WO2001050079A2 - Evaporateur a tubes plats empiles possedant deux boites a fluide opposees - Google Patents

Evaporateur a tubes plats empiles possedant deux boites a fluide opposees Download PDF

Info

Publication number
WO2001050079A2
WO2001050079A2 PCT/FR2000/003630 FR0003630W WO0150079A2 WO 2001050079 A2 WO2001050079 A2 WO 2001050079A2 FR 0003630 W FR0003630 W FR 0003630W WO 0150079 A2 WO0150079 A2 WO 0150079A2
Authority
WO
WIPO (PCT)
Prior art keywords
tubes
evaporator
tube
fluid
brazed
Prior art date
Application number
PCT/FR2000/003630
Other languages
English (en)
Other versions
WO2001050079A3 (fr
Inventor
Laurent Palanchon
Original Assignee
Valeo Climatisation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Climatisation filed Critical Valeo Climatisation
Priority to DE10084298T priority Critical patent/DE10084298B3/de
Priority to JP2001549980A priority patent/JP4869529B2/ja
Publication of WO2001050079A2 publication Critical patent/WO2001050079A2/fr
Publication of WO2001050079A3 publication Critical patent/WO2001050079A3/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0202Header boxes having their inner space divided by partitions
    • F28F9/0204Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions
    • F28F9/0209Header boxes having their inner space divided by partitions for elongated header box, e.g. with transversal and longitudinal partitions having only transversal partitions

Definitions

  • the invention relates to an evaporator for the exchange of heat between an air flow and a refrigerant with passage of the latter from the liquid state to the gaseous state, in particular for the air conditioning of the passenger compartment of a motor vehicle, comprising a bundle composed of a single row of flat tubes stacked alternately with corrugated inserts keeping the tubes spaced apart from one another by a distance d and the corrugations of which define passages for the air flow in the direction of the width of the tubes, the two ends of each tube communicating respectively with two fluid boxes located opposite each other with respect to said beam, so as to define for the refrigerant, in the evaporator , a journey in at least two passes.
  • Such an evaporator is said to "front circuit", as opposed to an “U circuit” evaporator in which the refrigerant circulates in U tubes, the two branches of which communicate with respective chambers of a single fluid box.
  • the number of passes is the number of elementary paths made by the refrigerant, along a tube from one fluid box to another, between the inlet and the outlet of the evaporator. This number can be odd, if the inlet and the outlet are located respectively on the two fluid boxes, or even, if they are located on the same fluid box.
  • the fluid boxes can be attached, that is to say assembled to the tubes, or not attached, that is to say formed by the same parts as the tubes.
  • Front circuiting has the advantage, compared to en circuitry, of reducing the length of tubes traversed by the refrigerant, for a given number of tubes used in each pass, thereby reducing the pressure drop and the corresponding heating of the refrigerant, as well as the separation of the liquid and gas phases.
  • the heat exchange with the air flow is therefore increased thanks to a lower and more homogeneous temperature of the coolant between the different tubes of the same pass.
  • the front circuiting also allows economical manufacture of the evaporator, with all identical tubes allowing advanced automation of its manufacture.
  • the object of the invention is to propose dimensional characteristics capable of optimizing the performance of this type of evaporator, more particularly when the number of passes is 4 or 6.
  • the invention relates in particular to an evaporator of the kind defined in the introduction, and provides that its dimension 1 in said direction is between 20 and 55 mm and that the distance d is between 4.0 and 7.6 mm.
  • the dimension proposed in the direction of the air flow ensures a reduced bulk of the evaporator in this direction, and a saving of material. However, it tends to decrease the exchange surface between the two fluids. This tendency is compensated by the choice of a distance d also reduced.
  • the combination of these two dimensional characteristics makes it possible to reconcile the reduction in size and the saving in material mentioned above with a level of performance comparable to that of the evaporators commonly used for air conditioning the passenger compartment of motor vehicles.
  • the total thickness of a tube is between 1.0 and 2.7 mm.
  • the wall thickness of a tube is between 0.2 and 0.45 mm, and between 0.2 and 0.7 mm for the nose of the tube.
  • the internal thickness of a tube is between 0.6 and 1.8 mm.
  • the half wave period of the inserts is between 1.0 and 1.8 mm.
  • the wall thickness of the spacers is between 0.05 and 0.1 mm.
  • the tubes and the fluid boxes are in the form of a stack of sleeves each formed from two pressed sheet plates in the form of cuvettes, the concavities of which are turned towards each other and which are mutually brazed sealed at their periphery, each pocket defining one of said tubes and having, at each of its ends, an increased thickness to define a section of fluid box.
  • the fluid boxes are independent components having openings through which the ends of the tubes penetrate, the latter being brazed in a sealed manner at the edge of the openings.
  • Each tube is formed of two stamped sheet metal plates which are mutually brazed, for sealing along their lateral edges and for stiffening in intermediate zones projecting towards the inside of the tube.
  • Each tube is formed of two stamped sheet metal plates which are mutually brazed in a sealed manner along their lateral edges, the tube being stiffened by an insert brazed to the internal faces of the plates.
  • the tubes are extruded tubes.
  • the tubes are formed by folded sheets and closed by longitudinal brazed joints.
  • At least one fluid box is formed of two elements delimiting an interior volume, one of which has said openings, and at least one attached internal partition separating said interior volume into different chambers each of which communicates with a subset of the tubes.
  • At least one fluid box is formed of a manifold plate having said openings, and at least two elements in the form of tanks cooperating with the manifold plate, each over a part of the extent thereof, to delimit respective chambers, each of which communicates with a subset of the tubes.
  • At least one fluid box is formed of at least one stamped sheet metal element defining, on either side of a fold line, a collector plate having said openings and a tank which are brought edge to edge by folding and mutually brazed to define a chamber of the fluid box.
  • Figures 1 and 2 are partial sectional views of an evaporator.
  • Figures 3 to 7 are graphs showing the influence of dimensional characteristics on the operation of an evaporator.
  • Figures 8 to 10 are longitudinal sectional views of different embodiments of an evaporator.
  • FIG. 11 is a perspective view of a component intended for producing an evaporator fluid box.
  • Figure 1 is a partial sectional view of the bundle of an evaporator of the type to which the invention applies, showing two neighboring flat tubes 1, in cross section, and the corrugated interlayer 2 interposed therebetween.
  • the width 1 of the tubes that is to say the dimension of the evaporator in the direction of circulation of the air flow, represented by the arrow FI
  • the distance d between the tubes fixed by the corrugations of the interlayer
  • the total thickness E g of a tube that is to say its size in the direction of the stacking of the beam
  • l wall thickness e ⁇ of a tube and the interior thickness E ⁇ of a tube, equal to E e - 2e 1 .
  • Figure 2 is a partial side view of a spacer 2, showing its corrugated profile substantially in the form of a sinusoid. We find there the distance d between the two planes P containing the ripple peaks. There is also the wall thickness e 2 of the interlayer, and its half-ripple period p_ / 2.
  • the aforementioned dimensions ideally lie within the following intervals:
  • FIG. 3 shows the variation of the heat exchange capacity of an evaporator targeted by the invention as a function of the distance d, all other things being equal and keeping the air flow constant. It can be seen that the maximum efficiency under these conditions is reached for a value of 4 mm. However, a decrease in the distance d increases the pressure drop of the air flow and therefore decreases the air flow for a given speed of the blower. This is why the values chosen are at least equal to this apparent optimum, that is to say between 4.0 and 7.6 mm.
  • the wall thickness e x is chosen so as to ensure appropriate resistance to pressure and to corrosion, without excessive consumption of material.
  • the graph in FIG. 4 shows the variation in the heat exchange capacity of an evaporator as a function of the internal thickness e ⁇ of the tubes.
  • this thickness is small, this results in a pressure drop of the refrigerant fluid and a rise in its temperature detrimental to the heat exchange.
  • a high thickness has the effect of a low speed of the fluid, limiting the heat exchange with the walls of the tubes.
  • the chosen range provides optimized results.
  • the graphs in FIGS. 5 and 6 respectively represent the variation of the heat exchange capacity of an evaporator and that of the pressure drop which it subjects to the air flow, as a function of the half-period p_ / 2 spacers, the air flow being kept constant.
  • the curve shown by the symbol represents the variation of the back pressure produced by the blower as a function of the flow rate.
  • the intersection of a pressure drop curve and the back pressure curve represents the operating point for the air of the evaporator-blower couple. We therefore obtain the air flow through the evaporator and we deduce the performance provided by it.
  • the optimal value for a given blower is determined. By doing so for different blowers and different air conditioning units, the values proposed according to the invention were arrived at.
  • the tubes 1 shown in FIG. 1 are each produced by the mutual brazing of two plates 1a and 1b, stamped to each form two marginal longitudinal ribs le and a multiplicity of intermediate longitudinal ribs ld.
  • the marginal ribs 1a of one of the plates are brazed to the marginal ribs of the other plate in order to seal the tube vis-à-vis the outside.
  • Each intermediate rib ld of a plate is brazed to a rib ld of the other plate to stiffen the tube and to delimit inside the tube circulation channels for the fluid.
  • the intermediate ribs 1d can be replaced, in whole or in part, by stiffening projections which do not extend from one end to the other of the tube and which do not delimit circulation channels.
  • FIG. 8 represents, in longitudinal section, an embodiment of an evaporator 10 according to the invention, in which the tubes and the two fluid boxes are formed by a multiplicity of pockets 11 mutually stacked from left to right of the figure, each composed of two pressed sheet plates in the form of bowls 12 and 13.
  • the latter are identical to each other and have their concavities turned towards each other, ie to the right and to the left respectively.
  • Each bowl has a peripheral edge situated in a vertical plane, and the peripheral edges of the two bowls forming a pocket are mutually assembled in a fluid-tight manner by brazing, to delimit the interior volume of the pocket.
  • Each bowl has an upper region 14 and a lower region 15 of greater depth than that of the intermediate region 16.
  • the regions 16 of two associated bowls together constitute a tube of the bundle.
  • the upper regions 14 of the same bowls define therebetween, an elementary volume 17 forming part of the interior volume of the corresponding pocket and communicating with the upper end of the tube. All regions 14 forms an upper fluid box 18, each elementary volume 17 communicating with at least one neighboring volume 17, through openings 19 formed in the bottom of the bowls, to form a chamber of the fluid box.
  • the lower regions 15 of the bowls define between them elementary volumes 20 communicating with the lower ends of the tubes, and together form a lower fluid box 21 comprising at least one chamber.
  • the two fluid boxes must have a total of at least three chambers to ensure fluid circulation in at least two passes.
  • the inlet 22 and the outlet 23 of the fluid are provided respectively on the lower fluid box and on the upper fluid box, so that the number of passes is odd and at least equal to three.
  • the corrugated inserts 2 are brazed to the outer faces of the intermediate regions 16 of the cups 11, 12.
  • FIGS. 9 and 10 are views similar to FIG. 8, relating to evaporators comprising tubes 1 produced independently of the fluid boxes, for example by assembling cuvettes similar to cuvettes 12, 13 in FIG. 8, but not comprising regions 14 and 15 of increased depth, or in the form of extruded tubes, or in a known manner by folding sheets and forming longitudinal brazed joints.
  • the upper fluid box 31 and the fluid box 32 of the evaporator 30 of FIG. 9 each comprise a collecting plate 33 having a multiplicity of openings 34 into which the ends of the tubes 1 penetrate and provided with a peripheral rim 35 turned away from the tube bundle.
  • the upper collecting plate serves as a cover for a part in the form of a tank 37, the peripheral edge 38 of which is brazed to the rim 35, the two parts delimiting the interior volume of the fluid box. Within this interior volume is another tub-shaped part 39, the peripheral edge 40 of which is brazed to the plate 33.
  • the lower collecting plate 33 serves as a common cover with two tray-shaped parts 41 and 42 mutually juxtaposed in the stacking direction of the tube bundle.
  • the peripheral edges 43, 44 of the tanks 41, 42 are brazed to each other in their mutual contact zone and moreover to the peripheral edge 35 of the plate 33.
  • the tank 39 separates the interior volume of the fluid box 31 in two chambers 45 and 46 located respectively inside and outside of the tank 39, and communicating respectively with a median sub-assembly of the tubes and with the rest of these.
  • the tanks 41 and 42 delimit with the collecting plate 33, respectively, two chambers 47 and 48 of the lower fluid box, which communicate respectively with two sub-assemblies of the tubes succeeding each other in the stacking direction of the beam.
  • the fluid enters the chamber 45 through an opening 49 formed in the side walls of the tanks 37 and 39, and flows from top to bottom in the median sub-assembly of the tubes to reach partly the chamber 47 and partly the chamber 48. From there, it travels the other tubes from bottom to top and arrives in chamber 46, which it leaves through an opening 50 in part 37.
  • the circulation of the fluid in the evaporator is therefore carried out in two passes.
  • the evaporator 50 of FIG. 10 has a lower fluid box 32 identical to that of FIG. 9 and which will not be described again.
  • the upper fluid box 51 has a structure similar to that of box 31, with a collecting plate 33 identical to those of boxes 31 and 32, and three tanks 52, 53, 54, instead of two for box 32, juxtaposed in the stacking direction and delimiting respectively, with the plate 33 of the chambers 55, 56 and 57.
  • the fluid enters the chamber 55 through an opening 58 provided in the tank 52, and circulates from top to bottom in a first sub- set of tubes to reach chamber 47 of the lower box. From there, it flows from bottom to top in a second subset of tubes to reach chamber 56.
  • FIG. 11 represents a piece of stamped sheet metal 60 intended to be associated with a bundle of tubes and spacers such as those represented in FIGS. 9 and 10 by forming at least part of a fluid box.
  • the part 60 comprises two regions 61 and 62 situated respectively on the right and on the left, as seen in the figure, of a horizontal line L, and stamped respectively upwards and downwards relative to the horizontal plane containing the line L, so as to form on the one hand a tank, on the other hand a collecting plate pierced with openings 63 and provided with a peripheral rim 64.
  • the plate 62 comes to fit into the tank 61, the flange 62 coming into contact over its entire perimeter with the peripheral wall 65 of the tank, to which it is brazed in a sealed manner.
  • the part thus fashioned can in itself constitute a single chamber fluid box, where several similar parts can be juxtaposed to form a, multiple chamber fluid box. Where appropriate, an opening 66 for inlet or outlet of the fluid is provided in the peripheral wall 65.
  • stiffening the tube consists in introducing therein an insert brazed to the internal faces of the plates, for example a corrugated insert brazed by its corrugation crests.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

Evaporateur pour l'échange de chaleur entre un flux d'air et un fluide réfrigérant, comprenant un faisceau composé d'une rangée unique de tubes plats (1) empilés en alternance avec des intercalaires ondulés (2) maintenant les tubes (1) écartés les uns des autres d'une distance 'd' et dont les ondulations définissent des passages pour le flux d'air dans la direction de la largeur des tubes (1), les deux extrémités de chaque tube (1) communiquant respectivement avec deux boîtes à fluide (31, 32) situées à l'opposé l'une de l'autre par rapport audit faisceau, de manière à définir pour le fluide réfrigérant, dans l'évaporateur, un trajet en au moins deux passes. Selon l'invention, la dimension 'l' de l'évaporateur dans ladite direction est comprise entre 20 et 55 mm et la distance 'd' est comprise entre 4,0 et 7,6 mm.

Description

Evaporateur à tubes plats empilés possédant deux boîtes à fluide opposées
L'invention concerne un evaporateur pour l'échange de chaleur entre un flux d'air et un fluide réfrigérant avec passage de celui-ci de l'état liquide à l'état gazeux, notamment pour la climatisation de l'habitacle d'un véhicule automobile, comprenant un faisceau composé d'une rangée unique de tubes plats empilés en alternance avec des intercalaires ondulés maintenant les tubes écartés les uns des autres d'une distance d et dont les ondulations définissent des passages pour le flux d'air dans la direction de la largeur des tubes, les deux extrémités de chaque tube communiquant respectivement avec deux boîtes à fluide situées à l'opposé l'une de l'autre par rapport audit faisceau, de manière à définir pour le fluide réfrigérant, dans l'évaporateur, un trajet en au moins deux passes.
Un tel evaporateur est dit à "circuitâge frontal", par opposition à un evaporateur à "circuitage en U" dans lequel le fluide réfrigérant circule dans des tubes en U dont les deux branches communiquent avec des chambres respectives d'une boîte a fluide unique. Le nombre de passes est le nombre de trajets élémentaires effectués par le fluide réfrigérant, le long d'un tube d'une boîte à fluide à l'autre, entre l'entrée et la sortie de l'évaporateur. Ce nombre peut être impair, si l'entrée et la sortie sont situées respectivement sur les deux boîtes à fluide, ou pair, si elles sont situées sur la même boîte à fluide. Selon la technologie utilisée, les boîtes à fluide peuvent être rapportées, c'est à dire assemblées aux tubes, ou non rapportées, c'est à dire formées par les mêmes pièces que les tubes.
Le circuitage frontal présente l'avantage,, par rapport au circuitage en ϋ, de diminuer la longueur de tubes parcourue par le .fluide réfrigérant, pour un nombre donné de tubes utilisés à chaque passe, réduisant ainsi la perte de charge et l'échauffement correspondant du fluide réfrigérant, ainsi que la séparation des phases liquide et gazeuse. L'échange thermique avec le flux d'air est donc augmenté grâce à une température du fluide réfrigérant plus basse et plus homogène entre les différents tubes d'une, ême passe.
Le circuitage frontal permet également une fabrication économique de l'évaporateur, avec des tubes tous identiques autorisant une automatisation poussée de sa fabrication.
Le but de l'invention est de proposer des caractéristiques dimensionnelles propres à optimiser les performances de ce type d'evaporateur, plus particulièrement lorsque le nombre de passes est 4 ou 6.
L'invention vise notamment un evaporateur du genre défini en introduction, et prévoit que sa dimension 1 dans ladite direction est comprise entre 20 et 55 mm et que la distance d est comprise entre 4,0 et 7,6 mm.
La dimension proposée dans là direction du flux d'air assure un encombrement réduit de l'évaporateur dans cette direction, et une économie de matière. Elle tend cependant à diminuer la surface d'échange entre les deux fluides. Cette tendance est compensée par le choix d'une distance d également réduite. La combinaison de ces deux caractéristiques dimensionnelles permet de concilier la réduction d'encombrement et l'économie de matière mentionnées ci-dessus avec un niveau de performance comparable à celui des évaporateurs utilisés habituel- lement pour la climatisation de l'habitacle des véhicules automobiles .
Des caractéristiques optionnelles de l'invention, complémentaires ou alternatives, sont énoncées ci-après:
- L'épaisseur totale, d'un tube est comprise entre 1,0 et 2,7 mm. - L'épaisseur de paroi d'un tube est comprise entre 0,2 et 0,45 mm, et entre 0,2 et 0,7 mm pour le nez du tube.
- L'épaisseur intérieure d'un tube est comprise entre 0,6 et 1,8 mm.
- La demi-période d'ondulation des intercalaires est comprise entre 1,0 et 1,8 mm.
- L'épaisseur de paroi des intercalaires est comprise entre 0,05 et 0,1 mm.
- Les tubes et les boîtes à fluide sont sous la forme d'un empilement de pochettes formées chacune de deux plaques de tôle embouties en forme de cuvettes, dont les concavités sont tournées l'une vers l'autre et qui sont mutuellement brasées de manière étanche à leur périphérie, chaque pochette définissant l'un desdits tubes et présentant, à chacune de ses extrémités, une épaisseur accrue pour définir un tronçon de boîte à fluide.
- Les boîtes à fluide sont des composants indépendants présentant des ouvertures par lesquelles pénètrent les extrémités des tubes, ceiles-ci étant brasées de manière étanche au bord des ouvertures.
- Chaque tube est formé de deux plaques de tôle embouties qui sont mutuellement brasées, pour l'étanchéité le long de leurs bords latéraux et pour la rigidification en des zones intermédiaires en saillie vers l'intérieur du tube.
- Chaque tube est formé de deux plaques de tôle embouties qui sont mutuellement brasées de manière étanche le long de leurs bords latéraux, le tube étant rigidifie par un insert brasé aux faces internes des plaques.
- Les tubes sont des tubes extrudés. - Les tubes sont formés par des tôles pliées et fermés par des joints brasés longitudinaux.
- Au moins une boîte à fluide est formée de deux éléments délimitant un volume intérieur, dont l'un présente lesdites ouvertures, et d'au moins une cloison interne rapportée séparant ledit volume intérieur en différentes chambres dont chacune communique avec un sous-ensemble des tubes.
- Au moins une boîte à fluide est formée d'une plaque collectrice présentant lesdites ouvertures, et d'au moins deux éléments en forme de bacs coopérant avec la plaque collectrice, chacun sur une partie de l'étendue de celle-ci, pour délimiter des chambres respectives dont chacune communique avec un sous-ensemble des tubes.
- Au moins une boîte à fluide est formée d'au moins un élément en tôle emboutie définissant, de part et d'autre d'une ligne de pliage, une plaque collectrice présentant lesdites ouvertures et un bac qui sont amenés bord contre bord par pliage et mutuellement brasés pour délimiter une chambre de la boîte à fluide.
Les caractéristiques et avantages de l'invention seront exposés plus en détail dans la description ci-après, en se référant aux dessins annexés.
Les figures 1 et 2 sont des vues partielles en coupe d'un evaporateur.
Les figures 3 à 7 sont des graphiques montrant l'influence des caractéristiques dimensionnelles sur le fonctionnement d'un evaporateur.
Les figures 8 à 10 sont des vues en coupe longitudinale de différentes formes de réalisation d'un evaporateur.
La figure 11 est une vue en perspective d'un composant destiné à la réalisation d'une boîte à fluide d'evaporateur. La figure 1 est une vue partielle en coupe du faisceau d'un evaporateur du type auquel s'applique l'invention, montrant deux tubes plats voisins 1, en coupe transversale, et l'intercalaire ondulé 2 interposé entre ceux-ci. Y sont indiquées quelques unes des dimensions que l'invention vise a optimiser, à savoir la largeur 1 des tubes, c'est-à-dire la dimension de l'évaporateur dans la direction de circulation du flux d'air, représentée par la flèche FI, la distance d entre les tubes, fixée par les ondulations de l'intercalaire, l'épaisseur totale Eg d'un tube, c'est-à-dire son encombrement dans la direction de l'empilement du faisceau, l'épaisseur de paroi eλ d'un tube, et l'épaisseur intérieure E^ d'un tube, égale à Ee - 2e1.
La figure 2 est une vue partielle de côté d'un intercalaire 2 , montrant son profil ondulé sensiblement en forme de sinusoïde. On y retrouve la distance d entre les deux plans P contenant les crêtes d'ondulation. On y trouve également l'épaisseur de paroi e2 de l'intercalaire, et sa demi-période d'ondulation p_/2.
Selon l'invention, les dimensions précitées se situent idéalement dans les intervalles ci-après:
20 mm < 1 ≤ 55 mm
4,0 mm ≤ d ≤ 7,6 mm
1,0 mm ≤ EQ ≤ 2,7 mm
0,2 mm ≤ e-L 0,7 mm
0,6 mm ≤ E^ ≤ 1,8 mm 1,0 mm < p/2 ≤ 1,8 mm
0,05 mm ≤ e2 ≤ 0,1 mm.
La figure 3 montre la variation de la capacité d'échange de chaleur d'un evaporateur visé par l'invention en fonction de la distance d, toutes choses égales par ailleurs et en maintenant constant le débit d'air. On voit que l'efficacité maximale dans ces conditions est atteinte pour une valeur de 4 mm. Toutefois, une diminution de la distance d augmente la perte de charge du flux d'air et par conséquent diminue le débit d'air pour une vitesse donnée du pulseur. C'est pourquoi les valeurs choisies sont au moins égales à cet optimum apparent, c'est-à-dire comprises entre 4,0 et 7,6 mm.
L'épaisseur de paroi ex est choisie de manière à assurer une résistance appropriée à la pression et à la corrosion, sans consommation de matière excessive.
Le graphique dé la figure 4 montre la variation de la capacité d'échange de chaleur d'un evaporateur en fonction de l'épaisseur intérieur e^ des tubes. Lorsque cette épaisseur est faible, il en résulte une perte de charge du fluide réfrigérant et une élévation de sa température nuisant à l'échange thermique. Au contraire, une épaisseur élevée a pour effet une faible vitesse du fluide, limitant l'échange de chaleur avec les parois des tubes. La plage choisie fournit des résultats optimisés.
Les graphiques des figures 5 et 6 représentent respectivement la variation de la capacité d'échange thermique d'un evaporateur et celle de la perte de charge qu'il fait subir au flux d'air, en fonction de la demi-période p_/2 des intercalaires, le débit d'air étant maintenu constant.
Sur la figure 7, la courbe matérialisée par le symbole o et celle matérialisée par le symbole v représentent la variation de la perte de charge subie par l'air dans l'ensemble d'un appareil de climatisation en fonction du débit, respectivement pour p_/2 = 1,4 mm et p_/2 = 1,7 mm. La courbe matériali- sée par le symbole représente la variation de la contre- pression produite par le pulseur en fonction du débit. L'intersection d'une courbe de perte de charge et de la courbe de contre-pression représente le point de fonctionnement pour l'air du couple évaporateur-pulseur. On obtient donc le débit d'air traversant l'évaporateur et on en déduit la performance fournie par celui-ci. En répétant la démarche pour différentes valeurs de p/2, on détermine la valeur optimale pour un pulseur donné. En procédant ainsi pour différents pulseurs et différents boîtiers de climatisation, on a abouti aux valeurs proposées selon l'invention.
Les tubes 1 montrés sur la figure 1 sont réalisés chacun par le brasage mutuel de deux plaques la et lb, embouties pour former chacune deux nervures longitudinales marginales le et une multiplicité de nervures longitudinales intermédiaires ld. Les nervures marginales le de l'une des plaques sont brasées aux nervures marginales de l'autre plaque pour réaliser l'étanchéité du tube vis-à-vis de l'extérieur. Chaque nervure intermédiaire ld d'une plaque est brasée à une nervure ld de l'autre plaque pour rigidifier le tube et pour délimiter à l'intérieur du tube des canaux de circulation le pour le fluide. Les nervures intermédiaires ld peuvent être remplacées, en totalité ou en partie, par des saillies de rigidification qui ne s'étendent pas d'un bout à l'autre du tube et qui ne délimitent pas des canaux de circulation.
La figure 8 représente, en coupe longitudinale, une forme de réalisation d'un evaporateur 10 selon l'invention, dans laquelle les tubes et les deux boîtes à fluide sont formés par une multiplicité de pochettes 11 mutuellement empilées de la gauche vers la droite de la figure, composées chacune de deux plaques de tôle embouties en forme de cuvettes 12 et 13. Ces dernières sont identiques entre elles et ont leurs concavités tournées l'une vers l'autre, soit respectivement vers la droite et vers la gauche. Chaque cuvette présente un bord périphérique situé dans un plan vertical, et les bords périphériques des deux cuvettes formant une pochette sont mutuellement assemblés de façon étanche au fluide par brasage, pour délimiter le volume intérieur de la pochette. Chaque cuvette comporte une région supérieure 14 et une région inférieure 15 d'une profondeur plus grande que celle de la région intermédiaire 16. Les régions 16 de deux cuvettes associées constituent ensemble un tube du faisceau. Les régions supérieures 14 des mêmes cuvettes définissent entre elles, un volume élémentaire 17 faisant partie du volume intérieur de la pochette correspondante et communiquant avec l'extrémité supérieure du tube. L'ensemble des régions 14 forme une boîte à fluide supérieure 18, chaque volume élémentaire 17 communiquant avec au moins un volume 17 voisin, par des ouvertures 19 ménagées dans le fond des cuvettes, pour former une chambre de la boîte à fluide. De même, les régions inférieures 15 des cuvettes définissent entre elles des volumes élémentaires 20 communiquant avec les extrémités inférieures des tubes, et forment ensemble une boîte à fluide inférieure 21 comportant au moins une chambre. Les deux boîtes à fluide doivent posséder au total au moins trois chambres pour assurer une circulation du fluide en au moins deux passes. Dans l'exemple illustré, l'entrée 22 et la sortie 23 du fluide sont prévues respectivement sur la boîte à fluide inférieure et sur la boîte à fluide supérieure, de sorte que le nombre de passes est impair et au moins égal à trois. Les intercalaires ondulés 2 sont brasés aux faces extérieures des régions intermédiaires 16 des cuvettes 11, 12.
Les figures 9 et 10 sont des vues analogues à la figure 8, relatives à des evaporateurs comportant des tubes 1 réalisés indépendamment des boîtes à fluide, par exemple par assemblage de cuvettes analogues aux cuvettes 12, 13 de la figure 8, mais ne comportant pas les régions 14 et 15 de profondeur accrue, ou sous forme de tubes extrudés, ou de manière connue par pliage de tôles et formation de joints brasés longitudinaux.
La boîte à fluide supérieure 31 et la boîte à fluide 32 de l'évaporateur 30 de la figure 9 comprennent chacune une plaque collectrice 33 présentant une multiplicité d'ouvertures 34 dans lesquelles pénètrent les extrémités des tubes 1 et munie d'un rebord périphérique 35 tourné à l'opposé du faisceau de tubes. La plaque collectrice supérieure sert de couvercle à une pièce en forme de bac 37, dont le bord périphérique 38 est brasé au rebord 35, les deux pièces délimitant le volume intérieur de la boîte à fluide. Au sein de ce volume intérieur se trouve une autre pièce en forme de bac 39 dont le bord périphérique 40 est brasé à la plaque 33. La plaque collectrice inférieure 33 sert de couvercle commun à deux pièces en forme de bac 41 et 42 mutuellement juxtaposées dans la direction d'empilement du faisceau de tubes. Les bords périphériques 43, 44 des bacs 41, 42 sont brasés l'un à l'autre dans leur zone de contact mutuel et par ailleurs au rebord périphérique 35 de la plaque 33. Le bac 39 sépare le volume intérieur de la boîte à fluide 31 en deux chambres 45 et 46 situées respectivement à l'intérieur et à l'extérieur du bac 39, et communiquant respectivement avec un sous- ensemble médian des tubes et avec le reste de ceux-ci. Les bacs 41 et 42 délimitent avec la plaque collectrice 33, respectivement, deux chambres 47 et 48 de la boîte à fluide inférieure, qui communiquent respectivement avec deux sous- ensembles des tubes se succédant dans la direction d'empilement du faisceau. Le fluide pénètre dans la chambre 45 par une ouverture 49 ménagée dans les parois latérales des bacs 37 et 39, et circule de haut en bas dans le sous-ensemble médian des tubes pour atteindre pour partie la chambre 47 et pour partie la chambre 48. A partir de celles-ci, il parcourt les autres tubes de bas en haut et parvient dans la chambre 46, qu'il quitte par une ouverture 50 de la pièce 37. La circulation du fluide dans l'évaporateur s'effectue donc en deux passes.
L'évaporateur 50 de la figure 10 possède une boîte à fluide inférieure 32 identique à celle de la figure 9 et qui ne sera pas de nouveau décrite. La boîte à fluide supérieure 51 présente une structure analogue à celle de la boîte 31, avec une plaque collectrice 33 identique à celles des boîtes 31 et 32, et trois bacs 52, 53, 54, au lieu de deux pour la boîte 32, juxtaposés dans la direction d'empilement et délimitant respectivement, avec la plaque 33 des chambres 55, 56 et 57. Le fluide pénètre dans la chambre 55 par une ouverture 58 prévue dans le bac 52, et circule de haut en bas dans un premier sous-ensemble de tubes pour atteindre la chambre 47 de la boîte inférieure. A partir de là, il circule de bas en haut dans un second sous-ensemble de tubes pour parvenir dans la chambre 56. Il quitte celle-ci en parcourant de haut en bas un troisième sous-ensemble de tubes qui l'amène dans la chambre 48. il parcourt enfin de bas en haut un quatrième et dernier sous-ensemble de tubes pour passer de la chambre 48 à la chambre 57, après quoi il quitte l'évaporateur par une ouverture de sortie 59 prévue dans le bac 54. La circulation s'effectue ici en quatre passes.
La figure 11 représente une pièce en tôle emboutie 60 destinée à être associée à un faisceau de tubes et d'intercalaires tels que ceux représentés sur les figures 9 et 10 en formant une partie au moins d'une boîte à fluide. La pièce 60 comprend deux régions 61 et 62 situées respectivement à droite et à gauche, comme vu sur la figure, d'une ligne horizontale L, et embouties respectivement vers le haut et vers le bas par rapport au plan horizontal contenant la ligne L, de manière à former d'une part un bac, d'autre part une plaque collectrice percée d'ouvertures 63 et munie d'un rebord périphérique 64. Par une rotation de 180° autour de la ligne L, comme indiqué par les flèches F2, la plaque 62 vient s'emboîter dans le bac 61, le rebord 62 venant en contact sur tout son périmètre avec la paroi périphérique 65 du bac, à laquelle il est brasé de manière étanche. La pièce ainsi façonnée peut constituer à elle seule une boîte à fluide à chambre unique, où plusieurs pièces semblables peuvent être juxtaposées pour former une , boîte à fluide à chambres multiples. Le cas échéant, une ouverture 66 d'entrée ou de sortie du fluide est prévue dans la paroi périphérique 65.
Bien entendu, dans le cas où le volume intérieur d'une boîte à fluide est délimité par deux éléments tels qu'une plaque collectrice et une pièce en forme de bac, et subdivisé en deux chambres ou plus, cette séparation peut être réalisée de manière connu grâce à des cloisons transversales.
un autre moyen, connu en soi, pour rigidifier le tube consiste à y introduire un insert brasé aux faces internes des plaques, par exemple un insert ondulé brasé par ses crêtes d'ondulation.

Claims

Revendications
1. Evaporateur pour l'échange de chaleur entre un flux d'air et un fluide réfrigérant avec passage de celui-ci de l'état liquide à l'état gazeux, notamment pour la climatisation de l'habitacle d'un véhicule automobile, comprenant un faisceau composé d'une rangée unique de tubes plats (1) empilés en alternance avec des intercalaires ondulés (2) maintenant les tubes écartés les uns des autres d'une distance d et dont les ondulations définissent des passages pour le flux d'air dans la direction (FI) de la largeur des tubes, les deux extrémités de chaque tube communiquant respectivement avec deux boîtes à fluide (31, 32), rapportées ou non rapportées, situées à l'opposé l'une de l'autre par rapport audit faisceau, de manière à définir pour le fluide réfrigérant, dans l'évaporateur, un trajet en au moins deux passes, caractérisé en ce que sa dimension 1 dans ladite direction est comprise entre 20 et 55 mm et que la distance d est comprise entre 4,0 et 7,6 mm.
2. Evaporateur selon la revendication 1, dans lequel l'épaisseur totale (Eg) d'un tube est comprise entre 1,0 et 2,7 mm.
3. Evaporateur selon l'une des revendications 1 et 2, dans lequel l'épaisseur de paroi (e ) d'un tube est comprise entre 0,2 et 0,7 mm.
4. Evaporateur selon l'une des revendications précédentes, dans lequel l'épaisseur intérieure (E2) d'un tube est comprise entre 0,6 et 1,8 mm.
5. Evaporateur selon l'une des revendications précédentes, dans lequel la demi-période d'ondulation (p_/2) des interca- laires est comprise entre 1,0 et 1,8 mm.
6. Evaporateur selon l'une des revendications précédentes, dans lequel l'épaisseur de paroi (e2) des intercalaires est comprise entre 0,05 et 0,1 mm.
7. Evaporateur (10) selon l'une des revendications précédentes, dans lequel les tubes et les boîtes à fluide (18, 21) sont sous la forme d'un empilement de pochettes (11) formées chacune de deux plaques de tôle (12, 13) embouties en forme de cuvettes, dont les concavités sont tournées l'une vers l'autre et qui sont mutuellement brasées de manière étanche à leur périphérie, chaque pochette définissant l'un desdits tubes et présentant, à chacune de ses extrémités, une épaisseur accrue pour définir un tronçon de boîte à fluide.
8. Evaporateur (30) selon l'une des revendications 1 à 6, dans lequel les boîtes à fluide sont des composants indépendants (31, 32) présentant des ouvertures (34) par lesquelles pénètrent les extrémités des tubes (1), celles-ci étant brasées de manière étanche au bord des ouvertures.
9. Evaporateur selon la revendication 8, dans lequel chaque tube est formé de deux plaques de tôle embouties (la, lb) qui sont mutuellement brasées, pour l'étanchéité le long de leurs bords latéraux (lç_) et pour la rigidification en des zones intermédiaires (ld) en saillie vers l'intérieur du tube.
10. Evaporateur selon la revendication 8, dans lequel chaque tube est formé de deux plaques de tôle embouties qui sont mutuellement brasées de manière étanche le long de leurs bords latéraux, le tube étant rigidifie par un insert brasé aux faces internes des plaques.
11. Evaporateur selon la revendication 8, dans lequel les tubes sont des tubes extrudés.
12. Evaporateur selon la revendication 8, dans lequel les tubes sont formés par des tôles pliées et fermés par des joints brasés longitudinaux.
13. Evaporateur (30). selon l'une des revendications 8 à 12, dans lequel au moins une boîte à fluide (31) est formée de deux éléments (33, 37) délimitant un volume intérieur (45, 46), dont l'un (33) présente lesdites ouvertures (34), et d'au moins une cloison interne rapportée (39) séparant ledit volume intérieur en différentes chambres (45, 46) dont chacune communique avec un sous-ensemble des tubes .
14. Evaporateur (30) selon l'une, des revendications 8 à 13, dans lequel au moins une boîte à fluide (32) est formée d'une plaque collectrice (33) présentant lesdites ouvertures (34), et d'au moins deux éléments en forme de bacs (41, 42) coopérant avec la plaque collectrice, chacun sur une partie de l'étendue de celle-ci, pour délimiter des chambres respectives (47, 48) dont chacune communique avec un sous- ensemble des tubes.
15. Evaporateur selon l'une des revendications 8 à 14, dans lequel au moins une boîte à fluide est formée d'au moins un élément (60) en tôle emboutie définissant, de part et d'autre d'une ligne de pliage (L), une plaque collectrice (62) présentant lesdites ouvertures (63) et un bac (61) qui sont amenés bord contre bord par pliage et mutuellement brasés pour délimiter une chambre de la boîte à fluide.
16. Evaporateur selon l'une des revendications précédentes, dans lequel le nombre de passes est choisi parmi 4 et 6.
PCT/FR2000/003630 1999-12-29 2000-12-21 Evaporateur a tubes plats empiles possedant deux boites a fluide opposees WO2001050079A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10084298T DE10084298B3 (de) 1999-12-29 2000-12-21 Flachrohrstapelverdampfer mit zwei gegenüberliegenden Fluidgehäusen
JP2001549980A JP4869529B2 (ja) 1999-12-29 2000-12-21 蒸発器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9916668A FR2803376B1 (fr) 1999-12-29 1999-12-29 Evaporateur a tubes plats empilees possedant deux boites a fluide opposees
FR99/16668 1999-12-29

Publications (2)

Publication Number Publication Date
WO2001050079A2 true WO2001050079A2 (fr) 2001-07-12
WO2001050079A3 WO2001050079A3 (fr) 2002-02-14

Family

ID=9553980

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003630 WO2001050079A2 (fr) 1999-12-29 2000-12-21 Evaporateur a tubes plats empiles possedant deux boites a fluide opposees

Country Status (5)

Country Link
US (1) US20020179295A1 (fr)
JP (1) JP4869529B2 (fr)
DE (1) DE10084298B3 (fr)
FR (1) FR2803376B1 (fr)
WO (1) WO2001050079A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6912864B2 (en) * 2003-10-10 2005-07-05 Hussmann Corporation Evaporator for refrigerated merchandisers
EP1548380A3 (fr) * 2003-12-22 2006-10-04 Hussmann Corporation Evaporateur à tubes plats avec micro-distributeur
DE102004056557A1 (de) * 2004-11-23 2006-05-24 Behr Gmbh & Co. Kg Dimensionsoptimierte Vorrichtung zum Austausch von Wärme und Verfahren zur Optimierung der Dimensionen von Vorrichtungen zum Austausch von Wärme
US8113492B2 (en) * 2008-01-04 2012-02-14 Parata Systems, Llc Device and method for evaporating water from a compressor
FR2929388B1 (fr) * 2008-03-25 2015-04-17 Valeo Systemes Thermiques Echangeur de chaleur a puissance frigorifique elevee
FR2929387B1 (fr) * 2008-03-25 2010-03-26 Valeo Systemes Thermiques Echangeur de chaleur a resistance a la pression amelioree
EP2107328B1 (fr) * 2008-04-02 2012-07-11 Behr GmbH & Co. KG Evaporateur
FR2982937B1 (fr) * 2011-11-22 2018-04-27 Valeo Systemes Thermiques Boite collectrice, notamment pour refroidisseur de batterie, et echangeur de chaleur comprenant au moins une telle boite.
JP6685292B2 (ja) * 2015-05-12 2020-04-22 三菱電機株式会社 コルゲートフィン型熱交換器、冷凍サイクル装置、コルゲートフィンの製造装置、及びコルゲートフィン型熱交換器の製造方法
US10179498B2 (en) * 2015-05-30 2019-01-15 Air International Inc. Storage evaporator having phase change material for use in vehicle air conditioning system
FR3049047B1 (fr) * 2016-03-18 2019-11-01 Valeo Systemes Thermiques Refroidisseur de gaz pour vehicule automobile.
FR3063341B1 (fr) * 2017-02-28 2020-06-12 Valeo Systemes Thermiques Evaporateur pour installation de climatisation
RS61922B1 (sr) * 2018-10-12 2021-06-30 Vahterus Oy Postavka pločastog izmenjivača topline

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878656A (en) * 1955-10-31 1959-03-24 Borg Warner Heat exchanger
GB1497935A (en) * 1974-04-25 1978-01-12 Chausson Usines Sa Heat-exchangers cores each with a single row of tubes
DE3606253A1 (de) * 1985-05-01 1986-11-06 Showa Aluminum K.K., Sakai, Osaka Waermeaustauscher
US5311935A (en) * 1992-01-17 1994-05-17 Nippondenso Co., Ltd. Corrugated fin type heat exchanger
EP0704667A2 (fr) * 1994-09-30 1996-04-03 Zexel Corporation Tubes d'échange de chaleur pour échangeur de chaleur laminé et leur méthode de fabrication
DE19617169A1 (de) * 1996-04-29 1997-11-06 Valeo Klimatech Gmbh & Co Kg Flachrohrwärmetauscher und Verfahren zu dessen Herstellung
EP0843146A2 (fr) * 1996-11-19 1998-05-20 Calsonic Corporation Collecteur pour échangeur de chaleur

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4002201A (en) * 1974-05-24 1977-01-11 Borg-Warner Corporation Multiple fluid stacked plate heat exchanger
JPS5248426B2 (fr) * 1974-12-23 1977-12-09
US5152337A (en) * 1989-08-30 1992-10-06 Honda Giken Kogyo Stack type evaporator
US5470431A (en) * 1990-08-20 1995-11-28 Showa Aluminum Corp. Stack type evaporator
JPH0566073A (ja) * 1991-09-05 1993-03-19 Sanden Corp 積層型熱交換器
JP3044440B2 (ja) * 1993-10-22 2000-05-22 株式会社ゼクセル 積層型エバポレータ
DE9400687U1 (de) * 1994-01-17 1995-05-18 Thermal-Werke, Wärme-, Kälte-, Klimatechnik GmbH, 68766 Hockenheim Verdampfer für Klimaanlagen in Kraftfahrzeugen mit Mehrkammerflachrohren
FR2728666A1 (fr) * 1994-12-26 1996-06-28 Valeo Thermique Habitacle Echangeur de chaleur a trois fluides d'encombrement reduit
JP3814917B2 (ja) * 1997-02-26 2006-08-30 株式会社デンソー 積層型蒸発器
DE19719252C2 (de) * 1997-05-07 2002-10-31 Valeo Klimatech Gmbh & Co Kg Zweiflutiger und in Luftrichtung einreihiger hartverlöteter Flachrohrverdampfer für eine Kraftfahrzeugklimaanlage
JP3657743B2 (ja) * 1997-06-26 2005-06-08 カルソニックカンセイ株式会社 パイプおよびその製造方法
JP4122578B2 (ja) * 1997-07-17 2008-07-23 株式会社デンソー 熱交換器
JP4164146B2 (ja) * 1998-03-31 2008-10-08 昭和電工株式会社 熱交換器、及びこれを用いたカー・エアコン
JPH11287587A (ja) * 1998-04-03 1999-10-19 Denso Corp 冷媒蒸発器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2878656A (en) * 1955-10-31 1959-03-24 Borg Warner Heat exchanger
GB1497935A (en) * 1974-04-25 1978-01-12 Chausson Usines Sa Heat-exchangers cores each with a single row of tubes
DE3606253A1 (de) * 1985-05-01 1986-11-06 Showa Aluminum K.K., Sakai, Osaka Waermeaustauscher
US5311935A (en) * 1992-01-17 1994-05-17 Nippondenso Co., Ltd. Corrugated fin type heat exchanger
EP0704667A2 (fr) * 1994-09-30 1996-04-03 Zexel Corporation Tubes d'échange de chaleur pour échangeur de chaleur laminé et leur méthode de fabrication
DE19617169A1 (de) * 1996-04-29 1997-11-06 Valeo Klimatech Gmbh & Co Kg Flachrohrwärmetauscher und Verfahren zu dessen Herstellung
EP0843146A2 (fr) * 1996-11-19 1998-05-20 Calsonic Corporation Collecteur pour échangeur de chaleur

Also Published As

Publication number Publication date
FR2803376A1 (fr) 2001-07-06
WO2001050079A3 (fr) 2002-02-14
DE10084298T1 (de) 2002-03-28
FR2803376B1 (fr) 2002-09-06
DE10084298B3 (de) 2013-12-05
JP2003519355A (ja) 2003-06-17
JP4869529B2 (ja) 2012-02-08
US20020179295A1 (en) 2002-12-05

Similar Documents

Publication Publication Date Title
EP1592930B1 (fr) Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur
EP1192402B1 (fr) Echangeur de chaleur a tubes a plusieurs canaux
EP0719997B1 (fr) Echangeur de chaleur à trois fluides d&#39;encombrement réduit
EP1131594B1 (fr) Echangeur de chaleur pour fluide sous pression elevee
WO2001050079A2 (fr) Evaporateur a tubes plats empiles possedant deux boites a fluide opposees
FR2965606A1 (fr) Echangeur de chaleur pour vehicule automobile
EP2105693B1 (fr) Echangeur de chaleur à puissance frigorifique élevée
EP1770346B1 (fr) Echangeur de chaleur à tubes plats alternés
EP1271083B1 (fr) Agencement de tubulures d&#39;entrée et de sortie pour un évaporateur
WO2001050078A2 (fr) Echanger de chaleur a tubes a plusieurs canaux
EP1558887B1 (fr) Echangeur de chaleur a passes multiples, en particulier pour vehicule automobile
FR2747462A1 (fr) Evaporateur a pochettes empilees resistant a la pression
EP1265045B1 (fr) Evaporateur de puissance frigorifique élevée pour boucle de climatisation de véhicule
FR3001795A1 (fr) Agencement d’echangeurs thermiques a plaques
FR2863044A1 (fr) Module pour l&#39;echange de chaleur entre fluides en circulation
EP1546627B1 (fr) Echangeur de chaleur a plaques, en particulier pour vehicles automobiles
WO1998028586A1 (fr) Echangeur thermique comportant un insert d&#39;alimentation d&#39;entree ou de sortie
FR2923901A1 (fr) Dispositif d&#39;echange de chaleur a stockage de frigories
FR2770289A1 (fr) Intercalaire pour evaporateur favorisant l&#39;ecoulement des condensats
FR2871560A1 (fr) Echangeur de chaleur a collecteur perfectionne en particulier pour fluides a haute pression
FR2825792A1 (fr) Evaporateur fournissant une homogeneite de temperature amelioree pour boucle de climatisation de vehicule
FR2826108A1 (fr) Echangeur de chaleur brase optimise
WO2004102103A2 (fr) Echangeur de chaleur, notamment, pour automobile
FR2929387A1 (fr) Echangeur de chaleur a resistance a la pression amelioree

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): DE JP US

ENP Entry into the national phase

Ref document number: 2001 549980

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09914475

Country of ref document: US

AK Designated states

Kind code of ref document: A3

Designated state(s): DE JP US

RET De translation (de og part 6b)

Ref document number: 10084298

Country of ref document: DE

Date of ref document: 20020328

WWE Wipo information: entry into national phase

Ref document number: 10084298

Country of ref document: DE