WO2001050661A2 - Anordnung zum abgleich von wdm-kanälen - Google Patents

Anordnung zum abgleich von wdm-kanälen Download PDF

Info

Publication number
WO2001050661A2
WO2001050661A2 PCT/DE2000/004670 DE0004670W WO0150661A2 WO 2001050661 A2 WO2001050661 A2 WO 2001050661A2 DE 0004670 W DE0004670 W DE 0004670W WO 0150661 A2 WO0150661 A2 WO 0150661A2
Authority
WO
WIPO (PCT)
Prior art keywords
attenuator
optical
reflector
spectrograph
arrangement according
Prior art date
Application number
PCT/DE2000/004670
Other languages
English (en)
French (fr)
Other versions
WO2001050661A3 (de
Inventor
Reinhard MÄRZ
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Publication of WO2001050661A2 publication Critical patent/WO2001050661A2/de
Publication of WO2001050661A3 publication Critical patent/WO2001050661A3/de

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12016Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the input or output waveguides, e.g. tapered waveguide ends, coupled together pairs of output waveguides
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12019Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by the optical interconnection to or from the AWG devices, e.g. integration or coupling with lasers or photodiodes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12007Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer
    • G02B6/12009Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides
    • G02B6/12033Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind forming wavelength selective elements, e.g. multiplexer, demultiplexer comprising arrayed waveguide grating [AWG] devices, i.e. with a phased array of waveguides characterised by means for configuring the device, e.g. moveable element for wavelength tuning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/25Arrangements specific to fibre transmission
    • H04B10/2507Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion
    • H04B10/25073Arrangements specific to fibre transmission for the reduction or elimination of distortion or dispersion using spectral equalisation, e.g. spectral filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0221Power control, e.g. to keep the total optical power constant
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0201Add-and-drop multiplexing

Definitions

  • the present invention relates to an arrangement with which the channels of a WDM transmission link can be matched.
  • the object of the present invention is to provide an arrangement for comparing the performance of WDM channels, which is of simple construction and can be used along a WDM transmission path.
  • a balancing device is connected to the WDM transmission path by means of an optical circulator, this balancing device an optical spectrograph, an optical attenuator attached behind an output of the spectrograph and a reflector attached behind the attenuator, and the attenuator attenuates signals of different wavelengths separately from one another to at least approximately the same level of power.
  • the optical spectrograph divides the total signal coming from the transmission path into different channels in accordance with the individual transmitted carrier wavelengths.
  • the individual channels are preferably continued via separate waveguides and thus each arrive at a component of the attenuator, in which they are suitably attenuated in their performance in such a way that the overall level is the same for all channels.
  • the reflector on the output side ensures that the signals pass the adjustment device again in the opposite direction and can be fed back into the transmission path via the circulator.
  • Figure 1 shows a diagram of the arrangement of the components used.
  • Figure 2 shows a representation of the structure of the preferred embodiment.
  • FIG 3 shows the scheme of the arrangement of Figure 1 with an addition.
  • a WDM transmission link 1 is shown schematically in FIG. 1, from which incoming signals are branched off into the matching device according to the invention by means of a circulator 2.
  • the circulator feeds a signal coming from the balancing device back into the transmission link 1.
  • the outcoupled signals are conducted into the balancing device by means of a suitable waveguide 3, for example by means of a glass fiber or a strip waveguide.
  • a suitable waveguide 3 for example by means of a glass fiber or a strip waveguide.
  • an optical spec trograph 4 available, which splits the supplied total signal into individual channels according to the different wavelengths. These channels are preferably continued via a separate waveguide each and arrive in the attenuator 7.
  • This attenuator is designed in such a way that it weakens the performance of each channel by a respectively predetermined value or a value which arises on the basis of a built-in control.
  • Photodiodes 6 can be connected to the waveguides provided for the individual channels by means of a coupler 5, which control the powers of the individual wavelengths.
  • the attenuators 7 can be dynamically readjusted as required, for example via a suitable electronic circuit 9.
  • a reflector 8 which closes the arrangement behind the attenuator 7, ensures that the signals in the opposite direction pass the balancing device again, reach the circulator 2 and are fed back into the transmission path 1 by the circulator.
  • the term "reflector” includes various means with which the directional reversal of the guided signals can in principle be effected.
  • the reflector can, for example, as a reflective layer (e.g. a metal such as aluminum) on the end faces of the waveguides or, in the case of integrated planar ones
  • Waveguides can be vapor-deposited or sputtered onto an etched-off surface of a suitable carrier (for example made of silicon) in which the arrangement is integrated.
  • a vapor-deposited or sputtered-on interference filter or a series of etched structures can be present as the reflector.
  • the term “reflector” is also used as a generic term for such a filter in the following and in the claims.
  • an interference filter for example, a band-stop filter comes into question, which has a high, but otherwise only within a wavelength band has low reflectivity and is known per se.
  • it can also be attached to the end face with an immersion-forming adhesive.
  • Figure 2 shows a particularly preferred embodiment, which can be implemented in particular integrated in the Si0 2 / Si material system.
  • a silicon block is used as the carrier substrate, in and on which the various components are integrated, in particular the waveguides as planar waveguides made of SiO 2 .
  • the optical spectrograph 4 is an optical phased array, which has an input-side free field area 40 in which lateral wave guidance is at least partially eliminated, as well as a corresponding output-side free field area 42, a plurality of waveguides 41 of different lengths and waveguides guided parallel to one another 43 for the different output channels.
  • waveguides 41 of different lengths arranged between the free field areas, which cause the division into the different channels, are arranged parallel to one another, means that the signals on the waveguides are routed parallel to one another, but these waveguides are not aligned parallel to one another in the geometric sense have to be.
  • another device can in principle also be present as a filter, for example a focusing reflection or transmission grating or a combination of lenses (for example geodetic lenses) and non-focusing grids.
  • Couplers are preferably present in the output-side waveguides 43 before the attenuator 7. Using these couplers 5, a small part of the power of the signals of the individual channels carried on the waveguides is fed separately to an arrangement of photodiodes 6. The photodiodes 6 also allow control of the powers of the signals carried on the individual waveguides. If the photo If it is found that the powers of the individual wavelengths are not matched in the desired manner, the individual elements of the attenuator 7 can be readjusted individually, for example via a suitable electronic circuit (not shown here), so that a desired match of the powers of the individual channels.
  • the couplers 5 are preferably waveguide crossings with a small crossing angle (typically about 3 ° to 6 °); however, directional couplers with a large coupling length can also be considered.
  • Mach-Zehnder interferometers are used as optical attenuators in this preferred exemplary embodiment; Mach-Zehnder couplers can also be used for the attenuators.
  • the reflector 8 is formed here by an interference filter applied to the outer interface of the carrier substrate. Otherwise, the variants already explained above come into question for the reflector.
  • any material system can be used in which passive optical functions and at least slowly tunable components can be implemented (eg LiNb0 3 , InGaAsP, GaAlAs, SOI substrates, polymers).
  • the various functions of the adjustment device can also be distributed over several subunits, for example semiconductor chips.
  • a fiber amplifier 30 represented by a glass fiber loop is shown in FIG. The double arrow next to it is intended to indicate that the glass fiber 3 can be coupled to the phased array in a regulating manner in order to create an automatic compensation in the event of temperature changes.
  • Such couplings of a waveguide to a phased array are described in DE 196 40 02 AI.
  • a coupling device with a holder for an optical fiber can be implemented, with which the axis of the radiation coupling tion is shifted when the position at which the center wavelength is coupled into the phased array changes in the coupling region as a result of a temperature change. If a material of suitable thermal linear expansion is selected for holding the coupled glass fiber, a shift in the coupling axis of the center wavelength can be automatically corrected passively.
  • a self-adjusting coupling device is ideally suited for coupling the adjustment device according to the invention.
  • an array of coupling / decoupling switches 10 can be arranged between the attenuator 7 and the reflector 8, with which part of the channels can be coupled out before the signals pass the phased array again, or a number of others Channels can be coupled.
  • the arrangement according to the invention can be designed as an add / drop multiplexer.
  • Advantages of the arrangement according to the invention are, in particular, the economical use of components, the possibly extensive integration of the components on a chip, with the exception of the circulator, the good suppression of the spontaneous emission from the optical amplifiers used in the system by going through the filter twice and the simultaneous use Suppression of further frequency bands, in particular the spontaneous emission of the optical amplifiers present in the system.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electromagnetism (AREA)
  • Optical Integrated Circuits (AREA)
  • Optical Communication System (AREA)

Abstract

Mittels eines Zirkulators (2) ist an eine WDM-Übertragungsstrecke (1) eine Abgleichvorrichtung mit einem optischen Spektrographen (4), einem optischen Abschwächer (7) und einem Reflektor (8) angeschlossen. Der Spektrograph ist vorzugsweise ein Phased Array mit unterschiedlich langen Wellenleitern (41) zwischen Freifeldbereichen (40, 42) und teilt das ankommende Gesamtsignal auf verschiedene Kanäle auf, die von dem Abschwächer auf gleiche Leistungspegel reduziert werden. Der Reflektor reflektiert die Signale, die die Vorrichtung erneut passieren und über den Zirkulator wieder in die Übertragungsstrecke eingespeist werden.

Description

Beschreibung
Anordnung zum Abgleich von WDM-Kanälen
Die vorliegende Erfindung betrifft eine Anordnung, mit der die Kanäle einer WDM-Übertragungsstrecke abgeglichen werden können .
Bei WDM-Übertragungsstrecken, auf denen Signale verschiedener Kanäle mit verschiedenen Wellenlängen übertragen werden, ist es erforderlich, die den jeweiligen Signalen entsprechenden Leistungen aneinander anzupassen, damit alle Kanäle gleichmäßig verstärkt werden können. Die auf einer solchen Ubertra- gungsstrecke m bestimmten vorgegebenen Abständen zueinander angeordneten Verstärker werden m der Regel so eingestellt, dass sich ein bestimmter Pegel der Gesamtleistung ergibt . Das führt dazu, dass m Ketten ähnlicher Verstärker einzelne Kanäle geringer verstärkt werden. Es kann daher vorkommen, dass die Signale der zu gering verstärkten Kanäle nach und nach im Grundrauschen versinken und das betreffende Signal nicht mehr reproduziert werden kann. Bei bisher realisierten WDM-Übertragungssystemen werden daher die Kanäle m größeren Netzknoten abgeglichen, z.B. m optischen Add/Drop-Multi- plexern (OADM) oder m optischen Cross-Connects (OXC) .
Aufgabe der vorliegenden Erfindung ist es, eine Anordnung zum Abgleich der Leistungen von WDM-Kanälen anzugeben, die einfach aufgebaut ist und sich längs einer WDM-Übertragungs- strecke einsetzen läßt.
Diese Aufgabe wird mit der Anordnung mit den Merkmalen des Anspruchs 1 gelöst. Ausgestaltungen ergeben sich aus den abhängigen Ansprüchen.
Bei der erfindungsgemäßen Anordnung ist eine Abgleichvorrichtung mittels eines optischen Zirkulators an die WDM-Übertra- gungsstrecke angeschlossen, wobei diese Abgleichvorπchtung einen optischen Spektrographen, einen hinter einem Ausgang des Spektrographen angebrachten optischen Abschwächer und einen hinter dem Abschwächer angebrachten Reflektor umfasst und der Abschwächer Signale unterschiedlicher Wellenlängen ge- trennt voneinander auf zumindest näherungsweise gleiche Pegel der Leistung abschwächt. Der optische Spektrograph teilt das von der Übertragungsstrecke kommende Gesamtsignal entsprechend den einzelnen übertragenen Trägerwellenlängen auf verschiedene Kanäle auf. Die einzelnen Kanäle werden vorzugswei- se über getrennte Wellenleiter weitergeführt und gelangen so zu jeweils einer Komponente des Abschwächers, in der sie in geeigneter Weise in der Leistung so abgeschwächt werden, dass sich insgesamt ein gleich hoher Pegel für alle Kanäle ergibt. Der ausgangsseitige Reflektor sorgt dafür, dass die Signale die Abgleichvorrichtung in entgegengesetzter Richtung erneut passieren und über den Zirkulator wieder in die Übertragungsstrecke eingespeist werden können.
Es folgt eine genauere Beschreibung der erfindungsgemäßen An- Ordnung anhand eines in den Figuren dargestellten Ausführungsbeispieles .
Figur 1 zeigt ein Schema der Anordnung der verwendeten Komponenten. Figur 2 zeigt eine Darstellung des Aufbaus des bevorzugten Ausführungsbeispiels.
Figur 3 zeigt das Schema der Anordnung gemäß Figur 1 mit einer Ergänzung.
In Figur 1 ist schematisch eine WDM-Übertragungsstrecke 1 eingezeichnet, aus der ankommende Signale mittels eines Zir- kulators 2 in die erfindungsgemäße Abgleichvorrichtung abgezweigt werden. Der Zirkulator speist ein von der Abgleichvorrichtung kommendes Signal wieder in die Übertragungstrecke 1 ein. Die ausgekoppelten Signale werden mittels eines geeigne- ten Wellenleiters 3, z.B. mittels einer Glasfaser oder eines Streifenwellenleiters, in die Abgleichvorrichtung geleitet. In der Abgleichvorrichtung ist zunächst ein optischer Spek- trograph 4 vorhanden, der das zugeführte Gesamtsignal entsprechend den unterschiedlichen Wellenlängen in einzelne Kanäle aufspaltet. Diese Kanäle werden vorzugsweise über je einen gesonderten Wellenleiter weitergeführt und gelangen in den Abschwächer 7. Dieser Abschwächer ist so konstruiert, dass er die Leistung jedes Kanals um einen jeweils vorgegebenen Wert oder einen sich auf Grund einer eingebauten Regelung jeweils ergebenden Wert abschwächt. An die für die einzelnen Kanäle vorgesehenen Wellenleiter können Photodioden 6 mittels eines Kopplers 5 angeschlossen werden, die die Leistungen der einzelnen Wellenlängen kontrollieren. Mittels der von den Photodioden erzeugten Signale können die Abschwächer 7 nach Bedarf, z.B. über eine geeignete elektronische Schaltung 9, dynamisch nachgeregelt werden.
Ein die Anordnung hinter dem Abschwächer 7 abschließender Reflektor 8 sorgt dafür, dass die Signale in entgegengesetzter Richtung die Abgleichvorrichtung erneut passieren, zu dem Zirkulator 2 gelangen und von dem Zirkulator wieder in die Übertragungsstrecke 1 eingespeist werden. Unter die Bezeichnung „Reflektor" fallen hier unterschiedliche Mittel, mit denen prinzipiell die Richtungsumkehr der geführten Signale bewirkt werden kann. Der Reflektor kann z.B. als spiegelnde Schicht (z.B. ein Metall wie Aluminium) auf die Stirnflächen der Wellenleiter oder, im Falle von integrierten planaren
Wellenleitern, auf eine freigeätzte Fläche eines geeigneten Trägers (z.B. aus Silizium), in dem die Anordnung integriert ist, aufgedampft oder aufgesputtert sein. Statt einer solchen Spiegelendfläche kann als Reflektor ein aufgedampftes oder aufgesputtertes Interferenzfilter oder eine Serie von freigeätzten Strukturen (sogenannter photonischer Kristall) vorhanden sein. Für ein derartiges Filter wird im folgenden und in den Ansprüchen ebenfalls die Bezeichnung „Reflektor" als übergeordneter Begriff verwendet. Als solches Interferenzfil- ter kommt z.B. ein Band-Stopp-Filter in Frage, das innerhalb eines Wellenlängenbandes ein hohes, aber im Übrigen nur ein geringes Reflexionsvermögen aufweist und an sich bekannt ist. Anstatt ein solches Fil.ter aufzudampfen oder aufzusputtern, kann es auch mit einem eine Immersion bildenden Kleber an der Stirnfläche befestigt werden.
Figur 2 zeigt ein besonders bevorzugtes Ausführungsbeispiel , das insbesondere im Materialsystem Si02/Si integriert realisiert werden kann. Als Trägersubstrat wird ein Siliziumblock verwendet, in und auf dem die verschiedenen Komponenten integriert werden, insbesondere die Wellenleiter als planare Wel- lenleiter aus Si02. Der optische Spektrograph 4 ist bei diesem Beispiel ein optisches Phased Array, das einen eingangs- seitigen Freifeldbereich 40 aufweist, in dem eine seitliche Wellenführung zumindest teilweise aufgehoben ist, sowie einen entsprechenden ausgangsseitigen Freifeldbereich 42, eine Mehrzahl parallel zueinander geführter Wellenleiter 41 unterschiedlicher Länge und Wellenleiter 43 für die verschiedenen Ausgangskanäle. Dass die zwischen den Freifeldbereichen angeordneten Wellenleiter 41 unterschiedlicher Längen, die die Aufteilung auf die verschiedenen Kanäle bewirken, parallel zueinander angeordnet sind, soll heißen, dass die Signale auf den Wellenleitern parallel zueinander geführt werden, wobei diese Wellenleiter aber nicht im geometrischen Sinne parallel zueinander ausgerichtet sein müssen. Statt des bevorzugten Phased Array kann als Filter grundsätzlich auch eine andere Vorrichtung vorhanden sein, z.B. ein fokussierendes Reflexions- oder Transmissionsgitter oder eine Kombination aus Linsen (z.B. aus geodätischen Linsen) und nicht-fokussieren- den Gittern.
In den ausgangsseitigen Wellenleitern 43 sind vor dem Abschwächer 7 vorzugsweise Koppler (Tap-Koppler zum Zweck des Wire Tapping) vorhanden. Mittels dieser Koppler 5 wird jeweils ein geringer Teil der Leistung der auf den Wellenleitern geführten Signale der einzelnen Kanäle getrennt einer Anordnung von Photodioden 6 zugeführt. Die Photodioden 6 erlauben auch die Kontrolle der Leistungen der auf den einzelnen Wellenleitern geführten Signale. Falls über die Photo- dioden festgestellt wird, dass der Abgleich der Leistungen der einzelnen Wellenlängen nicht in der gewünschten Weise erfolgt, können die einzelnen Elemente des Abschwächers 7, z.B. über eine hier nicht eingezeichnete geeignete elektronische Schaltung, einzeln so nachgeregelt werden, dass sich ein gewünschter Abgleich der Leistungen der einzelnen Kanäle ergibt. Auf diese Weise kann ein Rückkoppelkreis realisiert sein, der die Betriebseigenschaften (performance) der Abgleichvorrichtung optimiert. Vorzugsweise sind die Koppler 5 Wellenleiterkreuzungen mit einem kleinen Kreuzungswinkel (typisch etwa 3° bis 6°); es kommen jedoch auch Richtkoppler großer Koppellänge in Betracht. Als optische Abschwächer werden bei diesem bevorzugten Ausführungsbeispiel Mach-Zehnder- Interferometer eingesetzt; es kommen für die Abschwächer aber auch Mach-Zehnder-Koppler in Betracht. Der Reflektor 8 wird hier durch ein auf die äußere Grenzfläche des Trägersubstrates aufgebrachtes Interferenzfilter gebildet. Im übrigen kommen für den Reflektor die bereits oben erläuterten Varianten in Frage .
Als Alternative zum Materialsystem Si02/Si kann jedes Materialsystem Verwendung finden, in dem passive optische Funktionen und zumindest langsam abstimmbare Bauelemente realisiert werden können (z.B. LiNb03, InGaAsP, GaAlAs , SOI -Substrate, Polymere) . Statt einer weitgehenden Integration können die verschiedenen Funktionen der Abgleichvorrichtung auch auf mehrere Untereinheiten, z.B. Halbleiterchips, verteilt werden. Als weiteres Detail ist in Figur 2 noch ein durch eine Glasfaserschleife dargestellter Faserverstärker 30 einge- zeichnet. Der daneben vorhandene Doppelpfeil soll andeuten, dass die Glasfaser 3 an das Phased Array in nachregulierender Weise angekoppelt sein kann, um einen automatischen Ausgleich bei Temperaturänderungen zu schaffen. Derartigen Ankopplungen eines Wellenleiters an ein Phased Array sind beschrieben in der DE 196 40 02 AI. Es ist dort beschrieben, wie eine Koppelvorrichtung mit einer Halterung für eine Glasfaser realisiert werden kann, mit der die Achse der Strahlungseinkopp- lung verschoben wird, wenn sich infolge einer Temperaturänderung die Position, an der die Mittenwellenlänge in das Phased Array eingekoppelt wird, in dem Koppelbereich ändert. Wird für die Halterung der angekoppelten Glasfaser ein Material geeigneter thermischer Längenausdehnung gewählt, so kann eine Verschiebung der Einkoppelachse der Mittenwellenlänge automatisch passiv korrigiert werden. Eine derartige selbstjustierende Koppelvorrichtung ist für die Ankopplung der erfindungsgemäßen Abgleichvorrichtung ideal geeignet.
Gemäß der schematischen Darstellung von Figur 3 kann zwischen dem Abschwächer 7 und dem Reflektor 8 ein Array von Aus-/Einkoppelschaltern 10 angeordnet sein, mit dem ein Teil der Kanäle ausgekoppelt werden kann, bevor die Signale das Phased Array erneut passieren, oder eine Reihe weiterer Kanäle eingekoppelt werden kann. Auf diese Weise kann die erfindungsgemäße Anordnung als Add/Drop-Multiplexer ausgestaltet sein.
Vorteile der erfindungsgemäßen Anordnung sind insbesondere der sparsame Einsatz von Komponenten, die eventuell mit Ausnahme des Zirkulators weitgehende Integrierbarkeit der Komponenten auf einem Chip, die gute Unterdrückung der spontanen Emission aus den im System eingesetzten optischen Verstärkern durch das zweifache Durchlaufen des Filters und die gleich- zeitige Unterdrückung weiterer Frequenzbänder, insbesondere der spontanen Emission der im System vorhandenen optischen Verstärker.

Claims

Patentansprüche
1. Anordnung zum Abgleich von WDM-Kanälen, bei der eine WDM-Übertragungsstrecke (1) vorhanden ist und eine Abgleichvorrichtung vorhanden ist, mit der die Leistungen von Signalen verschiedener Wellenlängen, die auf der WDM- Übertragungsstrecke geführt werden, aneinander angepasst werden, d a d u r c h g e k e n n z e i c h n e t , d a s s die Abgleichvorrichtung mittels eines optischen Zirkulators
(2) an die WDM-Übertragungsstrecke (1) angeschlossen ist und einen optischen Spektrographen (4), einen hinter einem Ausgang des Spektrographen angebrachten optischen Abschwächer
(7) und einen hinter dem Abschwächer angebrachten Reflektor (8) umfasst und der Abschwächer Signale unterschiedlicher Wellenlängen getrennt voneinander auf zumindest näherungsweise gleiche Pegel der Leistung abschwächt .
2. Anordnung nach Anspruch 1, bei der mindestens eine mittels eines Kopplers (5) zwischen dem Spektrographen und dem Reflektor (8) angeschlossene Fotodiode (6) vorhanden ist, mit der der Abschwächer kontrolliert wird.
3. Anordnung nach Anspruch 1 oder 2 , bei der der optische Spektrograph (4) ein optisches Phased Array ist, das einen eingangsseitigen Freifeldbereich (40), in dem eine seitliche Wellenführung zumindest teilweise auf- gehoben ist, parallel zueinander geführte Wellenleiter (41) unterschiedlicher Längen, einen ausgangsseitigen Freifeldbereich (42), in dem die seitliche Wellenführung zumindest teilweise aufgehoben ist, und mehrere ausgangsseitige Wellenleiter (43) zur Führung von Signalen unterschiedlicher Wel- lenlängen aufweist .
4. Anordnung nach einem der Ansprüche 1 bis 3, bei der der Reflektor (8) durch ein Interferenzfilter gebildet ist.
5. Anordnung nach einem der Ansprüche 1 bis 4, bei der der optische Abschwächer (7) durch Mach-Zehnder-Interferometer gebildet ist.
6. Anordnung nach einem der Ansprüche 1 bis 5, bei der zwi- sehen dem Abschwächer (7) und dem Reflektor (8) ein Array von Aus- /Einkoppelschaltern (10) angeordnet ist.
PCT/DE2000/004670 2000-01-05 2000-12-28 Anordnung zum abgleich von wdm-kanälen WO2001050661A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10000255.2 2000-01-05
DE2000100255 DE10000255A1 (de) 2000-01-05 2000-01-05 Anordnung zum Abgleich von WDM-Kanälen

Publications (2)

Publication Number Publication Date
WO2001050661A2 true WO2001050661A2 (de) 2001-07-12
WO2001050661A3 WO2001050661A3 (de) 2002-02-14

Family

ID=7626814

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/004670 WO2001050661A2 (de) 2000-01-05 2000-12-28 Anordnung zum abgleich von wdm-kanälen

Country Status (2)

Country Link
DE (1) DE10000255A1 (de)
WO (1) WO2001050661A2 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5933270A (en) * 1996-12-06 1999-08-03 Nec Corporation Optical equalizer
US5953470A (en) * 1996-12-03 1999-09-14 Nec Corporation Circuit for optical WDM system

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2738698B1 (fr) * 1995-09-08 1997-10-17 Alcatel Nv Procede et systeme d'egalisation des niveaux respectifs de puissance des canaux d'un signal optique spectralement multiplexe
GB9724822D0 (en) * 1997-11-24 1998-01-21 Alsthom Cge Alcatel Channel control in a wavelength division multiplexed communications network
DE19815404A1 (de) * 1998-04-06 1999-10-14 Siemens Ag Anordnung zur räumlichen Trennung und/oder Zusammenführung optischer Wellenlängenkanäle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5953470A (en) * 1996-12-03 1999-09-14 Nec Corporation Circuit for optical WDM system
US5933270A (en) * 1996-12-06 1999-08-03 Nec Corporation Optical equalizer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CLAPP T V ET AL: "Broadband variable optical attenuator in silica waveguide technology" 24TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION. ECOC '98 (IEEE CAT. NO.98TH8398), PROCEEDINGS OF ECOC '98 - 24TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION, MADRID, SPAIN, 20-24 SEPT. 1998, Seiten 301-302 vol.1, XP002169172 1998, Madrid, Spain, Telefonica, Spain ISBN: 84-89900-14-0 *
TOYOHARA A ET AL: "ERBIUM DOPED FIBER AMPLIFIER FOR MULTI-CHANNEL TRANSMISSION" NEC RESEARCH AND DEVELOPMENT,JP,NIPPON ELECTRIC LTD. TOKYO, Bd. 39, Nr. 3, Juli 1998 (1998-07), Seiten 258-266, XP000835172 ISSN: 0547-051X *

Also Published As

Publication number Publication date
DE10000255A1 (de) 2001-07-26
WO2001050661A3 (de) 2002-02-14

Similar Documents

Publication Publication Date Title
DE602004004848T2 (de) Abstimmbarer Dispersionskompensator
DE69019576T2 (de) Optischer Multiplexer/Demultiplexer mit fokussierenden Bragg-Reflektoren.
DE69937014T2 (de) Lichtwellenleiterverzweigung mit Reflektor
DE60032063T2 (de) Optisches System
DE69838127T2 (de) Verfahren und Vorrichtung zur Steuerung der optischen Verstärkung in einer optischen Wellenlängenmultiplexübertragung
DE3789551T2 (de) Optischer multiplexer/demultiplexer und dessen verwendung in einem optischen modul.
DE3787598T2 (de) Optischer Multi/Demultiplexer.
US20060239684A1 (en) Optical add/drop device, optical add/drop system, and optical signal add/drop method
DE60309783T2 (de) Abstimmungsmethode für optischen Schaltkreis mit kaskadierten Mach-Zehnder-Interferometern
DE102009021043A1 (de) Planare Lichtwellenschaltung und abstimmbare Laservorrichtung, die diese aufweist
DE60124811T2 (de) Optisches Filter zur Verstärkungsentzerrung
EP1168010B1 (de) Optischer Multiplexer/Demultiplexer
DE69830643T2 (de) Optische RF Signalverarbeitung
US6591034B1 (en) Configuration for spatially separating and/or joining optical wavelength channels
DE102015105446A1 (de) Wellenlängen-Multiplexvorrichtung (WDM) und De-Multiplexvorrichtung (WDDM)
US6567587B2 (en) Dispersion compensator and dispersion-compensating module employing the same
DE60121593T2 (de) Durch bragg-gitter unterstützter mmimi-koppler für das abstimmbare add/drop-multiplexen
US6229938B1 (en) WDM filter
WO2003027721A2 (de) Verfahren zur temperaturkompensation einer optischen wdm-komponente sowie optische wdm-komponente mit temperaturkompensation
WO2001050661A2 (de) Anordnung zum abgleich von wdm-kanälen
Rigny et al. Double-phased array for a flattened spectral response
DE19820295C1 (de) Optisches Dämpfungsglied, Anordnung optischer Dämpfungsglieder und Verfahren zum Dämpfen der Intensität optischer Signale
EP0592874B1 (de) Integrierter optischer Polarisationsdiversity-Empfänger mit 3dB Koppler und zwei Polarisationsteilern
EP0737872A2 (de) Optischer Verzweiger
DE3217610A1 (de) Optische koppelanordnung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): CA JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

NENP Non-entry into the national phase

Ref country code: JP