WO2001059467A1 - Traversee dotee d'un detecteur optique d'un dispositif haute tension - Google Patents

Traversee dotee d'un detecteur optique d'un dispositif haute tension Download PDF

Info

Publication number
WO2001059467A1
WO2001059467A1 PCT/CH2001/000067 CH0100067W WO0159467A1 WO 2001059467 A1 WO2001059467 A1 WO 2001059467A1 CH 0100067 W CH0100067 W CH 0100067W WO 0159467 A1 WO0159467 A1 WO 0159467A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
optical
bushing
current
voltage
Prior art date
Application number
PCT/CH2001/000067
Other languages
German (de)
English (en)
Inventor
Klaus Bohnert
Hubert Brändle
Thomas Christen
Felix Greuter
Original Assignee
Abb Technology Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Technology Ag filed Critical Abb Technology Ag
Priority to AU2001226614A priority Critical patent/AU2001226614A1/en
Publication of WO2001059467A1 publication Critical patent/WO2001059467A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/247Details of the circuitry or construction of devices covered by G01R15/241 - G01R15/246
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/005Insulators structurally associated with built-in electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B17/00Insulators or insulating bodies characterised by their form
    • H01B17/26Lead-in insulators; Lead-through insulators

Definitions

  • the invention relates to a bushing for the insulated insertion of a current conductor into a high-voltage device according to the preamble of claim 1.
  • bushings are known, for example, from Casper William et al, "Dimensioning and Operation of Bushings for Transformers and Choke Coils", etz-Report 23, VDE-Verlag, Berlin, 1986.
  • the bushings for transformers described there have a cylindrical shape with an insulation material Filled insulation housing, which can be connected to a transformer or to an oil-filled bushing dome arranged in the transformer via a feed-through flange.
  • the lead-through dome is provided with an inductive current transformer, which surrounds the power cable at a distance.
  • Current transformer coils commonly used have the disadvantage that they have relatively large diameters and are therefore heavy and expensive. Oil-insulated current transformers also have the disadvantage that they can explode if they malfunction.
  • the measuring range of inductive current transformers is relatively limited and the measurement itself can be faulty due to electromagnetic interference and magnetic saturation.
  • the biggest disadvantage, however, is that their size depends heavily on the range of the current or voltage to be measured. The consequence of this is that the size of the bushing dome and thus the bushing must be adapted to the respective voltage range of the high-voltage device or the current conductor.
  • the lack of standardization of the bushings increases their manufacturing and storage costs. Standardization is also made more difficult by the fact that the bushing with the insulating housing and the bushing dome arranged in the transformer are generally not manufactured by the same manufacturer.
  • This task 1 solves an implementation with the features of claim 3, an implementation with the features of claim 10 and an implementation with the features of claim 11.
  • the implementation according to the invention itself has a current and / or voltage sensor, so that a voluminous current transformer within a transformer is unnecessary.
  • the bushing no longer has to be adapted to different sizes of a bushing dome of the transformer, so that standardization is possible.
  • the senor is arranged outside the transformer in the mounted state of the bushing, it can be easily replaced in the event of a fault and can be easily connected to evaluation electronics or an optoelectronic measuring apparatus in normal operation.
  • a current sensor with a fiber-optic sensor coil as described in EP-A-0'856'737 is suitable as the current sensor.
  • These current and voltage sensors have the advantage that, on the one hand, they are very small, hardly susceptible to faults, and they can also be used over a large measuring range.
  • FIG. 1 shows a cross section through a schematic representation of an implementation according to the invention with a magneto-optical current sensor in a first embodiment
  • FIG. 2 shows a schematic illustration of a magneto-optical current sensor
  • Figure 3 shows an implementation in a second embodiment
  • Figure 4 shows an implementation in a third embodiment
  • Figure 5 shows an implementation in a fourth embodiment
  • Figure 6 shows an implementation in a fifth embodiment
  • FIG. 8a shows a schematic illustration of a piezo-optical voltage sensor
  • Figure 8b is a schematic representation of an electro-optical voltage sensor
  • Figure 9 shows a partial section through part of an implementation in a seventh embodiment.
  • FIG. 1 shows an implementation according to the invention, as can preferably be used for transformers, but also for isolators or switches. It has a cylindrical insulating housing 1, which is closed at one end with a bushing head 2 and at the other end with a bushing flange 3.
  • the insulating housing 1 is usually made of ceramic or a plastic and has on its jacket 10 outwardly projecting ribs 11.
  • the insulating housing 1 has an interior which is provided with an insulating filling 4. 01, gases, such as, for example, SF 6 , N2 or air, or insulating materials, such as silicone, epoxy or polyurethanes, are suitable as insulating fillings 4. Gels, foams or solids are suitable as insulating materials.
  • Feed-through head 2 and feed-through flange 3 have openings for the passage of a current conductor K.
  • the current conductor K penetrates the insulating housing 1 directly or is guided in a central tube which is arranged in the insulating housing.
  • the bushing is connected to a high-voltage device by means of the bushing flange 3.
  • the high-voltage device is a transformer, only an upper transformer wall 60 and part of an oil-filled bushing dome 6 being shown.
  • a condenser bushing is shown as a bushing.
  • a capacitor winding 5 wound around the current conductor 1 or around the central tube.
  • This capacitor winding 5 usually consists of metal sheets which are separated from one another by resin-impregnated paper windings.
  • the capacitor winding 5 extends partially within the insulating housing 1, passes through the feed-through flange 3 and projects into the transformer or its feed-through dome 6.
  • the bushing head 2 is thus at high voltage potential, the bushing flange 3 is at ground potential like the transformer wall 60.
  • the bushing is provided with a current and / or voltage sensor, the sensors preferably being at high voltage or at ground potential.
  • This current sensor 7 is preferably a magneto-optical current sensor as shown in FIG. 2 and known from EP-A-0'856'737. It has a sensor coil 70 made of a wound, magneto-optically active optical fiber, which is arranged in a sensor housing. At least at one end, the sensor coil 70 is connected via a phase delay element (not shown here) to a further optical fiber, a so-called feed fiber 72, via which light is transmitted can couple into or out of the sensor coil 70. The feed fiber 72 is connected via an optical connecting member 73 to an extension fiber 74, which is connected to an evaluation optics and electronics 75.
  • Circularly polarized light propagates in the sensor coil 70, and linearly polarized light in the feed fiber 72. The light is converted into the corresponding polarization during the transition through the phase delay element.
  • the sensor coil is operated either as a Sagnac interferometer or as a reflection interferometer, so that two counter-rotating or parallel waves propagate in the fiber of the sensor coil 70. If the sensor coil 70 surrounds a current conductor K and if current flows through it, the current generates a magnetic field, which leads to a differential phase shift between these two opposing or synchronous optical waves. This effect is called the magneto-optical or Faraday effect. The resulting phase shift is proportional to the current and can be detected with the evaluation optics and electronics 75.
  • the sensor coil 70 surrounds the insulating housing 1, it being arranged above the feedthrough flange 3 and thus having earth potential.
  • the feed fiber 72 runs completely outside the isothermal housing 1. It is advantageous in this embodiment that known bushings can be used and retrofitted with the current sensor 7.
  • FIG. 3 A second embodiment is shown in FIG. 3, in which the sensor coil 7 is arranged in the feedthrough flange 3 and is in turn connected to ground potential. It is advantageous here that a separate, special weatherproof sensor housing is unnecessary, since the lead-through flange 3 itself forms a housing for the sensor coil 70.
  • the sensor coil 70 is arranged above the insulating housing 1 and is therefore at high voltage potential.
  • the feed fiber 72 runs at least partially in the jacket 10 of the insulating housing 1. Between the feed fiber 72 and the fiber spool 70, a second optical connecting member 73 'is arranged to facilitate assembly.
  • the sensor coil 70 is arranged in the feed-through head 2.
  • the sensor coil 70 is arranged in the feed-through head 2.
  • FIG. 6 shows a fifth embodiment, in which the sensor coil 70 is arranged in the jacket 10 of the isothermal housing 1, preferably in the middle area thereof.
  • the sensor coil 70 is arranged in the jacket 10 of the isothermal housing 1, preferably in the middle area thereof.
  • it is also preferably arranged in the central region of the insulating body 1, but in the insulating filling 4.
  • the feed fiber 72 is laid either in the jacket 10 or in the isothermal filling 4 and preferably leaves the isothermal housing 1 at its end near the through flange 3.
  • the bushing can be provided with a voltage sensor instead of or in addition to the current sensor 7.
  • a piezo-optical voltage sensor is preferably used, as is known from EP-A-0'907O84 and shown in FIG. 8a.
  • an electro-optical voltage sensor is used, as is known from EP-A-0'682'261 and is shown in FIG. 8b.
  • the piezo-optical voltage sensor 8 has a cylindrical piezoelectric crystal 80, for example made of quartz, which is on two opposite end faces is provided with electrodes 81, 82, a first electrode 81 being at ground potential, a second electrode 82 being at high voltage potential.
  • the crystal 80 is wrapped with an optical sensor fiber 83, which is connected to an optical extension cable 85 in the region of the first electrode 81 via a connecting element 84, generally an optical plug.
  • Extension cable 85 generally has two optical fibers, a feed and a return fiber.
  • the extension cable 85 ends in an optoelectronic measuring apparatus 86, which is described in the prior art.
  • the sensor principle of this piezo-optical tension sensor 8 is based on the fact that the piezoelectric crystal 80 undergoes a tension-proportional stretch, which initiates fiber stretching in the sensor fiber 83. This fiber elongation can be measured interferometrically using the optoelectronic measuring apparatus 86.
  • the electro-optical voltage sensor 8 ' according to FIG. 8b has essentially the same components as the piezo-optical voltage sensor 8. However, instead of the piezoelectric one, it has an electro-optical crystal 80', preferably made of germanium bismuth oxide (BGO). The crystal 80 'is not fiber wrapped. However, there is a coupling-in optical system, not shown, which is described in the prior art, in order to propagate light in the crystal 80 'which couples in and out via an optical supply cable 83'. The optical feed cable 83 'has an optical feed and an optical return fiber. Furthermore, there is again a known optoelectronic measuring apparatus 86. The sensor principle of the electro-optical voltage sensor 8 'is based on the fact that a voltage applied to the crystal 80' produces a change in the polarization state of the light propagating in the crystal 80 '.
  • BGO germanium bismuth oxide
  • FIG. 9 shows a seventh embodiment of the bushing according to the invention, which has both a current sensor 7 and a voltage sensor 8.
  • the voltage sensor 8 is the piezo-optical 8a, but it is also possible to use the electro-optical voltage sensor 8 'in the same way.
  • Current and voltage sensors 7, 8 are arranged in the feedthrough flange 3 in this example.
  • the crystal 80 of the voltage sensor 8 is arranged in an opening 50 of the capacitor winding 5 and at an at least approximately right angle to the current conductor K.
  • the second electrode 82 is in contact with the current conductor K or the central tube, the first electrode 81 with the outer wall of the feedthrough flange 3.
  • the crystal 80 is preferably embedded in an insulation material 30 which fills a cavity formed by the feedthrough flange 3.
  • the same materials as for the insulation filling 4 are suitable as insulation materials.
  • the crystal 80 is provided with a sufficient dielectric cladding. In order to prevent the distance and thus leakage currents along the crystal 80, the latter can also be arranged at an angle that is not at right angles to the current conductor K.
  • the bushing flange has a larger diameter than the rest of the bushing in order to create a larger distance between high voltage and earth potential.
  • the implementation according to the invention with the fiber-optic current and / or voltage sensors enables a construction that is largely independent of the type and shape of the transformer.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

Une traversée destinée à l'introduction isolée d'un conducteur (K) dans un dispositif haute tension, notamment dans un transformateur, présente un boîtier isolant (1) cylindrique destiné à recevoir le conducteur (K), un flasque de traversée (3) permettant de fixer la traversée au dispositif haute tension et un détecteur de courant et/ou de tension (7, 8). Le détecteur de courant et/ou de tension (7, 8), placé sur une partie de la traversée, se trouve à l'extérieur du dispositif haute tension lorsqu'il est monté. On obtient ainsi une construction largement indépendante du type et de la forme du transformateur.
PCT/CH2001/000067 2000-02-08 2001-01-29 Traversee dotee d'un detecteur optique d'un dispositif haute tension WO2001059467A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001226614A AU2001226614A1 (en) 2000-02-08 2001-01-29 Leadthrough with an optical sensor, for a high voltage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10005164A DE10005164A1 (de) 2000-02-08 2000-02-08 Durchführung für eine Hochspannungseinrichtung
DE10005164.2 2000-02-08

Publications (1)

Publication Number Publication Date
WO2001059467A1 true WO2001059467A1 (fr) 2001-08-16

Family

ID=7629981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2001/000067 WO2001059467A1 (fr) 2000-02-08 2001-01-29 Traversee dotee d'un detecteur optique d'un dispositif haute tension

Country Status (3)

Country Link
AU (1) AU2001226614A1 (fr)
DE (1) DE10005164A1 (fr)
WO (1) WO2001059467A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1345033A1 (fr) * 2002-02-15 2003-09-17 Esdras Automatica Transformateurs pour mesurer la tension et le courant électrique basés sur les ondes électromagnétiques du diélectrique
EP3561819A1 (fr) * 2018-04-26 2019-10-30 ABB Schweiz AG Bague équipée d'une fibre optique
US11469014B2 (en) 2017-07-27 2022-10-11 Siemens Energy Global GmbH & Co. KG Electrical device having an insertable high-voltage bushing

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418452A1 (fr) 2002-11-07 2004-05-12 Abb Research Ltd. Equipement haute tension avec fibre optique et son procédé de production
DE102004007912B4 (de) * 2004-02-13 2007-04-19 HSP Hochspannungsgeräte Porz GmbH Durchführung mit Leistungshalbleiterbauelement
DE102004042101B4 (de) * 2004-08-30 2008-04-10 Deutsche Bahn Ag Energieversorgung und Signalübertragung für Messtechnik auf Hochspannungspotential
FR2904426B1 (fr) 2006-07-25 2010-07-30 Ms Relais Dispositif de mesure de l'energie electrique fournie a un engin de traction ferroviaire
WO2010012301A1 (fr) 2008-07-30 2010-02-04 Abb Research Ltd Disjoncteur de générateur équipé d’un capteur de courant à fibre optique
WO2010012300A1 (fr) * 2008-07-30 2010-02-04 Abb Research Ltd Poste de conversion ca/cc ou cc/ca haute tension équipé d’un capteur de courant à fibre optique
WO2017152985A1 (fr) * 2016-03-10 2017-09-14 Siemens Aktiengesellschaft Dispositif haute tension avec détection de température et procédé de détection de température d'un dispositif haute tension
EP3979266B1 (fr) 2020-09-30 2024-06-05 Hitachi Energy Ltd Support de montage d'un ensemble d'équipement accessoire sur une base de traversée, module d'équipement accessoire correspondant et traversée
DE102022203717B4 (de) 2022-04-13 2024-02-15 Siemens Energy Global GmbH & Co. KG Hochspannungsdurchführung und Verfahren zu deren Herstellung

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735250A (en) * 1970-07-08 1973-05-22 Shibaura Electric Comp Fault detecting apparatus for a capacitor type potential divider having an amplifier
EP0038284A1 (fr) * 1980-03-27 1981-10-21 Siemens Aktiengesellschaft Transformateur de tension inductif, isolé au gaz ou par fluide
EP0645782A1 (fr) * 1993-07-28 1995-03-29 Gec Alsthom T Et D Sa Traversée de courant multifonctionnelle
EP0789245A2 (fr) * 1996-02-10 1997-08-13 Abb Research Ltd. Appareil de mesure de tension électrique
EP0826970A2 (fr) * 1996-08-26 1998-03-04 ABBPATENT GmbH Capteur de tension
EP0851442A2 (fr) * 1996-12-31 1998-07-01 ABB Transmit Oy Isolateur d'amenée de courant

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4670625A (en) * 1984-07-24 1987-06-02 Wood Henry S Electrical insulating bushing with a weather-resistant sheath
CH678894A5 (fr) * 1989-09-25 1991-11-15 Asea Brown Boveri
GB2289803B (en) * 1994-05-06 1997-10-22 Whipp & Bourne Ltd Outdoor insulating bushing for high voltage electrical devices
DE4416298A1 (de) * 1994-05-09 1995-11-16 Abb Research Ltd Verfahren und Vorrichtung zur optischen Ermittlung einer physikalischen Größe
DE19654909A1 (de) * 1996-03-08 1997-11-13 Daimler Benz Ag Vorrichtung mit einem magnetooptischen Stromsensor
DE19703128A1 (de) * 1997-01-29 1998-08-06 Abb Research Ltd Magnetooptischer Stromsensor
DE19743658B4 (de) * 1997-10-02 2007-02-08 Abb Research Ltd. Faseroptischer Spannungssensor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3735250A (en) * 1970-07-08 1973-05-22 Shibaura Electric Comp Fault detecting apparatus for a capacitor type potential divider having an amplifier
EP0038284A1 (fr) * 1980-03-27 1981-10-21 Siemens Aktiengesellschaft Transformateur de tension inductif, isolé au gaz ou par fluide
EP0645782A1 (fr) * 1993-07-28 1995-03-29 Gec Alsthom T Et D Sa Traversée de courant multifonctionnelle
EP0789245A2 (fr) * 1996-02-10 1997-08-13 Abb Research Ltd. Appareil de mesure de tension électrique
EP0826970A2 (fr) * 1996-08-26 1998-03-04 ABBPATENT GmbH Capteur de tension
EP0851442A2 (fr) * 1996-12-31 1998-07-01 ABB Transmit Oy Isolateur d'amenée de courant

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ANAGNI F ET AL: "OPTICAL SENSORS FOR ELECTRIC SUBSTATIONS: A VOLTAGE PRESENCE DETECTOR USING A LIQUID CRYSTAL CELL", IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT,US,IEEE INC. NEW YORK, vol. 43, no. 3, 1 June 1994 (1994-06-01), pages 475 - 480, XP000458993, ISSN: 0018-9456 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1345033A1 (fr) * 2002-02-15 2003-09-17 Esdras Automatica Transformateurs pour mesurer la tension et le courant électrique basés sur les ondes électromagnétiques du diélectrique
US11469014B2 (en) 2017-07-27 2022-10-11 Siemens Energy Global GmbH & Co. KG Electrical device having an insertable high-voltage bushing
EP3561819A1 (fr) * 2018-04-26 2019-10-30 ABB Schweiz AG Bague équipée d'une fibre optique
WO2019207069A1 (fr) 2018-04-26 2019-10-31 Abb Schweiz Ag Douille équipée d'une fibre optique
CN112219244A (zh) * 2018-04-26 2021-01-12 Abb电网瑞士股份公司 装配有光纤的套管
US11831133B2 (en) 2018-04-26 2023-11-28 Hitachi Energy Ltd Bushing equipped with an optical fibre

Also Published As

Publication number Publication date
AU2001226614A1 (en) 2001-08-20
DE10005164A1 (de) 2001-08-09

Similar Documents

Publication Publication Date Title
DE4025911C2 (de) Anordnung für die Spannungsmessung in einer GIS-Anlage
WO2001059467A1 (fr) Traversee dotee d'un detecteur optique d'un dispositif haute tension
DE4100054C2 (fr)
DE2341073B2 (de) Meßeinrichtung für die Spannung in einer gekapselten Hochspannungsschaltanlage
EP1512981A1 (fr) Bobine de détection et détecteur de courant stabilisés contre les variations de la température
DE2130046A1 (de) Einrichtung zur messung von spannungen an hochspannungsleitern
EP0605435A1 (fr) Detecteur pour fils a haute tension
DE19743658A1 (de) Faseroptischer Spannungssensor für Freiluft-Hochspannungsanlagen
DE3712190A1 (de) Elektrischer wandler
DE69908138T2 (de) Schalterpol mit integriertem optischen stromsensor
DE19634251A1 (de) Spannungswandler
DE19855528A1 (de) Kapazitiver Spannungsteiler
EP0464021B1 (fr) Dispositif de mesure a electrode auxiliaire pour installations a haute tension blindees isolees au gaz
EP1018024B1 (fr) Transformateur combine de courant et de tension pour signaux faibles
EP0596566B1 (fr) Transformateur H.T.
DE69627656T2 (de) Hochspannungsmessanordnung
DE60104788T2 (de) Gasisolierter Leistungsschalter mit integriertem elektronischem Stromwandler
DE2131224C3 (de) Einrichtung zur Messung von Spannungen an Hochspannungsleitern
DE19832707C2 (de) Kombinierter Strom- und Spannungswandler für Freiluftschaltanlagen
DE19542529C1 (de) Festdrosselanordnung für die Prüfung von Hochspannungsanlagen
CH699465A2 (de) Optische Spannungsmessungsvorrichtung.
DE2131225A1 (de) Aus stromwandler- und spannungswandlereinheit bestehender kombinierter messwandler
DE3708731C1 (en) Electrical circuit arrangement for detecting noise pulses in high-voltage systems
DE19644482C1 (de) Isolatoranordnung
DE10258115A1 (de) Breitbandiges Messmodul zur Strommessung an Einrichtungen der Leistungselektronik

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP