WO2001061026A1 - Verfahren und vorrichtung zur herstellung von geformter mikrobieller cellulose zur verwendung als biomaterial, insbesondere für die mikrochirurgie - Google Patents

Verfahren und vorrichtung zur herstellung von geformter mikrobieller cellulose zur verwendung als biomaterial, insbesondere für die mikrochirurgie Download PDF

Info

Publication number
WO2001061026A1
WO2001061026A1 PCT/EP2001/001621 EP0101621W WO0161026A1 WO 2001061026 A1 WO2001061026 A1 WO 2001061026A1 EP 0101621 W EP0101621 W EP 0101621W WO 0161026 A1 WO0161026 A1 WO 0161026A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
biomaterial
nutrient solution
cellulose
vessel
Prior art date
Application number
PCT/EP2001/001621
Other languages
English (en)
French (fr)
Inventor
Dieter Klemm
Silvia Marsch
Dieter Schumann
Ulrike Udhardt
Original Assignee
Sura Chemicals Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sura Chemicals Gmbh filed Critical Sura Chemicals Gmbh
Priority to CA002400372A priority Critical patent/CA2400372A1/en
Priority to US10/204,073 priority patent/US20030013163A1/en
Priority to JP2001559863A priority patent/JP2003525039A/ja
Priority to DE50113938T priority patent/DE50113938D1/de
Priority to AU2001231745A priority patent/AU2001231745A1/en
Priority to EP01903766A priority patent/EP1263980B1/de
Publication of WO2001061026A1 publication Critical patent/WO2001061026A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds

Definitions

  • the invention relates to a method and a device for producing shaped microbial cellulose for use as biomaterial, in particular for microsurgical applications, for example as a replacement for blood vessels and other internal hollow organs or as a cuff for covering nerve fibers and the like.
  • Biomaterial for surgical applications such as tissue implants, for example for the abdominal wall, skin, subcutaneous tissue, organs,
  • EP 186 495 A2 JP 63 205 109 AI, JP 3 165 774 AI
  • the microbial cellulose can be shaped according to the use in the manufacturing process, for example as sheet, rod, cylinder and
  • a plate is fixed on the surface of a culture solution inoculated with cellulose-producing microorganisms and the cultivation is carried out.
  • the result is a hollow cellulose cylinder, the cross section of which corresponds to the surface of the nutrient solution that is in contact with the air.
  • microbial cellulose is built up on gas-permeable materials (synthetic or natural polymers) by one side of the material being in contact with an oxygen-containing gas and the other side in contact with the nutrient solution, so that the microbial cellulose is formed on this side and then is isolated.
  • gas-permeable materials synthetic or natural polymers
  • Vascular prosthesis is cultivated on a hollow support that is oxygen-permeable (eg cellophane, Teflon, silicone, ceramic, non-woven fabric, fibers).
  • oxygen-permeable eg cellophane, Teflon, silicone, ceramic, non-woven fabric, fibers.
  • the hollow cylinders produced in this way do not have sufficiently smooth inner surfaces, as a result of which thrombi can settle in the blood vessel prosthesis used.
  • the smaller the diameter of the vascular replacement the more important the surface quality of these inner surfaces, since particularly small-lumen vessels with deposited thrombi can easily close. In microsurgery with vessel diameters of 1-3 mm or less, the use of these prostheses is extremely problematic, if not impossible.
  • EP 396 344 A3 describes a hollow cellulose which is produced by a microorganism, a process for producing this cellulose and an artificial blood vessel which has been opened from this cellulose.
  • the first process for producing the hollow microbial cellulose involves cultivating a cellulose-producing microorganism on the inner and / or outer surface of an oxygen-permeable hollow carrier made of cellophane, Teflon, silicone, ceramic or a non-woven or a woven material. This oxygen-permeable hollow carrier is immersed in a culture solution.
  • a cellulose-producing microorganism and one Culture medium are supplied to the inner and / or outer side of the hollow support.
  • the cultivation is also carried out by supplying an oxygen-containing gas (or liquid) to said inner and / or outer side of the hollow support.
  • a gelatinous cellulose with a thickness of 0.01 to 20 mm forms on the surface of the hollow support. Due to the interaction of the cellulose-producing microorganism, the cellulose produced and the hollow carrier, a composite of cellulose and hollow carrier is created. If the cellulose is not bound to the carrier, it is removed after the synthesis of the cellulose and a hollow-shaped article which consists exclusively of cellulose can be obtained.
  • the cellulose thus produced is purified from cells of the microorganism or from culture solution components with dilute alkali, dilute acid, an organic solvent and hot water, alone or in combination thereof.
  • EP 396 344 A3 describes the impregnation, any aftertreatment that may be required and the cutting of the cellulose produced by a microorganism as a second process for building hollow microbial cellulose.
  • a vessel filled with culture solution is inoculated with the microorganism.
  • the microbial cellulose built up is impregnated with a medium and, if necessary, aftertreated, frozen or compacted. As a result, the liquid component is retained between the fibers forming the microbial cellulose in order to prevent free movement of the liquid component.
  • Polyols such as glycerol, erytlirol, glycol, sorbitol and maltitol, saccharides, such as glucose, galactose, mannose, maltose and lactose, natural and synthetic polymeric substances, such as polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol, carboxymethyl cellulose, agar, starch, alginic acid salts, can be used as the medium.
  • polyols such as glycerol, erytlirol, glycol, sorbitol and maltitol
  • saccharides such as glucose, galactose, mannose, maltose and lactose
  • natural and synthetic polymeric substances such as polyvinyl alcohol, polyvinylpyrrolidone, polyethylene glycol, carboxymethyl cellulose, agar, starch, alginic acid salts, can be used as the medium.
  • Xanthan polysaccharides, oligosaccharides, collagen, gelatin, and proteins, as well as water-soluble polar Solvents such as acetonitrile, dioxane, acetic acid and propionic acid can be used alone or in a mixture.
  • EP 396 344 A3 describes the production by means of two glass tubes of different diameters as a third process for the production of a hollow rnikrobial cellulose. The glass tubes are put into one another, and in the space between the two tube walls, the cultivation of the microorganism is carried out within 30 days. The result is a microbial cellulose with a hollow cylindrical shape, which due to its good compatibility with the living organism, especially with blood, can be used as a blood vessel replacement in the living body. Blood tolerance (antithrombogenic property) was assessed by the blood vessel replacement test using an adult mongrel dog.
  • the object of the invention is therefore to provide a production method for shaped biomaterials, in particular for rico-surgical applications as a replacement for blood vessels with a diameter of 1-3 mm and smaller, which ensures a very high and reproducible quality of the prosthesis material surfaces that come into contact with blood and thrombus adhesion reliably avoided on these surfaces.
  • the biomaterials should be tissue-compatible and blood-compatible and, including the production time, as easy to produce as possible and also in any shape, in particular also in a variable hollow cylindrical shape.
  • the nutrient solution is sterilized in a known manner, inoculated with cellulose-forming bacteria, for example with a strain of the microorganism Acetobacter xyhnum producing a dimensionally stable cellulose layer, and cultured in a space between foils, for example at a temperature between 28 ° C. and 30 ° C.
  • the biomaterial (cellulose) produced during cultivation is isolated from the mold walls and subjected to cleaning (cf. EP 396 344 A3).
  • the inoculated nutrient solution is not filled into the space between the molded body walls, for example a glass matrix composed of preferably detachable glass bodies, but the molded body walls (glass matrix) are immersed in a vessel with the inoculated nutrient solution during the cultivation, so that the nutrient solution is in the Gap between the walls of the molded body is drawn in by capillary force. This ensures a moist, aerobic environment for cellulose formation in the container during the entire cultivation process.
  • a glass matrix known per se consisting of an outer glass tube and an axially symmetrically fixed glass body, is immersed in the inoculated nutrient solution, which is located in the said vessel, for example an Erlenmeyer flask. After cultivation, the glass matrix is removed from the vessel and disassembled to remove the cellulose produced.
  • An unused molded body of high surface quality is used in each cultivation process as the molded body wall for molding the prosthesis material surface which comes into contact with blood when the biomaterial is used.
  • the surface quality of the prosthesis material surfaces produced in this way and which come into contact with blood upon implantation is reproducibly very high and the risk of thrombus adhesion is very low.
  • the biomaterials produced according to the invention are therefore very well suited as a permanent blood vessel replacement for microsurgical applications, in particular for vessel diameters of 1-3 mm and less. Further advantages of the proposed method are short cultivation times (a dimensionally stable cellulose layer forms in the glass matrix after only 7 to 14 days) and a good distribution of the inoculum in the medium by inoculating the liquid nutrient solution with a liquid stock culture ("liquid-liquid inoculation"").
  • the tubular biomaterials produced by means of a cylindrical glass matrix are not only used as vascular prostheses, but also as a sleeve (cuf) for covering nerve fibers and the like. ⁇ .
  • exercise material especially for the training of surgical techniques, usable. With the latter application, the number of experimental animals can be reduced.
  • the previously used Exercise material consists, for example, of Giimmi and can only partially understand the most realistic operating conditions possible. Further advantageous refinements of the invention are listed in the subclaims. Also indicated is an expedient device for carrying out the production process, in which the inner and newly used glass cylinders of the glass matrix are fixed in position and easily detachable in the outer glass tube by means of sleeve-like elastic rings at the cylinder ends.
  • the glass matrix can be dismantled with the least amount of time and handling, with reusability of the outer glass tube and the aforementioned exchange of the inner glass cylinder, and the hollow cylindrical cellulose produced can be isolated without any damage to the material and the surface.
  • the nutrient solution and air circulation to and from the intermediate space of the glass matrix is ensured through openings in the glass tube which are located in the area between the elastic rings of the glass matrix.
  • glass matrices can be immersed in the vessel with the inoculated nutrient solution for said cultivation at the same time.
  • the manufacturing process is not limited to the hollow cylindrical shape of the biomaterial and also not to microsurgical applications.
  • a vessel 1 with a capacity of 50 ml was filled with 20 ml
  • the nutrient solution 2 was at 120 ° C for
  • a white microbial cellulose was formed both in the vessel 1 and in the intermediate space 6 of the glass matrix 3.
  • the glass matrix 3 was removed from the vessel 1 and dismantled; the cylindrical microbial cellulose formed in the space 6 of the glass matrix 3 was isolated, washed thoroughly with water, treated with boiling, aqueous 0.1N sodium hydroxide solution for 10 minutes and washed again thoroughly with water in order to obtain a microvascular prosthesis with an inner diameter of 0.8 mm, a wall thickness of 0.7 mm and a length of up to 1 cm.
  • the blood tolerance of this microvascular prosthesis was assessed by an animal experimental study in which parts of the carotid artery of WISTAR rats were replaced with the artificial blood vessel produced. For this purpose, the water contained in the swollen cellulose material was exchanged for physiological saline before the operation. Unimpeded blood flow was observed immediately after the operation.
  • the artificial blood vessel was removed, which was very well integrated into the animal body due to the embedding in connective tissue and the formation of small blood vessels within the connective tissue and was completely continuous.
  • the condition of the artificial prosthesis, the anastomotic areas and the part of the carotid artery distal to the second anastomosis with the artificial blood vessel was examined histologically and electron-microscopically. No thrombus formation and no proliferation processes were observed either in the suture area, in the integrate or in the blood vessel.
  • the inner surface of the prosthesis including the anastomotic area was "biologized", that is, completely covered with endothelial cells (formation of a neomtima).
  • the inner surface of the anastomoses was flat and completely unremarkable.
  • the glass body 5 was exchanged for an unused glass body 5 and the process described was carried out again.
  • the glass body 5 is fixed in the glass tube 4 with sleeve-like silicone rings 7.
  • the glass tube 4 has openings 10 in the area between the silicone rings 7. To ensure sterility and a moist, aerobic environment in the vessel 1, this is covered with a lid 11 during the cultivation process locked.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials For Medical Uses (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Prostheses (AREA)

Abstract

Die Verwendung körperfremder Materialien als Blutgefässersatz birgt die Gefahr einer Thrombose in sich und ist deshalb insbesondere für mikrochirurgische Anwendungen (innerer Gefässdurchmesser 1-3 mm und geringer) nicht oder nur bedingt geeignet. Speziell als Ersatz für sehr kleinlumige Blutgefässe werden Biomaterialien benötigt, die eine sehr hohe Qualität der in Blutkontakt tretenden Prothesenmaterialflächen gewährleisten und eine solche Thrombenadhäsion zuverlässig vermeiden. Zur Herstellung des Biomaterials tauchen Formkörperwandungen, insbesondere einer Glasmatrix aus Glasrohr und Glaskörper, in ein Gefäss mit beimpfter Nährlösung ein, so dass die beimpfte Nährlösung in den Raum zwischen den Formkörperwandungen einzieht und die Kultivierung in einem feuchten, aeroben Milieu stattfindet. Als Formkörperwandung zur Formung der bei Einsatz des Biomaterials in Blutkontakt tretenden Prothesenmaterialfläche wird ferner in jedem Kultivierungsprozess jeweils ein ungebrauchter Formkörper (Glaskörper) verwendet. Nur so ist eine reproduzierbar hohe Oberflächenqualität der Gefässprothese möglich, welche die Gefahr einer Thrombenadhäsion am eingesetzten Biomaterial sicher verhindert. Das Verfahren eignet sich insbesondere für mikrochirurgische Anwendungen, beispielsweise als Ersatz für Blutgefässe und andere innere Hohlorgane oder als Manschette (cuff) zur Umhüllung von Nervenfasern u.ä.

Description

VERFAHREN UND VORRICHTUNG ZUR HERSTELLUNG VON GEFORMTER MIKROBIELLER CELLULOS ZUR VERWENDUNG ALS BIOMATERIAL, INSBESONDERE FÜR DIE MIKROCHIRURGIE
Beschreibung
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Herstellung von geformter mikrobieller Cellulose zur Verwendung als Biomaterial, insbesondere für mikrochirurgische Anwendungen, beispielsweise als Ersatz für Blutgefäße und andere innere Hohlorgane oder als Manschette (cuff) zur Umhüllung von Nervenfasern u.a.
Es ist bereits bekannt (z. B. JP 3 165 774 AI), mikrobielie Cellulose als
Biomaterial für chirurgische Anwendungen, wie Gewebeimplantate, beispielsweise für Bauchwand, Haut, subkutanes Gewebe, Organe,
Verdauungstrakt, Speise-, Luft- und Harnröhre sowie Knorpel und
Fettgewebe, einzusetzen.
Es ist ebenfalls bekannt (beispielsweise JP 8 126 697 A2,
EP 186 495 A2, JP 63 205 109 AI, JP 3 165 774 AI), daß die mikrobielie Cellulose verwendungsspezifisch im Herstellungsprozeß geformt werden kann, beispielsweise als Blatt-, Stab-, Zylinder- und
Bandform etc.
Folgende Methoden der Herstellung werden beschrieben:
- An der Oberfläche einer mit Cellulose-produzierenden Mikroorganismen beimpften Kulturlösung wird eine Platte fixiert und die Kultivierung durchgeführt. Es entsteht ein hohler Cellulosezylinder, dessen Querschnitt der Oberfläche der Nährlösung entspricht, die Kontakt zur Luft hat.
- Geformte mikrobielie Cellulose wird an gaspermeablen Materialien (synthetische oder natürliche Polymere) aufgebaut, indem die eine Seite des Materials mit einem Sauerstoff-enthaltenden Gas in Kontakt steht und die andere Seite mit der Nährlösung, so daß die mikrobielie Cellulose an dieser Seite gebildet und anschließend isoliert wird.
- Komplexe Hohlfasermembranen werden z. B. durch Beschichtung poröser Oberflächen (polymere Verbindungen) mit mikrobieller
Cellulose erreicht, indem Kulturlösung in den äußeren (oder inneren) Raum einer Separationsmembran gegeben wird. Dami wird Luft durch den inneren (oder äußeren) Raum der Hohlfaser geleitet und eine komplexe Membran aufgebaut. Diese Methoden sind mit folgenden Nachteilen für die Qualität der inneren Oberfläche des aufgebauten Hohlkörpers verbunden:
- Austrocknung
- Aufbau einer inhomogenen Celluloseschicht im Inneren des Hohlzylinders mit der Gefahr der Ablösung von Teilen der Cellulose (fiir Blutgefaßersatz, insbesondere im Mikrobereich, nicht verwendbar) - Aufbau komplexer, nicht nur aus Cellulose bestehender Produkte
(Beeinflussung der Bioverträglichkeit).
Es ist weiterinn bekannt (z. B. JP 3 272 772 A2), das geformte
Biomaterial als kleinlumigen Blutgefäßersatz zu verwenden, wobei die
Gefäßprothese an einem Hohlträger kultiviert wird, der Sauerstoff- permeabel ist (z. B. Cellophan, Teflon, Silicon, Keramik, ungewebtes Gewebe, Fasern).
Nachteilig ist, daß die auf diese Weise hergestellten Hohlzylinder keine hinreichend glatte Innenflächen aufweisen, wodurch sich m der eingesetzten Blutgefäßprothese Thromben ansiedeln können. Die Oberflächen- qualität dieser Innenflächen ist um so entscheidender, je geringer der Durchmesser des Gefäßersatzes ist, da sich besonders kleinlumige Gefäße mit abgelagerten Thromben leicht verschließen können. In der Mikrochirurgie mit Gefäßdurchmessern von 1-3 mm oder geringer ist der Einsatz dieser Prothesen deshalb äußerst problematisch, wenn nicht gar unmöglich.
In der EP 396 344 A3 sind eine Hohlcellulose, die durch einen Mikroorganismus produziert wird, ein Prozeß zur Herstellung dieser Cellulose sowie ein künstliches aus dieser Cellulose gefoπntes Blutgefäß beschrieben. Der erste Prozeß zur Herstellung der hohlen mikobiellen Cellulose schließt die Kultivierung eines Cellulose-produzierenden Mikroorgamsmus an der inneren und/oder äußeren Oberfläche eines Sauerstoff-permeablen Hohlträgers aus Cellophan, Teflon, Silikon, Keramik oder einem nicht-gewebten bzw. einem gewebten Material ein. Dieser Sauerstoff-peπneable Hohlträger wird in eine Kulturlösung eingetaucht. Ein Cellulose-produzierender Mikroorgamsmus und ein Kulturmedium werden der inneren und/oder äußeren Seite des Hohlträgers zugeführt. Die Kultivierung erfolgt unter Zufuhrung eines sauerstoflhaltigen Gases (oder Flüssigkeit) ebenfalls an die besagte innere und/oder äußere Seite des Hohlträgers. Es bildet sich eine gallertartige Cellulose mit einer Dicke von 0,01 bis 20 mm an der Oberfläche des Hohlträgers. Auf Grund der Wechselwirkung des Cellulose-produzieren- den Mikroorganismus, der produzierten Cellulose und des Hohlträgers entsteht ein Komposit von Cellulose und Hohlträger. Ist die Cellulose nicht an den Träger gebunden, wird dieser nach der Synthese der Cellulose entfernt und ein hohl geformter Artikel, der ausschließlich aus Cellulose besteht, kann erhalten werden.
Die so hergestellte Cellulose wird von Zellen des Mikroorganismus oder von Kulturlösungsbestandteilen mit verdünntem Alkali, verdünnter Säure, einem organischen Lösungsmittel und heißem Wasser, allein oder in Kombination davon gereinigt.
Der Nachteil dieser Methode besteht wiederum im Aufbau einer inhomogenen Celluloseschicht im Inneren des Hohlzylinders mit der Gefahr der Ablösung von Teilen der Cellulose (für Blutgefäße, insbesondere im Mikrobereich, problematisch). Als zweiter Prozeß zum Aufbau von hohler mikrobieller Cellulose sind in der EP 396 344 A3 die Imprägnierung, ein ggf. erforderliches Nachbehandeln und das Schneiden der von einem Mikroorganismus produzierten Cellulose beschrieben. Ein mit Kulturlösung gefülltes Gef ß wird mit dem Mikroorganismus beimpft. Die aufgebaute mikrobielie Cellulose wird mit einem Medium, imprägniert und, sofern erforderlich, nachbehandelt, gefroren oder verdichtet. Dadurch wird die flüssige Komponente zwischen den die mikrobielie Cellulose bildenden Fasern zurückgehalten, um eine freie Bewegung der flüssigen Komponente zu verhindern. Danach wird der Schneideprozeß durchgeführt. Als Medium können Polyole, wie Glyzerol, Erytlirol, Glycol, Sorbitol und Maltitol, Saccharide, wie Glucose, Galaktose, Mannose, Maltose und Lactose, natürliche und synthetische polymere Substanzen, wie Polyvinylalkohol, Polyvinylpyrrolidon, Polyethylenglycol, Carboxymethylcellulose, Agar, Stärke, Alginsäuresalze, Xanthan, Polysaccharide, Oligosaccharide, Kollagen, Gelantine, und Proteine, sowie wasserlösliche polare Lösungsmittel, wie Acetonitril, Dioxan, Essigsäure und Propionsäure, allein oder in Mischung verwendet werden.
Diese Methode ist mit folgenden Nachteilen in Hinsicht auf den Herstellungsaufwand und auf die Qualität der inneren Oberfläche des aufgebauten Hohlkörpers verbunden:
- keine direkte Formgebung während der Biosynthese
- hydrophile Eigenschaften der rnikrobiellen Cellulose, die beispielsweise die Rauhigkeit der inneren Oberfläche sowie die Bioverträglichkeit bestimmen, sind verändert. Als dritter Prozeß zur Herstellung einer hohlen rnikrobiellen Cellulose wird in der EP 396 344 A3 die Herstellung mittels zweier Glasröhren unterschiedlicher Durchmesser beschrieben. Die Glasröhren werden ineinandergefügt, und im Raum zwischen den beiden Röhrenwandungen wird die Kultivierung des Mikroorgamsmus innerhalb von 30 Tagen durchgeführt. Es entsteht eine mikrobielie Cellulose mit hohlzylindrischer Gestalt, welche auf Grund einer guten Verträglichkeit mit dem lebenden Organismus, speziell mit Blut, als Blutgefaßersatz im lebenden Körper verwendet werden kann. Die Blutverträglichkeit (antithrombogene Eigenschaft) wurde beurteilt durch den Blutgefaßersatztest unter Verwendung eines erwachsenen Mischlingshundes. Es wurden Teile der absteigenden Aorta und Jugularvene des Hundes durch das künstliche Blutgefäß mit einem inneren Durchmesser von 2-3 mm ersetzt. Nach einem Monat wurde das künstliche Blutgefäß entnommen und der Zustand der Adhäsion von Thromben wurde untersucht. Eine leichte Ablagerung von Thromben ergab sich im Nahtbereich und eine nicht unwesentliche Adhäsion von Thromben wurde über die gesamte innere Oberfläche des künstlichen Blutgefäßes beobachtet (vgl. Beispiel 10 der Beschreibung). Es wird eine biologisch relativ gut verträgliche hohlzylindrische Cellulose geschaffen, die insbesondere als Ersatz für Blutgef ße mit einem Durchmesser von kleiner als 6 mm dienen kann. Allerdings ist der Einsatz durch die Gefahr von Thrombenablagerungen für kleinlumige Gefäße (im beschriebenen Beispiel 2-3 mm Durchmesser) nicht unbedenklich. Mikrochirurgische Anwendungen erfordern zudem noch kleinere Gefaßdurchmesser von 1 mm und darunter. Hier erscheint ein Einsatz dieser Gefäßprothesen auf Grund der genannten Thrombenadhasion an ihrer Innenwand als nicht möglich. Der Erfindung liegt deshalb die Aufgabe zu Grande, ein Herstellungsverfahren für geformte Biomaterialien, insbesondere für rnikrochirurgische Anwendungen als Ersatz von Blutgefäßen mit 1-3 mm Durchmesser und kleiner, anzugeben, das eine sehr hohe und reproduzierbare Qualität der in Blutkontakt tretenden Prothesenmaterialflächen gewährleistet und eine Thrombenadhäsion an diesen Flächen zuverlässig vermeidet. Die Biomaterialien sollen gewebe- und blutverträglich sowie, einschließlich der Fertigungszeit, möglichst aufwandgering und auch in beliebiger Form, insbesondere auch in variabler hohlzylindrischer Formgebung, herstellbar sein.
Die Nährlösung wird bekannter Weise sterilisiert, mit Cellulose-bildenden Bakterien, beispielsweise mit einem eine formstabile Celluloseschicht produzierenden Stamm des Mikroorganismus Acetobacter xyhnum, beimpft sowie in einem Raum zwischen Foπnkö erwandungen, beispielsweise bei einer Temperatur zwischen 28°C und 30°C kultiviert. Das bei der Kultivierung entstehende Biomaterial (Cellulose) wird von den Formkorperwandungen isoliert sowie einer Reinigung unterzogen (vgl. EP 396 344 A3) . Erfindungsgemäß wird die beimpfte Nährlösung jedoch nicht in den Zwischenraum zwischen den Formkorperwandungen, beispielsweise einer Glasmatrix aus vorzugsweise voneinander lösbaren Glaskörpern, eingefüllt, sondern die Formkorperwandungen (Glasmatrix) werden während der Kultivierung in ein Gefäß mit der beimpften Nährlösung emgetaucht, so daß die Nährlösung in den Zwischenraum zwischen den Formkorperwandungen durch Kapillarkraft eingezogen wird. Dadurch wird im Gefäß während des gesamten Kultivierungsprozesses ein feuchtes, aerobes Milieu zur Cellulosebildung gewährleistet. Zur Herstellung hol lzylindrischer Cellulose als Blutgefaßersatz taucht eine an sich bekannte Glasmatrix, bestehend aus einem äußeren Glasrohr und einem axialsymmetrisch in diesem fixierten Glaskörper, in die beimpfte Nährlösung ein, die sich in dem besagten Gefäß, beispielsweise ein Erlenmeyerkolben, befindet. Nach der Kultivierung wird die Glasmatrix aus dem Gef ß herausgenommen und zur Entnahme der hergestellten Cellulose demontiert. Als Formkörperwandung zur Formung der bei Einsatz des Biomaterials in Blutkontakt tretenden Prothesenmaterialfläche wird in jedem Kultivierungsprozeß jeweils ein ungebrauchter Formkörper hoher Oberflächengüte verwendet. Damit werden selbst mikroskopisch kleine Ablagerungen von Nährlösungsbestandteilen und ggf. Cellulosefasern an der Formkörperwandung zuverlässig ausgeschlossen, die im Fall einer Wiederverwendung der Formkörper trotz gründlichster Reinigung eine Veränderung der Haffungsbedingungen der sich bildenden Cellulose an der Formkörperwandung bewirken können. Bezogen auf die zylindrische Glasmatrix heißt das, daß für jeden neuen Kultivierungsprozeß ein ungebrauchter und die Innenwand des herzustellenden Gefäßersatzes formender Glaskörper im äußeren Glasrohr zu fixieren ist. Als zylindrische Glaskörper können zweckmäßig kommerziell erhältliche Schmelzpunktröhrchen mit Standarάnaßen eingesetzt werden. Überraschend hat sich mit diesen Verfahrensschritten gezeigt, daß in einem zu dem in der EP 396 344 A3 beschriebenen Anwendungsbeispiel relevanten Zeitraum keine vergleichbare Tlrrombenablagerung festgestellt werden konnte. Die Oberflächenquaütät der auf diese Weise erzeugten sowie bei Implantation in Blutkontakt tretenden Prothesenmaterialflächen ist reproduzierbar sehr hoch und die Gefahr einer Thrombenadhäsion ist sehr gering. Damit eignen sich die erfϊndungsgemäß hergestellten Biomaterialien sehr gut als beständiger Blutgefäßersatz für mikrochirurgische Anwendungen, insbesondere für Gefaßdurchmesser von 1-3 mm und geringer. Weitere Vorteile des vorgeschlagenen Verfahrens sind kurze Kultivierungszeiten (bereits nach 7 bis 14 Tagen bildet sich eine formstabile Celluloseschicht in der Glasmatrix heraus) sowie eine gute Verteilung der Impfkultur im Medium durch die Beimpfung der flüssigen Nährlösung mit einer flüssigen Stammkultur ("flüssig-flüssig- Beimpfung").
Die mittels zylindrischer Glasmatrix hergestellten röhrenförmigen Biomaterialien sind nicht nur als Gefaßprothesen, sondern auch als Manschette (cuf ) zur Umhüllung von Nervenfasern u. ä. sowie als Übungsmaterial, insbesondere für das Training nrikrochirurgischer Techniken, verwendbar. Mit letztgenannter Anwendung kann die Anzahl von Versuchstieren vermindert werden. Das bisher verwendete Übungsmaterial besteht beispielsweise aus Giimmi und vermag möglichst realistische Operationsbedingungen nur unvollständig nachziEmpfinden. In den Unteransprüchen sind weitere vorteilhafte Ausgestaltungen der Erfindung aufgeführt. Angegeben ist auch eine zweckmäßige Vorrichtung zur Durchfuhrung des Herstellungsverfahrens, bei welcher der innere und bei jedem Kultivierungsprozeß jeweils neu verwendete Glaszylinder der Glasmatrix mittels muffenartiger elastischer Ringe an den Zylinderenden lagestabil und leicht lösbar im äußeren Glasrohr fixiert wird. Auf diese Weise ist die Glasmatrix unter Wiederverwendbarkeit des äußeren Glasrohres und vorgenanntem Austausch des inneren Glaszylinders mit geringstem Zeit- und Handhabungsaufwand demontierbar, und die hergestellte hohlzylindrische Cellulose kann problemlos material- und oberflächenschonend isoliert werden. Die Nährlösungs- und Luftzirkulation zum bzw. vom Zwischenraum der Glasmatrix wird dabei durch Öffnungen des Glasrohres, die sich im Bereich zwischen den elastischen Ringen der Glasmatrix befinden, gewährleistet. Der Einsatz einer solchen Vorrichtung ist effizient, da beim nachfolgenden Kultivierungsprozeß ledighch der innere zylindrische Glasköφer auszutauschen ist und aufwendige Reinigungsschritte entfallen bzw. auf ein Minimum beschränkt sind.
Zur Erhöhung der Ausbeute des hergestellten Biomaterials können gleichzeitig mehrere Glasmatrizes zur besagten Kultivierung in das Gefäß mit der beimpften Nährlösung eintauchen. Das Herstellungsverfahren ist nicht auf die hohlzylindrische Formgebung des Biomaterials und ebenfalls nicht auf mikrochirurgische Anwendungen beschränkt.
Die Erfindung soll nachstehend anhand eines in der Figur 1 dargestellten
Ausführangsbeispiels näher erläutert werden. Ein Gefäß 1 mit einer Kapazität von 50 ml wurde mit 20 ml einer
Nährlösung 2 (Scl ranτm-Hestrin-Medium), die pro Liter aqua dest.
20,00 g Glucose wasserfrei, 5,00 g Bactopepton, 5,00 g Hefeextrakt,
3,40 g di-Natriumliydrogenphosphat-Dihydrat und 1,15 g
Citronensäure-Monohydrat enthält sowie einen pH-Wert zwischen 6,0 und 6,3 aufweist, gefüllt. Die Nährlösung 2 wurde bei 120 °C für
20 Minuten dampfsterilisiert und danach mit dem Bakterium Acetobacter xylinum (AX 5, Stammsammlung des Institutes für Biotechnologie Leipzig) aus einer 10 Tage alten flüssigen Staimnkultur (Schramm- Hestrin-Medium) beimpft. Im Anschluß daran wurde eine sterilisierte Glasmatrix 3, bestehend aus einem äußeren Glasrohr 4 und einem axialsymmetrisch darin fixierten inneren Glasköφer 5 mit einem Zylinderdurchmesser von 0,8 mm, in das Gefäß 1 eingetaucht. Auf Grund der wirkenden Kapillarkraft füllte sich ein Zwischenraum 6 zwischen dem äußeren Glasrohr 4 und dem inneren Glasköφer 5 mit der beimpften Nährlösung 2 des Gefäßes 1. Die Kultivierungszeit betrug 14 Tage bei einer Temperatur zwischen 28 °C und 30 °C. In diesem Kultivierungszeitrauin bildete sich eine weiße mikrobielie Cellulose sowohl im Gefäß 1 als auch im Zwischenraum 6 der Glasmatrix 3. Die Glasmatrix 3 wurde aus dem Gefäß 1 entnommen und demontiert; die im Zwischenraum 6 der Glasmatrix 3 gebildete zylindrische mikrobielie Cellulose wurde isoliert, gründlich mit Wasser gewaschen, mit siedender, wässriger 0,1 N Natronlauge 10 Minuten lang behandelt und nochmals gründlich mit Wasser gewaschen, um eine Mikrogefaßprothese mit einem inneren Durchmesser von 0,8 mm, einer Wandstärke von 0,7 mm und einer Länge bis zu 1 cm zu erhalten. Die Blutverträglichkeit dieser Mikrogefaßprothese wurde beurteilt durch eine tierexperimentelle Studie, in der Teile der Arteria carotis von WISTAR-Ratten mit dem hergestellten künstlichen Blutgefäß ersetzt wurden. Dazu wurde vor der Operation das im gequollenen Cellulosematerial enthaltene Wasser gegen physiologische Kochsalzlösung ausgetauscht. Unmittelbar nach der Operation konnte ein ungehinderter Blutfluß beobachtet werden.
Nach einem Monat wurde das künstliche Blutgefäß entnommen, das durch die Einbettung in Bindegewebe und Ausbildung kleiner Blutgefäße innerhalb des Bindegewebes sehr gut in den tierischen Köφer integriert und vollständig durchgängig war. Der Zustand der künstlichen Prothese, der Anastomosenbereiche und des Teils der Arteria carotis distal der zweiten Anastomose mit dem künstlichen Blutgefäß wurde histologisch und elektronemnikroskopisch untersucht. Es wurden keine Thrombenbildung und keine Proliferationsprozesse weder im Nahtbereich, im Inteφonat noch im Blutgefäß beobachtet. Die Innenfläche der Prothese einschließlich Anastomosebereich wurde "biologisiert", das heißt vollständig mit Endothelzellen belegt (Ausbildung einer Neomtima). Die innere Oberfläche der Anastomosen war flach und vollkommen unauffällig. Diese Ergebnisse wurden durch insgesamt 20 Tierversuche bestätigt.
Zur wiederholten Verwendung der Glasmatrix 3 in einem nachfolgenden Kultivierungsprozeß wurde der Glasköφer 5 gegen einen unbenutzten Glasköφer 5 ausgetauscht und der beschriebene Vorgang erneut durchgeführt. Um den Glasköφer 5 im Glasrohr 4 mit möglichst geringem Handhabeaufwand lagestabil zu fixieren und die Glasmatrix 3 ebenso aufwandgering und vor allem materialschonend in Bezug auf die hergestellte Cellulose wieder demontieren zu können, wird der Glasköφer 5 mit muffenartigen Silikonringen 7 im Glasrohr 4 fixiert. Damit jedoch ein Nährlösungsaustausch 8 und eine weitgehend ungehinderte Luftzirkulation 9 gewährleistet wird, besitzt das Glasrohr 4 im Bereich zwischen den Silikonringen 7 Öffnungen 10. Zur Gewährleistung der Sterilität und eines feuchten, aeroben Milieus im Gefäß 1, wird dieses während des Kultivierungsprozesses mit einem Deckel 11 verschlossen.
Bezugszeichenliste
1 Gefäß
2 Nährlösung
3 Glasmatrix
4 Glasrohr
5 Glasköφer
6 Zwischenraum
7 Silikonring
8 Nährlösungsaustausch
9 Luftzirkulation
10 Öffnung
11 Deckel

Claims

Patentansprüche
1. Verfahren zur Herstellung von geformter mikrobieller Cellulose zur Verwendung als Biomaterial, insbesondere für mikrochirurgische Anwendungen, bei dem eine sterilisierte Nährlösung mit Cellulose- bildenden Bakterien, beispielsweise ein eine foπnstabile Celluloseschicht produzierender Stamm des Mikroorganismus Acetobacter xylinum, beimpft und die Bakterien in emem Raum zwischen Formköφerwandungen kultiviert werden und bei dem das bei der Kultivierung entstehende Biomaterial von den Formköφerwandungen isoliert sowie einer Reinigung unterzogen wird, dadurch gekennzeichnet, daß die Formköφerwandungen in ein Gefäß mit der beimpften Nährlösung eintauchen und der Mikroorganismus sowohl ün Gefäß als auch im Raum zwischen den Foπnköφerwandungen zur Cellulosebildung in einem feuchten, aeroben Milieu kultiviert wird und daß als Formköφerwandung zur Formung der bei Einsatz des Biomaterials in Blutkontakt tretenden Prothesenmaterialfläche in jedem Herstellungsprozeß jeweils ein ungebrauchter Formköφer hoher Oberflächengüte verwendet wird.
Verfahren nach Ansprach 1 , dadurch gekennzeichnet, daß als Formköφerwandungen, zwischen denen der Mikroorganismus kultiviert wird, eine Glasmatrix aus vorzugsweise voneinander lösbaren Glasköφern verwendet wird.
3. Verfahren nach Ansprach 2, dadurch gekennzeichnet, daß zur Herstellung von hohlzylmdrischem Biomaterial eine Glasmatrix, bestehend aus einem äußeren Glasrohr und einem axialsymmetrisch darin eingefügten Glasköφer geringeren Durchmessers, in das Gefäß mit der beimpften Nährlösung eintaucht.
4. Verfahren nach Ansprach 2, dadurch gekennzeichnet, daß zur gleichzeitigen Herstellung mehrerer Biomaterialien mehrere Glasmatrizes in das Gefäß mit der beimpften Nährlösung eintauchen.
5. Vorrichtung zur Ditfchführung des Verfahrens nach Ansprach 3, dadurch gekennzeichnet, daß mindestens eine Glasmatrix (3), bestehend aus einem äußeren Glasrohr (4) und einem axialsymmetrisch darin eingefügten Glasköφer (5) geringeren Durchmessers, in ein Gef ß (1) mit darin befindlicher beimpfter Nährlösung (2) eintaucht, wobei der innere Glasköφer (5) zum Zweck einer einfach handhabbaren, lagestabilen und leicht lösbaren axialsymmetrischen Zentrierung im Glasrohr (4) durch elastische Ringe (7), vorzugsweise aus Silikon, unter Gewährleistung eines Nährlösungsaustausches (8) und einer Luftzirkulation (9) in bzw. aus einem das herzustellende
Biomaterial formenden Zwischenraum (6) der Glasmatrix (3) fixiert wird.
6. Vorrichtung nach Ansprach 5, dadurch gekemizeichnet, daß der Nähr- lösungsaustausch (8) und die Luftzirkulation (9) durch jeweils mindestens eine Öffnung (10) des äußeren Glasrohres (4) innerhalb des Bereiches der Glasmatrix (3) zwischen den elastischen Ringen (7) gewährleistet wird.
7. Vorrichtung nach Ansprach 5, dadurch gekennzeichnet, daß als Gefäß (1), in welches die Glasmatrix (3) eintaucht, ein an sich bekannter Erlenmeyerkolben verwendet wird.
PCT/EP2001/001621 2000-02-17 2001-02-13 Verfahren und vorrichtung zur herstellung von geformter mikrobieller cellulose zur verwendung als biomaterial, insbesondere für die mikrochirurgie WO2001061026A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA002400372A CA2400372A1 (en) 2000-02-17 2001-02-13 Method and device for producing shaped microbial cellulose for use as biomaterial, especially for microsurgery
US10/204,073 US20030013163A1 (en) 2000-02-17 2001-02-13 Method and device for producing shaped microbial cellulose for use as a biomaterial, especially for microsurgery
JP2001559863A JP2003525039A (ja) 2000-02-17 2001-02-13 特に微小手術用生体材料として使用するための微生物産生成形セルロースの製造方法および装置
DE50113938T DE50113938D1 (de) 2000-02-17 2001-02-13 Verfahren und vorrichtung zur herstellung von geformter mikrobieller cellulose zur verwendung als biomaterial, insbesondere fur die mikrochirurgie
AU2001231745A AU2001231745A1 (en) 2000-02-17 2001-02-13 Method and device for producing shaped microbial cellulose for use as biomaterial, especially for microsurgery
EP01903766A EP1263980B1 (de) 2000-02-17 2001-02-13 Verfahren und vorrichtung zur herstellung von geformter mikrobieller cellulose zur verwendung als biomaterial, insbesondere fur die mikrochirurgie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10007798 2000-02-17
DE10007798.6 2000-02-17

Publications (1)

Publication Number Publication Date
WO2001061026A1 true WO2001061026A1 (de) 2001-08-23

Family

ID=7631674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2001/001621 WO2001061026A1 (de) 2000-02-17 2001-02-13 Verfahren und vorrichtung zur herstellung von geformter mikrobieller cellulose zur verwendung als biomaterial, insbesondere für die mikrochirurgie

Country Status (8)

Country Link
EP (1) EP1263980B1 (de)
JP (1) JP2003525039A (de)
CN (1) CN100451125C (de)
AT (1) ATE394500T1 (de)
AU (1) AU2001231745A1 (de)
CA (1) CA2400372A1 (de)
DE (1) DE50113938D1 (de)
WO (1) WO2001061026A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249766A1 (de) 2001-12-04 2003-07-10 Matthias 99086 Erfurt Schreiber Schichtgefässmatrix für den universellen Gewebeaufbau und Vorrichtung zur Inkubation
WO2007093445A1 (en) * 2006-02-19 2007-08-23 Bioregeneration Gmbh Process for the production of a long hollow cellulose body
WO2008040729A2 (en) 2006-10-02 2008-04-10 Arterion Ab Process for the preparation of hollow cellulose vessels by culturing cellulose- producing microorganisms on the surface of a hollow carrier and providing a gas having an oxygen level of at least 35%
DE102007006844A1 (de) 2007-02-12 2008-08-14 Bioregeneration Gmbh Medizinisches Implantat und Verfahren zu dessen Herstellung
DE102007006843A1 (de) 2007-02-12 2008-08-14 Bioregeneration Gmbh Verfahren und Stützstruktur zum Kultivieren lebender Zellen
DE102007016852A1 (de) * 2007-04-10 2008-10-16 Bioregeneration Gmbh Verfahren zur Herstellung einer kristalline Cellulose umfassenden Struktur
DE102007020726A1 (de) 2007-05-03 2008-11-20 Robert Dr. Simmoteit Auflage und Hülle
DE102009003890A1 (de) 2009-01-02 2010-07-08 Bioregeneration Gmbh Vorrichtung mit einer in ein Gefäß des Körpers eines Patienten implantierbaren Einrichtung und einer Auskleidung sowie Verfahren zum Herstellen derselben
US7832857B2 (en) 2008-08-18 2010-11-16 Levinson Dennis J Microbial cellulose contact lens
EP2390344A1 (de) 2010-05-24 2011-11-30 Nympheas International Biomaterial Corp. Bakterieller Zellulosefilm und Verwendungen davon
CN102641161A (zh) * 2012-04-23 2012-08-22 东华大学 一种复合结构人造血管及其动态制备方法
DE102012201272A1 (de) 2012-01-30 2013-08-01 Kkf Ug Vorrichtung zur Herstellung von Hohlkörpern aus mikrobiellem Polymer
WO2013113675A1 (de) 2012-01-30 2013-08-08 Kkf Ug Verfahren zur herstellung von hohlkörpern aus mikrobieller cellulose
DE102012201268A1 (de) 2012-01-30 2013-09-05 Kkf Ug Verfahren zur Herstellung von Hohlkörpern aus mikrobieller Cellulose
US8691974B2 (en) 2009-09-28 2014-04-08 Virginia Tech Intellectual Properties, Inc. Three-dimensional bioprinting of biosynthetic cellulose (BC) implants and scaffolds for tissue engineering

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008056413B4 (de) * 2008-11-07 2014-12-24 Bioregeneration Gmbh Verfahren zur Herstellung eines Cellulose enthaltenden Körpers
CN101921700B (zh) * 2010-09-02 2015-03-11 东华大学 一种制备中空异形细菌纤维素材料的装置及方法
CN101914434B (zh) * 2010-09-02 2015-01-07 东华大学 动态制备异型空腔细菌纤维素材料的装置及方法
CN105505774B (zh) * 2016-01-20 2017-07-18 重庆大学 组织工程人工血管培养实验装置及其使用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186495A2 (de) * 1984-12-21 1986-07-02 Board Of Regents, The University Of Texas System Herstellung von mikrobieller Zellulose
EP0396344A2 (de) * 1989-04-28 1990-11-07 Ajinomoto Co., Inc. Hohle mikrobielle Zellulose, Verfahren zur Herstellung und künstliches Blutgefäss, hergestellt aus dieser Zellulose
JPH08126697A (ja) * 1994-10-31 1996-05-21 Ajinomoto Co Inc 中空状微生物セルロースチューブの製造法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03272772A (ja) * 1989-04-28 1991-12-04 Ajinomoto Co Inc 中空状微生物セルロース、その製法および同セルロースからなる人工血管
DE4322966C2 (de) * 1993-07-09 1995-10-26 Rhodia Ag Rhone Poulenc Aus Celluloseacetat geformte Gebilde und ihre Verwendung als Filtertow und Tabakrauchfilterelement
US5882357A (en) * 1996-09-13 1999-03-16 The Regents Of The University Of California Durable and regenerable microbiocidal textiles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0186495A2 (de) * 1984-12-21 1986-07-02 Board Of Regents, The University Of Texas System Herstellung von mikrobieller Zellulose
EP0396344A2 (de) * 1989-04-28 1990-11-07 Ajinomoto Co., Inc. Hohle mikrobielle Zellulose, Verfahren zur Herstellung und künstliches Blutgefäss, hergestellt aus dieser Zellulose
JPH08126697A (ja) * 1994-10-31 1996-05-21 Ajinomoto Co Inc 中空状微生物セルロースチューブの製造法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; KLEMM, D. ET AL: "Cellulose. BASYC, bacterially synthesized cellulose. Miniaturized tubes for microsurgery", XP002166034, retrieved from STN Database accession no. 132:69291 *
DATABASE CHEMABS [online] CHEMICAL ABSTRACTS SERVICE, COLUMBUS, OHIO, US; YAMANAKA, SHIGERU ET AL: "Hollow microbial cellulose tubes for medical and other use", XP002166035, retrieved from STN Database accession no. 125:123795 *
POLYM. NEWS (1999), 24(11), 377-378 *

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10249766A1 (de) 2001-12-04 2003-07-10 Matthias 99086 Erfurt Schreiber Schichtgefässmatrix für den universellen Gewebeaufbau und Vorrichtung zur Inkubation
DE102006007412B4 (de) * 2006-02-19 2008-08-21 Bioregeneration Gmbh Verfahren zur Herstellung eines langgestreckten Cellulosehohlkörpers
WO2007093445A1 (en) * 2006-02-19 2007-08-23 Bioregeneration Gmbh Process for the production of a long hollow cellulose body
DE102006007412A1 (de) * 2006-02-19 2007-08-30 Bioregeneration Gmbh Verfahren zur Herstellung eines langgestreckten Cellulosehohlkörpers
US8251687B2 (en) 2006-02-19 2012-08-28 Bioregeneration Gmbh Process for the production of a long hollow cellulose body
WO2008040729A2 (en) 2006-10-02 2008-04-10 Arterion Ab Process for the preparation of hollow cellulose vessels by culturing cellulose- producing microorganisms on the surface of a hollow carrier and providing a gas having an oxygen level of at least 35%
DE102007006844A1 (de) 2007-02-12 2008-08-14 Bioregeneration Gmbh Medizinisches Implantat und Verfahren zu dessen Herstellung
WO2008098944A1 (en) * 2007-02-12 2008-08-21 Bioregeneration Gmbh Medical implant and process for the production thereof
EP2202296A1 (de) 2007-02-12 2010-06-30 Bioregeneration Gmbh Kultur lebender zellen auf zellulosesubstrat
US8993324B2 (en) 2007-02-12 2015-03-31 Bioregeneration Gmbh Process and support structure for the cultivation of living cells
DE102007006843A1 (de) 2007-02-12 2008-08-14 Bioregeneration Gmbh Verfahren und Stützstruktur zum Kultivieren lebender Zellen
DE102007006844B4 (de) * 2007-02-12 2014-06-12 Bioregeneration Gmbh Langgestreckter Hohlkörper zum Ersatz eines venösen Blutgefäßes sowie Verfahren und Hohlform zur Herstellung eines kristalline Cellulose umfassenden langgestreckten Hohlkörpers
US8444700B2 (en) 2007-02-12 2013-05-21 Bioregeneration Gmbh Medical implant and process for the production thereof
RU2476187C2 (ru) * 2007-02-12 2013-02-27 Биорегенерацьон Гмбх Медицинский имплантат и способ его изготовления
DE102007016852A1 (de) * 2007-04-10 2008-10-16 Bioregeneration Gmbh Verfahren zur Herstellung einer kristalline Cellulose umfassenden Struktur
DE102007020726A1 (de) 2007-05-03 2008-11-20 Robert Dr. Simmoteit Auflage und Hülle
US7832857B2 (en) 2008-08-18 2010-11-16 Levinson Dennis J Microbial cellulose contact lens
DE102009003890A1 (de) 2009-01-02 2010-07-08 Bioregeneration Gmbh Vorrichtung mit einer in ein Gefäß des Körpers eines Patienten implantierbaren Einrichtung und einer Auskleidung sowie Verfahren zum Herstellen derselben
US8691974B2 (en) 2009-09-28 2014-04-08 Virginia Tech Intellectual Properties, Inc. Three-dimensional bioprinting of biosynthetic cellulose (BC) implants and scaffolds for tissue engineering
EP2390344A1 (de) 2010-05-24 2011-11-30 Nympheas International Biomaterial Corp. Bakterieller Zellulosefilm und Verwendungen davon
DE102012201272A1 (de) 2012-01-30 2013-08-01 Kkf Ug Vorrichtung zur Herstellung von Hohlkörpern aus mikrobiellem Polymer
WO2013113675A1 (de) 2012-01-30 2013-08-08 Kkf Ug Verfahren zur herstellung von hohlkörpern aus mikrobieller cellulose
DE102012201268A1 (de) 2012-01-30 2013-09-05 Kkf Ug Verfahren zur Herstellung von Hohlkörpern aus mikrobieller Cellulose
DE102012201272B4 (de) 2012-01-30 2019-05-09 Kkf Ug Vorrichtung zur Herstellung von Hohlkörpern aus mikrobiellem Polymer
CN102641161A (zh) * 2012-04-23 2012-08-22 东华大学 一种复合结构人造血管及其动态制备方法

Also Published As

Publication number Publication date
EP1263980A1 (de) 2002-12-11
AU2001231745A1 (en) 2001-08-27
CN100451125C (zh) 2009-01-14
CN1401005A (zh) 2003-03-05
DE50113938D1 (de) 2008-06-19
CA2400372A1 (en) 2001-08-23
JP2003525039A (ja) 2003-08-26
EP1263980B1 (de) 2008-05-07
ATE394500T1 (de) 2008-05-15

Similar Documents

Publication Publication Date Title
EP1263980B1 (de) Verfahren und vorrichtung zur herstellung von geformter mikrobieller cellulose zur verwendung als biomaterial, insbesondere fur die mikrochirurgie
EP3233493B1 (de) Nanofibrilläre cellulose-bioink für dreidimensionales biodrucken zur zellkultivierung, gewebezüchtung und für anwendungen in der regenerativen medizin
EP1275405B1 (de) Implantat mit poröser Proteinmatrix und Verfahren zu seiner Herstellung
DE19919625C2 (de) In-vitro-Verfahren zum Herstellen einer homologen Herzklappe und durch dieses Verfahren herstellbare Klappe
EP0248246B1 (de) Künstliche Gefässwand
DE69333466T2 (de) Herstellung von transplantatgeweben aus extrazellulärer matrix
DE69828050T2 (de) Ein Verfahren zur Herstellung eines Polyvinylalkohol-Kryogels
DE69121301T2 (de) Kollagenkonstruktionen
DE102006007412B4 (de) Verfahren zur Herstellung eines langgestreckten Cellulosehohlkörpers
US20030013163A1 (en) Method and device for producing shaped microbial cellulose for use as a biomaterial, especially for microsurgery
DE10050870A1 (de) Biokompatibles Verbundmaterial für medizinische Anwendungen
DE69625692T2 (de) Verfahren zur aktivierung der oberflächen von bioverträglichen und bioabsorbierbaren aliphatischen polyestern und so aktivierten polyestern
DE102009024133A1 (de) Bakterielle Nanocellulose zur Knorpelneubildung
EP1385559B9 (de) Poröse und nichtporöse matrices auf basis von chitosan und hydroxycarbonsäuren
EP3098305B1 (de) Kollagenhaltiger zellträger
DE102007006843A1 (de) Verfahren und Stützstruktur zum Kultivieren lebender Zellen
EP4196570A1 (de) Autologe prävaskularisierte 3d-druckverfahren-erzeugte brustgewebe-konstrukte und verfahren zu deren herstellung
DE102012201268B4 (de) Verfahren zur Herstellung von Hohlkörpern aus mikrobieller Cellulose
WO2013113675A1 (de) Verfahren zur herstellung von hohlkörpern aus mikrobieller cellulose
EP1905464B1 (de) Implantat und Verfahren zu seiner Herstellung
WO2005113743A2 (de) Vorrichtung zur durchführung einer liquid-air-kultur von epithel
DE102012201272B4 (de) Vorrichtung zur Herstellung von Hohlkörpern aus mikrobiellem Polymer
DE102012003541A1 (de) Bakterielle Nanocellulose-Körper mit kanalartiger Hohlraumstruktur sowie deren Herstellung und Verwendung
DE102004049757B4 (de) Verfahren zur Herstellung eines offenporigen Substrats zur Kultivierung von Gewebezellen
AT404794B (de) Kardiovaskuläre prothese

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 559863

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2400372

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 018051537

Country of ref document: CN

Ref document number: 10204073

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001903766

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2001903766

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2001903766

Country of ref document: EP