WO2001057138A1 - Composition de resine de sulfure de polyarylene renforcee presentant une resistance au cheminement elevee - Google Patents

Composition de resine de sulfure de polyarylene renforcee presentant une resistance au cheminement elevee Download PDF

Info

Publication number
WO2001057138A1
WO2001057138A1 PCT/JP2001/000712 JP0100712W WO0157138A1 WO 2001057138 A1 WO2001057138 A1 WO 2001057138A1 JP 0100712 W JP0100712 W JP 0100712W WO 0157138 A1 WO0157138 A1 WO 0157138A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
polyarylene sulfide
sulfide resin
resin composition
Prior art date
Application number
PCT/JP2001/000712
Other languages
English (en)
French (fr)
Inventor
Ken Horita
Sei Wakatsuka
Hidemi Kondo
Original Assignee
Polyplastics Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Polyplastics Co., Ltd. filed Critical Polyplastics Co., Ltd.
Publication of WO2001057138A1 publication Critical patent/WO2001057138A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium

Definitions

  • the present invention relates to a reinforced polyarylene sulfide resin composition having good tracking resistance.
  • the molded article made of the resin composition of the present invention is suitably used for electric and electronic parts, electric parts for automobiles, and the like.
  • Polyarylene sulfide (hereinafter sometimes abbreviated as PPS)
  • Polyarylene sulfide (hereinafter sometimes abbreviated as PAS) represented by resin has high heat resistance, mechanical properties, chemical resistance, dimensional stability, Due to its flame retardancy, it is widely used in electrical and electronic equipment parts materials, automotive equipment parts materials, chemical equipment parts materials, and so on.
  • the PAS resin has a drawback that the tracking resistance is significantly inferior to other engineering plastics such as polyamide resin.
  • PAS resins have excellent properties such as high heat resistance, mechanical properties, dimensional stability, and flame retardancy, but they are used in applications where they are exposed to relatively high voltages, despite their excellent properties. The fact is that the application of is restricted.
  • Japanese Patent Application Laid-Open No. 8-291253 discloses that by adding a polyolefin-based copolymer and magnesium hydroxide to a PAS resin, tracking resistance is improved.
  • a composition containing an olefinic copolymer containing olefin and glycidyl ester of an ⁇ , / 3-unsaturated acid as the main components is used because the processing temperature of PAS resin is 300 or more.
  • the present invention has been made in view of the above-mentioned circumstances, while maintaining the toughness and releasability of the composition, without impairing various properties such as heat resistance, electrical insulation, and low water absorption inherent in the PAS resin.
  • An object of the present invention is to provide an excellent reinforced PAS resin composition.
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, blended PAS resin with magnesium hydroxide having a specific particle size distribution and, if desired, fibrous and Z or non-fibrous fillers, and melt-kneaded. By controlling the resin temperature at the time, it is possible to obtain a PAS resin composition that has dramatically improved tracking resistance and also has various other excellent physical properties such as moldability, mechanical properties, and heat resistance. And completed the present invention.
  • the present invention relates to a reinforced polyarylene sulfide resin composition, wherein ⁇ of the polyarylene sulfide resin composition satisfies the following formula (1).
  • ⁇ ⁇ is the thermogravimetric change (%) when the temperature is raised from 350 to 450 at a heating rate lOt:, min in a nitrogen atmosphere using a thermogravimetric analyzer.
  • A, b , C are parts by weight of each of the components (A), (B), and (C).) Detailed description of the invention:
  • the PAS resin as the component (A) used in the present invention is mainly composed of-(Ar-S)-(where Ar is an arylene group) as a repeating unit.
  • the arylene group include p-phenylene group, m-phenylene group, o-phenylene group, substituted phenylene group, ⁇ , ⁇ ′-diphenylene sulfone group, ⁇ , ⁇ ′— Biphenylene group, ⁇ , ⁇ '-diphenylene ether group, ⁇ , ⁇ '-diphenylenecarbonyl group, naphthylene group and the like can be used.
  • Copolymers containing heterogeneous repeat units may be preferred.
  • the homopolymer those having a ⁇ -phenylene sulfide group as a repeating unit using a ⁇ -phenylene group as an arylene group are particularly preferably used.
  • the copolymer among the arylene sulfide groups comprising the aforementioned arylene group, Two or more different combinations can be used.
  • a combination containing a p-phenylene sulfide group and an m-phenylene sulfide group is particularly preferably used.
  • those containing a p-phenylene sulfide group in an amount of 70 mol% or more, preferably 80 mol% or more are suitable in terms of physical properties such as heat resistance, moldability, and mechanical properties.
  • PAS resins a high molecular weight polymer having a substantially linear structure obtained by condensation polymerization from a monomer mainly containing a bifunctional halogen aromatic compound can be used particularly preferably.
  • a small amount of a monomer such as a polyhalo-aromatic compound having three or more halogen substituents was used to form a partially branched or cross-linked structure during condensation.
  • a monomer such as a polyhalo-aromatic compound having three or more halogen substituents
  • Polymers can also be used, and polymers that have relatively low molecular weight linear-structured polymers heated at high temperatures in the presence of oxygen or an oxidizing agent to increase melt viscosity by oxidative crosslinking or thermal crosslinking to improve moldability Can be used.
  • the PAS resin of the component (A) is mainly composed of the linear PAS (310: a viscosity at a shear rate of 1200 sec 1 of 10 to 30 OPa ⁇ s), and a part thereof (1 to 30% by weight, A mixed system with a branched or crosslinked PAS resin having a relatively high viscosity (300 to 3000 Pa-s, preferably 500 to 200 OPa ⁇ s) is also suitable.
  • the PAS resin used in the present invention is preferably a resin which is subjected to acid washing, hot water washing, and organic solvent washing (or a combination thereof) after polymerization to remove and purify by-product impurities and the like.
  • magnesium hydroxide as the component (B) of the present invention, magnesium hydroxide of high purity containing at least 80% by weight of an inorganic substance represented by the chemical formula Mg (OH) 2 can be mentioned. Contains 80% by weight or more of an inorganic substance represented by Mg (OH) 2 , and has a CaO content of 5% by weight or less and a chlorine content of 1% by weight or less, more preferably 95% by weight of Mg (OH) 2.
  • % Or more and a CaO content of 1% by weight or less and a chlorine content of 0.5% by weight or less, more preferably 98% by weight or more of Mg (OH) 2 , and High-purity magnesium hydroxide having a CaO content of 0.1% by weight or less and a chlorine content of 0.1% by weight or less is suitable.
  • magnesium hydroxide having an average particle size of 1 or less as measured by a laser diffraction scattering method and having a cumulative particle size of 70% or more as a particle size distribution.
  • Magnesium hydroxide having an average particle size exceeding 1 lim cannot provide sufficient tracking resistance. Even if the average particle size is 1 am or less, a magnesium hydroxide having a particle size distribution of less than 70% with a particle size of 1 im or less does not show a sufficient effect of improving the anti-tracking property.
  • magnesium hydroxide after surface treatment with a silane-based coupling agent / phosphate ester in order to improve tracking resistance while maintaining mechanical strength.
  • silane coupling agent examples include vinyl ethoxy silane, vinyl triethoxy silane, vinyl silane compounds such as vinyl trichloro silane, ⁇ -glycidoxypropyl trimethoxy silane, ri-glycidoxy propyl triethoxy silane Epoxysilane compounds such as, / 3- (3,4-epoxycyclohexyl) ethylmethoxysilane, a- (2-aminoethyl) aminopropylmethyldimethoxysilane, Ryoichi (2-aminoethyl) amino Aminosilane compounds such as provyltrimethoxysilane and aminopropyltrimethoxysilane, T-methacryloxypropylmethylmethoxysilane, r-methacryloxypropyltrimethoxysilane, methacryloxypropylmethylethoxysilane, Army evening cryroxyp Acrylic silane compounds such as pills triethoxys
  • Examples of the phosphoric esters used here include those represented by the following general formula (2). (R0) n P (0M) n -2
  • R represents an alkyl group or alkylene group having 10 to 30 carbon atoms
  • M represents an atom of Group 1A of the periodic table or H 4 +
  • n represents 1 or 2.
  • acrylic silane compounds particularly preferred in the effect of improving tracking resistance are acrylic silane compounds and phosphoric esters.
  • Acrylic silane compounds have good melt-kneading extrudability and are particularly preferred surface treatment agents.
  • the amount of the surface treating agent to be applied to magnesium hydroxide is 0.1 to 10% by weight, preferably about 1 to 5% by weight, based on magnesium hydroxide.
  • the blending amount of (B) magnesium hydroxide is 50 to 300 parts by weight, preferably 70 to 50 parts by weight, based on 100 parts by weight of (A) the PAS resin. If the amount is less than 50 parts by weight, the effect of improving the tracking resistance is insufficient, which is not preferable. If the amount exceeds 300 parts by weight, the adverse effect on the mechanical strength, fluidity, etc. of the resin composition is increased. Not good.
  • a fibrous and / or non-fibrous filler other than magnesium hydroxide is used as a component (C), if necessary, to improve the strength and dimensional stability.
  • the fibrous filler of the component (C) include glass fiber, aspect fiber, carbon fiber, silica fiber, silica-alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, and potassium titanate fiber.
  • Inorganic fibrous substances. Particularly typical fibrous fillers are glass fiber and carbon fiber.
  • Non-fibrous fillers include silica such as carbon black, silica, quartz powder, glass peas, glass powder, calcium silicate, aluminum silicate, kaolin, talc, clay, diatomaceous earth, and wollastonite.
  • Metal oxides such as salt, iron oxide, titanium oxide, zinc oxide, alumina, calcium carbonate, magnesium carbonate Sulfates of metals such as metal carbonates, calcium sulfate and barium sulfate, and other powdery and granular fillers such as silicon carbide, silicon nitride, boron nitride, and various metal powders, and plate-like fillers such as my strength and glass flakes Is mentioned. These fillers can be used alone or in combination of two or more.
  • a sizing agent or a surface treatment agent When using these fillers, it is desirable to use a sizing agent or a surface treatment agent if necessary.
  • the treating agent include functional compounds such as an epoxy compound, an isocyanate compound, a silane compound, and a titanate compound. These compounds may be used after being subjected to a surface treatment or a convergence treatment in advance, or may be added simultaneously with the preparation of the material.
  • the amount of the filler (C) is selected from the range of 0 to 350 parts by weight based on 100 parts by weight of the PAS resin. From the viewpoint of the balance between melt fluidity and mechanical strength, (A) PAS 30 to 150 parts by weight based on 100 parts by weight of the resin.
  • an olefin polymer and a Z or olefin copolymer can be blended as the component (D).
  • the olefin polymer include ⁇ -olefins such as ethylene, propylene, 1-butene, 11-pentene, 1-hexene, 1-octene, and 1-decene; conjugated diene compounds such as butadiene and isoprene; Examples include homopolymers obtained by polymerizing unsaturated monomers such as acrylonitrile and the like.
  • olefin copolymer examples include random, block, and graft copolymers of the above unsaturated monomers, Monomer and monomers other than the above, such as acrylic acid, methyl methacrylate, methacrylic acid and their metal salts, methyl acrylate, methyl methacrylate, methyl methacrylate, glycidyl acrylate , Unsaturated organic acids and derivatives thereof such as glycidyl methacrylate, glycidyl ethacrylate, maleic acid, and maleic anhydride; vinyls such as vinyl acetate Random, block, and graft copolymers with vinyl silanes, vinyl ethers, etc., such as esters, vinyltrimethyltrimethoxysilane, and methacryloyloxypropylmethoxysilane Can be used.
  • Monomer and monomers other than the above such as acrylic acid, methyl methacrylate, methacrylic acid and their metal salts, methyl acrylate,
  • ethylene hexene copolymer ethylene octene copolymer
  • high density polyethylene low density polyethylene
  • linear low density polyethylene are particularly preferable.
  • the compounding amount of (D) the olefin polymer and the Z or olefin copolymer is from 1 to 50 parts by weight, preferably from 1 to 30 parts by weight, per 100 parts by weight of the (A) PAS resin. If the amount is more than 50 parts by weight, the amount of deposits on the mold during molding (mold deposit) is undesirably increased.
  • a silane compound may be added to the resin composition of the present invention in addition to the above-mentioned surface treatment agent for the purpose of suppressing the generation of burrs and the like, as long as the effects of the present invention are not impaired.
  • silane compounds include various types such as vinyl silane, methyl chloroxysilane, epoxy silane, amino silane, mercapto silane, and the like.
  • the amount of the silane compound is 0.1 to 3 parts by weight, preferably 0.3 to 2 parts by weight, per 100 parts by weight of the (A) PAS resin.
  • the resin composition of the present invention contains known substances generally added to thermoplastic resins, that is, flame retardants, coloring agents such as dyes and pigments, stabilizers such as antioxidants and ultraviolet absorbers, lubricants, A release agent, a crystallization accelerator, a crystal nucleating agent and the like can be appropriately added according to required performance.
  • release agents that are added to improve the release of the molded product from the mold at the time of injection molding.
  • polyolefin wax or pentaerythritol-type fatty acid ester is added. It is preferable to mix a polyolefin wax as the component (E).
  • the release agent should be added in excess. This causes problems such as oozing on the surface of the molded piece. Therefore, the amount is preferably 0.1 to 2.5 parts by weight based on 100 parts by weight of the polyarylene sulfide resin (A).
  • the resin composition of the present invention can be prepared by equipment and methods generally used for preparing a synthetic resin composition. Generally, necessary components are mixed, melt-kneaded using a single-screw or twin-screw extruder, and extruded into a pellet for molding. Further, the resin temperature at the time of melt-kneading is preferably 350 ° C. or lower in order to prevent thermal decomposition of magnesium hydroxide.
  • the polyarylene sulfide resin composition prepared as described above must have a ⁇ ⁇ ⁇ ⁇ ⁇ satisfying the following formula (1).
  • thermogravimetric change (%) when the temperature is increased from 350 to 450 at a rate of 10 / min in a nitrogen atmosphere using a thermogravimetric analyzer, and a, b , C are parts by weight of each of the components (A), (B), and (C).
  • magnesium hydroxide undergoes significant thermal decomposition during melt-kneading, ⁇ becomes a small value, and sufficient tracking resistance cannot be obtained.
  • sufficient (90% or more) magnesium hydroxide remains in the resin composition, and good tracking resistance can be obtained.
  • the residual magnesium hydroxide is less than 90%, the balance between mechanical strength and tracking resistance becomes extremely poor.
  • the material pellets obtained in this manner can be molded by a generally known thermoplastic resin molding method such as injection molding, extrusion molding, vacuum molding, compression molding, etc., but the most preferred is injection molding. It is. BRIEF DESCRIPTION OF THE DRAWINGS:
  • FIG. 1 is a diagram showing the shape of a molded product for evaluation of release resistance used in Examples, (a) is a top view, (b) is a front view.
  • Example 1 is a diagram showing the shape of a molded product for evaluation of release resistance used in Examples, (a) is a top view, (b) is a front view.
  • TGA thermogravimetric analysis
  • the tensile strength and tensile elongation were measured according to ISO 527.
  • the molded piece shown in Fig. 1 was molded under the following conditions, the force at which the molded piece was extruded from the mold was measured, and the measured value was defined as the mold release resistance value (N).
  • Example 1 Each component shown in Table 1 was mixed with a Henschel mixer for 5 minutes, and this was mixed in a twin-screw extruder.
  • the mixture was melted and kneaded at a resin temperature of 340 ° C, and in Comparative Examples 5 to 6, at a resin temperature of 360 ° C to produce pellets of a resin composition.
  • the tracking resistance test piece and the tensile test piece were molded by an injection molding machine at a cylinder temperature of 320 ° C and a mold temperature of 150, and evaluated. Table 1 shows the results.
  • Table 2 Each component shown in Table 2 was mixed with a Henschel mixer for 5 minutes, and the mixture was melt-kneaded at a resin temperature of 340 ° C. in a twin-screw extruder to form a pellet of a resin composition. Then, the above-mentioned tracking-resistant test piece and tensile test piece were molded by an injection molding machine at a cylinder temperature of 320 t: and a mold temperature of 150 ° C, and evaluated. The release resistance was also evaluated. Table 2 shows the results.
  • B-1 average particle diameter 0.83_im, cumulative weight 83% of particle diameter 1 xm or less, surface treatment agent [A-174 (Nippon Tunicer A-methacryloxypropyltrimethoxysilane)] 3% by weight Processed
  • B'-2 average particle diameter 0.84 xm, cumulative weight 50% or less with particle diameter 1 or less, surface treatment agent [A-174 (N-methacryloxypropyl trimethoxysilane) manufactured by Nippon Tunicer] 3% by weight Processed
  • B'-3 Average particle size 0.84 im, particle size 1 l ⁇ ⁇ or less cumulative weight 65%, surface treatment agent [A-174 (a-methacryloxypropyl trimethoxysilane) manufactured by Nippon Tunica] 3 weight % Processed
  • B'-4 average particle size 1.05 / m, cumulative weight of particle size 1m or less 72%, surface treatment agent [A-174, manufactured by Nippon Un slopechi A-methacryloxypropyltrimethoxysila N)] treated with 3% by weight
  • B-5 treated with an average particle diameter of 0.83 m, a cumulative weight of 83% or less with a particle diameter of 1 m or less, and a surface treatment agent (a sodium salt of distearyl phosphate) of 3% by weight
  • B-6 average particle diameter 0.83 m, particle weight 1 / m or less, cumulative weight 83%, surface treatment agent (glycerin monostearate) 3% by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 耐トラッキング性が良好な強化ポリアリーレンサルファィド樹脂組成物 発明の属する技術分野:
本発明は、 耐トラッキング性が良好な強化ポリアリーレンサルフアイド樹脂組 成物に関する。 本発明の樹脂組成物からなる成形品は電気 ·電子部品あるいは自 動車電装部品等に好適に用いられる。 従来の技術:
ポリフエ二レンサルファイド (以下 P P Sと略す場合がある) 樹脂に代表され るポリアリーレンサルファイド (以下 P A Sと略す場合がある) 樹脂は、 高い耐 熱性、 機械的物性、 耐化学薬品性、 寸法安定性、 難燃性を有していることから、 電気 ·電子機器部品材料、 自動車機器部品材料、 化学機器部品材料等に広く使用 されている。 しかしながら、 P A S樹脂はポリアミド樹脂等の他のエンジニアリ ングプラスチックに比べ、 耐トラツキング性が大きく劣るという欠点を有してい る。 そのため、 P A S樹脂は高い耐熱性、 機械的物性、 寸法安定性、 難燃性とい つた電気部品材料として優れた特性を持っているにもかかわらず、 比較的高い電 圧下にさらされるような用途への適用は制限されているのが実情である。
P A S樹脂の耐トラッキング性改良の試みはこれまでにもなされているが、 P A S樹脂に水酸化マグネシウムを配合した系では、 溶融混練時のシリンダー温度 が高い場合に水酸化マグネシウムが分解してしまい、 十分な耐トラッキング性が 得られないという問題がある。 特開平 5— 2 7 1 5 4 2号公報には、 P A S樹月旨 にポリアミド樹脂及び水酸化マグネシゥムを配合することにより耐トラッキング 性が向上することが開示されているものの、 多量のポリアミドを用いるため、 得 られる組成物の吸水時の寸法変化が大きく、 塩化カルシウム等の電解質を含有す る水溶液下での強度低下が著しい。 耐トラッキング試験は水分や電解質が存在す る悪環境下での絶縁破壊の起こり易さを評価する試験であり、 従って高い耐トラ ッキング性が要求される用途へのかかる組成物の適用は長期信頼性の点で問題が 残る。
一方、 特開平 8— 2 9 1 2 5 3号公報には、 P A S樹脂にポリオレフイン系共 重合体及び水酸化マグネシウムを配合することにより、 耐トラッキング性が向上 することが開示されているものの、 α—ォレフインと α , /3—不飽和酸のグリシ ジルエステルを主成分とするォレフィン系共重合体を配合した組成物は、 P A S 樹脂の加工温度が 300で以上であるためにォレフィン系共重合体は熱劣化を生 じ、 成形時に分解しガスを発生するため著しく成形性を低下させるという問題が ある。 発明の開示
本発明は、 かかる現状に鑑み、 P A S樹脂が本来有する耐熱性、 電気絶縁性、 低吸水性等の諸物性を損なうことなく、組成物の靱性及び離型性を維持したまま、 耐トラッキング性の優れた強化 P A S樹脂組成物を提供することを目的とする。 本発明者らは、 上記目的を達成すべく鋭意検討した結果、 P A S樹脂に特定の 粒径分布を持つ水酸化マグネシウム、 及び所望により繊維状及び Z又は非繊維状 充填剤を配合し、 溶融混練時の樹脂温度を制御することで、 耐トラッキング性が 飛躍的に向上し、 且つ他の成形加工性や機械的物性、 耐熱性等の優れた諸物性も 兼備する P A S樹脂組成物が得られることを見出し、 本発明を完成するに至つた ものである。
即ち本発明は、
(A) ポリアリーレンサルフアイド樹脂 100 重量部に対し、 (B) 平均粒子径が 1 ii m 以下であり、 且つ粒度分布として粒子径 1 / in 以下 の累積重量が 70%以上である水酸化マグネシウム 50〜300重量部
(C) 水酸化マグネシウム以外の繊維状及び 又は非繊維状充填剤 0〜350 重 量部
を配合してなるポリアリーレンサルフアイド樹脂組成物であって、 該ポリアリー レンサルフアイド樹脂組成物の Δ Υが下記式 (1) を満たす強化ポリアリーレンサ ルフアイド樹脂組成物に関するものである。
Δ Y> b / ( a + b + c ) X (18/58) X 90 (1)
(ここで、 Δ Υは熱重量分析装置を用い、 窒素雰囲気下、 昇温速度 lOt:,分にて 350でから 450でまで昇温した時の熱重量変化 (%) であり、 a、 b、 cは成 分 (A) 、 (B) 、 (C) の夫々の各重量部である。) 発明の詳細な説明:
以下、 本発明の構成成分について詳細に説明する。 本発明に用いる (A) 成分と しての P A S樹脂は、 繰返し単位として- (Ar-S)- (ただし、 Arはァリーレン基) で主として構成されたものである。 ァリーレン基としては、 例えば、 p _フエ二 レン基、 m—フエ二レン基、 o—フエ二レン基、 置換フエ二レン基、 ρ,ρ'—ジフ ェニレンスルフォン基、 ρ,ρ'—ビフエ二レン基、 ρ,ρ'—ジフエ二レンエーテル基、 ρ,ρ'—ジフエ二レンカルボ二ル基、 ナフ夕レン基などが使用できる。 この場合、 前記のァリ一レン基から構成されるァリーレンサルフアイド基の中で、 同一の繰 返し単位を用いたポリマー、 すなわちホモポリマーの他に、 組成物の加工性とい う点から、 異種繰返し単位を含んだコポリマーが好ましい場合もある。 ホモポリ マーとしては、 ァリーレン基として ρ—フエ二レン基を用いた、 ρ _フエ二レン サルファイド基を繰返し単位とするものが特に好ましく用いられる。 又、 コポリ マ一としては、 前記のァリーレン基からなるァリーレンサルフアイド基の中で、 相異なる 2種以上の組み合わせが使用できるが、 中でも p—フエ二レンサルファ ィド基と m—フエ二レンサルフアイド基を含む組み合わせが特に好ましく用いら れる。 この中で、 p—フエ二レンサルファイド基を 70モル%以上、 好ましくは 80モル%以上含むものが、 耐熱性、 成形性、 機械的特性等の物性上の点から適 当である。 又、 これらの PAS樹脂の中で、 2官能性ハロゲン芳香族化合物を主 体とするモノマーから縮重合によって得られる実質的に直鎖状構造の高分子量ポ リマーが、 特に好ましく使用できるが、 直鎖状構造の PAS樹脂以外にも、 縮重 合させるときに、 3個以上のハロゲン置換基を有するポリハロ芳香族化合物等の モノマーを少量用いて、 部分的に分岐構造または架橋構造を形成させたポリマー も使用できるし、比較的低分子量の直鎖状構造ポリマーを酸素又は酸化剤存在下、 高温で加熱して、 酸化架橋又は熱架橋により溶融粘度を上昇させ、 成形加工性を 改良したポリマーも使用可能である。
又、 (A)成分の PAS樹脂は、 前記直鎖状 PAS (310 :、 ズリ速度 120 0 sec1における粘度が 10〜30 OPa · s ) を主体とし、 その一部 (1〜30 重量%、 好ましくは 2〜 25重量%) 力 比較的高粘度 (300〜 3000 Pa- s、 好ましくは 500〜200 OPa · s ) の分岐又は架橋 PAS樹脂との混合系 も好適である。 又、 本発明に用いる PAS樹脂は重合後、 酸洗浄、 熱水洗浄、 有 機溶剤洗浄 (或いはこれらの組合せ) を行って副生不純物等を除去精製したもの が好ましい。
次に、 本発明の (B) 成分の水酸化マグネシウムとしては、 化学式 Mg(OH)2で 示される無機物を 80重量%以上含む純度の高い水酸化マグネシゥムが挙げられ、 耐トラッキング性の発現のためには、 Mg(OH)2で示される無機物を 80重量%以 上含み、 且つ CaO含量 5重量%以下、 含塩素量 1重量%以下のもの、 より好ま しくは Mg(OH)2を 95重量%以上含み、 且つ CaO含量 1重量%以下、 含塩素量 0.5重量%以下のもの、 更に好ましくは Mg(OH)2を 98 重量%以上含み、 且つ CaO含量 0.1 重量%以下、 含塩素量 0.1 重量%以下の高純度水酸化マグネシゥ ムが適している。
本発明では、レーザー回折散乱法で測定された平均粒子径が 1 以下であり、 且つ粒度分布として粒子径 1 以下の累積重量が 70%以上である水酸化マグ ネシゥムを用いることを必須とする。平均粒子径が 1 li m を超える水酸化マグネ シゥムでは十分な耐トラッキング性が得られない。 また、 平均粒子径が 1 a m 以 下であっても、 粒子径 1 i m 以下の累積重量が 70%に満たない粒度分布の水酸 化マグネシゥムでも同様に十分な耐トラツキング性改善効果を示さない。
また、 この水酸化マグネシウムをシラン系カツプリング剤ゃリン酸エステル類 で表面処理して使用することは、 機械的強度を維持したまま耐トラッキング性を 向上させる点で望ましい。
ここで用いられるシラン系カップリング剤としては、 ビニルエトキシシラン、 ビニルトリエトキシシラン、 ビニルトリクロ口シラン等のビニルシラン化合物、 ァ一グリシドキシプロピルトリメトキシシラン、 了一グリシドキシプロピル卜リ エトキシシラン、 /3— ( 3, 4—エポキシシクロへキシル) ェチルメトキシシラ ン等のエポキシシラン化合物、 ァ— (2—アミノエチル) ァミノプロピルメチル ジメトキシシラン、 了一 ( 2—アミノエチル) ァミノプロビルトリメトキシシラ ン、 ァーァミノプロビルトリメトキシシラン等のアミノシラン化合物、 T一メタ クリロキシプロピルメチルメトキシシラン、 r一メタクリロキシプロピル卜リメ トキシシラン、 ァーメタクリロキシプロピルメチルジェトキシシラン、 ァーメ夕 クリロキシプロピルトリエトキシシラン等のアクリルシラン化合物等が挙げられ る。
また、 ここで用いられるリン酸エステル類としては、 下記一般式 (2) で示され るものが挙げられる。 (R0)nP(0M) n- 2
II (2)
0
(式中、 R は炭素数 10〜30のアルキル基またはアルキレン基、 M は周期律表第 1A族原子または H4+、 n は 1または 2を示す。)
上記表面処理剤のうち耐トラッキング性向上効果において特に好ましいのは、 アクリルシラン化合物及びリン酸エステル類である。 アクリルシラン化合物は、 溶融混練押出性も良好であり、 特に好ましい表面処理剤である。 また、 上記表面 処理剤の水酸化マグネシウムに対する処理量は、 水酸化マグネシウムに対し 0.1 〜10重量%、 好ましくは 1〜 5重量%程度が適当である。
かかる (B) 水酸化マグネシウムの配合量は、 (A) P A S樹脂 100重量部に対し て 50〜300 重量部、 好ましくは 70〜:50 重量部である。 配合量が 50重量部未 満では耐トラッキング性向上効果が不十分で好ましくはなく、配合量が 300重量 部を越えると樹脂組成物の機械的強度、 流動性等への悪影響が大きくなるため好 ましくない。
また、 本発明においては、 強度及び寸法安定性等を向上させるため、 必要に応 じて (C) 成分として水酸化マグネシウム以外の繊維状及び 又は非繊維状充填剤 が用いられる。 かかる (C) 成分の繊維状充填剤としては、 ガラス繊維、 アスペス ト繊維、 カーボン繊維、 シリカ繊維、 シリカ ·アルミナ繊維、 ジルコニァ繊維、 窒化硼素繊維、 窒化硅素繊維、 硼素繊維、 チタン酸カリウム繊維等の無機質繊維 状物質があげられる。 特に代表的な繊維状充填剤はガラス繊維、 カーボン繊維で ある。 また、 非繊維状充填剤としては、 カーボンブラック、 シリカ、 石英粉末、 ガラスピーズ、 ガラス粉、 硅酸カルシウム、 硅酸アルミニウム、 カオリン、 タル ク、 クレー、 硅藻土、 ウォラス卜ナイトの如き硅酸塩、 酸化鉄、 酸化チタン、 酸 化亜鉛、 アルミナの如き金属の酸化物、 炭酸カルシウム、 炭酸マグネシウムの如 き金属の炭酸塩、 硫酸カルシウム、 硫酸バリウムの如き金属の硫酸塩、 その他炭 化硅素、 窒化硅素、 窒化硼素、 各種金属粉末等の粉粒状充填剤やマイ力、 ガラス フレーク等の板状充填剤が挙げられる。 これらの充填剤は一種又は二種以上併用 することができる。
これらの充填剤の使用にあたっては必要ならば収束剤又は表面処理剤を使用す ることが望ましい。 この処理剤の例を示せば、 エポキシ系化合物、 イソシァネー ト系化合物、 シラン系化合物、 チタネート系化合物等の官能性化合物である。 こ れらの化合物は予め表面処理又は収束処理を施して用いるか、 又は材料調製の際 同時に添加してもよい。
(C)充填剤の配合量は、 (A) P A S樹脂 100重量部に対して 0〜350重量部の 範囲が選択され、 更に溶融流動性と機械的強度のバランスの観点から、 (A) P A S樹脂 100重量部に対し 30〜: 150重量部が好ましい。
更に、 本発明では必要に応じ、 (D) 成分としてォレフィン系重合体及び Z又は ォレフィン系共重合体を配合することができる。 ォレフィン系重合体の例として は、 エチレン、 プロピレン、 1ーブテン、 1一ペンテン、 1—へキセン、 1ーォ クテン、 1ーデセン等の α—ォレフイン類、 ブタジエン、 イソプレン等の共役ジ ェン化合物、 アクリロニトリル、 等の不飽和単量体を重合して得られる単独重合 体が挙げられ、 ォレフィン系共重合体としては、 上記不飽和単量体のランダム、 ブロック、 グラフト共重合体の他、 上記単量体と上記以外の単量体、 例えばァク リル酸、 メ夕クリル酸、 ェ夕クリル酸及びそれらの金属塩、 アクリル酸メチル、 メ夕クリル酸メチル、 ェ夕クリル酸メチル、 アクリル酸グリシジル、 メ夕クリル 酸グリシジル、 ェタクリル酸グリシジル、 マレイン酸、 マレイン酸無水物等の不 飽和有機酸及びその誘導体、 酢酸ビニル等のビニルエステル、 ビニルトリメチル トリメトキシシラン、 ァーメタクリロイルォキシプロピルメトキシシラン等のビ ニルシラン、 ビニルエーテル、 等とのランダム、 ブロック、 グラフト共重合体が 使用できる。 これらォレフィン系重合体及び Z又はォレフィン系共重合体の中で もエチレンノへキセン共重合体、 エチレン ォクテン共重合体、 高密度ポリェチ レン、 低密度ポリエチレン、 直鎖状低密度ポリエチレンが特に好適である。
(D) ォレフィン系重合体及び Z又はォレフィン系共重合体の配合量としては、 (A) P A S樹脂 100重量部に対して 1〜50重量部、 好ましくは 1〜30重量部で ある。 50重量部を超えて配合すると成形時の金型付着物 (モールドデポジット) が著しく多くなるため好ましくない。
また、 本発明の樹脂組成物には、 本発明の効果を損なわない範囲で、 バリ発生 の抑制等を目的として、 前記した表面処理剤とは別に、 シラン化合物を配合する ことができる。 かかるシラン化合物としては、 ビニルシラン、 メ夕クリロキシシ ラン、 エポキシシシラン、 アミノシラン、 メルカプトシラン等の各種タイプが含 まれ、 例えば、 ビニルトリクロロシラン、 ァ一メ夕クリロキシプロピルトリメト キシシラン、 ァ―グリシドキシプロビルトリメトキシシラン、 ァ―ァミノプロピ ルトリエトキシシラン、 ァ—メルカプトプロビルトリメトキシシラン等が挙げら れるが、 これらに限定されるものではない。 シラン化合物の配合量としては、 (A) P A S樹脂 100重量部に対し、 0.1 〜3重量部、 好ましくは 0.3〜 2重量部であ る。
更に、本発明の樹脂組成物には、一般に熱可塑性樹脂に添加される公知の物質、 即ち難燃剤、 染料や顔料等の着色剤、 酸化防止剤や紫外線吸収剤等の安定剤、 潤 滑剤、 離型剤、 結晶化促進剤、 結晶核剤等も要求性能に応じ適宜添加することが できる。
特に、 射出成形時の成形品の金型からの離型を良くするために添加する離型剤 としては種々のものがある力 ポリオレフインワックスやペン夕エリスリ トール 型の脂肪酸エステル等を添加するのが好ましく、 特に (E) 成分としてポリオレフ インワックスを配合するのが好ましい。 離型剤の添加量としては、 過剰に添加す ると成形片表面にそれらが染み出す等の不具合が生じるため、 (A) ポリアリーレ ンサルフアイド樹脂 100 重量部に対し 0.1 〜2.5 重量部が好ましい。
本発明の樹脂組成物の調製は、 一般に合成樹脂組成物の調製に用いられる設備 と方法により調製することができる。 一般的には必要な成分を混合し、 1軸又は 2軸の押出機を使用して溶融混練し、 押出して成形用ペレツ卜とすることができ る。 また、 溶融混練時の樹脂温度は、 水酸化マグネシウムの熱分解を防止するた めに 350 °C以下が好ましい。
上記の如く調製されたポリアリーレンサルフアイド樹脂組成物は、 その Δ Υが 下記式 (1) を満たす必要がある。
△ Y〉b / ( a + b + c ) X (18/58) X 90 (1)
(ここで、 Δ Υは熱重量分析装置を用い、 窒素雰囲気下、 昇温速度 10で/分にて 350でから 450でまで昇温した時の熱重量変化 (%) であり、 a、 b、 cは成 分 (A) 、 (B) 、 (C) の夫々の各重量部である。)
溶融混練時に水酸化マグネシウムが著しく熱分解を生じた場合、 Δ Υは小さな 値となり、 十分な耐トラッキング性が得られない。 上記の (1) 式を満たすような 場合、 水酸化マグネシウムが樹脂組成物中に十分 (90%以上) 残存しており、 良 好な耐トラツキング性が得られる。特に残存している水酸化マグネシゥムが 90 % 未満になると、 機械的強度と耐トラッキング性のバランス力非常に悪いものとな る。
このようにして得た材料ペレットは、 射出成形、 押出成形、 真空成形、 圧縮成 形等、 一般に公知の熱可塑性樹脂の成形法を用いて成形することができるが、 最 も好ましいのは射出成形である。 図面の簡単な説明:
図 1は、 実施例で用いた離型抵抗評価成形品の形状を示す図で、 (a) は上面図、 (b) は正面図である。 実 施例
以下、 実施例により本発明を更に具体的に説明するが、 本発明はこれらに限定 されるものではない。実施例及び比較例で評価した評価方法は以下の通りである。 (耐トラッキング性試験)
I EC 112第三版に準じて CT I (比較トラッキング指数) を測定した。 (TGA加熱減量)
パーキンエルマ一社製 TGA 7にて、 窒素雰囲気下、 熱重量分析 (TGA) 装 置を用い、 昇温速度 10 分にて 350 ^から 450 °Cまで昇温した時の熱重量変 化 (%) を測定し、 ΔΥを求めた。サンプルは、 各ペレツ卜を粉砕した粉末 10mg を用いた。
(引張試験)
I SO 527に準じて引張強度及び引張伸度を測定した。
(成形片の離型抵抗)
射出成形機にて、 下記の条件で図 1に示す成形片の成形を行い、 成形片を金型 から押出す時の力を測定し、 測定値を離型抵抗値 (N) とした。
離型抵抗測定機; MOB ACキヤビティ圧力センサ一
射出成形機; 日鋼 J 75 S SII-A
シリンダー温度; 310
射出時間; 12秒
冷却時間; 45秒
金型温度; 14 O :
実施例 1〜 7及び比較例 1〜 6 .
表 1に示す各成分をヘンシェルミキサーで 5分間混合し、 これを 2軸押出機に かけて実施例 1〜 7及び比較例 1〜 4では樹脂温度 340 °Cにて、比較例 5〜 6で は樹脂温度 360 °Cにて溶融混練し、 樹脂組成物のペレツトを作った。次いで射出 成形機で、 シリンダー温度 320 °C、 金型温度 150でにて上記耐トラッキング性 試験片及び引張試験片を成形し、 評価を行った。 結果を表 1に示す。
実施例 8〜 9
表 2に示す各成分をヘンシェルミキサーで 5分間混合し、 これを 2軸押出機に かけて樹脂温度 340 °Cにて溶融混練し、樹脂組成物のペレツトを作った。次いで 射出成形機で、 シリンダー温度 320 t:、 金型温度 150 °Cにて上記耐トラツキン グ性試験片及び引張試験片を成形し、 評価を行った。 又、 離型抵抗評価も行った。 結果を表 2に示す。
尚、 実施例及び比較例で使用した各成分の具体的物質は以下の通りである。
• (A) ポリフエ二レンサルファイド (P P S ) 樹脂;
呉羽化学工業 (株) 製、 フォートロン K P S
• (B) 水酸化マグネシウム
B-1 ;平均粒子径 0.83 _i m 、 粒子径 1 x m 以下の累積重量 83%、 表面処理剤 [日本ュニカー製 A— 1 7 4 (ァ一メタクリロキシプロピルトリメトキシシラ ン)] 3重量%で処理したもの
B'-2;平均粒子径 0.84 x m、 粒子径 1 以下の累積重量 50%、 表面処理剤 [日本ュニカー製 A— 1 7 4 (ァーメタクリロキシプロビルトリメトキシシラ ン)] 3重量%で処理したもの
B'-3;平均粒子径 0.84 i m 、 粒子径 1 ιι πι 以下の累積重量 65%、 表面処理剤 [日本ュニカー製 A— 1 7 4 (ァ一メタクリロキシプロビルトリメトキシシラ ン)] 3重量%で処理したもの
B'-4;平均粒子径 1.05 / m 、 粒子径 1 m以下の累積重量 72%、 表面処理剤 [日本ュニ力一製 A— 1 7 4 (ァ一メタクリロキシプロピルトリメトキシシラ ン)] 3重量%で処理したもの
B-5 ;平均粒子径 0.83 m 、 粒子径 1 m 以下の累積重量 83%、 表面処理剤 (ジステアリルホスフエ一トのナトリゥム塩) 3重量%で処理したもの
B-6 ;平均粒子径 0.83 m 、 粒子径 1 /m 以下の累積重量 83%、 表面処理剤 (グリセリンモノステアレート) 3重量%で処理したもの
- (C) 無機充填剤
平均繊維径 13 m 、 繊維長 3 mmのガラスファイバー
• (D) ォレフィン系共重合体
エチレン/ "ォクテン共重合体
• (E) 離型剤
E-1 ;ペン夕エリスリ! ^一ルトリステアレー卜
E-2 ;ポリエチレンワックス (三洋化成製サンワックス 165 P)
a? m Ί7 較 M iy
1 2 3 4 5 6 7 1 2 3 4 5 6
.組 (A) PPS翻旨 100 100 100 100 100 100 100 100 100 100 100 100 100 成 (Β) τΜ¾ί匕マグネシウム (SBS) B-l B-l B-l B-l B-l B-5 B-6 B -2 β -3 B -4 B -2 B-l B-l
100 100 88 88 115 100 100 100 100 100 100. 100 100 重
O (C) MSSt翻 50 50 63 63 70 50 50 50 50 50 50 50 50 部
(D)ォレフィン 10 25 3 10 10
TGASi % AY 11.8 11.6 10.5 10.1 11.5 11.9 11.3 11.5 12.1 11.8 12.3 9.9 10.3 物 b/ (a + b + c) x (18/58) x90 11.1 11.1 9.8 9.8 11.2 11.2 11.2 11.1 11.1 11.1 11.1 11.1 11.1
CT (V) 400 550 575 525 475 475 350 225 250 225 250 300 300 性
引? Mi (MP a) 93 85 73 70 90 107 71 100 90 90 83 90 85 引難度 (%) 0.9 1.2 1.6 1.1 0.8 1.2 0.8 0.9 1.0 0.9 1.1 0.9 1.0
表 2
1 実 施 例
> 1 8 9
(A) P P S樾旨 100 100 100 組 (B) ヒマグネシウム ( B - 1 B-l B-l
>
< 100 100 100 成
(C) «¾^0 50 50 50 里 (D)ォレフィン^!^: —— —— —— 部
(E)觸 U (漏 —— E-l E-2
1 1
11.8 11.8 11.8 bノ (a + b + c) X (18/58) x90 11.1 11.1 11.1 物
CTI (V) 400 400 400 性 93 93 93 彌帔 (% 0.9 0.9 0.9 塑職 (N) 900 400 150

Claims

請求の範囲
1 . (A) ポリアリーレンサルフアイド樹脂 100 重量部に対し、
(B) 平均粒子径が 1 m 以下であり、 且つ粒度分布として粒子径 1 fi m 以下 の累積重量が 70%以上である水酸化マグネシウム 50〜300重量部
(C) 水酸化マグネシウム以外の繊維状及びノ又は非繊維状充填剤 0〜350 重 量部 . - を配合してなるポリアリーレンサルフアイド樹脂組成物であって、 該ポリアリー レンサルフアイド樹脂組成物の Δ Υが下記式 (1) を満たす強化ポリアリーレンサ ルファイド樹脂組成物。
Δ Y> b / ( a + b + c ) X (18/58) X 90 (1)
(ここで、 Δ Υは熱重量分析装置を用い、 窒素雰囲気下、 昇温速度 10°CZ分にて 350でから 450でまで昇温した時の熱重量変化 (%) であり、 a、 b、 cは成 分 (A) 、 (B) 、 (C) の夫々の各重量部である。)
2 . (B) 水酸化マグネシウムがァクリルシラン化合物で表面処理されたもので ある請求項 1記載のポリアリーレンサルフアイド樹脂組成物。
3 . 更に、(D) ォレフィン系重合体及び/又はォレフィン系共重合体を、(A) ポ リアリーレンサルフアイド樹脂 100 重量部に対し 1〜50重量部配合してなる請 求項 1又は 2記載のポリアリ一レンサルファィド樹脂組成物。
4 . 更に、 (E) ポリオレフインワックスを、 (A) ポリアリーレンサルファイド 樹脂 100 重量部に対し 0.1 〜2.5 重量部配合してなる請求項 1〜3の何れか 1 項記載のポリアリーレンサルフアイド樹脂組成物。
5 . 請求項 1〜4の何れか 1項記載のポリアリーレンサルフアイド樹脂組成物 を射出成形して得られる成形体。
PCT/JP2001/000712 2000-02-01 2001-02-01 Composition de resine de sulfure de polyarylene renforcee presentant une resistance au cheminement elevee WO2001057138A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000023736 2000-02-01
JP2000-23736 2000-02-01

Publications (1)

Publication Number Publication Date
WO2001057138A1 true WO2001057138A1 (fr) 2001-08-09

Family

ID=18549856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/000712 WO2001057138A1 (fr) 2000-02-01 2001-02-01 Composition de resine de sulfure de polyarylene renforcee presentant une resistance au cheminement elevee

Country Status (1)

Country Link
WO (1) WO2001057138A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140256864A1 (en) * 2011-09-30 2014-09-11 Toray Industries, Inc. Polyphenylene sulfide resin composition, production method therof and molded product therof (as amended)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252633A (en) * 1988-06-17 1993-10-12 Ube Industries, Ltd. Polyarylene sulfide resin composition
JPH0657139A (ja) * 1992-08-07 1994-03-01 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH08291253A (ja) * 1995-02-24 1996-11-05 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH10298430A (ja) * 1997-04-25 1998-11-10 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5252633A (en) * 1988-06-17 1993-10-12 Ube Industries, Ltd. Polyarylene sulfide resin composition
JPH0657139A (ja) * 1992-08-07 1994-03-01 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH08291253A (ja) * 1995-02-24 1996-11-05 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物
JPH10298430A (ja) * 1997-04-25 1998-11-10 Toray Ind Inc ポリフェニレンスルフィド樹脂組成物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140256864A1 (en) * 2011-09-30 2014-09-11 Toray Industries, Inc. Polyphenylene sulfide resin composition, production method therof and molded product therof (as amended)
US9068078B2 (en) * 2011-09-30 2015-06-30 Toray Industries, Inc. Polyphenylene sulfide resin composition, production method thereof and molded product thereof

Similar Documents

Publication Publication Date Title
JP4307908B2 (ja) ポリアリーレンサルファイド樹脂組成物および塗装成形品
JP3624077B2 (ja) ポリアリーレンサルファイド樹脂組成物
GB2284211A (en) Polyphenylene sulphide-based compositions with improved impact strength and process for preparing them
JP4004741B2 (ja) 耐トラッキング性が良好な強化ポリアリーレンサルファイド樹脂組成物
JP3889122B2 (ja) ポリアリーレンサルファイド樹脂組成物
JP2005248170A (ja) ポリフェニレンスルフィド樹脂組成物
JP5031175B2 (ja) ポリアリーレンサルファイド樹脂組成物
WO2001057138A1 (fr) Composition de resine de sulfure de polyarylene renforcee presentant une resistance au cheminement elevee
US20020082330A1 (en) Polyarylene sulfide resin composition
JP5103763B2 (ja) 樹脂組成物およびそれからなる成形品
JP2006104222A (ja) ポリフェニレンスルフィド樹脂組成物
JPH03247436A (ja) ポリアリーレンサルファイド系樹脂中空成形品及びその製造法
JPH03285954A (ja) 軽量化ポリアリーレンサルファイド樹脂組成物及びその成形品
JP2004091504A (ja) ポリアリーレンサルファイド樹脂組成物
JP2685976B2 (ja) ポリアリーレンサルファイド樹脂組成物及びその製造法
JP7309790B2 (ja) ポリアリーレンサルファイド樹脂組成物の製造方法
JP7316480B1 (ja) 車載用トランス及びその製造方法
JP2834639B2 (ja) ポリアリーレンサルファイド樹脂組成物
JP2001172500A (ja) ポリアリーレンサルファイド樹脂組成物
JP5103762B2 (ja) 樹脂組成物およびそれからなる成形品
JP3022311B2 (ja) ポリアリーレンサルファイド樹脂組成物
JP2003335945A (ja) ポリアリーレンサルファイド樹脂組成物
JP2005162886A (ja) ポリアリーレンサルファイド樹脂組成物
JPH05140451A (ja) ポリアリーレンサルフアイド樹脂組成物
CN111349339A (zh) 聚苯硫醚树脂组合物及其成型品

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA MX US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase