage rate ≦ 40%. When the Δboiling water shrinkage rate is smaller than 10%, the multifilament B appears in the outer layer portion of the wiping cloth, and the wiping property is deteriorated. On the other hand, when the Δ boiling water shrinkage rate is larger than 40%, the texture becomes hard, which is not preferable as a product.

マルチフィラメントA’の沸水収縮率は10%以下が好ましく、0〜8%、より好ましくは1〜5%にすることが好ましい。更にマルチフィラメントA’の沸水収縮率はマルチフィラメントBのそれの10〜60%とすることが重要である。好ましくは、40〜60%の範囲である。マルチフィラメントA’の沸水収縮率がマルチフィラメントBの60%を超えると、芯鞘型二層構造糸を形成しにくくなり、マルチフィラメントBがワイピングクロスの外層部に現れて、拭取り性が低下し好ましくない。一方、マルチフィラメントA’の沸水収縮率がマルチフィラメントBの10%未満では、風合いが硬くなり、商品として好ましくない。   The boiling water shrinkage of the multifilament A ′ is preferably 10% or less, preferably 0 to 8%, more preferably 1 to 5%. Furthermore, it is important that the boiling water shrinkage of the multifilament A ′ is 10 to 60% of that of the multifilament B. Preferably, it is 40 to 60% of range. If the boiling water shrinkage of multifilament A ′ exceeds 60% of multifilament B, it becomes difficult to form a core-sheath type two-layer structure yarn, and multifilament B appears in the outer layer portion of the wiping cloth, resulting in a decrease in wiping performance. It is not preferable. On the other hand, when the boiling water shrinkage ratio of the multifilament A ′ is less than 10% of the multifilament B, the texture becomes hard, which is not preferable as a product.

ここで、マルチフィラメントA’の沸水収縮率をマルチフィラメントBの沸水収縮率の10〜60%にするには、フィラメントA’を延伸する際に、熱セット温度をコントロールしたり、延伸倍率を調整して沸水収縮率調整すればよい。   Here, in order to set the boiling water shrinkage of multifilament A ′ to 10 to 60% of the boiling water shrinkage of multifilament B, the heat set temperature is controlled or the draw ratio is adjusted when drawing filament A ′. Then, the boiling water shrinkage rate may be adjusted.

マルチフィラメントA’の海島型複合繊維においては、島数は多いほうが海溶解後の島成分からなる繊維が細くなり、超極細繊維特有のシャープ・マルチシェービング効果、インナートラップ効果が期待できるので、100〜1,000島/単糸であることが重要である。100島未満では、島比率が小さい場合に極細繊維としての効果が期待できない。一方、1,000島を超えると、紡糸口金の製造コストが高くなるだけでなく、加工精度自体も低下しやすくなる。好ましくは、500〜1,000島である。   In the multi-filament A ′ sea-island type composite fiber, the larger the number of islands, the narrower the fiber composed of island components after sea dissolution, and the sharp multi-shaving effect and inner trap effect unique to ultra-fine fibers can be expected. It is important to be ~ 1,000 islands / single yarn. If it is less than 100 islands, the effect as an ultrafine fiber cannot be expected when the island ratio is small. On the other hand, if it exceeds 1,000 islands, not only the production cost of the spinneret increases, but also the processing accuracy itself tends to decrease. Preferably, it is 500 to 1,000 islands.

海成分の島成分に対する溶解速度比は、海成分が島成分の30〜5,000倍であることが好ましい。より好ましくは、100〜4,000倍である。30倍未満の場合には、繊維断面表層部の分離した島成分の一部が溶解されて、繊維断面中央部にある海成分まで溶解されないという問題が起こり易くなる。これにより、島成分の太さ斑が発生し、品位に問題が低下する傾向にある。一方、5,000倍を超えると、繊維化が難しい。   The dissolution rate ratio of the sea component to the island component is preferably 30 to 5,000 times that of the island component. More preferably, it is 100 to 4,000 times. When the ratio is less than 30 times, a part of the separated island component of the fiber cross-section surface layer portion is dissolved, and the problem that the sea component at the center of the fiber cross-section is not dissolved easily occurs. Thereby, the thickness variation of an island component generate | occur | produces and it exists in the tendency for a problem to fall in a quality. On the other hand, if it exceeds 5,000 times, fiberization is difficult.

かかる海島型複合繊維を構成するポリマーとして、海成分ポリマーとしては、島成分との溶剤溶解速度差が30倍以上であれば、いかなる繊維形成性ポリマーであってもよく、ポリアミド、ポリスチレン、ポリエチレン、ポリエステルなどいずれのポリマーでも良い。なかでもポリエステルは溶剤溶解性を調節する上で好ましい。例えば、水酸化カリウム、水酸化ナトリウム等のアルカリ水溶液溶解性ポリマーの場合は、ポリ乳酸、ポリエチレングリコール系共重合ポリエステル、5−ナトリウムスルホン酸イソフタル酸の共重合ポリエステルが最適である。また、ナイロン6はギ酸に溶解し、ポリスチレンはトルエンなど有機溶剤に溶解することができる。   As the polymer constituting the sea-island type composite fiber, the sea component polymer may be any fiber-forming polymer as long as the solvent dissolution rate difference with the island component is 30 times or more, such as polyamide, polystyrene, polyethylene, Any polymer such as polyester may be used. Of these, polyester is preferable for adjusting the solvent solubility. For example, in the case of an alkaline aqueous solution-soluble polymer such as potassium hydroxide or sodium hydroxide, polylactic acid, polyethylene glycol copolymer polyester, and copolymerized polyester of 5-sodium sulfonic acid isophthalic acid are optimal. Nylon 6 can be dissolved in formic acid, and polystyrene can be dissolved in an organic solvent such as toluene.

一方、島成分ポリマーについても、いかなる繊維形成性ポリマーであってもよく、ポリアミド、ポリスチレン、ポリエチレン、ポリエステルなどいずれのポリマーでも良い。好ましくはポリエステルである。
さらに、島成分の形状としては、丸断面に限らず、異形断面であってもよい。
On the other hand, the island component polymer may be any fiber-forming polymer, and may be any polymer such as polyamide, polystyrene, polyethylene, or polyester. Polyester is preferable.
Furthermore, the shape of the island component is not limited to a round cross section, and may be an irregular cross section.

海成分の比率は、島−島間の海成分の厚みを薄くするため、また緻密なワイピングクロスを作るために、全繊維重量の5〜40%が好ましい。より好ましくは10〜30%の範囲である。40%を超えると、海成分の厚みが厚くなり海島の分離に好ましくない、また緻密なワイピングクロスができない。一方、5%未満では、ポリマー量が少なすぎて、多数の島間に均一に分配することが困難である。   The ratio of the sea component is preferably 5 to 40% of the total fiber weight in order to reduce the thickness of the sea component between the islands and to make a dense wiping cloth. More preferably, it is 10 to 30% of range. If it exceeds 40%, the thickness of the sea component becomes so thick that it is not preferable for separation of sea islands, and a precise wiping cloth cannot be formed. On the other hand, if it is less than 5%, the amount of polymer is too small, and it is difficult to uniformly distribute between a large number of islands.

マルチフィラメントA’の製造方法としては、溶融紡糸に用いられる紡糸口金に関し、島成分を形成するための中空ピン群や微細孔群を有するものなど任意のものを用いることができる。例えば中空ピンや微細孔より押し出された島成分とその間を埋める形で流路を設計されている海成分流とを合流し、これを圧縮することにより海島断面が形成されるといった紡糸口金でもよい。好ましく用いられる紡糸口金例を図2に示すが、必ずしもこれらに限定されるものではない。上述の紡糸口金により吐出された後は、通常の溶融紡糸法により得ることができる。   As a manufacturing method of multifilament A ', arbitrary things, such as what has a hollow pin group for forming an island component, and a fine hole group, can be used regarding the spinneret used for melt spinning. For example, a spinneret may be used in which an island component extruded from a hollow pin or a fine hole and a sea component flow that is designed to fill the gap between the island component are joined and compressed to form a cross section of the sea island. . Examples of spinnerets that are preferably used are shown in FIG. 2, but are not necessarily limited thereto. After being discharged by the above spinneret, it can be obtained by a normal melt spinning method.

マルチフィラメントBは、通常、総繊度が0.1〜10dtex、好ましくは0.4〜4dtex、フィラメント数が12〜168フィラメント、好ましくは24〜144フィラメントである。マルチフィラメントBの製造方法としては公知の溶融紡糸法により得ることができる。   The multifilament B usually has a total fineness of 0.1 to 10 dtex, preferably 0.4 to 4 dtex, and a filament count of 12 to 168 filaments, preferably 24 to 144 filaments. As a method for producing the multifilament B, it can be obtained by a known melt spinning method.

次に、以上に説明した混繊糸を製造するための好ましい方法について説明する。
未延伸のマルチフィラメントA’を従来公知の延伸方法により延伸する。ここで、延伸中の糸が受ける温度は、加熱体の種類に応じて、熱処理時間などを調整することにより設定できるので、該調整ができれば、接触タイプだけではなく非接触式タイプの加熱体も使用できる。
Next, a preferred method for producing the mixed fiber described above will be described.
Unstretched multifilament A ′ is stretched by a conventionally known stretching method. Here, the temperature received by the yarn being drawn can be set by adjusting the heat treatment time, etc., depending on the type of the heating element, so if it can be adjusted, not only the contact type but also the non-contact type heating element Can be used.

延伸熱処理を終えたマルチフィラメントA’を、常法により製造された単糸繊度が0.1dtex以上であるマルチフィラメントBと混繊する。混繊方法は従来公知の方法を採用すればよい。例えば、延伸熱処理されたマルチフィラメントA’とマルチフィラメントBとを引き揃えて、1.0〜1.5%のオーバーフィードにて、インターレースノズルに供給して交絡を付与して二層構造糸とする。   The multifilament A ′ after the drawing heat treatment is mixed with the multifilament B having a single yarn fineness of 0.1 dtex or more manufactured by a conventional method. A conventionally known method may be adopted as the fiber mixing method. For example, the multifilament A ′ and the multifilament B that have been heat-treated by drawing are aligned and supplied to an interlace nozzle with an overfeed of 1.0 to 1.5% to give entanglement and a two-layer structure yarn To do.

得られた二層構造糸は、通常、撚糸工程で撚糸された後、製編織され、極細化工程で処理される。
極細化工程は海成分を溶解する溶剤に浸漬、絞りを交互に繰り返して海成分を溶出し、除去することにより一般的に行われる。海成分がポリエステルの場合、アルカリ減量装置により、ポリエステルを除去して行うことが好ましい。
The obtained two-layer structure yarn is usually twisted in a twisting process, then knitted and woven, and processed in an ultrafine process.
The ultra-thinning process is generally performed by immersing and removing sea components in a solvent that dissolves the sea components alternately to elute and remove the sea components. When the sea component is polyester, it is preferable to remove the polyester with an alkali weight reduction device.

上記極細化工程で、混繊糸を構成するマルチフィラメントA’が極細化されて極細繊維であるマルチフィラメントAになるとともに、熱履歴により該混繊糸は沸水収縮率の大きいマルチフィラメントBが芯部に、マルチフィラメントAが鞘部に位置する芯鞘型極細二層構造糸となる。より詳しくは、鞘部が単糸繊度0.001〜0.01dtexであるマルチフィラメントAから構成され、芯部に単糸繊度が0.1〜10dtexであるマルチフィラメントBからなる芯鞘型極細二層構造糸が構成される。 In the ultrathinning step, the multifilament A ′ constituting the blended yarn is ultrathinned to become a multifilament A which is a very fine fiber, and the multifilament B having a large boiling water shrinkage is cored by the thermal history. In the part, the multifilament A becomes a core-sheath type ultrafine two-layer structure yarn located in the sheath part. More specifically, the core-sheath type ultrafine two-layer sheath is composed of multifilament A having a single yarn fineness of 0.001 to 0.01 dtex, and the core portion is composed of multifilament B having a single yarn fineness of 0.1 to 10 dtex. A layered yarn is constructed.

ワイピングクロスの表層部に現れるフィラメントAは、丸断面でも異形断面でも良く、異形断面で鋭角であるほど、ワイピング効果が優れている。
また、ワイピングクロスとしてはいかなる織組織であってもよく、平織組織、朱子織組織、これらの二重織、あるいは変化組織のものなど、すべての織りが含まれる。編物としては、丸編、経編いずれの編組織であってもよい。
The filament A appearing in the surface layer portion of the wiping cloth may have a round cross section or a modified cross section, and the sharper the knitting effect is, the better the wiping effect is.
Further, the wiping cloth may be any woven structure, and includes all weaves such as plain weave structure, satin weave structure, double weave of these, or changed structure. The knitted fabric may be either a circular knitting or a warp knitting structure.

本発明のワイピングクロスを構成する以上のマルチフィラメントAとマルチフィラメントBとの重量比率は、20:80〜80:20、好ましくは30:70〜70:30である。マルチフィラメントAの重量比率が20重量%未満では、ワイピング性能の向上は期待できない。一方、80重量%を超えると、マルチフィラメントAの割合がBに比べて高すぎるために、織物がくたくたになってしまう。   The weight ratio of the above-mentioned multifilament A and multifilament B constituting the wiping cloth of the present invention is 20:80 to 80:20, preferably 30:70 to 70:30. If the weight ratio of the multifilament A is less than 20% by weight, improvement in wiping performance cannot be expected. On the other hand, if it exceeds 80% by weight, the ratio of the multifilament A is too high compared to B, so that the woven fabric becomes crap.

以下、実施例によって、本発明をさらに詳細に説明する。織物は以下のとおりに作成した。また、測定方法は以下のとおりで実施した。
(1)減量速度測定
海・島ポリマーの各々0.3φ−0.6L×24Hの口金にて1,000〜2,000m/分の紡糸速度で糸を巻き取りし、さらに残留伸度が30〜60%の範囲になるように延伸して、75de/24filのマルチフィラメントを作成した。これを各溶剤にて溶解しようとする温度で浴比100にて溶解時間と溶解量から、減量速度を算出した。
(2)沸水収縮率
試料を枠周1.125mの検尺器を使用し、捲き回数が10回の小かせを作成し、20〜50gの重りをかけて、初期かせ長L0(cm)を測定した。重りをはずし、98℃の温水中に30分間浸漬後、取り出して自然乾燥させた。乾燥後、再度、重りをかけて収縮後かせ長L1(cm)を測定した。上記L0、L1を下記式に代入して、沸水収縮率BWS(%)を算出した。
BWS(%)=[(L0−L1)/L0]×100
(3)伸度
定速伸長形で測定し、伸度は破断時の伸度(%)で表す。
(4)ワイピング性能の評価方法
ガラス板に人工脂質を付着させ、荷重(125g/3.9cm2)を載せたワイピングクロスで拭取った。拭取り後のガラス板について5名のモニターにより官能評価を行った。モニターはガラス板を見た時の状態を次の基準により評価し、20点以上のものは○、20点以下のものは×と判定した。
5点:ガラス板に汚れがあったことは全く感じられず、非常にきれいである。
4点:ガラス板に汚れがあったことは感じられず、きれいである。
3点:ガラス板に汚れがあったかもしれないが、まあきれいである。
2点:ガラス板によごれがあったであろうと推測されるほど少し汚い。
1点:ガラス板によごれがあったであろうと確信できるほど汚い。
(5)発塵性の評価方法
ワイピング性能の評価方法に用いた重りにワイピングクロスを同じように固定し、人工資質を付着させていないガラス板をワイピングクロスで拭取った。拭取り後のガラス板について5名のモニターにより官能評価を行った。モニターはガラス板を見た時の状態を次の基準により評価し、○とした人が4人以上の場合は○、4人以下の場合は×と判定した。
○:繊維でガラスが汚れておらず、良好である。
×:繊維でガラスが汚れており、不良である。
Hereinafter, the present invention will be described in more detail by way of examples. The fabric was prepared as follows. Moreover, the measuring method was implemented as follows.
(1) Measurement of weight loss rate The yarn was wound at a spinning speed of 1,000 to 2,000 m / min with a 0.3φ-0.6L × 24H base of each of the sea and island polymers, and the residual elongation was 30. A 75 de / 24 fil multifilament was drawn by stretching to a range of ˜60%. The weight loss rate was calculated from the dissolution time and the dissolution amount at a bath ratio of 100 at a temperature at which the solvent was dissolved in each solvent.
(2) Boiling water shrinkage rate Using a measuring instrument with a frame circumference of 1.125m, make a small skein with 10 strikes, apply a weight of 20-50g, and set the initial skein length L0 (cm). It was measured. The weight was removed and immersed in warm water at 98 ° C. for 30 minutes, then taken out and allowed to dry naturally. After drying, the weight L1 (cm) after shrinkage was measured again by applying a weight. The above-described L0 and L1 were substituted into the following formula to calculate the boiling water shrinkage BWS (%).
BWS (%) = [(L0−L1) / L0] × 100
(3) Elongation Measured with a constant-speed elongation type. Elongation is expressed as elongation (%) at break.
(4) Evaluation method of wiping performance Artificial lipid was made to adhere to a glass plate, and it wiped off with the wiping cloth which loaded (125g / 3.9cm2). The sensory evaluation was performed on the glass plate after wiping by five monitors. The monitor evaluated the state when looking at the glass plate according to the following criteria, and those with 20 points or more were judged as ◯, and those with 20 points or less were judged as x.
5 points: The glass plate is not very dirty and very clean.
4 points: The glass plate is clean and not felt dirty.
3 points: The glass plate may be dirty, but it is clean.
2 points: Slightly dirty so that it is assumed that the glass plate would be dirty.
1 point: Dirty enough to be sure that the glass plate would have been dirty.
(5) Dust generation evaluation method The wiping cloth was similarly fixed to the weight used in the wiping performance evaluation method, and the glass plate on which no artificial qualities were adhered was wiped off with the wiping cloth. The sensory evaluation was performed on the glass plate after wiping by five monitors. The monitor evaluated the state when looking at the glass plate according to the following criteria. When there were 4 or more people as ◯, it was judged as ◯, and when it was 4 or less, it was judged as x.
○: Glass is not soiled with fibers and is good.
X: The glass is dirty with fibers and is defective.

[実施例1]
下記の糸を用いて二層構造糸を作成した。
マルチフィラメントA’については、まず、海成分を5−ナトリウムスルホイソフタル酸9モル%と数平均分子量4,000のポリエチレングリコール3重量%を共重合した改質ポリエチレンテレフタレート、島成分をポリエチレンテレフタレートとし、溶解速度比;海/島=50、重量比;島:海=70:30で、マルチフィラメントA’1フィラメントあたりの島数が1,000となる口径0.3mmの吐出孔を合計10個有した、紡糸口金を用いて紡糸温度285℃で溶融吐出させ、紡糸冷却装置により冷却・固化した後、油剤を付与し、90℃に加熱した予熱ローラーに速度1000m/minで引き取り、140℃に加熱した熱セットローラーとの間で3.9倍に延伸し、次いで捲取機で捲き取り、50dtex、10フィラメント、沸水収縮率8%のマルチフィラメントA’を得た。
[Example 1]
A two-layer structure yarn was prepared using the following yarns.
For the multifilament A ′, first, the sea component is modified polyethylene terephthalate copolymerized with 9 mol% of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol having a number average molecular weight of 4,000, and the island component is polyethylene terephthalate. Dissolution rate ratio; sea / island = 50, weight ratio; island: sea = 70: 30, multi-filament A ′ has 10 discharge holes with a diameter of 0.3 mm, where the number of islands per filament is 1,000. The melt was discharged by using a spinneret at a spinning temperature of 285 ° C., cooled and solidified by a spinning cooling device, applied with an oil agent, taken up at a speed of 1000 m / min on a preheating roller heated to 90 ° C., and heated to 140 ° C. Stretched 3.9 times between the heated set rollers and then scraped off with a scraper, 50 dtex, 10 filaments To obtain a multi-filament A 'of boiling water shrinkage percentage of 8%.

マルチフィラメントBは、イソフタル酸を10モル%共重合した固有粘度0.64のポリエチレンテレフタレートを口径0.3mm、孔数12個の紡糸口金を通して吐出し、紡糸冷却装置により冷却・固化し、油剤を付与した後、1000m/min.速度で巻取り未延伸糸を得た。得られた未延伸糸を予熱温度75℃、延伸倍率3.3倍でローラー延伸し、次いで95℃で熱セットして巻き取り、36dtex、12フィラメント、沸水収縮率25%のマルチフィラメントBを得た。   Multifilament B is a polyethylene terephthalate with an intrinsic viscosity of 0.64 copolymerized with 10 mol% of isophthalic acid, discharged through a spinneret with a diameter of 0.3 mm and 12 holes, cooled and solidified by a spinning cooling device, After the application, 1000 m / min. An undrawn yarn wound at a speed was obtained. The obtained undrawn yarn was roller-drawn at a preheating temperature of 75 ° C. and a draw ratio of 3.3 times, and then heat-set at 95 ° C. and wound to obtain a multifilament B having 36 dtex, 12 filaments and a boiling water shrinkage of 25%. It was.

両糸(マルチフィラメントA’の糸パッケージ1とマルチフィラメントBの糸パッケージ2)を図1に示す製造工程に掛け、まずコットローラー3でひき揃え、該コットローラー3と第1引取りローラー5との間で、インターレースノズル4を用いて混繊し、さらに、上記第1引取りローラー5と第2引取りローラー7の間で比接触式加熱ヒーター6を用いて巻き取りボビン8に巻き取り、混繊糸を得た。   Both yarns (multifilament A ′ yarn package 1 and multifilament B yarn package 2) are subjected to the manufacturing process shown in FIG. 1, and are first aligned by a cot roller 3, the cot roller 3 and the first take-up roller 5, Between the first take-up roller 5 and the second take-up roller 7 using a specific contact heater 6 and wound up on a take-up bobbin 8. A blended yarn was obtained.

得られた混繊糸を、規格は経、緯ともに87羽×3本/Kで経糸に100の撚りをかけて平織りした。得られた織物を濃度3.5重量%、浴温度98℃の水酸化ナトリウム水溶液に浸漬して海成分を除去し、乾燥収縮させ、芯部に単糸繊度3.0dtexのマルチフィラメントB、鞘部に単糸繊度0.004dtexのマルチフィラメントAからなる極細ポリエステル二層構造糸からなる織物を得た。この製品の特性判定を以下の表1に示した。   The resulting blended yarn was plain woven with a warp and weft of 87 wings x 3 pieces / K and 100 twists on the warp. The obtained woven fabric is immersed in an aqueous solution of sodium hydroxide having a concentration of 3.5% by weight and a bath temperature of 98 ° C. to remove sea components, dried and shrunk, and a multifilament B having a single yarn fineness of 3.0 dtex and a sheath at the core. A woven fabric made of ultra-fine polyester double-layered yarn made of multifilament A having a single yarn fineness of 0.004 dtex was obtained. The characteristics of this product are shown in Table 1 below.

[実施例2]
マルチフィラメントA’については、まず、海成分をナイロン6、島成分をポリエチレンテレフタレートとし、ナイロン6のみ溶解、島:海(重量比)=70:30の条件で、マルチフィラメントA’1フィラメントあたりの島数が500となる口径0.3mmの吐出孔を合計6個有した、紡糸口金を用いて紡糸温度280℃で溶融吐出させ、紡糸冷却装置により冷却・固化した後、油剤を付与し、75℃に加熱した予熱ローラーに速度1000m/minで引取り、150℃に加熱した熱セットローラーとの間で3.9倍に延伸し、次いで捲取機で捲き取り、30dtex、6フィラメント、沸水収縮率10%のマルチフィラメントA’を得た。
マルチフィラメントBは、実施例1と同様の方法で作成しポリエチレンテレフタレートよりなる20dtex、10フィラメント、沸水収縮率25%のマルチフィラメントを用いた。
[Example 2]
For the multifilament A ′, first, the sea component is nylon 6 and the island component is polyethylene terephthalate, and only nylon 6 is dissolved, and the island / sea (weight ratio) = 70: 30. 75, having a total of 6 discharge holes with a diameter of 0.3 mm with 500 islands, melted and discharged at a spinning temperature of 280 ° C. using a spinneret, cooled and solidified by a spinning cooling device, and then applied an oil agent. Taken up to a preheating roller heated to ℃ at a speed of 1000 m / min, stretched 3.9 times with a heat setting roller heated to 150 ℃, then scraped with a scissor, 30 dtex, 6 filament, boiling water shrinkage A multifilament A ′ having a rate of 10% was obtained.
For the multifilament B, a multifilament prepared by the same method as in Example 1 and made of polyethylene terephthalate, 20 dtex, 10 filaments and a boiling water shrinkage of 25% was used.

両糸(マルチフィラメントA’の糸パッケージ1とマルチフィラメントBの糸パッケージ2)を図1に示す製造工程に掛け、まずコットローラー3でひき揃え、該コットローラー3と第1引取りローラー5との間で、インターレースノズル4を用いて混繊し、さらに、上記第1引取りローラー5と第2引取りローラー7の間で比接触式加熱ヒーター6を用いて巻き取りボビン8に巻き取り、混繊糸を得た。   Both yarns (multifilament A ′ yarn package 1 and multifilament B yarn package 2) are subjected to the manufacturing process shown in FIG. 1, and are first aligned by a cot roller 3, the cot roller 3 and the first take-up roller 5, Between the first take-up roller 5 and the second take-up roller 7 using a specific contact heater 6 and wound up on a take-up bobbin 8. A blended yarn was obtained.

得られた混繊糸を、規格は経、緯ともに87羽×3本/Kで、経糸に100の撚りをかけて平織りした。得られた織物をギ酸中に浸漬して海成分を除去し、乾燥し、単糸繊度0.007dtexと2.0dtexからなる混繊糸の織物を得た。この織物を沸水に浸漬収縮させて、芯部に単糸繊度2.0dtexのマルチフィラメントB、鞘部に単糸繊度0.007dtexのマルチフィラメントAからなる極細ポリエステル二層構造糸からなる織物を得た。この製品の特性判定を以下の表1に示した。   The obtained blended yarn was plain woven with a warp and weft of 87 wings x 3 pieces / K, with 100 warps twisted. The obtained woven fabric was immersed in formic acid to remove sea components and dried to obtain a mixed yarn woven fabric having a single yarn fineness of 0.007 dtex and 2.0 dtex. This woven fabric is immersed and contracted in boiling water to obtain a woven fabric made of ultra-thin polyester double-layered yarn consisting of multifilament B having a single yarn fineness of 2.0 dtex in the core and multifilament A having a single yarn fineness of 0.007 dtex in the sheath. It was. The characteristics of this product are shown in Table 1 below.

[比較例1]
実施例1において、マルチフィラメントA’として、海成分が5−ナトリウムスルホイソフタル酸9モル%と数平均分子量4,000のポリエチレングリコール3重量%を共重合したポリエチレンテレフタレート、島成分がポリエチレンテレフタレートの海島型複合繊維(島数24、溶解速度比;島:海=1:50、島:海(重量比)=70:30)よりなる50dtex、10フィラメント、沸水収縮率8%のマルチフィラメントを用い、他は同条件で織物を作成した。芯部に単糸繊度3.0dtex、鞘部に単糸繊度0.14dtexのマルチフィラメントがある二層構造糸からなる織物を得た。この織物を用いて油汚れ、水滴のある台をふいたところ、繊度が本発明外であるため、汚れや水滴が少量残っており、ワイピング性能は不良であった。この製品の特性判定を以下の表1に示した。
[Comparative Example 1]
In Example 1, as the multifilament A ′, sea terephthalate is a polyethylene terephthalate copolymerized with 9 mol% of 5-sodium sulfoisophthalic acid and 3% by weight of polyethylene glycol having a number average molecular weight of 4,000. 50 dtex, 10 filaments, multifilaments having a boiling water shrinkage rate of 8% made of type composite fibers (24 islands, dissolution rate ratio; islands: sea = 1: 50, islands: sea (weight ratio) = 70: 30) The other fabrics were made under the same conditions. A woven fabric made of a two-layer structure yarn having a multifilament with a single yarn fineness of 3.0 dtex in the core and a single yarn fineness of 0.14 dtex in the sheath was obtained. When this fabric was used to wipe a platform with oil stains and water droplets, the fineness was outside the scope of the present invention, so a small amount of dirt and water droplets remained, and the wiping performance was poor. The characteristics of this product are shown in Table 1 below.

[比較例2]
実施例2において、マルチフィラメントA’に海成分がナイロン6、島成分がポリエチレンテレフタレートの海島型複合繊維(島数300、島:海(重量比)=70:30)よりなる30dtex、24フィラメント、沸水収縮率18%のマルチフィラメントを用い、後は同条件で織物を作成した。得た織物の表層部には単糸繊度0.007dtexと3.0dtexの混在するものとなり、この織物を用いて油汚れ、水滴のある台をふいたところ、汚れや水滴が少量残っており、ワイピング性能は不良であった。この製品の特性判定を以下の表1に示した。
[Comparative Example 2]
In Example 2, 30 dtex, 24 filaments composed of a multi-filament A ′ sea-island composite fiber (300 islands, islands: sea (weight ratio) = 70: 30) where the sea component is nylon 6 and the island component is polyethylene terephthalate. A multifilament having a boiling water shrinkage of 18% was used, and a fabric was then produced under the same conditions. The surface layer portion of the obtained woven fabric has a mixture of single yarn fineness of 0.007 dtex and 3.0 dtex, and when this fabric is used to wipe oil stains and a table with water droplets, a small amount of dirt and water droplets remain, The wiping performance was poor. The characteristics of this product are shown in Table 1 below.

Figure 0005275587
Figure 0005275587

本発明のワイピングクロスは、油、水などの拭取り性、捕塵力が高く、発塵性が少ないので、家庭用清掃用布帛や、眼鏡やレンズ拭き、さらには産業用途にも使用可能であり、例えばICや半導体の製造工場やクリーンルームなどで用いることができる。   The wiping cloth of the present invention has high wiping properties such as oil and water, high dust trapping power, and low dust generation, so it can be used for household cleaning cloths, glasses and lens wipes, and industrial applications. For example, it can be used in IC or semiconductor manufacturing factories or clean rooms.

本発明の二層構造糸の製造工程Production process of the two-layer structured yarn of the present invention フィラメントA’の紡糸口金の例Example of spinneret for filament A '

符号の説明Explanation of symbols

1:マルチフィラメントAの糸パッケージ
2:マルチフィラメントBの糸パッケージ
3:コットローラー
4:インターレースノズル
5:加熱ローラー
6:比接触式加熱ヒーター
7:引き取りローラー
8:巻き取りボビン
a:紡糸口金
b:島成分用ポリマー溜め部
c:島成分用ポリマー導入通路(中空ピン)
d:海成分用ポリマー導入通路
e:分配前海成分用ポリマー溜め部
f:芯鞘型複合流用通路
g:合流通路
h:吐出孔
1: Multifilament A yarn package
2: Multifilament B yarn package
3: cot roller
4: Interlace nozzle
5: Heating roller
6: Specific contact heater
7: Take-off roller
8: Winding bobbin a: Spinneret b: Island component polymer reservoir c: Island component polymer introduction passage (hollow pin)
d: Sea component polymer introduction passage e: Pre-distribution sea component polymer reservoir f: Core-sheath type composite flow passage g: Merge passage h: Discharge hole

Claims (7)

単糸繊度が0.001〜0.01dtexであるマルチフィラメントAと、単糸繊度が0.1〜10dtexであるマルチフィラメントBとが混繊された二層構造糸であって、その交絡部において、マルチフィラメントBが繊維表面に現れている箇所が20個/m以下であり、マルチフィラメントAが主として鞘部に配置され、マルチフィラメントBが主として芯部に配置されてなる、下記要件を満足する極細二層構造糸。
(1)マルチフィラメントAの強度≧3.0cN/dtex
(2)20個/m≦二層構造糸の交絡個数≦100個/m
A double-layer structure yarn in which a multifilament A having a single yarn fineness of 0.001 to 0.01 dtex and a multifilament B having a single yarn fineness of 0.1 to 10 dtex are mixed, The number of locations where the multifilament B appears on the fiber surface is 20 pieces / m or less, the multifilament A is mainly disposed in the sheath portion, and the multifilament B is mainly disposed in the core portion. Extra-fine two-layer yarn.
(1) Strength of multifilament A ≧ 3.0 cN / dtex
(2) 20 / m ≦ entangled number of double-layer structure yarn ≦ 100 / m
マルチフィラメントAとマルチフィラメントBとの重量比率が20:80〜80:20である請求項1記載の極細二層構造糸。   The ultra-thin bilayer structured yarn according to claim 1, wherein the weight ratio of the multifilament A and the multifilament B is 20:80 to 80:20. マルチフィラメントAとマルチフィラメントB両者がポリエステルである請求項1、2いずれか記載の極細二層構造糸。   Both the multifilament A and the multifilament B are polyester, The ultra fine two-layer structure yarn according to any one of claims 1 and 2. マルチフィラメントAが、溶剤に対する溶解速度比が下記式を満足する島成分と海成分からなる海島型複合繊維マルチフィラメント(マルチフィラメントA’と呼称することがある)の海成分を溶解除去することによって得られたものである請求項1〜3いずれか1項記載の極細二層構造糸。
溶解速度比:30≦海成分溶解速度/島成分溶解速度≦5,000
The multifilament A dissolves and removes the sea component of a sea-island type composite fiber multifilament (sometimes referred to as multifilament A ′) composed of an island component and a sea component whose dissolution rate ratio to the solvent satisfies the following formula: The ultrafine two-layer structure yarn according to any one of claims 1 to 3, wherein the yarn is obtained.
Dissolution rate ratio: 30 ≦ sea component dissolution rate / island component dissolution rate ≦ 5,000
上記マルチフィラメントA’の海成分と島成分の重量比率が40:60〜5:95である請求項4記載の極細二層構造糸。   The ultra-thin bilayer structured yarn according to claim 4, wherein the weight ratio of the sea component and the island component of the multifilament A 'is 40:60 to 5:95. 沸水収縮率差が下記条件を満足する海島型複合繊維マルチフィラメントA’と単糸繊度が0.1〜10dtexであるマルチフィラメントBを引き揃え交絡した後収縮処理し、次いでマルチフィラメントA’の海成分を溶解除去して、単糸繊度が0.001〜0.01dtexであるマルチフィラメントAが主として鞘部、単糸繊度が0.1〜10dtexであるマルチフィラメントBが主として芯部に配された二層構造糸とすることを特徴とする極細二層構造糸の製造方法。
10%≦Δ沸水収縮率≦40%
[Δ沸水収縮率:マルチフィラメントBの沸水収縮率−マルチフィラメントA’の沸水収縮率]
Sea island type composite fiber multifilament A ′ having a boiling water shrinkage difference satisfying the following conditions and multifilament B having a single yarn fineness of 0.1 to 10 dtex are aligned and entangled, and then subjected to shrinkage treatment, and then the sea of multifilament A ′ The components were dissolved and removed, and the multifilament A having a single yarn fineness of 0.001 to 0.01 dtex was mainly arranged in the sheath portion, and the multifilament B having a single yarn fineness of 0.1 to 10 dtex was mainly arranged in the core portion. A method for producing an ultrafine two-layer structured yarn, characterized in that the yarn is a two-layer structured yarn.
10% ≦ Δ boiling water shrinkage ≦ 40%
[Δ Boiling Water Shrinkage: Boiling Water Shrinkage of Multifilament B−Boiling Water Shrinkage of Multifilament A ′]
単糸繊度が0.001〜0.01dtexであるマルチフィラメントAと、単糸繊度が0.1〜10dtexであるマルチフィラメントBとが混繊されたものであって、その交絡部において、マルチフィラメントBが繊維表面に現れている箇所が20個/m以下であり、マルチフィラメントAが主として鞘部に配置され、単糸繊度が0.1〜10dtexであるマルチフィラメントBが主として芯部に配置されてなる、下記要件を満足する極細二層構造糸を含むワイピングクロス。
(1)マルチフィラメントAの強度≧3.0cN/dtex
(2)20個/m≦二層構造糸の交絡個数≦100個/m
A multifilament A having a single yarn fineness of 0.001 to 0.01 dtex and a multifilament B having a single yarn fineness of 0.1 to 10 dtex are mixed, and the multifilament The number of locations where B appears on the fiber surface is 20 pieces / m or less, the multifilament A is mainly disposed in the sheath portion, and the multifilament B having a single yarn fineness of 0.1 to 10 dtex is mainly disposed in the core portion. A wiping cloth comprising an ultra-fine two-layer structure yarn that satisfies the following requirements.
(1) Strength of multifilament A ≧ 3.0 cN / dtex
(2) 20 / m ≦ entangled number of double-layer structure yarn ≦ 100 / m
JP2007170305A 2007-06-28 2007-06-28 Ultra-fine two-layer structure yarn and wiping cloth comprising the same Active JP5275587B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007170305A JP5275587B2 (en) 2007-06-28 2007-06-28 Ultra-fine two-layer structure yarn and wiping cloth comprising the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007170305A JP5275587B2 (en) 2007-06-28 2007-06-28 Ultra-fine two-layer structure yarn and wiping cloth comprising the same

Publications (2)

Publication Number Publication Date
JP2009007705A JP2009007705A (en) 2009-01-15
JP5275587B2 true JP5275587B2 (en) 2013-08-28

Family

ID=40323064

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007170305A Active JP5275587B2 (en) 2007-06-28 2007-06-28 Ultra-fine two-layer structure yarn and wiping cloth comprising the same

Country Status (1)

Country Link
JP (1) JP5275587B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150313439A1 (en) * 2012-12-06 2015-11-05 Toray Industries, Inc. Wiping cloth for removing microbes
JP6271856B2 (en) * 2013-04-17 2018-01-31 帝人株式会社 Fabric manufacturing method and textile manufacturing method
KR101609326B1 (en) 2014-05-27 2016-04-05 주식회사 클렘본 Yarn for Fabrics with cut loop group, manufacturing method of the fabrics and textile goods using the same
KR20180108828A (en) * 2016-04-20 2018-10-04 데이진 프론티아 가부시키가이샤 Textile and fabric and textile products
CN115354428A (en) * 2022-09-19 2022-11-18 罗莱生活科技股份有限公司 Polyester sea-island fiber core-spun yarn and production method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2890533B2 (en) * 1989-10-12 1999-05-17 東レ株式会社 Chamois-like wiping cloth and manufacturing method thereof
JPH05245089A (en) * 1991-03-20 1993-09-24 Toyobo Co Ltd Wiping cloth
JP2960802B2 (en) * 1991-07-16 1999-10-12 ユニチカ株式会社 Method for producing composite entangled yarn
JP3812100B2 (en) * 1997-11-13 2006-08-23 東レ株式会社 Wiping cloth manufacturing method
JP3613955B2 (en) * 1997-12-09 2005-01-26 東レ株式会社 Wiping cloth
JP3882381B2 (en) * 1999-03-19 2007-02-14 東レ株式会社 Wiping cloth and manufacturing method thereof
JP2001348735A (en) * 2000-06-06 2001-12-21 Toray Ind Inc Sea-island conjugate yarn and combined filament yarn
JP4315009B2 (en) * 2004-02-10 2009-08-19 東レ株式会社 Blended yarn and textile products comprising the same
JP4598600B2 (en) * 2005-05-31 2010-12-15 帝人ファイバー株式会社 Wiping cloth

Also Published As

Publication number Publication date
JP2009007705A (en) 2009-01-15

Similar Documents

Publication Publication Date Title
TWI658182B (en) Island composite fiber, composite ultrafine fiber and fiber products
TWI709674B (en) Core-sheath composite fiber, SLIT FIBRE and manufacturing methods of these fibers
TWI595128B (en) Sea-island fiber, combined filament yarn and fiber product
TWI541399B (en) Composite fiber
KR20140040265A (en) Islands-in-sea fiber
TW200536971A (en) Island-in-sea type composite fibers and process for producing same
JP2007291567A (en) Nanofiber structure material, method for producing the same and textile product
JP5275587B2 (en) Ultra-fine two-layer structure yarn and wiping cloth comprising the same
JP2009024272A (en) Knitted fabric and fibrous product excellent in cool feeling
TWI633216B (en) Composite spinning nozzle, composite fiber, and manufacturing method of composite fiber
JP4598600B2 (en) Wiping cloth
JP7415455B2 (en) Core-sheath composite fiber
TWI471467B (en) Cloth and composite sheet and polishing cloth and wiping products
JP5178367B2 (en) Wiping fabrics and products
JP6271856B2 (en) Fabric manufacturing method and textile manufacturing method
JP2008007870A (en) Polyester fine fiber and its fiber product
JP2012193476A (en) Polyester microfiber
JP2009074187A (en) Multi-layered structure woven or knitted fabric and fiber product
JP6221608B2 (en) Sea-island composite fiber
JP2005133250A (en) Core-sheath conjugate fiber
JP7063037B2 (en) Bulky and lightweight multifilament
JP5495290B2 (en) Clothing side and clothing
JP6897085B2 (en) Split type composite fiber
JP2010233865A (en) Cleaning tool
JP4995523B2 (en) False twisted yarn and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100421

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110707

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20110707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121017

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130516

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5275587

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350