WO2001057389A2 - Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge - Google Patents

Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge Download PDF

Info

Publication number
WO2001057389A2
WO2001057389A2 PCT/DE2001/000015 DE0100015W WO0157389A2 WO 2001057389 A2 WO2001057389 A2 WO 2001057389A2 DE 0100015 W DE0100015 W DE 0100015W WO 0157389 A2 WO0157389 A2 WO 0157389A2
Authority
WO
WIPO (PCT)
Prior art keywords
coils
injection valve
electromagnetic
coil
coil system
Prior art date
Application number
PCT/DE2001/000015
Other languages
English (en)
French (fr)
Other versions
WO2001057389A3 (de
Inventor
Hubert Greif
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to DE50107100T priority Critical patent/DE50107100D1/de
Priority to KR1020017012632A priority patent/KR20010111294A/ko
Priority to JP2001556006A priority patent/JP2003521633A/ja
Priority to EP01903591A priority patent/EP1181443B1/de
Priority to US09/958,246 priority patent/US6651913B1/en
Publication of WO2001057389A2 publication Critical patent/WO2001057389A2/de
Publication of WO2001057389A3 publication Critical patent/WO2001057389A3/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0675Electromagnet aspects, e.g. electric supply therefor
    • F16K31/0679Electromagnet aspects, e.g. electric supply therefor with more than one energising coil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M51/00Fuel-injection apparatus characterised by being operated electrically
    • F02M51/06Injectors peculiar thereto with means directly operating the valve needle
    • F02M51/061Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means
    • F02M51/0614Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature
    • F02M51/0617Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets
    • F02M51/0621Injectors peculiar thereto with means directly operating the valve needle using electromagnetic operating means characterised by arrangement of electromagnets or fixed armature having two or more electromagnets acting on one mobile armature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/081Magnetic constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding

Definitions

  • Electromagnetic injection valve for controlling an amount of fuel to be fed into an internal combustion engine
  • the invention relates to an electromagnetic injection valve for controlling an amount of fuel to be fed into an internal combustion engine with the features mentioned in the preamble of claim 1.
  • Electromagnetic injectors are known from current gasoline and diesel injection systems. Single-coil concepts are pursued in the known electromagnetic injection valves.
  • a magnetic field is created by energizing a coil, whereby a magnetic flux is generated in the surrounding magnetic circuit.
  • a valve body is now moved in that the magnetic flux acts via an air gap on a movable magnet armature connected to the valve body.
  • An opening period of the electromagnetic injection valve and thus an injection quantity is controlled via the duration of the energization of the coil.
  • the build-up of a magnetic flux in a magnetic circuit of a coil does not happen instantaneously when the coil is energized, but with a certain time delay.
  • Eddy currents are electrical currents which are induced in massive electrically conductive bodies by a time-varying magnetic field, for example during the build-up of the magnetic field.
  • the eddy currents counteract rapid field diffusion.
  • the injection valve according to the invention offers the advantage of a short response time and a low switching effort.
  • the injection valve according to the invention comprises an electromagnetic coil system with at least two concentrically arranged coils, the coils being integrated into a magnetic circuit in such a way that a first pole body is arranged between two adjacent coils, and an inner and outer coil are each adjacent to a second pole body , the first and second pole bodies are part of the magnetic circuit of the electromagnetic coil system, and adjacent coils can be energized in opposite directions by a common excitation current.
  • the pole bodies are dimensioned such that a radial cut surface of a central first pole body largely corresponds to the sum of the cut surfaces of the two adjacent second pole bodies.
  • one Magnetic circuit prevents a mutual cancellation of force effects of two adjacent coils.
  • the coils have approximately identical parameters, in particular the same inductances.
  • the coils are arranged in a parallel circuit.
  • FIG. 1 shows a sectional view of an electromagnetic injection valve according to the prior art
  • Figure 2 shows a magnetic circuit in a single-coil system
  • FIG. 3 shows a magnetic circuit in a two-coil system according to the invention
  • Figure 4 is a diagram illustrating the buildup of force in a single-coil and a two-coil magnetic circuit. Description of the embodiments
  • FIG. 1 shows the sectional view of an electromagnetic injection valve according to the prior art.
  • the injection valve designated overall by 10, essentially consists of a valve housing 12, a valve core 14 and an axially movable valve needle 16.
  • Two O-rings 18, 20 seal the injection valve 10 against a fuel distributor piece (not shown here) and an intake pipe (also not shown).
  • the fuel entering from above in the drawing first flows through a fuel screen 22, which protects the injection valve 10 from dirt.
  • the fuel continues via a flow element 24 into a cavity of the valve needle 16, from where it reaches a valve seat 26 through lateral openings of the valve needle 16.
  • a spring 28 and the force resulting from the fuel pressure press on the valve seat 26 and seal the fuel supply system against the intake manifold.
  • the electromagnetic injection valve 10 also has a coil 32 wound on a coil body 30, to which an excitation current can be applied via an electrical connection 34.
  • a magnetic field is generated in the magnetic circuit surrounding the coil, by means of which a magnet armature 36 is attracted.
  • the valve needle 16 which is non-positively connected to the magnet armature 36, lifts off the valve seat 26, so that the fuel exits through an orifice plate 33 into the intake manifold.
  • the valve needle 16 is reset by the spring 28, so that the valve 10 closes.
  • FIG. 2 The structure of a magnetic field in a conventional injection valve with a single-coil system is shown schematically in FIG. 2. If a coil 32, of which only one side is shown in a sectional view, is energized with the excitation current 40, a magnetic field 44 builds up in a pole body 42 surrounding the coil 32. As a result of the construction of the magnetic field, according to the law of induction
  • an eddy current red E46 generates in the pole body 42.
  • the main current direction of the eddy current 46 is opposite to the direction of the excitation current 40 of the coil 32.
  • the formation of the eddy current 46 lowers the rate of diffusion of the magnetic field 44 and thus the rate of build-up of the force acting on the armature 36. The result is an extended response or dead time of the electromagnetic injection valve 10.
  • FIG. 3 schematically shows the magnetic field of an electromagnetic coil system with an inside coil 32_1 and an outside coil 32_2.
  • a radial sectional view of the double coil magnetic circuit along the axis AA ' is shown.
  • the two coils 32_1 and 32_2 are energized with the excitation current 40 in the opposite direction.
  • Each coil 32_1, 32_2 is enclosed on both coil sides by a pole body 42.
  • the energization of the coils 32_1, 32_2 leads in the surrounding pole body 42 to the build-up of a magnetic field 44 around each coil.
  • the two magnetic fields 44 of the coils 32_1, 32_2 overlap in the same direction in the central pole body 42_2.
  • the eddy currents 46 induced by the magnetic fields 44 in the inner pole body 42_2 have an opposite flow direction. In this area, therefore, the eddy currents 46 and the eddy current field generated are extinguished.
  • the field diffusion can therefore take place without eddy current losses, as a result of which the magnetic field 44 can be built up significantly faster than is the case in the case of the single-coil system shown in FIG. 2.
  • the response time of the injection valve 10 from the energization of the coils 32_1, 32_2 to the action of the magnetic force on the Anchor 36 is thus shortened overall.
  • Another reason for the accelerated build-up of force in the double coil magnetic circuit is given by the field diffusion, which can take place at four diameters or at two diameters per coil 32 used.
  • FIG. 4 shows the speed of the force build-up of a single-coil magnetic circuit and the two-coil magnetic circuit according to the invention.
  • the increase and decrease in force is comparatively flat (Graph 48).
  • a relative magnetic force F rel of ° ' 8 is only reached after 0.33 units of the common time base t re ] _.
  • an electromagnetic injection valve according to the present invention has a significant reduction in dead times with extremely short pull-in and drop-out times compared to conventional injection valves. This also enables a more precise representation of small injection quantities. Due to its highly dynamic magnetic circuit, the injection valve according to the invention is outstandingly suitable for use in modern gasoline and diesel injection systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Die Erfindung betrifft ein elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge mit einem durch ein Elektromagnetspulensystem verlagerbaren Ventilkörper, wobei der Ventilkörper mit einem Magnetanker des Elektromagnetspulensystems zusammenwirkt. Es ist vorgesehen, dass das Elektromagnetspulensystem wenigstens zwei konzentrisch angeordnete Spulen (32-1, 32-2) umfasst, die Spulen (32-1, 32-2) derart in einem Magnetkreis integriert sind, dass zwischen zwei benachbarten Spulen (32-1, 32-2) jeweils ein erster Polkörper (42-2) angeordnet ist, und die innere und äußere Spule (32-1, 32-2) jeweils einem zweiten Polkörper (42-1, 42-3) benachbart ist, die ersten und zweiten Polkörper (42-1, 42-2, 42-3) Bestandteile des Magnetkreises des Elektromagnetspulensystems sind, und jeweils benachbarte Spulen (32-1, 32-2) in einander entgegengesetztem Richtungssinn durch einen gemeinsamen Erregerstrom (40) bestrombar sind.

Description

Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge
Die Erfindung betrifft ein elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen .
Stand der Technik
Elektromagnetische Einspritzventile sind aus gegenwärtigen Benzin- und Dieseleinspritzsystemen bekannt. Bei den bekannten elektromagnetischen Einspritzventilen werden Einspulenkonzepte verfolgt. Hierbei wird ein magnetisches Feld durch Bestromung einer Spule aufgebaut, wodurch im umgebenden Magnetkreis ein magnetischer Fluss erzeugt wird. Ein Ventilkörper wird nun dadurch bewegt, dass der magnetische Fluss über einen Luftspalt auf einen beweglichen, mit dem Ventilkörper verbundenen Magnetanker einwirkt. Eine Öffnungsdauer des elektromagnetischen Einspritzven- tiles und damit eine Einspritzmenge wird über die Dauer der Bestromung der Spule gesteuert . Grundsätzlich geschieht der Aufbau eines magnetischen Flusses in einem Magnetkreis einer Spule nicht instantan mit Bestromung der Spule, sondern mit einer gewissen Zeitverzögerung. Die Zeitverzögerung des Feldaufbaus hängt von vielen Faktoren, wie einer Geometrie des Magnetkreises und insbesondere von einer Felddiffusion und erzeugten Wirbelströmen, ab. Wirbelströme sind elektrische Ströme, die in massiven elektrisch leitenden Körpern durch ein zeitlich veränderliches Magnetfeld, beispielsweise während des Aufbaus des magnetischen Feldes, induziert werden. Dabei wirken die Wirbelströme einer raschen Felddiffusion entgegen.
Die Zeitverzögerung zwischen Stromfluss in der Spule und Feldaufbau führt zu einer unerwünschten Verlängerung der Ansprechzeiten von elektromagnetischen Einspritzventilen. Ansprechzeiten von 100 μs oder weniger, die in modernen Einspritzsystemen erforderlich sind, werden gegenwärtig nur durch mittels Booster-Kondensatoren ermöglichten höheren Spannungen oder durch aufwendig geschaltete Doppelspulensysteme mit gegenseitig aufhebender Kraftwirkung ermöglicht. Nachteilig an diesen bekannten Systemen ist der hohe konstruktive Aufwand der elektrischen Schaltungen, der mit hohen Kosten und großem Raumbedarf einhergeht .
Vorteile der Erfindung
Das erfindungsgemäße elektromagnetische Einspritzventil bietet den Vorteil einer kurzen Ansprechzeit und einen geringen Schaltaufwand. Das erfindungs- gemäße Einspritzventil umfasst hierzu ein Elektromagnetspulensystem mit wenigstens zwei konzentrisch angeordneten Spulen, wobei die Spulen derart in einen Magnetkreis integriert sind, dass zwischen zwei benachbarten Spulen jeweils ein erster Polkörper angeordnet ist, und eine innere und äußere Spule jeweils einem zweiten Polkörper benachbart ist, die ersten und zweiten Polkörper Bestandteil des Magnetkreises des Elektromagnetspulensystems sind, und jeweils benachbarte Spulen in einander entgegengesetztem Richtungssinn durch einen gemeinsamen Erregerstrom be- strombar sind. In einem derartigen Mehrspulensystem kommt es in einem innen liegenden ersten Polkörper aufgrund der entgegengesetzten Bestromung der Spulen zu einer einander entgegengesetzten Feldrichtung der erzeugten Wirbelströme und somit zu einer Auslöschung der Wirbelströme. Infolgedessen erfolge die Felddiffusion und damit der Kraftaufbau des Magnetkreises erheblich schneller als in einem konventionellen Einspulensystem. Darüber hinaus wird in dem ersten Polkörper zwischen zwei Spulen das Magnetfeld konstruktiv verstärkt, da sich hier beide Magnetfelder gleichsinnig überlagern und somit ein größerer Magnetfluss erzeugt wird.
Gemäß einer bevorzugten Ausgestaltung des Einspricz- ventiles sind die Polkörper derart dimensioniert, dass eine radiale Schnittfläche eines mittleren ersten Polkörpers weitgehend der Summe der Schnittflächen der beiden benachbarten zweiten Polkörper entspricht. In einer derart gewählten Geometrie eines Magnetkreises wird eine gegenseitige Aufhebung von Kraftwirkungen zweier benachbarter Spulen verhindert .
Entsprechend einer weiteren vorteilhaften Ausführungsform weisen die Spulen annähernd identische Kenngrößen, insbesondere gleiche Induktivitäten, auf.
Es ist ferner bevorzugt vorgesehen, dass die Spulen in einer parallelen Schaltung angeordnet sind.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den übrigen, in den Unteransprüchen genannten Merkmalen.
Zeichnungen
Die Erfindung wird nachfolgend in Ausführungsbeispielen anhand der zugehörigen Zeichnungen näher erläutert. Es zeigen:
Figur 1 eine Schnittansicht eines elektromagnetischen Einspritzventiles gemäß dem Stand der Technik;
Figur 2 einen Magnetkreis in einem Einspulensystem;
Figur 3 einen Magnetkreis in einem erfindungsgemäßen Zweispulensystem und
Figur 4 ein Diagramm zur Veranschaulichung des Kraftaufbaus in einem Einspulen- und einem Zweispulen agnetkreis . Beschreibung der Ausführungsbeispiele
In Figur 1 ist die Schnittansicht eines elektromagnetischen Einspritzventiles gemäß dem Stand der Technik dargestellt. Das insgesamt mit 10 bezeichnete Einspritzventil besteht im Wesentlichen aus einem Ventilgehäuse 12, einem Ventilkern 14 und einer axial beweglichen Ventilnadel 16. Zwei O-Ringe 18, 20 dichten das Einspritzventil 10 gegen ein hier nicht dargestelltes Kraftstoffverteilerstück und ein ebenfalls nicht gezeigtes Saugrohr ab. Der in der Zeichnung von oben eintretende Kraftstoff strömt zunächst durch ein Kraftstoffsieb 22, welches das Einspritzventil 10 vor Verschmutzungen schützt. Der Kraftstoff gerät weiter über ein Strömungselement 24 in einen Hohlraum der Ventilnadel- 16 , von wo er durch seitliche Öffnungen der Ventilnadel 16 an einen Ventilsitz 26 gelangt. In einem Grundzustand des Einspritzventiles 10 drücken eine Feder 28 und die aus dem Kraftstoffdruck resultierende Kraft auf den Ventilsitz 26 und dichten das Kraftstoffversorgungssystem gegen das Saugrohr ab.
Das elektromagnetische Einspritzventil 10 weist ferner eine auf einen Spulenkörper 30 gewickelte Spule 32 auf, an die über einen elektrischen Anschluss 34 ein Erregerstrom angelegt werden kann. Bei Bestromung der Spule 32 wird in dem die Spule umgebenden Magnetkreis ein Magnetfeld erzeugt, durch welches ein Magnetanker 36 angezogen wird. Infolgedessen hebt sich die mit dem Magnetanker 36 kraftschlüssig verbundene Ventilnadel 16 von dem Ventilsitz 26 ab, so dass der Kraftstoff durch eine Spritzlochscheibe 33 in das Saugrohr austritt. Nach Abschaltung des Erregerstromes wird die Ventilnadel 16 durch die Feder 28 zurückgestellt, so dass sich das Ventil 10 schließt .
Der Aufbau eines Magnetfeldes in einem konventionellen Einspritzventil mit einem Einspulensystem ist in schematischer Weise in Figur 2 gezeigt. Wird eine Spule 32, von der hier lediglich eine Seite in Schnittansicht dargestellt ist, mit dem Erregerstrom 40 bestromt, so baut sich in einem die Spule 32 umgebenden Polkörper 42 ein magnetisches Feld 44 auf. Infolge des Aufbaus des magnetischen Feldes wird gemäß dem Induktionsgesetz
rot E = B , δt
worin B eine Magnetflussdichte bedeutet, ein Wirbelstrom rot E46 in dem Polkörper 42 erzeugt. Die Hauptstromrichtung des Wirbelstromes 46 ist dabei der Richtung des Erregerstromes 40 der Spule 32 entgegengesetzt. Die Entstehung des Wirbelstromes 46 setzt die Diffusionsgeschwindigkeit des Magnetfeldes 44 und damit die Aufbaugeschwindigkeit der auf den Anker 36 einwirkenden Kraft herab. Die Folge ist eine verlängerte Ansprech- oder Totzeit des elektromagnetischen Einspritzventiles 10.
Um das Problem des verzögerten Feld- und Kraftaufbaus herkömmlicher Einspritzventile zu überwinden, werden gemäß der vorliegenden Erfindung zwei oder mehr konzentrisch angeordnete Spulen eingesetzt. Figur 3 zeigt schematisch das Magnetfeld eines Elektromagnet - spulensystems, mit einer innen liegenden Spule 32_1 und einer außen liegenden Spule 32_2. Im unteren Teil der Figur 3 ist eine radiale Schnittansicht des Doppelspulenmagnetkreises entlang der Achse A-A' dargestellt. Die beiden Spulen 32_1 und 32_2 werden mit dem Erregerstrom 40 in einander entgegengesetzter Richtung bestromt . Jede Spule 32_1, 32_2 wird auf beiden Spulenseiten von einem Polkörper 42 eingeschlossen. Die Bestromung der Spulen 32_1, 32_2 führt im umgebenden Polkörper 42 zu dem Aufbau eines Magnetfeldes 44 um jede Spule. Aufgrund der entgegengesetzten Stromrichtungen des Erregerstromes 40 der beiden Spulen 32_1, 32_2 überlagern sich im zentralen Polkörper 42_2 die beiden Magnetfelder 44 der Spulen 32_1, 32_2 gleichsinnig. Hier kommt es zu einer Feldverstärkung und somit zu einem größeren Magnecfluss . Auf der anderen Seite weisen die durch die magnetischen Felder 44 induzierten Wirbelströme 46 im innen liegenden Polkörper 42_2 eine einander entgegengesetzte Strömungsrichtung auf. In diesem Bereich kommt es daher zu einer Auslöschung der Wirbelströme 46 und des erzeugten Wirbelstromfeldes. Im innen liegenden Polkörper 42_2 kann daher die Felddiffusion ohne Wirbelstromverluste erfolgen, wodurch das Magnetfeld 44 signifikant schneller aufgebaut werden kann, als es im Falle des in Figur 2 gezeigten Einspulensystems der Fall ist. Die Ansprechzeit des Einspritzventiles 10 von der Bestromung der Spulen 32_1, 32_2 bis zur Einwirkung der Magnetkraft auf den Anker 36 ist somit insgesamt verkürzt. Ein weiterer Grund für den beschleunigten Kraftaufbau im Doppel- spulenmagnetkreis ist durch die Felddiffusion gegeben, die an vier Durchmessern beziehungsweise an zwei Durchmessern pro eingesetzter Spule 32 stattfinden kann.
Beim Abschalten des Erregerstroms 40 kommen die gleichen physikalischen Effekte zum Tragen. Wiederum erfolgt im innen liegenden Polkörper 42_2 eine Aus- löschung der durch das schwindende Magnetfeld 44 induzierten Wirbelströme 46, so dass die Felddiffusion erheblich schneller ablaufen kann.
Die vorteilhaften Wirkungen eines erfindungsgemäßen Mehrspulensystems werden dann optimal ausgenutzt, wenn der Magnetkreis derart ausgelegt ist, dass eine radiale Polfläche des innen liegenden Polkörpers 42_2 der Summe der beiden benachbarten Polflächen der Polkörper 42_1 und 42_3 entspricht (vgl. unteren Teil in Figur 3) . Dies gilt auch, wenn mehr als zwei Spulen den Magnetkreis aufbauen.
In Figur 4 ist die Geschwindigkeit des Kraftaufbaus eines Einspulen agnetkreises und des erfindungs- gemäßen Zweispulenmagnetkreises dargestellt. Für eine bessere Vergleichbarkeit wurde hier die relative Kraft Fre]_ in Abhängigkeit einer gemeinsamen relativen Zeitbasis tre]_ aufgetragen, wobei tre]_ = 0 der Zeitpunkt tg der Bestromung der Spule 32 und tre]_ = 1 der Zeitpunkt des Abschaltens der Spule 32 bedeutet. In einem konventionellen Einspulenmagnetsystem ver- läuft der Kraftanstieg und -abfall vergleichsweise flach (Graph 48) . So ist eine relative Magnetkraft Frel von °'8 etwa erst nach 0,33 Einheiten der gemeinsamen Zeitbasis tre]_ erreicht. Dagegen ist die maximale Magnetkraft nach Bestromung des Zweispulensystems zum Zeitpunkt tg wesentlich schneller erreicht (Graph 50), wobei eine Magnetkraft von 0,8 bereits nach etwa 0,12 Zeiteinheiten aufgebaut ist. Auch nach Abschaltung der Spule zum Zeitpunkt t]_ wird ein deutlich schnellerer Kraftabbau im Zweispulen- system beobachtet (Graph 50) .
Insgesamt weist ein elektromagnetisches Einspritzventil gemäß der vorliegenden Erfindung gegenüber herkömmlichen Einspritzventilen eine erhebliche Verkürzung der Totzeiten mit extrem kurzen Anzugs- und Abfallzeiten auf. Dadurch wird auch eine präzisere Darstellung von kleinen Einspritzmengen erreicht. Durch ihren hochdynamischen Magnetkreis ist das erfindungsgemäße Einspritzventil für die Verwendung in modernen Benzin- und Dieseleinspritzsystemen hervorragend geeignet.

Claims

Patentansprüche
1. Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge mit einem durch ein Elektromagnetspulensystem verlagerbaren Ventilkörper, wobei der Ventilkörper mit einem Magnetanker des Elektromagnetspulensystems zusammenwirkt, dadurch gekennzeichnet, dass das Elektromagnetspulensystem wenigstens zwei konzentrisch angeordnete Spulen (32.1, 32_2) umfasst, die Spulen (32.1, 32_2) derart in ein Magnetkreis integriert sind, dass zwischen zwei benachbarten Spulen (32_1, 32_2) jeweils ein erster Polkörper (42 _2) angeordnet ist, und die innere und äußere Spule (32_1, 32_2) jeweils einem zweiten Polkörper (42_1, 42_3) benachbart ist, die ersten und zweiten Polkörper (42_1, 42_2, 42_3) Bestandteile des Magnetkreises des Elektromagnetspulensystems sind, und jeweils benachbarte Spulen (32 _1, 32_2) in einander entgegengesetztem Richtungssinn durch einen gemeinsamen Erregerstrom (40) bestrombar sind.
2. Elektromagnetisches Einspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass die Polkörper (42.1, 42.2, 42_3) derart dimensioniert sind, dass eine radiale Schnittfläche eines mittleren ersten Polkörpers
(42 _2) weitgehend der Summe der Schnittflächen der benachbarten zweiten Polkörper (42_1,42_3) entspricht .
3. Elektromagnetisches Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spulen (32_1, 32_2) annähernd identische Kenngrößen aufweisen.
4. Elektromagnetisches Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Spulen (32_1, 32_2) parallel geschaltet werden .
5. Elektromagnetisches Einspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Ventilkörper (16) und der Magnetanker (36) kraftschlüssig miteinander verbunden sind.
PCT/DE2001/000015 2000-02-05 2001-01-05 Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge WO2001057389A2 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE50107100T DE50107100D1 (de) 2000-02-05 2001-01-05 Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge
KR1020017012632A KR20010111294A (ko) 2000-02-05 2001-01-05 엔진에 분사되는 연료량을 제어하기 위한 전자식 분사 밸브
JP2001556006A JP2003521633A (ja) 2000-02-05 2001-01-05 内燃機関内に供給すべき燃料量を制御する電磁噴射弁
EP01903591A EP1181443B1 (de) 2000-02-05 2001-01-05 Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge
US09/958,246 US6651913B1 (en) 2000-02-05 2001-01-05 Electromagnetic injection valve for controlling a fuel amount to be injected into an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10005182.0 2000-02-05
DE10005182A DE10005182A1 (de) 2000-02-05 2000-02-05 Elektromagnetisches Einspritzventil zur Steuerung einer in eine Verbrennungskraftmaschine einzuspeisenden Kraftstoffmenge

Publications (2)

Publication Number Publication Date
WO2001057389A2 true WO2001057389A2 (de) 2001-08-09
WO2001057389A3 WO2001057389A3 (de) 2001-12-06

Family

ID=7629997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/000015 WO2001057389A2 (de) 2000-02-05 2001-01-05 Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge

Country Status (6)

Country Link
US (1) US6651913B1 (de)
EP (1) EP1181443B1 (de)
JP (1) JP2003521633A (de)
KR (1) KR20010111294A (de)
DE (2) DE10005182A1 (de)
WO (1) WO2001057389A2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053177A1 (de) * 2007-10-23 2009-04-30 Robert Bosch Gmbh Multipol-magnetaktor
EP2837812A1 (de) * 2013-08-14 2015-02-18 Continental Automotive GmbH Ventilanordnung für eine Flüssigkeitseinspritzdüse und Flüssigkeitseinspritzdüse

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10319285B3 (de) 2003-04-29 2004-09-23 Compact Dynamics Gmbh Brennstoff-Einspritzventil für Brennkraftmaschinen
DE102004032229B3 (de) * 2004-07-02 2006-01-05 Compact Dynamics Gmbh Brennstoff-Einspritzventil
US20070007363A1 (en) * 2005-07-04 2007-01-11 Hitachi, Ltd. Fuel injection valve
DE102006055088B4 (de) * 2006-11-21 2008-12-04 Vacuumschmelze Gmbh & Co. Kg Elektromagnetisches Einspritzventil und Verfahren zu seiner Herstellung sowie Verwendung eines Magnetkerns für ein elektromagnetisches Einspritzventil
JP5157984B2 (ja) * 2009-03-23 2013-03-06 株式会社デンソー 電磁駆動装置
DE102009038730B4 (de) 2009-08-27 2014-03-13 Vacuumschmelze Gmbh & Co. Kg Blechpaket aus weichmagnetischen Einzelblechen, elektromagnetischer Aktor und Verfahren zu deren Herstellung sowie Verwendung eines weichmagnetischen Blechpakets
CN107781486A (zh) * 2016-08-26 2018-03-09 杭州三花研究院有限公司 一种电磁阀

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2031027A5 (de) * 1969-03-08 1970-11-13 Bosch
US4156506A (en) * 1977-03-26 1979-05-29 Lucas Industries, Limited Fuel injection nozzle units
DE3241521A1 (de) * 1982-11-10 1984-05-10 Robert Bosch Gmbh, 7000 Stuttgart Proportionalmagnet

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61164456A (ja) * 1985-01-11 1986-07-25 Diesel Kiki Co Ltd 電磁アクチユエ−タ
GB8514544D0 (en) * 1985-06-08 1985-07-10 Lucas Ind Plc Electromagnetic actuator
DE3527174A1 (de) * 1985-07-30 1987-02-12 Bosch Gmbh Robert Doppeltwirkendes magnetventil
DE3629646A1 (de) * 1986-08-30 1988-03-03 Bosch Gmbh Robert Elektromagnetisch betaetigbares kraftstoffeinspritzventil
US5441232A (en) * 1993-12-10 1995-08-15 Kyosan Denki Co., Ltd. Solenoid valve

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2031027A5 (de) * 1969-03-08 1970-11-13 Bosch
US4156506A (en) * 1977-03-26 1979-05-29 Lucas Industries, Limited Fuel injection nozzle units
DE3241521A1 (de) * 1982-11-10 1984-05-10 Robert Bosch Gmbh, 7000 Stuttgart Proportionalmagnet

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009053177A1 (de) * 2007-10-23 2009-04-30 Robert Bosch Gmbh Multipol-magnetaktor
EP2837812A1 (de) * 2013-08-14 2015-02-18 Continental Automotive GmbH Ventilanordnung für eine Flüssigkeitseinspritzdüse und Flüssigkeitseinspritzdüse

Also Published As

Publication number Publication date
DE50107100D1 (de) 2005-09-22
EP1181443B1 (de) 2005-08-17
US6651913B1 (en) 2003-11-25
EP1181443A2 (de) 2002-02-27
JP2003521633A (ja) 2003-07-15
DE10005182A1 (de) 2001-08-09
WO2001057389A3 (de) 2001-12-06
KR20010111294A (ko) 2001-12-17

Similar Documents

Publication Publication Date Title
DE102008055015B4 (de) Kraftstoffeinspritzventil
WO1999043948A2 (de) Elektromagnetisch betätigbares ventil
EP1561225B1 (de) Tauchankersystem mit einstellbarer magnetischer durchflutung
EP0352445A1 (de) Elektromagnetisch betätigbares Ventil
DE69700259T2 (de) Elektromagnetische Vorrichtung mit Positionsregelung für Stator
EP0352444A1 (de) Elektromagnetisch betätigbares Ventil und Verfahren zur Herstellung
DE19638201A1 (de) Brennstoffeinspritzventil
DE69509821T2 (de) Ankeranordnung eines Kraftstoffeinspritzventils
WO2007073964A1 (de) Elektromagnetisch betätigbares ventil
DE19602288C2 (de) Elektromagnetisches Kraftstoffeinspritzventil
EP2313896A2 (de) Metallisches verbundbauteil, insbesondere für ein elektromagnetisches ventil
DE68913209T2 (de) Elektrisch betätigbares ventil für kraftstoff-einspritzanlagen für brennkraftmaschinen.
EP1181443A2 (de) Elektromagnetisches einspritzventil zur steuerung einer in eine verbrennungskraftmaschine einzuspeisenden kraftstoffmenge
EP1069285B1 (de) Elektromagnetisch betätigbare Stellvorrichtung zur Betätigung eines Gaswechselventils mit Federschachtelung
EP1399669A1 (de) Brennstoffeinspritzventil
WO2002006663A1 (de) Brennstoffeinspritzventil
DE3003142A1 (de) Kraftstoffzufuhrsystem fuer dieselmotoren
DE3704579A1 (de) Magnetventil fuer kraftstoffeinspritzpumpen von brennkraftmaschinen
DE102010040401A1 (de) Kraftstoffinjektor
DE102010041109A1 (de) Kraftstoffinjektor
DE112006002067T5 (de) Vermeidung eines Funkschadens an Ventilgliedern
WO1999025595A1 (de) Elektromagnetventil
WO1991006109A1 (de) Elektromagnet
DE10050238A1 (de) Magnetventilbetätigtes Steuermodul zur Fluidkontrolle bei Einspritzsystemen
DE2237746A1 (de) Einspritzventil fuer dieselbrennkraftmaschinen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): IN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2001903591

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2001 556006

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020017012632

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2001/1529/CHE

Country of ref document: IN

AK Designated states

Kind code of ref document: A3

Designated state(s): IN JP KR RU US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 09958246

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001903591

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2001903591

Country of ref document: EP