WO2001047998A1 - Nouveau polypeptide, proteine activant la ras gtpase 12, et polynucleotide codant pour ce polypeptide - Google Patents

Nouveau polypeptide, proteine activant la ras gtpase 12, et polynucleotide codant pour ce polypeptide Download PDF

Info

Publication number
WO2001047998A1
WO2001047998A1 PCT/CN2000/000680 CN0000680W WO0147998A1 WO 2001047998 A1 WO2001047998 A1 WO 2001047998A1 CN 0000680 W CN0000680 W CN 0000680W WO 0147998 A1 WO0147998 A1 WO 0147998A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypeptide
polynucleotide
activating protein
gtpase activating
sequence
Prior art date
Application number
PCT/CN2000/000680
Other languages
English (en)
French (fr)
Inventor
Yumin Mao
Yi Xie
Original Assignee
Shanghai Biowindow Gene Development Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Biowindow Gene Development Inc. filed Critical Shanghai Biowindow Gene Development Inc.
Priority to AU23411/01A priority Critical patent/AU2341101A/en
Publication of WO2001047998A1 publication Critical patent/WO2001047998A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention belongs to the field of biotechnology. Specifically, the present invention describes a novel polypeptide, Ras GTPase activating protein 12, and a polynucleotide sequence encoding the polypeptide. The invention also relates to a preparation method and application of the polynucleotide and the polypeptide.
  • the Ras gene is one of these subgroups and includes at least three members, N-ras, H-ras, and K-ras2.
  • the mutated form of Ras is called a tumor suppressor gene, and it is considered a pathogen of cancer.
  • Ras' normal cell genes and tumor suppressor genes encode chemically related proteins, collectively referred to as the ras p21 protein. Both the normal ras p21 and tumor suppressor gene ras p21 proteins bind to nucleotides GTP and GDP, and slowly hydrolyze GTP to GDP.
  • GTPase activating protein This intrinsic GTPase activity is stimulated by the cytokine GAP, which is called GTPase activating protein, but it has no effect on GTPase activity related to tumor suppressor mutations.
  • GAP is a cytoplasmic protein that can be transferred from the cytoplasm to the plasma membrane to interact with p21. Because it is a GTP-binding form of active ras, these proteins are called negative regulators of ras.
  • the members of the GAP family are all large molecular weight proteins (from 765 to 3079 residues), but the same conserved sequence is a limited region (about 250 residues) and is called the "catalytic domain" Or rasGAP domain.
  • the most conserved region in this region is a motif containing 15 residues, which is a characteristic sequence of the protein family: [GSN] -X- [LIVMF]-[FY]-[LIVMFY] -R- [LIVMFY] (2)-[GACN] -P- [AV]-[LIV] (2)-[SGAN]-P.
  • Ras tumor suppressor genes are related to the growth of various tumors and involve 10-40% of the most common human cancers, such as bladder cancer, colon cancer, kidney cancer, liver cancer, lung cancer, nest cancer, pancreatic cancer, and gastric cancer. This gene is also associated with lymphoid and bone marrow hematopoietic tumors, mesenchymal origin tumors.
  • the present invention includes the polypeptides of the above peptides, and the antagonists, inhibitors and agonists of the polypeptides can be used to diagnose, prevent and treat cancer, especially to detect the overexpression of normal or tumor suppressor gene ras p21 and treat the disease caused by ras tumor suppressor gene Cancer.
  • Ras GTPase activating protein 12 protein plays an important role in important functions of the body as described above, and it is believed that a large number of proteins are involved in these regulatory processes, there has been a need in the art to identify more Ras GTPase activating protein 12 involved in these processes Protein, especially the amino acid sequence of this protein.
  • the isolation of the new Ras GTPase activating protein 12 protein-encoding gene also provides a basis for research to determine the role of this protein in health and disease states. This protein may form the basis for developing diagnostic and / or therapeutic drugs for diseases, so It is very important to decode DM. Object of the invention
  • Another object of the invention is to provide a polynucleotide encoding the polypeptide.
  • Another object of the present invention is to provide a recombinant vector containing a polynucleotide encoding a Ras GTPase activating protein 12.
  • Another object of the present invention is to provide a genetically engineered host cell containing a polynucleotide encoding a Ras GTPase activating protein 12.
  • Another object of the present invention is to provide a method for producing Ras GTPase activating protein 12.
  • Another object of the present invention is to provide antibodies against the polypeptide of the present invention, Ra s GTPase activating protein 12.
  • Another object of the present invention is to provide mimic compounds, antagonists, agonists, and inhibitors against Ras GTPase activating protein 12 of the polypeptide of the present invention.
  • Another object of the present invention is to provide a method for diagnosing and treating a disease associated with an abnormality of Ras GTPase activating protein 12.
  • the present invention relates to an isolated polypeptide, which is of human origin and comprises: a polypeptide having the amino acid sequence of SEQ ID No. 2, or a conservative variant, biologically active fragment or derivative thereof.
  • the polypeptide is a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the invention also relates to an isolated polynucleotide comprising a nucleotide sequence or a variant thereof selected from the group consisting of:
  • sequence of the polynucleotide is one selected from the group consisting of: (a) a sequence having positions 221-254 in SEQ ID NO: 1; and (b) a sequence having 1-4 in SEQ ID NO: 1 31 1-bit sequence.
  • the invention further relates to a vector, in particular an expression vector, containing the polynucleotide of the invention; a host cell genetically engineered with the vector, including a transformed, transduced or transfected host cell; and a method comprising culturing said Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • a vector in particular an expression vector, containing the polynucleotide of the invention
  • a host cell genetically engineered with the vector including a transformed, transduced or transfected host cell
  • a method comprising culturing said Host cell and method of preparing the polypeptide of the present invention by recovering the expression product.
  • the invention also relates to an antibody capable of specifically binding to a polypeptide of the invention.
  • the present invention also relates to a method for screening compounds that mimic, activate, antagonize or inhibit Ras GTPase activating protein 12 protein activity, which comprises utilizing the polypeptide of the present invention.
  • the present invention also relates to a method for obtaining a disease or disease susceptibility related to abnormal expression of Ras GTPase activating protein 12 protein in vitro by the method, which comprises detecting the polypeptide or a polynucleotide encoding the same in a biological sample. A mutation in a sequence, or the amount or biological activity of a polypeptide of the invention in a biological sample is detected.
  • the invention also relates to a pharmaceutical composition
  • a pharmaceutical composition comprising a polypeptide of the invention or a mimetic thereof, an activator, an antagonist or an inhibitor, and a pharmaceutically acceptable carrier.
  • the present invention also relates to the use of the polypeptide and / or polynucleotide of the present invention in the manufacture of a medicament for treating cancer, developmental disease or immune disease or other diseases caused by abnormal expression of Ras GTPase activating protein 12.
  • Fig. 1 is a comparison diagram of amino acid sequence homology of a total of 78 amino acids of 23 to 100 Ras GTPase activating protein 12 and characteristic sequence fragments of Ras GTPase activating protein of the present invention.
  • the upper sequence is Ras GTPase activating protein 12, and the lower sequence is the characteristic sequence domain of Ras GTPase activating protein.
  • ⁇ "and”: “and”. “Indicate that the probability that the same amino acid appears between the two sequences decreases in order.
  • Figure 1 shows the polyacrylamide gel electrophoresis (SDS-PAGE) of the isolated Ras GTPase activating protein 12. 12kDa is the molecular weight of the protein. The arrow indicates the isolated protein band.
  • Nucleic acid sequence refers to an oligonucleotide, a nucleotide or a polynucleotide and a fragment or part thereof, and may also refer to a genomic or synthetic DNA or RNA, they can be single-stranded or double-stranded, representing the sense or antisense strand.
  • amino acid sequence refers to an oligopeptide, peptide, polypeptide or protein sequence and fragments or portions thereof.
  • a protein or polynucleotide “variant” refers to an amino acid sequence having one or more amino acids or nucleotide changes or a polynucleotide sequence encoding it. The changes may include deletions, insertions or substitutions of amino acids or nucleotides in the amino acid sequence or nucleotide sequence. Variants can have "conservative" changes in which the substituted amino acid has a structural or chemical property similar to the original amino acid, such as the replacement of isoleucine with leucine. Variants can also have non-conservative changes, such as replacing glycine with tryptophan.
  • “Deletion” refers to the deletion of one or more amino acids or nucleotides in an amino acid sequence or nucleotide sequence.
  • Insertion means that a change in the amino acid sequence or nucleotide sequence results in an increase in one or more amino acids or nucleotides compared to a molecule that exists in nature.
  • Replacement refers to the replacement of one or more amino acids or nucleotides with different amino acids or nucleotides.
  • Bioactivity refers to a protein that has the structure, regulation, or biochemical function of a natural molecule.
  • immunologically active refers to the ability of natural, recombinant or synthetic proteins and fragments thereof to induce a specific immune response and to bind specific antibodies in a suitable animal or cell.
  • An "agonist” refers to a molecule that, when combined with Ras GTPase activating protein 12, can cause the protein to change, thereby regulating the activity of the protein.
  • An agonist may include a protein, a nucleic acid, a carbohydrate, or any other molecule that can bind Ras GTPase activating protein 12.
  • Antagonist refers to a molecule that, when combined with Ras GTPase activating protein 12, can block or regulate the biological or immunological activity of Ras GTPase activating protein 12.
  • Antagonists and inhibitors can include proteins, nucleic acids, carbohydrates, or any other molecule that can bind Ras GTPase activating protein 12.
  • Regular refers to a change in the function of Ras GTPase activating protein 12, including an increase or decrease in protein activity, a change in binding characteristics, and any other biological, functional, or immune properties of Ras GTPase activating protein 12. change.
  • Substantially pure means substantially free of other proteins, lipids, sugars or other substances with which it is naturally associated.
  • Those skilled in the art can purify Ras GTPase activating protein 12 using standard protein purification techniques.
  • the substantially pure Ras GTPase activating protein 12 produces a single main band on a non-reducing polyacrylamide gel.
  • the purity of Ras GTPase activating protein 12 polypeptide can be analyzed by amino acid sequence.
  • Complementary refers to polynucleotides that naturally bind through base-pairing under conditions of acceptable salt concentration and temperature.
  • the sequence "CTGA” can be combined with the complementary sequence "GA-CT”.
  • the complementarity between two single-stranded molecules may be partial or complete.
  • the degree of complementarity between nucleic acid strands has a significant effect on the efficiency and strength of hybridization between nucleic acid strands.
  • Homology refers to the degree of complementarity and can be partially homologous or completely homologous.
  • Partial homology refers to a partially complementary sequence that at least partially inhibits hybridization of a fully complementary sequence to a target nucleic acid.
  • the inhibition of such hybridization can be detected by performing hybridization (Southern blotting or Nor thern blotting, etc.) under conditions of reduced stringency.
  • Substantially homologous sequences or hybridization probes can compete and inhibit the binding of completely homologous sequences to the target sequence under conditions of reduced stringency. This does not mean that the conditions of reduced stringency allow non-specific binding, because the conditions of reduced stringency require that the two sequences bind to each other as a specific or selective interaction.
  • Percent identity refers to the percentage of sequences that are identical or similar in the comparison of two or more amino acid or nucleic acid sequences. The percent identity can be determined electronically, such as by the MEGALIGN program (Lasergene sof tware package, DNASTAR, Inc., Madi son Wis.). The MEGALIGN program can compare two or more sequences according to different methods, such as the Cluster method (Higgins, DG and PM Sharp (1988) Gene 73: 237-244). The Cluster method arranges groups of sequences into clusters by checking the distance between all pairs. The clusters are then assigned in pairs or groups. The percent identity between two amino acid sequences, such as sequence A and sequence B, is calculated by the following formula: Number of residues matching between sequence ⁇ and sequence ⁇ ⁇
  • the number of residues in sequence ⁇ the number of spacer residues in the sequence-the number of spacer residues in the sequence can also be determined by Clus ter method or by methods known in the art such as Jotun He in J., (1990) Methods in enzymo l ogy 183: 625-645).
  • Similarity refers to the degree of identical or conservative substitutions of amino acid residues at corresponding positions in the alignment of amino acid sequences.
  • Amino acids used for conservative substitution for example, negatively charged amino acids may include aspartic acid and glutamic acid; positively charged amino acids may include lysine and arginine; having an uncharged head group is Similar hydrophilic amino acids may include leucine, isoleucine and valine; glycine and alanine; asparagine and glutamine; serine and threonine; phenylalanine and tyrosine.
  • Antisense refers to a nucleotide sequence that is complementary to a particular DNA or RNA sequence.
  • the "antisense strand” refers to a nucleic acid strand that is complementary to the “sense strand”.
  • Derivative refers to HFP or a chemical modification of its nucleic acid. This chemical modification may be the replacement of a hydrogen atom with an alkyl, acyl or amino group.
  • Arecaic acid derivatives encode polypeptides that retain the main biological properties of natural molecules.
  • Antibody refers to a complete antibody molecule and its fragments, such as Fa,? ( ⁇ ') 2 and?, Which specifically bind to the epitope of Ras GTPase activating protein 12.
  • a “humanized antibody” refers to an antibody in which the amino acid sequence of a non-antigen binding region is replaced to become more similar to a human antibody, but still retains the original binding activity.
  • isolated refers to the removal of matter from its original environment (for example, its natural environment if it is naturally occurring).
  • a naturally occurring polynucleotide or polypeptide is not isolated when it is present in a living animal, but the same polynucleotide or polypeptide is separated from some or all of the substances that coexist in the natural system.
  • Such a polynucleotide may be part of a vector, or such a polynucleotide or polypeptide may be part of a composition. Since the carrier or composition is not part of its natural environment, they are still isolated.
  • isolated refers to the separation of a substance from its original environment (if it is a natural substance, the original environment is the natural environment).
  • polynucleotides and polypeptides in a natural state in a living cell are not isolated and purified, but the same polynucleotides or polypeptides are separated and purified if they are separated from other substances existing in the natural state. .
  • isolated Ras GTPase activating protein 12 means that Ras GTPase activating protein 12 is substantially free of other proteins, lipids, sugars, or other substances with which it is naturally associated. Those skilled in the art can purify Ras GTPase activating protein 12 using standard protein purification techniques. Substantially pure peptides produce a single main band on a non-reducing polyacrylamide gel. The purity of Ra s GTPase activating protein 12 peptide can be analyzed by amino acid sequence.
  • the present invention provides a new polypeptide, Ras GTPase activating protein 12, which is basically composed of the amino acid sequence shown in SEQ ID NO: 2.
  • the polypeptide of the present invention may be a recombinant polypeptide, a natural polypeptide, or a synthetic polypeptide, and preferably a recombinant polypeptide.
  • the polypeptides of the invention can be naturally purified products, or chemically synthesized products, or produced using recombinant techniques from prokaryotic or eukaryotic hosts (e.g., bacteria, yeast, higher plants, insects, and mammalian cells). Depending on the host used in the recombinant production protocol, the polypeptide of the invention may be glycosylated, or it may be non-glycosylated. Polypeptides of the invention may also include or exclude starting methionine residues.
  • the invention also includes fragments, derivatives and analogs of Ras GTPase activating protein 12.
  • fragment refers to a polypeptide that substantially retains the same biological function or activity of the Ras GTPase activator protein 12 of the invention.
  • a fragment, derivative or analog of the polypeptide of the present invention may be: U) a type in which one or more amino acid residues are substituted with conservative or non-conservative amino acid residues (preferably conservative amino acid residues), and the substituted
  • the amino acid may or may not be encoded by the genetic code; or (II) such a type in which a group on one or more amino acid residues is substituted by another group to include a substituent; or (II) A type in which a mature polypeptide is fused to another compound (such as a compound that prolongs the half-life of the polypeptide, such as polyethylene glycol); or a UV), a polypeptide sequence in which an additional amino acid sequence is fused to a mature polypeptide (such as Leader sequence Secret sequence 'j or the sequence or protease sequence used to purify this polypeptide).
  • such fragments, derivatives and analogs are considered to be within the knowledge of those skilled in the art.
  • the present invention provides an isolated nucleic acid (polynucleotide), which basically consists of a polynucleotide encoding a polypeptide having the amino acid sequence of SEQ ID NO: 2.
  • the polynucleotide sequence of the present invention includes a nucleotide sequence of SEQ ID NO: 1.
  • the polynucleotide of the present invention is found from a cDNA library of human fetal brain tissue. It contains a total nucleotide sequence of 4,311 bases, and its open reading frames 221-544 encode 107 amino acids.
  • This polypeptide has the characteristic sequence of Ras GTPase activating protein, and it can be deduced that the Ras GTPase activating protein 12 has the structure and function represented by the characteristic sequence fragment of Ras GTPase activating protein.
  • the polynucleotide of the present invention may be in the form of DNA or RNA.
  • DNA forms include cDNA, genomic DNA or synthetic DNA.
  • DNA can be single-stranded or double-stranded.
  • D can be a coding or non-coding chain.
  • the coding region sequence encoding a mature polypeptide may be the same as the coding region sequence shown in SEQ ID NO: 1 or a degenerate variant.
  • a "degenerate variant" refers to a nucleic acid sequence encoding a protein or polypeptide having SEQ ID NO: 2 but different from the coding region sequence shown in SEQ ID NO: 1 in the present invention.
  • the polynucleotide encoding the mature polypeptide of SEQ ID NO: 2 includes: only the coding sequence of the mature polypeptide; the coding sequence of the mature polypeptide and various additional coding sequences; the coding sequence of the mature polypeptide (and optional additional coding sequences); Coding sequence.
  • polynucleotide encoding a polypeptide refers to a polynucleotide that includes the polypeptide and a polynucleotide that includes additional coding and / or non-coding sequences.
  • the invention also relates to variants of the polynucleotides described above, which encode polypeptides or fragments, analogs and derivatives of polypeptides having the same amino acid sequence as the invention.
  • This polynucleotide variant can be a naturally occurring allelic variant or a non-naturally occurring variant.
  • These nucleotide variants include substitution variants, deletion variants, and insertion variants.
  • an allelic variant is an alternative form of a polynucleotide that may be a substitution, deletion, or insertion of one or more nucleotides, but does not substantially change the function of the polypeptide it encodes .
  • the invention also relates to a polynucleotide that hybridizes to the sequence described above (having at least 50%, preferably 70% identity between the two sequences).
  • the invention particularly relates to polynucleotides that can hybridize to the polynucleotides of the invention under stringent conditions.
  • "strict conditions” means: (1) hybridization and elution at lower ionic strength and higher temperature, such as 0.2xSSC, 0.1% SDS, 60 ° C; or (2) Add a denaturant during hybridization, such as 50 ° /.
  • the polypeptide encoded by the hybridizable polynucleotide has the same biological function and activity as the mature polypeptide shown in SEQ ID NO: 2.
  • the invention also relates to nucleic acid fragments that hybridize to the sequences described above.
  • nucleic acid fragment contains at least 10 nucleotides in length, preferably at least 20-30 nucleotides, more preferably at least 50-60 nucleotides, and most preferably at least 100 nuclei. Glycylic acid or more. Nucleic acid fragments can also be used in nucleic acid amplification techniques such as PCR to identify and / or isolate polynucleotides encoding Has GTPase activating protein 12.
  • polypeptides and polynucleotides in the present invention are preferably provided in an isolated form and are more preferably purified to homogeneity.
  • the specific polynucleotide sequence encoding the Ras GTPase activating protein 12 of the present invention can be obtained by various methods.
  • polynucleotides are isolated using hybridization techniques well known in the art. These techniques include, but are not limited to: 1) hybridization of probes to genomic or cDNA libraries to detect homologous polynucleotide sequences, and 2) antibody screening of expression libraries to detect cloned polynucleosides with common structural characteristics Acid fragments.
  • the DNA fragment sequence of the present invention can also be obtained by the following methods: 1) isolating the double-stranded DNA sequence from the genomic DNA; 2) chemically synthesizing the DNA sequence to obtain the double-stranded DNA of the polypeptide.
  • genomic DNA isolation is the least commonly used. Direct chemical synthesis of DNA sequences is often the method of choice. The more commonly used method is the isolation of cDNA sequences.
  • the standard method for isolating the cDNA of interest is to isolate mRNA from donor cells that overexpress the gene and perform reverse transcription to form a plasmid or phage cDNA library.
  • mRNA extraction There are many mature techniques for mRNA extraction, and kits are also commercially available (Qiagene). It is also a common method to construct a CDM library (Sambrook, et al., Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • Commercially available cDNA libraries are also available, such as different cDNA libraries from Clontech. When polymerase reaction technology is used in combination, even very small expression products can be cloned.
  • genes of the present invention can be selected from these cDNA libraries by conventional methods. These methods include (but are not limited to): (l) DNA-DNA or DNA-RNA hybridization; (2) the presence or absence of marker gene functions; (3) determination of the level of Ras GTPase activating protein 12 transcripts; (4) ) Detection of protein products expressed by genes through immunological techniques or determination of biological activity. The above methods can be used singly or in combination.
  • the probe used for hybridization is homologous to any part of the polynucleotide of the present invention, and its length is at least 10 nucleotides, preferably at least 30 nucleotides, more preferably At least 50 nucleotides, preferably at least 100 nucleotides.
  • the length of the probe is usually within 2000 nucleotides, preferably within 1000 nucleotides.
  • the probe used here is usually a DNA sequence chemically synthesized based on the gene sequence information of the present invention.
  • the genes or fragments of the present invention can of course be used as probes.
  • DNA probes can be labeled with radioisotopes, luciferin, or enzymes (such as alkaline phosphatase).
  • immunological techniques such as Western blotting, radioimmunoprecipitation, and enzyme-linked immunosorbent assay (ELISA) can be used to detect the protein product of Ras GTPase activating protein 12 gene expression.
  • ELISA enzyme-linked immunosorbent assay
  • Amplification of DNA / RNA by PCR (Saiki, et al. Science 1985; 230: 1350-1354) are preferred for obtaining the genes of the invention.
  • the RACE method RACE-Rapid Amplification of cDNA Ends
  • the primers used for PCR can be appropriately based on the polynucleotide sequence information of the present invention disclosed herein. Select and synthesize using conventional methods.
  • the amplified D / RNA fragments can be isolated and purified by conventional methods such as by gel electrophoresis.
  • polynucleotide sequence of the gene of the present invention or various D fragments and the like obtained as described above can be measured by a conventional method such as dideoxy chain termination method (Sanger et al. PNAS, 1977, 74: 5463-5467). Such polynucleotide sequences can also be determined using commercial sequencing kits and the like. In order to obtain the full-length cDNA sequence, sequencing needs to be repeated. Sometimes it is necessary to determine the cDNA sequence of multiple clones in order to splice into a full-length cDNA sequence.
  • the present invention also relates to a vector comprising a polynucleotide of the present invention, and a host cell produced by genetic engineering using the vector of the present invention or directly using a Ras GTPase activating protein 12 coding sequence, and a recombinant technology for producing a polypeptide of the present invention method.
  • a polynucleotide sequence encoding a Ras GTPase activating protein 12 may be inserted into a vector to form a recombinant vector containing the polynucleotide of the present invention.
  • vector refers to bacterial plasmids, phages, yeast plasmids, plant cell viruses, mammalian cell viruses such as adenoviruses, retroviruses or other vectors well known in the art.
  • Vectors suitable for use in the present invention include, but are not limited to: T7 promoter-based expression vectors expressed in bacteria (Rosenberg, et al.
  • any plasmid and vector can be used to construct a recombinant expression vector.
  • An important feature of expression vectors is that they usually contain an origin of replication, a promoter, a marker gene, and translational regulatory elements.
  • Methods known to those skilled in the art can be used to construct expression vectors containing a DNA sequence encoding Ras GTPase activator protein 12 and appropriate transcriptional / translational regulatory elements. These methods include in vitro recombinant DNA technology, DNA synthesis technology, and in vivo recombination technology (Sambroook, et al. Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989).
  • the DNA sequence can be operably linked to an appropriate promoter in an expression vector to guide mRNA synthesis. Representative examples of these promoters are: the lac or trp promoter of E.
  • the expression vector also includes a ribosome binding site and a transcription terminator for translation initiation. Insertion of enhancer sequences into the vector will allow it to be used in higher eukaryotic cells Transcription is enhanced.
  • Enhancers are cis-acting factors for DNA expression, usually about 10 to 300 base pairs, which act on promoters to enhance gene transcription. Illustrative examples include SV40 enhancers of 100 to 270 base pairs on the late side of the origin of replication, polyoma enhancers on the late side of the origin of replication, and adenoviral enhancers.
  • the expression vector preferably contains one or more selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • selectable marker genes to provide phenotypic traits for selection of transformed host cells, such as dihydrofolate reductase, neomycin resistance, and green for eukaryotic cell culture.
  • GFP fluorescent protein
  • tetracycline or ampicillin resistance for E. coli.
  • a polynucleotide encoding Ras GTPase activating protein 12 or a recombinant vector containing the polynucleotide can be transformed or transduced into a host cell to constitute a genetically engineered host cell containing the polynucleotide or the recombinant vector.
  • the term "host cell” refers to a prokaryotic cell, such as a bacterial cell; or a lower eukaryotic cell, such as a yeast cell; or a higher eukaryotic cell, such as a mammalian cell. Representative examples are: E.
  • coli Streptomyces
  • bacterial cells such as Salmonella typhimurium
  • fungal cells such as yeast
  • plant cells such as fly S2 or Sf9
  • animal cells such as CH0, COS or Bowes melanoma cells.
  • Transformation of a host cell with a DM sequence according to the present invention or a recombinant vector containing the DNA sequence can be performed by conventional techniques well known to those skilled in the art.
  • the host is a prokaryote such as E. coli
  • competent cells capable of DNA uptake can be in the exponential growth phase were harvested, treated with CaC l 2 method used in steps well known in the art. The alternative is to use MgC l 2 .
  • transformation can also be performed by electroporation.
  • the host is a eukaryotic organism, the following DNA transfection methods can be used: calcium phosphate co-precipitation method, or conventional mechanical methods such as microinjection, electroporation, and liposome packaging.
  • the polynucleotide sequence of the present invention can be used to express or produce recombinant Ras GTPase activating protein 12 through conventional recombinant DNA technology (Scence, 1984; 224: 1431). Generally there are the following steps:
  • the medium used in the culture may be selected from various conventional mediums. Culture is performed under conditions suitable for host cell growth. After the host cells have grown to an appropriate cell density, the selected promoter is induced by a suitable method (such as temperature conversion or chemical induction), and the cells are cultured for a period of time.
  • the recombinant polypeptide may be coated in a cell, expressed on a cell membrane, or secreted outside the cell. If desired, recombinant proteins can be isolated and purified by various separation methods using their physical, chemical, and other properties. These methods are well known to those skilled in the art.
  • These methods include, but are not limited to: conventional renaturation treatment, protein precipitant treatment (salting out method), centrifugation, osmotic disruption, ultrasonic treatment, ultracentrifugation, molecular sieve chromatography (gel filtration), adsorption chromatography, ion Exchange chromatography, high performance liquid chromatography (HPLC) and various other liquid chromatography techniques and combinations of these methods.
  • polypeptides of the present invention can be directly used in the treatment of diseases, for example, they can treat malignant tumors, adrenal deficiency, skin diseases, various types of inflammation, H IV infection, and immunological diseases.
  • the Ra s gene is an intracellular signal transducer and it is also an oncogene.
  • a variant form of Ras is called a tumor suppressor gene, and it is considered a pathogen of cancer.
  • the normal cellular genes and tumor suppressor genes of Ra s encode chemically related proteins, collectively referred to as ra s p21 protein.
  • Both normal ra s p21 and tumor suppressor gene ra s p21 proteins bind to nucleotides, GTP, and GDP, and slowly hydrolyze GTP to GDP.
  • This intrinsic GTPase activity is stimulated by the cytokine GAP, which is called GTPase activating protein, but it has no effect on GTPase activity related to mutations in tumor suppressor genes.
  • GAP is a cytoplasmic protein that can be transferred from the cytoplasm to the plasma membrane and interacts with P21. Because it is a GTP-bound form of active ra s, these proteins are called negative regulators of
  • Ras tumor suppressor genes are related to the growth of various tumors and involve 10-40% of the most common human cancers, such as bladder cancer, colon cancer, kidney cancer, liver cancer, lung cancer, ovarian cancer, pancreatic cancer, and gastric cancer. This gene is also associated with lymphoid and bone marrow hematopoietic tumors, mesenchymal origin tumors.
  • the present invention includes the peptides of the above peptides, and the antagonists, inhibitors and agonists of the peptides can be used to diagnose, prevent and treat cancer, especially to detect the overexpression of normal or tumor suppressor gene ra s p21 and treat the tumor suppressor by ra s Gene-induced cancer.
  • GTPase-activated protein-specific conserved sequences are required to form their active motifs. It can be seen that abnormal expression of the specific GTPase activating protein mo tif will cause abnormal function of the polypeptide containing the mo tif of the present invention, thereby causing abnormal cell proliferation and causing related diseases such as various tumors and embryo development Disorders, growth disorders, etc.
  • Ras GTPase activating protein 12 of the present invention will produce various diseases, especially various tumors, embryonic developmental disorders, and growth and development disorders.
  • diseases include but are not limited to: Tumors: bladder cancer, colon cancer, kidney cancer, liver cancer, lung cancer, ovarian cancer, pancreatic cancer, gastric cancer, leukemia, lymphoma, bone cancer, osteosarcoma, myeloma, bone marrow cancer, esophageal cancer, breast cancer, thyroid tumor, uterus Myoma, neuroblastoma, astrocytoma, ependymal tumor, glioblastoma, colon cancer, melanoma, adrenal cancer, bladder cancer, brain cancer, uterine cancer, endometrial cancer, gallbladder cancer, nodules Bowel cancer, thymic tumor, nasal cavity and sinus tumor, nasopharyngeal cancer, laryngeal cancer, tracheal tumor, fibroma, fibrosar
  • Embryonic disorders congenital abortion, cleft palate, limb loss, limb differentiation disorder, hyaline membrane disease, atelectasis, polycystic kidney, double ureter, cryptorchidism, congenital inguinal hernia, double uterus, vaginal atresia, suburethral Fissure, hermaphroditism, atrial septal defect, ventricular septal defect, pulmonary stenosis, arterial duct occlusion, neural tube defect, congenital hydrocephalus, iris defect, congenital cataract, congenital glaucoma or cataract, congenital deafness
  • Growth and development disorders mental retardation, cerebral palsy, brain development disorders, mental retardation, familial cerebral nucleus dysplasia syndrome, strabismus, skin, fat and muscular dysplasia such as congenital skin laxity, premature aging Disease, congenital keratosis, various metabolic defects such as various amino acid metabolic defects, stunting, dwarfism, sexual retardation
  • Ra s GTPase activating protein 12 of the present invention will also produce certain hereditary, hematological and immune system diseases.
  • the polypeptide of the present invention and the antagonists, agonists and inhibitors of the polypeptide can be directly used in the treatment of diseases, for example, it can treat various diseases, especially various tumors, embryonic developmental disorders, growth and development disorders, and certain inheritances. Sexual, hematological and immune system diseases.
  • the invention also provides methods of screening compounds to identify agents that increase (agonist) or suppress (antagonist) Ras GTPase activating protein 1 2.
  • Agonists increase Ra s GTPase activating protein 1 2 to stimulate biological functions such as cell proliferation, while antagonists prevent and treat disorders related to excessive cell proliferation, such as various cancers.
  • mammalian cells or membrane preparations expressing Ras GTPase activating protein 1 2 can be cultured together with labeled Ras GTPase activating protein 1 2 in the presence of drugs. The ability of the drug to increase or block this interaction is then determined.
  • Antagonists of Ra s GTPase activating protein 1 2 include antibodies, compounds, receptor deletions, and the like that have been screened.
  • the antagonist of R as GTPase activating protein 1 2 can bind to Ras GTPase activating protein 1 2 and eliminate its function, or inhibit the production of the polypeptide, or bind to the active site of the polypeptide so that the polypeptide cannot function. biological functions.
  • Ras GTPase activating protein 1 2 When screening compounds as antagonists, Ras GTPase activating protein 1 2 can be added to a bioanalytical assay, and the compound can be identified by measuring the effect of the compound on the interaction between Ras GTPase activating protein 1 2 and its receptor. Whether it is an antagonist. Receptor deletions and analogs that act as antagonists can be screened in the same manner as described above for screening compounds.
  • Polypeptide molecules capable of binding to Ra s GTPase activating protein 1 2 can be obtained by screening a random peptide library composed of various possible combinations of amino acids bound to a solid phase. When screening, the Ras GTPase activating protein 12 molecule should generally be labeled.
  • the present invention provides a method for producing an antibody using a polypeptide, a fragment, a derivative, an analog thereof, or a cell thereof as an antigen.
  • These antibodies can be polyclonal or monoclonal antibodies.
  • the invention also provides antibodies against Ras GTPase activating protein 12 epitopes. These antibodies include (but are not limited to): polyclonal antibodies, monoclonal antibodies, chimeric antibodies, single chain antibodies, Fab fragments, and fragments produced by Fab expression libraries.
  • Polyclonal antibodies can be produced by injecting Ras GTPase activating protein 12 directly into immunized animals (such as rabbits, mice, rats, etc.).
  • immunized animals such as rabbits, mice, rats, etc.
  • a variety of adjuvants can be used to enhance the immune response, including but not limited to Freund's adjuvant. Wait.
  • Techniques for preparing monoclonal antibodies to Ras GTPase activator protein 12 include, but are not limited to, hybridoma technology (Kohler and Milstein. Nature, 1975, 256: 495-497), triple tumor technology, human beta-cell hybridoma technology, and EBV- Hybridoma technology, etc.
  • Chimeric antibodies that bind human constant regions and non-human variable regions can be produced using existing techniques (Morrison et al, PNAS, 1985, 81: 6851). And existing techniques for producing single-chain antibodies (US Pat No. .4946778) can also be used to produce single chain antibodies against Ras GTPase activator protein 12.
  • Anti-Ras GTPase activating protein 12 antibodies can be used in immunohistochemical techniques to detect Ras GTPase activating protein 12 in biopsy specimens.
  • Monoclonal antibodies that bind to Ras GTPase activating protein 12 can also be labeled with radioisotopes and injected into the body to track their location and distribution. This radiolabeled antibody can be used as a non-invasive diagnostic method to locate tumor cells and determine whether there is metastasis.
  • Antibodies can also be used to design immunotoxins that target a particular part of the body.
  • Ras GTPase activating protein 12 has a high affinity monoclonal antibody that can covalently bind to bacterial or plant toxins (such as diphtheria toxin, ricin, ormosine, etc.).
  • a common method is to attack the amino group of an antibody with a thiol cross-linking agent such as SPDP and bind the toxin to the antibody through the exchange of disulfide bonds.
  • This hybrid antibody can be used to kill Ras GTPase activating protein 12 positive cells .
  • the antibodies of the present invention can be used to treat or prevent diseases related to Ras GTPase activating protein 12. Administration of an appropriate dose of antibody can stimulate or block the production or activity of Ras GTPase activating protein 12.
  • the invention also relates to a diagnostic test method for quantitative and localized detection of Ras GTPase activating protein 12 levels. These tests are well known in the art and include FISH assays and radioimmunoassays. The level of Ras GTPase activating protein 12 detected in the test can be used to explain the importance of Ras GTPase activating protein 12 in various diseases and to diagnose diseases in which Ras GTPase activating protein 12 plays a role.
  • the polypeptide of the present invention can also be used for peptide mapping analysis.
  • the polypeptide can be specifically cleaved by physical, chemical or enzymatic analysis, and subjected to one-dimensional or two-dimensional or three-dimensional gel electrophoresis analysis, and more preferably mass spectrometry analysis.
  • the polynucleotide encoding Ras GTPase activating protein 12 can also be used for a variety of therapeutic purposes. Gene therapy technology can be used to treat abnormal cell proliferation, development or metabolism caused by the non-expression or abnormal / inactive expression of Ras GTPase activating protein 12.
  • Recombinant gene therapy vectors can be designed to express mutant Ras GTPase activating protein 12 to inhibit endogenous Ras GTPase activating protein 12 activity.
  • a mutated Ras GTPase activating protein 12 may be a shortened Ras GTPase activating protein 12 lacking a signaling domain, and although it can bind to downstream substrates, it lacks signaling activity. Therefore, recombinant gene therapy vectors can be used to treat diseases caused by abnormal expression or activity of Ras GTPase activating protein 12.
  • Virus-derived expression vectors such as retrovirus, adenovirus, adenovirus-associated virus, herpes simplex virus, parvovirus, etc.
  • a recombinant polynucleotide encoding Ras GTPase activating protein 12 can be packaged into liposomes and transferred into cells.
  • Methods for introducing a polynucleotide into a tissue or cell include: directly injecting the polynucleotide into a tissue in vivo; or introducing the polynucleotide into a cell in vitro through a vector (such as a virus, phage, or plasmid), and then transplanting the cell Into the body and so on.
  • a vector such as a virus, phage, or plasmid
  • Oligonucleotides including antisense RNA and DNA
  • ribozymes that inhibit Ras GTPase activating protein 12 mRNA are also within the scope of the present invention.
  • a ribozyme is an enzyme-like RNA molecule that specifically decomposes a specific RM. Its mechanism of action is that the ribozyme molecule specifically hybridizes with a complementary target RNA for endonucleation.
  • Antisense RNA, DNA, and ribozymes can be obtained using any existing RNA or DNA synthesis technology, such as solid-phase phosphoramidite chemical synthesis to synthesize oligonucleotides.
  • Antisense RNA molecules can be obtained by in vitro or in vivo transcription of a DNA sequence encoding the RNA. This DNA sequence has been integrated downstream of the vector's RNA polymerase promoter. In order to increase the stability of the nucleic acid molecule, it can be modified in a variety of ways, such as increasing the sequence length on both sides, and the linkage between ribonucleosides using phosphate thioester or peptide bonds instead of phosphodiester bonds.
  • the polynucleotide encoding Ras GTPase activating protein 12 can be used for the diagnosis of diseases related to Ras GTPase activating protein 12.
  • the polynucleotide encoding Ras GTPase activating protein 12 can be used to detect the expression of Ras GTPase activating protein 12 or the abnormal expression of Ras GTPase activating protein 12 in a disease state.
  • the DNA sequence encoding Ras GTPase activating protein 12 can be used to hybridize biopsy specimens to determine the expression of Ras GTPase activating protein 12.
  • Hybridization techniques include Southern blotting, Northern blotting, and in situ hybridization. These techniques and methods are publicly available and mature, and related kits are commercially available.
  • a part or all of the polynucleotides of the present invention can be used as probes to be fixed on a microarray or a DNA chip (also known as a "gene chip") for analyzing the difference of genes in tissues. Heterologous analysis and genetic diagnosis.
  • Ras GTPase activating protein 12 specific primers can be used for RNA-polymerase chain reaction (RT-PCR) amplification in vitro to detect Ras GTPase activating protein 12 transcription products.
  • Ras GTPase activating protein 12 mutations include point mutations, translocations, deletions, recombinations, and any other abnormalities compared to the normal wild-type Ras GTPase activating protein 12 DNA sequence. Mutations can be detected using existing techniques such as Southern blotting, DNA sequence analysis, PCR and in situ hybridization. In addition, mutations may affect protein expression, so Northern blotting and Western blotting can be used to indirectly determine whether a gene is mutated.
  • sequences of the invention are also valuable for chromosome identification. This sequence will specifically target a specific position on a human chromosome and can hybridize to it. Currently, specific sites for each gene on the chromosome need to be identified. Currently, only a few chromosome markers based on actual sequence data (repeating polymorphisms) are available for marking chromosome positions. According to the present invention, in order to associate these sequences with disease-related genes, an important first step is to locate these DM sequences on a chromosome.
  • a PCR primer (preferably 15-35bp) is prepared from the cDNA, and the sequence can be located on the chromosome. These primers were then used for PCR screening of somatic hybrid cells containing individual human chromosomes. Only those heterozygous cells containing the human gene corresponding to the primer will produce amplified fragments.
  • PCR localization of somatic hybrid cells is a quick way to localize DNA to specific chromosomes.
  • oligonucleotide primers of the present invention in a similar manner, a set of fragments from a specific chromosome or a large number of genomic clones can be used to achieve sublocalization.
  • Other similar strategies that can be used for chromosomal localization include in situ hybridization, chromosome pre-screening with labeled flow sorting, and pre-selection of hybridization to construct chromosome-specific cDNA libraries.
  • Fluorescent in situ hybridization of cDNA clones with metaphase chromosomes allows precise chromosomal localization in one step.
  • FISH Fluorescent in situ hybridization
  • the differences in cDNA or genomic sequences between the affected and unaffected individuals need to be determined. If a mutation is observed in some or all diseased individuals and the mutation is not observed in any normal individuals, the mutation may be the cause of the disease. Comparing affected and unaffected individuals usually involves first looking for staining Structural changes in the body, such as deletions or translocations that are visible from the chromosomal level or detectable with cDNA sequence-based PCR. According to the resolution capabilities of current physical mapping and gene mapping technology, the cDNA accurately mapped to the chromosomal region associated with the disease can be one of 50 to 500 potentially pathogenic genes (assuming 1 megabase mapping resolution) Capacity and each 20kb corresponds to a gene).
  • the polypeptides, polynucleotides and mimetics, agonists, antagonists and inhibitors of the present invention can be used in combination with a suitable pharmaceutical carrier.
  • suitable pharmaceutical carrier can be water, glucose, ethanol, salts, buffers, glycerol, and combinations thereof.
  • the composition comprises a safe and effective amount of the polypeptide or antagonist, and carriers and excipients which do not affect the effect of the drug. These compositions can be used as drugs for the treatment of diseases.
  • the invention also provides a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • a kit or kit containing one or more containers containing one or more ingredients of the pharmaceutical composition of the invention.
  • these containers there may be instructional instructions given by government agencies that manufacture, use, or sell pharmaceuticals or biological products, which prompts permission for administration on the human body by government agencies that produce, use, or sell.
  • the polypeptides of the invention can be used in combination with other therapeutic compounds.
  • the pharmaceutical composition can be administered in a convenient manner, such as by a topical, intravenous, intraperitoneal, intramuscular, subcutaneous, intranasal or intradermal route of administration.
  • Ras GTPase activating protein 12 is administered in an amount effective to treat and / or prevent a specific indication.
  • the amount and range of Ras GTPase activating protein 12 administered to a patient will depend on many factors, such as the mode of administration, the health conditions of the person to be treated, and the judgment of the diagnostician. Examples
  • the Ras GTPase activating protein 12 sequence and the encoded protein sequence of the present invention were subjected to a profile scan program (Basic local alignment search tool) in GCG [Altschul, SF et al. J. Mol. Biol. 1990; 215: 403-10], performing domain analysis in databases such as Prote.
  • the Ras GTPase activating protein 12 of the present invention is homologous with the characteristic sequence fragment of the Ras GTPase activating protein at the domain of 23-100, and the homology result is shown in FIG. 1 with a homology rate of 0.23 and a score of 12.45; the threshold value is 12.27 .
  • Example 3 Cloning of a gene encoding Ras GTPase activating protein 12 by RT-PCR
  • CDNA was synthesized using fetal brain total RNA as a template and oligo-dT as a primer for reverse transcription reaction. After purification with Qiagene's kit, the following primers were used for PCR amplification:
  • Primerl 5'- GGCTTCAAATTGGATGGCACTGCA -3 '(SEQ ID NO: 3)
  • Primer2 5'- CAAAGATGTCTCAGTTTATTAGTT -3 '(SEQ ID NO: 4)
  • Primerl is a forward sequence starting at lbp of the 5th end of SEQ ID NO: 1;
  • Pritner2 is the 3 'end reverse sequence in SEQ ID NO: 1.
  • Amplification conditions 50 ⁇ l reaction volume containing 50 crypto ol / L C1, 10 mraol / L Tris-HCl, pH 8.5, 1.5 mmol / L MgCl 2 , 2 (mol / L dNTP, lOpmol primer, 1U Taq DNA polymerase (Clontech).
  • the reaction was performed on a PE9600 DNA thermal cycler (Perkin-Elmer) under the following conditions for 25 cycles: 94.C 30sec; 55 ° C 30sec; 72 ° C 2min 0 at RT- During PCR, ⁇ -act in was used as a positive control and template blank was used as a negative control.
  • Amplification products were purified using QIAGEN's kit, and TA cloning kit was used to connect to the pCR vector (Invitrogen's product).
  • the results of DNA sequence analysis showed that The DNA sequence of the PCR product is exactly the same as 1-4311bp shown in SEQ ID NO: 1.
  • Example 4 Analysis of the expression of Ras GTPase activating protein 12 gene by Northern blotting method Total RNA was extracted in one step [Anal. Biochem 1987, 162, 156-159] This method involves acid guanidinium thiocyanate phenol-chloroform extraction.
  • RNA precipitate 4M guanidine isothiocyanate-25 mM sodium citrate, 0.2 M sodium acetate (pH 4.0) Homogenize the tissue, add 1 volume of phenol and 1/5 volume of chloroform-isoamyl alcohol (49: 1), mix and centrifuge. Aspirate the aqueous layer, add isopropanol (0.8 vol) and centrifuge the mixture to obtain RNA precipitate. The resulting RNA pellet was washed with 70% ethanol, dried and dissolved in water.
  • Electrophoresis was performed on a 1.2% agarose gel containing 2 g of RNA on 20 mM 3- (N-morpholino) propanesulfonic acid (pH 7.0)-5 mM sodium acetate-1 mM EDTA-2.2M formaldehyde. Then transferred to nitrocellulose.
  • oc- 32 P dATP with 32 P- DM labeled probe prepared by random priming SYSTEM. D probes used for PCR amplification shown in FIG Ras GTP GTPase activating protein 12 encoding Sequence (221bp to 544bp).
  • 32P-labeled probe (about 2 x 10 6 cpm / ml) was hybridized with a nitrocellulose membrane to which RNA was transferred at 42 ° C overnight in a solution containing 50% Formamide-25mM KH 2 P0 4 (pH7.4) -5 ⁇ SSC-5 ⁇ Denhardt's solution and 20 ⁇ g / ml salmon sperm DNA. After hybridization, the filter was placed in 1 x SSC-0.1 ° / .SDS Wash at 55 ° C for 30 min. Then, use Phosphor Imager for analysis and quantification.
  • Example 5 In vitro expression, isolation and purification of recombinant Ras GTPase activating protein 12
  • Primer3 5'- CATGCTAGCATGTTGACAGAGTCTTGCTCTATT -3 '(Seq ID No: 5)
  • Primer4 5'- CCCAAGCTTTTATGCTCCTAGTGGAATTGAACC -3' (Seq ID No: 6)
  • the 5 'ends of these two primers contain Nhel and Hindlll restriction sites, respectively.
  • the coding sequences of the 5 'and 3' ends of the target gene are followed, respectively.
  • the Nhel and Hindlll restriction sites correspond to the selective endonucleases on the expression vector plasmid pET-28M +) (Novagen, Cat. No. 69865.3). Site.
  • the pBS-0488H11 plasmid containing the full-length target gene was used as a template for the PCR reaction.
  • the PCR reaction conditions were as follows: a total volume of 50 ⁇ 1 containing 10 PBS-0488H11 plasmid, primers Primer-3 and Primer-4 were lOpmol, Advantage polymerase Mix (Clontech) 1 ⁇ 1, respectively. Cycle parameters: 94 ° C 20s, 60 ° C 30s, 68 ° C 2 min, a total of 25 cycles. Nhel and Hindlll were used to double-digest the amplified product and plasmid pET-28 (+), respectively, and large fragments were recovered and ligated with T4 ligase.
  • Ligation products were transformed by the calcium chloride method bacteria Escherichia coli DH5cc, after (final concentration of 30 ⁇ 8 / ⁇ 1) grown overnight in LB plates containing kanamycin, positive clones were screened by colony PCR method, and sequenced. A positive clone (pET-0488H11) with the correct sequence was selected, and the recombinant plasmid was transformed into E. coli BL21 (DE3) plySs (product of Novagen) using the calcium chloride method.
  • the following peptides specific for Ras GTPase activating protein 12 were synthesized using a peptide synthesizer (product of PE company): NH 2 -Met-Leu-Thr-Glu-Ser-Cys-Ser-I le-Ala-Gln-Ala-Ala -Thr-Gly-Val-C00H (SEQ ID NO: 7).
  • the polypeptide was coupled to hemocyanin and bovine serum albumin to form a complex, respectively. For methods, see: Avrameas, et al. Immunochemi s try, 1969; 6: 43.
  • Suitable oligonucleotide fragments selected from the polynucleotides of the present invention are used as hybridization probes in a variety of ways.
  • the probes can be used to hybridize to genomic or cDNA libraries of normal tissue or pathological tissue from different sources to It is determined whether it contains the polynucleotide sequence of the present invention and a homologous polynucleotide sequence is detected.
  • the probe can be used to detect the polynucleotide sequence of the present invention or its homologous polynucleotide sequence in normal tissue or pathology. Whether the expression in tissue cells is abnormal.
  • the purpose of this embodiment is to select a suitable oligonucleotide fragment from the polynucleotide SEQ ID NO: 1 of the present invention as a hybridization probe, and to identify whether some tissues contain the polynucleoside of the present invention by a filter hybridization method.
  • Filter hybridization methods include dot blotting, Southern blotting, Nor thern blotting, and copying methods. They are all used to fix the polynucleotide sample to be tested on the filter and then hybridize using basically the same steps.
  • the sample-immobilized filter is first pre-hybridized with a probe-free hybridization buffer, so that the non-specific binding site of the sample on the filter is saturated with the carrier and the synthetic polymer.
  • the pre-hybridization solution is then replaced with a hybridization buffer containing the labeled probe and incubated to hybridize the probe to the target nucleic acid.
  • the unhybridized probes are removed by a series of membrane washing steps.
  • This embodiment utilizes higher-intensity washing conditions (such as lower salt concentration and higher temperature) to reduce the hybridization background and retain only strong specific signals.
  • the probes used in this embodiment include two types: the first type of probes are oligonucleotide fragments that are completely the same as or complementary to the polynucleotide SEQ ID NO: 1 of the present invention; A needle is an oligonucleotide fragment that is partially identical or complementary to the polynucleotide SEQ ID NO: 1 of the present invention.
  • the dot blot method is used to fix the sample on the filter membrane. Under the high-intensity washing conditions, the first type of probe and the sample have the strongest hybridization specificity and are retained.
  • oligonucleotide fragments for use as hybridization probes from the polynucleotide SEQ ID NO: 1 of the present invention should follow the following principles and several aspects to be considered:
  • the preferred range of probe size is 18-50 nucleotides
  • GC content is 30% -70%, if it exceeds, non-specific hybridization increases
  • Those that meet the above conditions can be used as primary selection probes, and then further computer sequence analysis, including the primary selection probe and its source sequence region (ie, SEQ ID NO: 1) and other known genomic sequences and their complements The regions are compared for homology. If the homology with the non-target molecular region is greater than 85% or there are more than 15 consecutive bases, the primary probe should not be used;
  • Probe 1 (probel), which belongs to the first type of probe, is completely homologous or complementary to the gene fragment of SEQ ID NO: 1 (41Nt)
  • Probe 1 which belongs to the second type of probe, is equivalent to the replacement mutation sequence (41Nt) of the gene fragment or its complementary fragment of SEQ ID NO: 1
  • PBS phosphate buffered saline
  • step 8-13 are only used when contamination must be removed, otherwise step 14 can be performed directly.
  • NC membranes nitrocellulose membranes
  • the 32 P-Probe (the second peak is free ⁇ - 32 P-dATP) to be prepared.
  • the sample membrane was placed in a plastic bag, and 3-lOmg prehybridization solution (10xDenhardt-s; 6xSSC, 0.1 mg / ml CT DM (calf thymus DNA)) was added. After sealing the mouth of the bag, shake at 68 ° C for 2 hours.
  • 3-lOmg prehybridization solution (10xDenhardt-s; 6xSSC, 0.1 mg / ml CT DM (calf thymus DNA)
  • Gene chip or gene microarray is a new technology currently being developed by many national laboratories and large pharmaceutical companies.
  • the data is compared and analyzed on a carrier such as silicon using fluorescence detection and computer software to achieve the purpose of rapid, efficient, and high-throughput analysis of biological information.
  • the polynucleotide of the present invention can be used as target DNA for gene chip technology for high-throughput research of new gene functions; search for and screen new tissue-specific genes, especially new genes related to diseases such as tumors; diagnosis of diseases such as hereditary diseases .
  • the specific methods and steps have been reported in the literature for various references.
  • a total of 4,000 polynucleotide sequences of various full-length cDNAs are used as the target DM, including the polynucleotide of the present invention. They were respectively amplified by PCR, and the concentration of the amplified product was adjusted to about 500ng / l after purification, and spotted on a glass medium with a Cartesian 7500 spotter (purchased from Cartesian, USA). The distance between points is 280 ⁇ m. The spotted slides were hydrated, dried, and cross-linked in a purple diplomatic coupling instrument. After elution, the DNA was fixed on a glass slide to prepare a chip. The specific method steps have been reported in the literature. The sample post-processing steps in this embodiment are:
  • Total mRNA was extracted from normal liver and liver cancer by one-step method, and mRNA was purified using Oligotex mRNA Midi Kit (purchased from QiaGen).
  • the fluorescent reagent Cy3dUTP (5- Amino- propargy 1-2 '-deoxyuri dine) was separately reverse-transcribed.
  • Probes from the above two types of tissues were hybridized with the chip in a UniHyb TM Hybridization Solution (purchased from TeleChem) hybridization solution for 16 hours, washed with a washing solution (lx SSC, 0.2% SDS) at room temperature and scanned with ScanArray 3000. Instrument (purchased from General Scanning Company, USA) for scanning. The scanned image is processed with Imagene software (Biodiscovery Company, USA) for data analysis, and the Cy3 / Cy5 ratio of each point is calculated. The point whose ratio is less than 0.5 and greater than 2 is considered as Differentially expressed genes.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)

Description

一种新的多肽一 Ras GTP酶激活蛋白 12和编码这种多肽的多核苷酸 抟术领域
本发明属于生物技术领域, 具体地说, 本发明描述了一种新的多肽—— Ras GTP 酶激活蛋白 12, 以及编码此多肽的多核苷酸序列。 本发明还涉及此多核苷酸和多 肽的制备方法和应用。 技术背景
人类的基因中有一些调控正常细胞的生长。 Ras 基因是其中的一个亚群, 至 少包括三个成员, N- ras, H-ras, 以及 K-ras2。 Ras 的变异形式, 被称为抑癌基 因, 它被认为是癌症的病原体。 Ras的正常细胞基因及抑癌基因都编码化学相关的 蛋白, 总称为 ras p21 蛋白。 无论是正常的 ras p21 与抑癌基因 ras p21 蛋白, 都与核苷酸 GTP及 GDP结合, 并把 GTP缓慢水解为 GDP。 这种内在的 GTP酶活性 由细胞因子 GAP刺激, 其全称为 GTP酶激活蛋白, 但它对抑癌基因变异相关的 GTP 酶活性不起作用。 GAP是一种胞质蛋白, 可从胞质转入质膜与 p21相互作用。 由于 它是活性 ras的 GTP结合形式, 因而这些蛋白被称为 ras的负调节物。
GAP家族成员都是分子量较大的蛋白 (从 765 个残基至 3079个残基), 但相 同的保守序列是一个有限的区域(约有 250个残基),被称为是 "催化域"或 rasGAP 域。 该区域中最为保守的区域是一段含有 15个残基的基序, 它是该蛋白家族的特 征 序 列 : [GSN] -X- [LIVMF] - [FY] - [LIVMFY] -R- [LIVMFY] (2) - [GACN] -P- [AV] - [LIV] (2)-[SGAN】- P。
活性 ras 蛋白与细胞增殖直接相关。 Ras 抑癌基因与各种肿瘤生长有关, 并 涉及 10- 40%最为常见的人类癌症, 例如膀胱癌, 结肠癌, 肾癌, 肝癌, 肺癌, 卵 巢癌, 胰腺癌以及胃癌。 该基因还与淋巴及骨髓造血肿瘤, 间充质起点瘤相关。 本发明包括上述肽段的多肽, 该多肽的拮抗剂, 抑制剂以及激动剂可用于诊断, 预防及治疗癌症, 尤其是探测正常或抑癌基因 ras p21的过度表达并治疗由 ras抑 癌基因引起的癌症。
由于如上所述 Ras GTP酶激活蛋白 12蛋白在机体重要功能中起重要作用, 而 且相信这些调节过程中涉及大量的蛋白, 因而本领域中一直需要鉴定更多参与这 些过程的 Ras GTP酶激活蛋白 12蛋白, 特别是鉴定这种蛋白的氨基酸序列。 新 Ras GTP酶激活蛋白 12 蛋白编码基因的分离也为研究确定该蛋白在健康和疾病状态下 的作用提供了基础。 这种蛋白可能构成开发疾病诊断和 /或治疗药的基础, 因此分 离其编码 DM是非常重要的。 发明目的
本发明的一个目的是提供分离的新的多肽—— Ra s GTP 酶激活蛋白 12 以及其 片段、 类似物和衍生物。
本发明的另一个目的是提供编码该多肽的多核苷酸。
本发明的另一个目的是提供含有编码 Ras GTP酶激活蛋白 12的多核苷酸的重 组载体。
本发明的另一个目的是提供含有编码 Ra s GTP酶激活蛋白 12的多核苷酸的基 因工程化宿主细胞。
本发明的另一个目的是提供生产 Ra s GTP酶激活蛋白 12的方法。
本发明的另一个目的是提供针对本发明的多肽—— Ra s GTP 酶激活蛋白 12 的 抗体。
本发明的另一个目的是提供了针对本发明多肽—— Ra s GTP 酶激活蛋白 12 的 模拟化合物、 拮抗剂、 激动剂、 抑制剂。
本发明的另一个目的是提供诊断治疗与 Ra s GTP酶激活蛋白 12异常相关的疾 病的方法。 发明概要
本发明涉及一种分离的多肽, 该多肽是人源的, 它包含: 具有 SEQ ID No. 2 氨基酸序列的多肽、 或其保守性变体、 生物活性片段或衍生物。 较佳地, 该多肽 是具有 SEQ I D NO: 2氨基酸序列的多肽。
本发明还涉及一种分离的多核苷酸, 它包含选自下组的一种核苷酸序列或其 变体:
(a)编码具有 SEQ ID No. 2氨基酸序列的多肽的多核苷酸;
(b)与多核苷酸(a)互补的多核苷酸;
(c)与(a)或(b)的多核苷酸序列具有至少 70%相同性的多核苷酸。
更佳地, 该多核苷酸的序列是选自下组的一种: (a)具有 SEQ I D NO: 1 中 221- 544位的序列; 和(b)具有 SEQ I D NO: 1 中 1-4 31 1位的序列。
本发明另外涉及一种含有本发明多核苷酸的载体, 特别是表达载体; 一种用 该载体遗传工程化的宿主细胞, 包括转化、 转导或转染的宿主细胞; 一种包括培 养所述宿主细胞和回收表达产物的制备本发明多肽的方法。 本发明还涉及一种能与本发明多肽特异性结合的抗体。
本发明还涉及一种筛选的模拟、 激活、 拮抗或抑制 Ras GTP酶激活蛋白 12蛋 白活性的化合物的方法, 其包括利用本发明的多肽。 本发明还涉及用该方法获得 本发明还涉及一种体外检测与 Ras GTP 酶激活蛋白 12 蛋白异常表达相关的 疾病或疾病易感性的方法, 包括检测生物样品中所述多肽或其编码多核苷酸序列 中的突变, 或者检测生物样品中本发明多肽的量或生物活性。
本发明也涉及一种药物组合物, 它含有本发明多肽或其模拟物、 激活剂、 拮 抗剂或抑制剂以及药学上可接受的载体。
本发明还涉及本发明的多肽和 /或多核苷酸在制备用于治疗癌症、 发育性疾病 或免疫性疾病或其它由于 Ras GTP 酶激活蛋白 12 表达异常所引起疾病的药物的 用途。
本发明的其它方面由于本文的技术的公开, 对本领域的技术人员而言是显而 易见的。 附图说明
下列附图用于说明本发明的具体实施方案, 而不用于限定由权利要求书所 界定的本发明范围。
图 1是本发明 Ras GTP酶激活蛋白 12在 23- 100共 78个氨基酸和 Ras GTP酶激 活蛋白特征性序列片段的氨基酸序列同源性比较图。 上方序列是 Ras GTP酶激 活蛋白 12, 下方序列是 Ras GTP酶激活蛋白特征性序列结构域。 Ί" 和 " : " 及 ". " 表示在两个序列间同一氨基酸出现的概率依次减小。
图 1为分离的 Ras GTP酶激活蛋白 12的聚丙烯酰胺凝胶电泳图 ( SDS- PAGE )。 12kDa为蛋白质的分子量。 箭头所指为分离出的蛋白条带。 发明内容
本说明书和权利要求书中使用的下列术语除非特别说明具有如下的含义: "核酸序列" 是指寡核苷酸、 核苷酸或多核苷酸及其片段或部分, 也可以指 基因组或合成的 DNA或 RNA, 它们可以是单链或双链的, 代表有义链或反义链。 类 似地, 术语 "氨基酸序列" 是指寡肽、 肽、 多肽或蛋白质序列及其片段或部分。 当本发明中的 "氨基酸序列" 涉及一种天然存在的蛋白质分子的氨基酸序列时, 这种 "多肽" 或 "蛋白质" 不意味着将氨基酸序列限制为与所述蛋白质分子相关 的完整的天然氨基酸。
蛋白质或多核苷酸 "变体" 是指一种具有一个或多个氨基酸或核苷酸改变的 氨基酸序列或编码它的多核苷酸序列。 所述改变可包括氨基酸序列或核苷酸序列 中氨基酸或核苷酸的缺失、 插入或替换。 变体可具有 "保守性" 改变, 其中替换 的氨基酸具有与原氨基酸相类似的结构或化学性质, 如用亮氨酸替换异亮氨酸。 变体也可具有非保守性改变, 如用色氨酸替换甘氨酸。
"缺失" 是指在氨基酸序列或核苷酸序列中一个或多个氨基酸或核苷酸的缺 失。
"插入" 或 "添加" 是指在氨基酸序列或核苷酸序列中的改变导致与天然存 在的分子相比, 一个或多个氨基酸或核苷酸的增加。 "替换" 是指由不同的氨基酸 或核苷酸替换一个或多个氨基酸或核苷酸。
"生物活性" 是指具有天然分子的结构、 调控或生物化学功能的蛋白质。 类 似地, 术语 "免疫学活性" 是指天然的、 重组的或合成蛋白质及其片段在合适的 动物或细胞中诱导特定免疫反应以及与特异性抗体结合的能力。
"激动剂" 是指当与 Ra s GTP酶激活蛋白 12结合时, 一种可引起该蛋白质改变 从而调节该蛋白质活性的分子。 激动剂可以包括蛋白质、 核酸、 碳水化合物或任 何其它可结合 Ra s GTP酶激活蛋白 12的分子。
"拮抗剂" 或 "抑制物" 是指当与 Ra s GTP酶激活蛋白 12结合时, 一种可封闭 或调节 Ra s GTP酶激活蛋白 12的生物学活性或免疫学活性的分子。 拮抗剂和抑制物 可以包括蛋白质、 核酸、 碳水化合物或任何其它可结合 Ra s GTP酶激活蛋白 12的分 子。
"调节" 是指 Ra s GTP酶激活蛋白 12的功能发生改变, 包括蛋白质活性的升高 或降低、 结合特性的改变及 Ra s GTP酶激活蛋白 12的任何其它生物学性质、 功能或 免疫性质的改变。
"基本上纯" 是指基本上不含天然与其相关的其它蛋白、 脂类、 糖类或其它 物质。 本领域的技术人员能用标准的蛋白质纯化技术纯化 Ra s GTP酶激活蛋白 12。 基本上纯的 Ra s GTP酶激活蛋白 12在非还原性聚丙烯酰胺凝胶上能产生单一的主 带。 Ra s GTP酶激活蛋白 12多肽的纯度可用氨基酸序列分析。
"互补的" 或 "互补" 是指在允许的盐浓度和温度条件下通过碱基配对的多 核苷酸天然结合。 例如, 序列 "C-T-G-A" 可与互补的序列 "G-A- C-T" 结合。 两 个单链分子之间的互补可以是部分的或全部的。 核酸链之间的互补程度对于核酸 链之间杂交的效率及强度有明显影响。 "同源性" 是指互补的程度, 可以是部分同源或完全同源。 "部分同源" 是指 一种部分互补的序列, 其至少可部分抑制完全互补的序列与靶核酸的杂交。 这种 杂交的抑制可通过在严格性程度降低的条件下进行杂交( Southern印迹或 Nor thern 印迹等) 来检测。 基本上同源的序列或杂交探针可竟争和抑制完全同源的序列与 靶序列在严格性程度降低的条件下的结合。 这并不意味严格性程度降低的条件允 许非特异性结合, 因为严格性程度降低的条件要求两条序列相互的结合为特异性 或选择性相互作用。
"相同性百分率" 是指在两种或多种氨基酸或核酸序列比较中序列相同或相 似的百分率。 可用电子方法测定相同性百分率, 如通过 MEGALIGN程序 (Lasergene sof tware package, DNASTAR, Inc. , Madi son Wi s. )。 MEGALIGN程序可根据不同的 方法, 如 C lus ter法比较两种或多种序列(H i gg ins , D. G. 和 P. M. Sharp (1988) Gene 73: 237-244)。 C lus ter法通过检查所有配对之间的距离将各组序列排列成簇。 然后将各簇以成对或成组分配。 两个氨基酸序列如序列 A和序列 B之间的相同性百 分率通过下式计算: 序列 ^与序列 ^之间匹配的残基个数 ι ηΛ
X 100
序列 ^的残基数一序列 中间隔残基数―序列 中间隔残基数 也可以通过 Cl us ter法或用本领域周知的方法如 Jotun He in 测定核酸序列之 间的相同性百分率(He in J., (1990) Methods in enzymo l ogy 183: 625-645)。
"相似性" 是指氨基酸序列之间排列对比时相应位置氨基酸残基的相同或保 守性取代的程度。 用于保守性取代的氨基酸, 例如带负电荷的氨基酸可包括天冬 氨酸和谷氨酸; 带正电荷的氨基酸可包括赖氨酸和精氨酸; 具有不带电荷的头部 基团有相似亲水性的氨基酸可包括亮氨酸、 异亮氨酸和缬氨酸; 甘氨酸和丙氨酸; 天冬酰胺和谷氨酰胺; 丝氨酸和苏氨酸; 苯丙氨酸和酪氨酸。
"反义"是指与特定的 DNA或 RNA序列互补的核苷酸序列。 "反义链"是指与 "有 义链" 互补的核酸链。
"衍生物" 是指 HFP或编码其核酸的化学修饰物。 这种化学修饰物可以是用烷 基、 酰基或氨基替换氢原子。 槟酸衍生物可编码保留天然分子的主要生物学特性 的多肽。
"抗体" 是指完整的抗体分子及其片段, 如 Fa、 ?(^') 2及? , 其能特异性 结合 Ras GTP酶激活蛋白 12的抗原决定簇。 "人源化抗体" 是指非抗原结合区域的氨基酸序列被替换变得与人抗体更为 相似, 但仍保留原始结合活性的抗体。
"分离的" 一词指将物质从它原来的环境 (例如, 若是自然产生的就指其天 然环境) 之中移出。 比如说, 一个自然产生的多核苷酸或多肽存在于活动物中就 是没有被分离出来, 但同样的多核苷酸或多肽同一些或全部在自然系统中与之共 存的物质分开就是分离的。 这样的多核苷酸可能是某一载体的一部分, 也可能这 样的多核苷酸或多肽是某一组合物的一部分。 既然载体或组合物不是它天然环境 的成分, 它们仍然是分离的。
如本发明所用, "分离的" 是指物质从其原始环境中分离出来 (如果是天然的 物质, 原始环境即是天然环境)。 如活体细胞内的天然状态下的多聚核苷酸和多肽 是没有分离纯化的, 但同样的多聚核苷酸或多肽如从天然状态中同存在的其他物 质中分开, 则为分离纯化的。
如本文所用, "分离的 Ra s GTP酶激活蛋白 12 " 是指 Ra s GTP酶激活蛋白 12 基本上不含天然与其相关的其它蛋白、 脂类、 糖类或其它物质。 本领域的技 术人员能用标准的蛋白质纯化技术纯化 Ra s GTP酶激活蛋白 12。 基本上纯的多 肽在非还原聚丙烯酰胺凝胶上能产生单一的主带。 Ra s GTP酶激活蛋白 12多肽 的纯度能用氨基酸序列分析。
本发明提供了一种新的多肽—— Ras GTP酶激活蛋白 12, 其基本上是由 SEQ ID NO: 2所示的氨基酸序列组成的。 本发明的多肽可以是重组多肽、 天然多肽、 合成 多肽, 优选重组多肽。 本发明的多肽可以是天然纯化的产物, 或是化学合成的产 物, 或使用重组技术从原核或真核宿主 (例如, 细菌、 酵母、 高等植物、 昆虫和哺 乳动物细胞)中产生。 根据重组生产方案所用的宿主, 本发明的多肽可以是糖基化 的, 或可以是非糖基化的。 本发明的多肽还可包括或不包括起始的甲硫氨酸残基。
本发明还包括 Ras GTP酶激活蛋白 12的片段、 衍生物和类似物。 如本发明所 用, 术语 "片段"、 "衍生物" 和 "类似物" 是指基本上保持本发明的 Ras GTP 酶 激活蛋白 12相同的生物学功能或活性的多肽。 本发明多肽的片段、 衍生物或类似 物可以是: U ) 这样一种, 其中一个或多个氨基酸残基被保守或非保守氨基酸残 基 (优选的是保守氨基酸残基) 取代, 并且取代的氨基酸可以是也可以不是由遗 传密码子编码的; 或者 ( I I ) 这样一种, 其中一个或多个氨基酸残基上的某个基 团被其它基团取代包含取代基; 或者 (Π Ι )这样一种, 其中成熟多肽与另一种化 合物 (比如延长多肽半衰期的化合物, 例如聚乙二醇) 融合; 或者 UV ) 这样一 种, 其中附加的氨基酸序列融合进成熟多肽而形成的多肽序列 (如前导序列或分 泌序歹 'j或用来纯化此多肽的序列或蛋白原序列)。 通过本文的阐述, 这样的片段、 衍生物和类似物被认为在本领域技术人员的知识范围之内。
本发明提供了分离的核酸 (多核苷酸), 基本由编码具有 SEQ ID NO: 2 氨基 酸序列的多肽的多核苷酸组成。 本发明的多核苷酸序列包括 SEQ ID N0: 1 的核苷 酸序列。 本发明的多核苷酸是从人胎脑组织的 cDNA文库中发现的。 它包含的多核 苷酸序列全长为 4311个碱基, 其开放读框 221-544编码了 107个氨基酸。 此多肽 具有 Ras GTP酶激活蛋白的特征序列, 可推断出该 Ra s GTP酶激活蛋白 12具有 Ras GTP酶激活蛋白特征性序列片段所代表的结构和功能。
本发明的多核苷酸可以是 DNA形式或是 RNA形式。 DNA形式包括 cDNA、 基因 组 DNA或人工合成的 DNA。 DNA可以是单链的或是双链的。 D 可以是编码链或非 编码链。 编码成熟多肽的编码区序列可以与 SEQ ID N0: 1 所示的编码区序列相同 或者是简并的变异体。 如本发明所用, "简并的变异体" 在本发明中是指编码具有 SEQ ID NO: 2的蛋白质或多肽, 但与 SEQ ID NO: 1所示的编码区序列有差别的核酸 序列。
编码 SEQ ID NO: 2 的成熟多肽的多核苷酸包括: 只有成熟多肽的编码序列; 成熟多肽的编码序列和各种附加编码序列; 成熟多肽的编码序列 (和任选的附加 编码序列) 以及非编码序列。
术语 "编码多肽的多核苷酸" 是指包括编码此多肽的多核苷酸和包括附加编 码和 /或非编码序列的多核苷酸。
本发明还涉及上述描述多核苷酸的变异体, 其编码与本发明有相同的氨基酸 序列的多肽或多肽的片断、 类似物和衍生物。 此多核苷酸的变异体可以是天然发 生的等位变异体或非天然发生的变异体。 这些核苷酸变异体包括取代变异体、 缺 失变异体和插入变异体。 如本领域所知的, 等位变异体是一个多核苷酸的替换形 式, 它可能是一个或多个核苷酸的取代、 缺失或插入, 但不会从实质上改变其编 码的多肽的功能。
本发明还涉及与以上所描述的序列杂交的多核苷酸 (两个序列之间具有至少 50%, 优选具有 70%的相同性)。 本发明特别涉及在严格条件下与本发明所述多核苷 酸可杂交的多核苷酸。 在本发明中, "严格条件" 是指: (1)在较低离子强度和较 高温度下的杂交和洗脱, 如 0. 2xSSC, 0. 1%SDS,60°C ;或(2)杂交时加用变性剂, 如 50°/。(v/v)甲酰胺, 0. 1%小牛血清 / 0. l%Fi co l l, 42 °C等; 或(3)仅在两条序列之间 的相同性至少在 95%以上,更好是 97%以上时才发生杂交。 并且, 可杂交的多核苷 酸编码的多肽与 SEQ ID NO: 2所示的成熟多肽有相同的生物学功能和活性。 本发明还涉及与以上所描述的序列杂交的核酸片段。 如本发明所用, "核酸片 段"的长度至少含 10 个核苷酸, 较好是至少 20-30 个核苷酸, 更好是至少 50-60 个核苷酸, 最好是至少 100个核苷酸以上。 核酸片段也可用于核酸的扩增技术(如 PCR)以确定和 /或分离编码 Has GTP酶激活蛋白 12的多核苷酸。
本发明中的多肽和多核苷酸优选以分离的形式提供, 更佳地被纯化至均质。 本发明的编码 Ras GTP 酶激活蛋白 12 的特异的多核苷酸序列能用多种方 法获得。 例如, 用本领域熟知的杂交技术分离多核苷酸。 这些技术包括但不局 限于: 1)用探针与基因组或 cDNA 文库杂交以检出同源的多核苷酸序列, 和 2) 表达文库的抗体筛选以检出具有共同结构特征的克隆的多核苷酸片段。
本发明的 DNA片段序列也能用下列方法获得: 1)从基因组 DNA分离双链 DNA 序列; 2)化学合成 DNA序列以获得所述多肽的双链 DNA。
上述提到的方法中, 分离基因组 DNA 最不常用。 DNA序列的直接化学合成 是经常选用的方法。 更经常选用的方法是 cDNA序列的分离。 分离感兴趣的 cDNA 的标准方法是从高表达该基因的供体细胞分离 mRNA 并进行逆转录, 形成质粒 或噬菌体 cDNA文库。 提取 mRNA 的方法已有多种成熟的技术, 试剂盒也可从商 业途径获得(Qiagene)。 而构建 cDM 文库也是通常的方法(Sambrook, et al. , Molecular Cloning, A Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989)。还可得到商业供应的 cDNA文库,如 Clontech公司的不同 cDNA 文库。 当结合使用聚合酶反应技术时, 即使极少的表达产物也能克隆。
可用常规方法从这些 cDNA 文库中筛选本发明的基因。 这些方法包括(但不 限于): (l)DNA- DNA 或 DNA-RNA 杂交; (2)标志基因功能的出现或丧失; (3)测 定 Ras GTP酶激活蛋白 12 的转录本的水平; (4)通过免疫学技术或测定生物学 活性, 来检测基因表达的蛋白产物。 上述方法可单用, 也可多种方法联合应用。
在第(1)种方法中, 杂交所用的探针是与本发明的多核苷酸的任何一部分 同源, 其长度至少 10个核苷酸, 较好是至少 30个核苷酸, 更好是至少 50个 核苷酸, 最好是至少 100 个核苷酸。 此外, 探针的长度通常在 2000 个核苷酸 之内, 较佳的为 1000 个核苷酸之内。 此处所用的探针通常是在本发明的基因 序列信息的基础上化学合成的 DNA 序列。 本发明的基因本身或者片段当然可以 用作探针。 DNA探针的标记可用放射性同位素, 荧光素或酶(如碱性磷酸酶)等。
在第(4)种方法中, 检测 Ras GTP酶激活蛋白 12基因表达的蛋白产物可用 免疫学技术如 Western印迹法、 放射免疫沉淀法、 酶联免疫吸附法(ELISA)等。
应 用 PCR 技 术 扩增 DNA/RNA 的 方 法 (Saiki, et al. Science 1985; 230: 1350-1354)被优选用于获得本发明的基因。 特别是很难从文库中得 到全长的 cDNA时, 可优选使用 RACE法(RACE - cDNA末端快速扩增法),用于 PCR 的引物可根据本文所公开的本发明的多核苷酸序列信息适当地选择, 并可用常 规方法合成。 可用常规方法如通过凝胶电泳分离和纯化扩增的 D /RNA片段。
如上所述得到的本发明的基因, 或者各种 D 片段等的多核苷酸序列可用 常规方法如双脱氧链终止法(Sanger et al. PNAS, 1977, 74: 5463- 5467)测 定。 这类多核苷酸序列测定也可用商业测序试剂盒等。 为了获得全长的 cDNA 序列, 测序需反复进行。 有时需要测定多个克隆的 cDNA 序列, 才能拼接成全 长的 cDNA序列。
本发明也涉及包含本发明的多核苷酸的载体, 以及用本发明的载体或直接 用 Ras GTP 酶激活蛋白 12 编码序列经基因工程产生的宿主细胞, 以及经重组 技术产生本发明所述多肽的方法。
本发明中, 编码 Ras GTP酶激活蛋白 12 的多核苷酸序列可插入到载体中, 以构成含有本发明所述多核苷酸的重组载体。 术语 "载体" 指本领域熟知的细 菌质粒、 噬菌体、 酵母质粒、 植物细胞病毒、 哺乳动物细胞病毒如腺病毒、 逆 转录病毒或其它载体。 在本发明中适用的载体包括但不限于: 在细菌中表达的 基于 T7 启动子的表达载体(Rosenberg, et al. Gene, 1987, 56: 125); 在哺 乳动物细胞中表达的 pMSXND 表达载体(Lee and Nathans, J Bio Chem. 263: 3521, 1988)和在昆虫细胞中表达的来源于杆状病毒的载体。 总之, 只要能 在宿主体内复制和稳定, 任何质粒和载体都可以用于构建重组表达载体。 表达 载体的一个重要特征是通常含有复制起始点、 启动子、 标记基因和翻译调控元 件。
本领域的技术人员熟知的方法能用于构建含编码 Ras GTP 酶激活蛋白 12 的 DNA序列和合适的转录 /翻译调控元件的表达载体。这些方法包括体外重组 DNA 技术、 DNA合成技术、 体内重组技术等(Sambroook, et al. Molecular Cloning, a Laboratory Manual, Cold Spring Harbor Laboratory. New York, 1989)。 所述的 DNA序列可有效连接到表达载体中的适当启动子上, 以指导 mRNA合成。 这些启动子的代表性例子有: 大肠杆菌的 lac 或 trp 启动子; λ噬菌体的 PL 启动子; 真核启动子包括 CMV 立即早期启动子、 HSV 胸苷激酶启动子、 早期和 晚期 SV40启动子、 反转录病毒的 LTRs 和其它一些已知的可控制基因在原核细 胞或真核细胞或其病毒中表达的启动子。 表达载体还包括翻译起始用的核糖体 结合位点和转录终止子等。 在载体中插入增强子序列将会使其在高等真核细胞 中的转录得到增强。 增强子是 DNA表达的顺式作用因子, 通常大约有 10到 300 个碱基对, 作用于启动子以增强基因的转录。 可举的例子包括在复制起始点晚 期一侧的 100 到 270个碱基对的 SV40增强子、 在复制起始点晚期一侧的多瘤 增强子以及腺病毒增强子等。
此外, 表达载体优选地包含一个或多个选择性标记基因, 以提供用于选择 转化的宿主细胞的表型性状, 如真核细胞培养用的二氢叶酸还原酶、 新霉素抗 性以及绿色荧光蛋白(GFP) , 或用于大肠杆菌的四环素或氨苄青霉素抗性等。
本领域一般技术人员都清楚如何选择适当的载体 /转录调控元件 (如启动 子、 增强子等) 和选择性标记基因。
本发明中, 编码 Ras GTP 酶激活蛋白 12 的多核苷酸或含有该多核苷酸的 重组载体可转化或转导入宿主细胞, 以构成含有该多核苷酸或重组载体的基因 工程化宿主细胞。 术语 "宿主细胞" 指原核细胞, 如细菌细胞; 或是低等真核 细胞, 如酵母细胞; 或是高等真核细胞, 如哺乳动物细胞。 代表性例子有: 大 肠杆菌, 链霉菌属; 细菌细胞如鼠伤寒沙门氏菌; 真菌细胞如酵母; 植物细胞; 昆虫细胞如果蝇 S2或 Sf9; 动物细胞如 CH0、 COS或 Bowes黑素瘤细胞等。
用本发明所述的 DM序列或含有所述 DNA序列的重组载体转化宿主细胞可 用本领域技术人员熟知的常规技术进行。 当宿主为原核生物如大肠杆菌时, 能 吸收 DNA 的感受态细胞可在指数生长期后收获, 用 CaC l2法处理, 所用的步骤 在本领域众所周知。 可供选择的是用 MgC l 2。 如果需要, 转化也可用电穿孔的 方法进行。 当宿主是真核生物, 可选用如下的 DNA转染方法: 磷酸钙共沉淀法, 或者常规机械方法如显微注射、 电穿孔、 脂质体包装等。
通过常规的重组 DNA技术, 利用本发明的多核苷酸序列可用来表达或生产 重组的 Ras GTP酶激活蛋白 12 (Sc i ence , 1984 ; 224 : 1431)。 一般来说有以下 步骤:
(1)用本发明的编码人 Ras GTP酶激活蛋白 12的多核苷酸(或变异体), 或 用含有该多核苷酸的重组表达载体转化或转导合适的宿主细胞;
(2)在合适的培养基中培养宿主细胞;
(3)从培养基或细胞中分离、 纯化蛋白质。
在步骤 ( 2 ) 中, 根据所用的宿主细胞, 培养中所用的培养基可选自各种 常规培养基。 在适于宿主细胞生长的条件下进行培养。 当宿主细胞生长到适当 的细胞密度后, 用合适的方法(如温度转换或化学诱导)诱导选择的启动子, 将 细胞再培养一段时间。 在步骤 ( 3 ) 中, 重组多肽可包被于细胞内、 或在细胞膜上表达、 或分泌 到细胞外。 如果需要, 可利用其物理的、 化学的和其它特性通过各种分离方法 分离和纯化重组的蛋白。 这些方法是本领域技术人员所熟知的。 这些方法包括 但并不限于: 常规的复性处理、 蛋白沉淀剂处理(盐析方法)、 离心、 渗透破菌、 超声波处理、 超离心、 分子筛层析(凝胶过滤)、 吸附层析、 离子交换层析、 高 效液相层析(HPLC)和其它各种液相层析技术及这些方法的结合。
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病治 疗, 例如, 可治疗恶性肿瘤、 肾上腺缺乏症、 皮肤病、 各类炎症、 H IV 感染和免 疫性疾病等。
Ra s基因是细胞内信号转导子, 它也是一种癌基因。 Ra s的变异形式, 被称为 抑癌基因, 它被认为是癌症的病原体。 Ra s的正常细胞基因及抑癌基因都编码化学 相关的蛋白, 总称为 ra s p21 蛋白。 无论是正常的 ra s p21 与抑癌基因 ra s p21 蛋白, 都与核苷酸、 GTP及 GDP结合, 并把 GTP缓慢水解为 GDP。 这种内在的 GTP 酶活性由细胞因子 GAP刺激, 其全称为 GTP 酶激活蛋白, 但它对抑癌基因变异相 关的 GTP酶活性不起作用。 GAP是一种胞质蛋白, 可从胞质转入质膜与 P21相互作 用。 由于它是活性 ra s的 GTP结合形式, 因而这些蛋白被称为 ras的负调节物。
研究发现, 活性 ra s 蛋白与细胞增殖直接相关。 Ra s 抑癌基因与各种肿瘤生 长有关, 并涉及 1 0-40%最为常见的人类癌症, 例如膀胱癌, 结肠癌, 肾癌, 肝癌, 肺癌, 卵巢癌, 胰腺癌以及胃癌。 该基因还与淋巴及骨髓造血肿瘤, 间充质起点 瘤相关。 本发明包括上述肽段的多肽, 该多肽的拮抗剂, 抑制剂以及激动剂可用 于诊断, 预防及治疗癌症, 尤其是探测正常或抑癌基因 ra s p21 的过度表达并治 疗由 ra s 抑癌基因引起的癌症。
GTP 酶激活蛋白特异的保守序列是形成其活性 mo t i f 所必需。 由此可见, 特 异的 GTP酶激活蛋白 mo t i f 的表达异常, 将致使本发明的含此 mo t i f 的多肽的功 能异常, 从而导致细胞增殖的异常, 并产生相关的疾病如各种肿瘤、 胚胎发育紊 乱症、 生长发育障碍性疾病等。
由此可见, 本发明的 Ra s GTP酶激活蛋白 12的表达异常将产生各种疾病尤 其是各种肿瘤、 胚胎发育紊乱症、 生长发育障碍性疾病, 这些疾病包括但不限于: 各种组织的肿瘤: 膀胱癌, 结肠癌, 肾癌, 肝癌, 肺癌, 卵巢癌, 胰腺癌、 胃癌、 白血病、 淋巴瘤、 骨癌、 骨肉瘤、 骨髓瘤、 骨髓癌、 食管癌、 乳腺癌、 甲 状腺肿瘤、 子宫肌瘤、 成神经细胞瘤、 星形细胞瘤、 室管膜瘤、 胶质细胞瘤、 结 肠癌、 黑色素瘤、 肾上腺癌、 膀胱癌、 脑癌、 子宫癌、 子宫内膜癌、 胆囊癌、 结 肠癌、 胸腺肿瘤、 鼻腔及鼻窦肿瘤、 鼻咽癌、 喉癌、 气管肿瘤、 纤维瘤、 纤维肉 瘤、 脂肪瘤、 脂肪肉瘤、 平滑肌瘤
胚胎发育紊乱症: 先天性流产、 腭裂、 肢体缺如、 肢体分化障碍、 透明膜病、 肺膨胀不全、 多囊肾、 双输尿管、 隐睾、 先天性腹股沟疝、 双子宫、 阴道闭锁、 尿道下裂、 两性畸形、 房间隔缺损、 室间隔缺损、 肺动脉狭窄、 动脉导管未闭、 神经管缺陷、 先天性脑积水、 虹膜缺损、 先天性白内障、 先天性青光眼或白内障、 先天性耳聋
生长发育障碍性疾病: 精神发育迟缓、 脑性瘫痪、 脑发育障碍、 智力障碍、 家族性脑神经核发育不全综合症、 斜视、 皮肤、 脂肪和肌肉发育不良性疾病如先 天性皮肤松弛症、 早老症、 先天性角化不良, 各种代谢缺陷病如各种氨基酸代谢 缺陷症、 呆小症、 侏儒症、 性发育迟缓症
本发明的 Ra s GTP酶激活蛋白 1 2的表达异常还将产生某些遗传性, 血液性 疾病及免疫系统疾病等。
本发明的多肽以及该多肽的拮抗剂、 激动剂和抑制剂可直接用于疾病治 疗, 例如, 可治疗各种疾病尤其是各种肿瘤、 胚胎发育紊乱症、 生长发育障碍性 疾病, 某些遗传性, 血液性疾病及免疫系统疾病等。
本发明也提供了筛选化合物以鉴定提高(激动剂)或阻遏(拮抗剂) Ra s GTP 酶激活蛋白 1 2 的药剂的方法。 激动剂提高 Ra s GTP酶激活蛋白 1 2刺激细胞增 殖等生物功能, 而拮抗剂阻止和治疗与细胞过度增殖有关的紊乱如各种癌症。 例如, 能在药物的存在下, 将哺乳动物细胞或表达 Ra s GTP 酶激活蛋白 1 2 的 膜制剂与标记的 Ra s GTP 酶激活蛋白 1 2 —起培养。 然后测定药物提高或阻遏 此相互作用的能力。
Ra s GTP酶激活蛋白 1 2的拮抗剂包括筛选出的抗体、 化合物、 受体缺失物 和类似物等。 Ra s GTP 酶激活蛋白 1 2 的拮抗剂可以与 Ra s GTP 酶激活蛋白 1 2 结合并消除其功能, 或是抑制该多肽的产生, 或是与该多肽的活性位点结合使 该多肽不能发挥生物学功能。
在筛选作为拮抗剂的化合物时, 可以将 Ra s GTP 酶激活蛋白 1 2 加入生物 分析测定中, 通过测定化合物对 Ra s GTP 酶激活蛋白 1 2 和其受体之间相互作 用的影响来确定化合物是否是拮抗剂。 用上述筛选化合物的同样方法, 可以筛 选出起拮抗剂作用的受体缺失物和类似物。 能与 Ra s GTP 酶激活蛋白 1 2 结合 的多肽分子可通过筛选由各种可能组合的氨基酸结合于固相物组成的随机多肽 库而获得。 筛选时, 一般应对 Ra s GTP酶激活蛋白 12分子进行标记。 本发明提供了用多肽, 及其片段、 衍生物、 类似物或它们的细胞作为抗原 以生产抗体的方法。 这些抗体可以是多克隆抗体或单克隆抗体。 本发明还提供 了针对 Ras GTP酶激活蛋白 12抗原决定簇的抗体。 这些抗体包括(但不限于): 多克隆抗体、 单克隆抗体、 嵌合抗体、 单链抗体、 Fab 片段和 Fab 表达文库产 生的片段。
多克隆抗体的生产可用 Ras GTP 酶激活蛋白 12 直接注射免疫动物 (如家 兔, 小鼠, 大鼠等) 的方法得到, 多种佐剂可用于增强免疫反应, 包括但不限 于弗氏佐剂等。 制备 Ras GTP 酶激活蛋白 12 的单克隆抗体的技术包括但不限 于杂交瘤技术(Kohler and Milstein. Nature, 1975, 256: 495-497) , 三瘤技 术, 人 Β-细胞杂交瘤技术, EBV-杂交瘤技术等。 将人恒定区和非人源的可变区 结合的嵌合抗体可用已有的技术生产(Morrison et al , PNAS, 1985, 81: 6851)„ 而已有的生产单链抗体的技术(U. S. Pat No.4946778)也可用于生产抗 Ras GTP 酶激活蛋白 12的单链抗体。
抗 Ras GTP 酶激活蛋白 12 的抗体可用于免疫组织化学技术中, 检测活检 标本中的 Ras GTP酶激活蛋白 12。
与 Ras GTP 酶激活蛋白 12 结合的单克隆抗体也可用放射性同位素标记, 注入体内可跟踪其位置和分布。 这种放射性标记的抗体可作为一种非创伤性诊 断方法用于肿瘤细胞的定位和判断是否有转移。
抗体还可用于设计针对体内某一特殊部位的免疫毒素。 如 Ras GTP 酶激活 蛋白 12 高亲和性的单克隆抗体可与细菌或植物毒素(如白喉毒素, 蓖麻蛋白, 红豆碱等)共价结合。 一种通常的方法是用巯基交联剂如 SPDP, 攻击抗体的氨 基,通过二硫键的交换,将毒素结合于抗体上,这种杂交抗体可用于杀灭 Ras GTP 酶激活蛋白 12阳性的细胞。
本发明中的抗体可用于治疗或预防与 Ras GTP酶激活蛋白 12相关的疾病。 给予适当剂量的抗体可以刺激或阻断 Ras GTP酶激活蛋白 12的产生或活性。
本发明还涉及定量和定位检测 Ras GTP 酶激活蛋白 12 水平的诊断试验方 法。 这些试验是本领域所熟知的, 且包括 FISH 测定和放射免疫测定。 试验中 所检测的 Ras GTP酶激活蛋白 12水平, 可以用作解释 Ras GTP酶激活蛋白 12 在各种疾病中的重要性和用于诊断 Ras GTP酶激活蛋白 12起作用的疾病。
本发明的多肽还可用作肽谱分析, 例如, 多肽可用物理的、 化学或酶进行 特异性切割, 并进行一维或二维或三维的凝胶电泳分析,更好的是进行质谱分 析。 编码 Ras GTP 酶激活蛋白 12 的多核苷酸也可用于多种治疗目的。 基因治 疗技术可用于治疗由于 Ras GTP酶激活蛋白 12 的无表达或异常 /无活性表达所 致的细胞增殖、 发育或代谢异常。 重组的基因治疗载体(如病毒载体)可设计用 于表达变异的 Ras GTP酶激活蛋白 12, 以抑制内源性的 Ras GTP酶激活蛋白 12 活性。 例如, 一种变异的 Ras GTP 酶激活蛋白 12 可以是缩短的、 缺失了信号 传导功能域的 Ras GTP酶激活蛋白 12, 虽可与下游的底物结合, 但缺乏信号传 导活性。 因此重组的基因治疗载体可用于治疗 Ras GTP 酶激活蛋白 12 表达或 活性异常所致的疾病。 来源于病毒的表达载体如逆转录病毒、 腺病毒、 腺病毒 相关病毒、 单纯疱疹病毒、 细小病毒等可用于将编码 Ras GTP 酶激活蛋白 12 的多核苷酸转移至细胞内。 构建携带编码 Ras GTP 酶激活蛋白 12 的多核苷酸 的重组病毒载体的方法可见于已有文献(Sambrook,et al.)。 另外重组编码 Ras GTP酶激活蛋白 12的多核苷酸可包装到脂质体中转移至细胞内。
多核苷酸导入组织或细胞内的方法包括: 将多核苷酸直接注入到体内组织 中; 或在体外通过载体(如病毒、 噬菌体或质粒等)先将多核苷酸导入细胞中, 再将细胞移植到体内等。
抑制 Ras GTP酶激活蛋白 12 mRNA的寡核苷酸(包括反义 RNA和 DNA)以及 核酶也在本发明的范围之内。 核酶是一种能特异性分解特定 RM的酶样 RNA分 子, 其作用机制是核酶分子与互补的靶 RNA 特异性杂交后进行核酸内切作用。 反义的 RNA和 DNA及核酶可用已有的任何 RNA或 DNA合成技术获得, 如固相磷 酸酰胺化学合成法合成寡核苷酸的技术已广泛应用。 反义 RNA 分子可通过编码 该 RNA的 DNA序列在体外或体内转录获得。 这种 DNA序列已整合到载体的 RNA 聚合酶启动子的下游。 为了增加核酸分子的稳定性, 可用多种方法对其进行修 饰, 如增加两侧的序列长度, 核糖核苷之间的连接应用磷酸硫酯键或肽键而非 磷酸二酯键。
编码 Ras GTP酶激活蛋白 12 的多核苷酸可用于与 Ras GTP酶激活蛋白 12 的相关疾病的诊断。编码 Ras GTP酶激活蛋白 12的多核苷酸可用于检测 Ras GTP 酶激活蛋白 12的表达与否或在疾病状态下 Ras GTP酶激活蛋白 12的异常表达。 如编码 Ras GTP酶激活蛋白 12的 DNA序列可用于对活检标本进行杂交以判断 Ras GTP酶激活蛋白 12 的表达状况。 杂交技术包括 Southern 印迹法、 Northern 印 迹法、 原位杂交等。 这些技术方法都是公开的成熟技术, 相关的试剂盒都可从 商业途径得到。 本发明的多核苷酸的一部分或全部可作为探针固定在微阵列 (Microarray)或 DNA 芯片(又称为 "基因芯片" )上, 用于分析组织中基因的差 异表达分析和基因诊断。 用 Ras GTP酶激活蛋白 12 特异的引物进行 RNA-聚合 酶链反应(RT-PCR)体外扩增也可检测 Ras GTP酶激活蛋白 12的转录产物。
检测 Ras GTP酶激活蛋白 12基因的突变也可用于诊断 Ras GTP酶激活蛋 白 12相关的疾病。 Ras GTP酶激活蛋白 12突变的形式包括与正常野生型 Ras GTP 酶激活蛋白 12 DNA 序列相比的点突变、 易位、 缺失、 重组和其它任何异常等。 可用已有的技术如 Southern印迹法、 DNA序列分析、 PCR和原位杂交检测突变。 另外, 突变有可能影响蛋白的表达, 因此用 Northern 印迹法、 Western 印迹法 可间接判断基因有无突变。
本发明的序列对染色体鉴定也是有价值的。 该序列会特异性地针对某条人 染色体具体位置并且可以与其杂交。 目前, 需要鉴定染色体上的各基因的具体 位点。 现在, 只有很少的基于实际序列数据(重复多态性)的染色体标记物可用 于标记染色体位置。 根据本发明, 为了将这些序列与疾病相关基因相关联, 其 重要的第一步就是将这些 DM序列定位于染色体上。
简而言之, 根据 cDNA制备 PCR引物(优选 15-35bp) , 可以将序列定位于染色 体上。 然后, 将这些引物用于 PCR筛选含各条人染色体的体细胞杂合细胞。 只 有那些含有相应于引物的人基因的杂合细胞会产生扩增的片段。
体细胞杂合细胞的 PCR定位法, 是将 DNA定位到具体染色体的快捷方法。 使 用本发明的寡核苷酸引物, 通过类似方法, 可利用一组来自特定染色体的片段 或大量基因组克隆而实现亚定位。 可用于染色体定位的其它类似策略包括原位 杂交、 用标记的流式分选的染色体预筛选和杂交预选, 从而构建染色体特异的 cDNA库。
将 cDNA克隆与中期染色体进行荧光原位杂交(FISH) , 可以在一个步骤中精 确地进行染色体定位。此技术的综述参见 Verma等, Human Chromosomes: a Manual of Basic Techniques, Pergamon Press, New York (1988)。
一旦序列被定位到准确的染色体位置, 此序列在染色体上的物理位置就可 以与基因图数据相关联。 这些数据可见于 V. Mckusick,Mendelian Inheritance in Man (可通过与 Johns Hopkins University Welch Medical Library联机获 得)。 然后可通过连锁分析, 确定基因与业已定位到染色体区域上的疾病之间 的关系。
接着, 需要测定患病和未患病个体间的 cDNA或基因组序列差异。 如果在一 些或所有的患病个体中观察到某突变, 而该突变在任何正常个体中未观察到, 则该突变可能是疾病的病因。 比较患病和未患病个体, 通常涉及首先寻找染色 体中结构的变化, 如从染色体水平可见的或用基于 cDNA序列的 PCR可检测的缺 失或易位。 根据目前的物理作图和基因定位技术的分辨能力, 被精确定位至与 疾病有关的染色体区域的 cDNA , 可以是 50至 500个潜在致病基因间之一种(假定 1兆碱基作图分辨能力和每 20kb对应于一个基因)。
可以将本发明的多肽、 多核苷酸及其模拟物、 激动剂、 拮抗剂和抑制剂与 合适的药物载体组合后使用。 这些载体可以是水、 葡萄糖、 乙醇、 盐类、 缓冲 液、 甘油以及它们的组合。 组合物包含安全有效量的多肽或拮抗剂以及不影响 药物效果的载体和赋形剂。 这些组合物可以作为药物用于疾病治疗。
本发明还提供含有一种或多种容器的药盒或试剂盒, 容器中装有一种或多 种本发明的药用组合物成分。 与这些容器一起, 可以有由制造、 使用或销售药 品或生物制品的政府管理机构所给出的指示性提示, 该提示反映出生产、 使用 或销售的政府管理机构许可其在人体上施用。 此外, 本发明的多肽可以与其它 的治疗化合物结合使用。
药物组合物可以以方便的方式给药, 如通过局部、 静脉内、 腹膜内、 肌内、 皮下、 鼻内或皮内的给药途径。 Ras GTP 酶激活蛋白 12 以有效地治疗和 /或预 防具体的适应症的量来给药。 施用于患者的 Ras GTP 酶激活蛋白 12 的量和剂 量范围将取决于许多因素, 如给药方式、 待治疗者的健康条件和诊断医生的判 断。 实施例
下面结合具体实施例, 进一步阐述本发明。 应理解, 这些实施例仅用于说明 本发明而不用于限制本发明的范围。 下列实施例中未注明具体条件的实验方法, 通常按照常规条件如 Sambrook 等人, 分子克隆: 实验室手册(New York: Co ld Spr ing Harbor Labora tory Press, 1989)中所述的条件, 或按照制造厂商所建议 的条件。
实施例 1 Ras GTP酶激活蛋白 12的克隆
用异硫氰酸胍 /酚 /氯仿一步法提取人胎脑总 R 。 用 Quik mRNA I solat ion K i t ( Qiegene 公司产品) 从总 RNA中分离 poly (A) mRNA。 2ug poly (A) mRNA经逆转录 形成 cDNA。用 Smart cDNA克隆试剂盒(购自 Clontech )将cDNA片段定向插入到 pBSK (+) 载体(Clontech公司产品)的多克隆位点上, 转化 DH5 α , 细菌形成 cDNA文库。 用 Dye termina te cyc le react ion sequenc ing ki t (Perkin-Elmer公司产品) 和 ABI 377 自动测序仪(Perkin- Elmer公司)测定所有克隆的 5'和 3'末端的序列。将测定的 cDNA 序列与已有的公共 DNA序列数据库 (Genebank) 进行比较, 结果发现其中一个克隆 0488H11的 cDNA序列为新的 DM。 通过合成一系列引物对该克隆所含的插入 cDNA片 段进行双向测定。结果表明, 0488H11克隆所含的全长 cDNA为 4311bp (如 Seq IDN0: 1 所示) , 从第 221bp至 544bp有一个 324bp的开放阅读框架 ( 0RF ) , 编码一个新的 蛋白质 (如 Seq ID NO: 2所示) 。 我们将此克隆命名为 pBS- 0488H11 , 编码的蛋白 质命名为 Ras GTP酶激活蛋白 12。 实施例 2 cDNA 克隆的结构域分析
将本发明的 Ras GTP酶激活蛋白 12的序列及其编码的蛋白序列, 用 GCG中的 profile scan程序 (Basic local alignment search tool) [Altschul, SF et al. J.Mol. Biol.1990; 215: 403-10] ,在 pros i te等数据库进行结构域分析。本发明的 Ras GTP酶激活蛋白 12在 23-100与结构域 Ras GTP酶激活蛋白特征性序列片段有同源, 同源结果示于图 1, 同源率为 0.23, 得分为 12.45; 阈值为 12.27。 实施例 3 用 RT-PCR方法克隆编码 Ras GTP酶激活蛋白 12的基因
用胎脑细胞总 RNA为模板,以 oligo-dT为引物进行逆转录反应合成 cDNA,用 Qiagene的试剂盒纯化后,用下列引物进行 PCR扩增:
Primerl: 5'- GGCTTCAAATTGGATGGCACTGCA -3' (SEQ ID NO: 3)
Primer2: 5'- CAAAGATGTCTCAGTTTATTAGTT -3' (SEQ ID NO: 4)
Primerl为位于 SEQ ID NO: 1的 5,端的第 lbp开始的正向序列;
Pritner2为 SEQ ID NO: 1的中的 3'端反向序列。
扩增反应的条件: 在 50μ1的反应体积中含有 50隱 ol/L C1, 10mraol/L Tris- HCl,pH8.5, 1.5mmol/L MgCl2, 2( mol/L dNTP, lOpmol引物, 1U的 Taq DNA聚合酶 (Clontech公司产品)。 在 PE9600型 DNA热循环仪(Perkin- Elmer公司)上按下列条件 反应 25个周期: 94。C 30sec; 55°C 30sec; 72°C 2min0 在 RT- PCR时同时设 β -act in 为阳性对照和模板空白为阴性对照。 扩增产物用 QIAGEN公司的试剂盒纯化, 用 TA 克隆试剂盒连接到 pCR载体上 ( Invitrogen公司产品) 。 DNA序列分析结果表明 PCR 产物的 DNA序列与 SEQ ID NO: 1所示的 l-4311bp完全相同。 实施例 4 Northern 印迹法分析 Ras GTP酶激活蛋白 12基因的表达 用一步法提取总 RNA[Anal. Biochem 1987, 162, 156-159]„ 该法包括酸性硫 氰酸胍苯酚-氯仿抽提。 即用 4M异硫氰酸胍 -25mM柠檬酸钠, 0.2M乙酸钠 ( pH4.0 ) 对组织进行匀浆, 加入 1倍体积的苯酚和 1/5体积的氯仿-异戊醇 (49: 1 ) , 混合 后离心。 吸出水相层, 加入异丙醇 (0.8体积) 并将混合物离心得到 RNA沉淀。 将 得到的 RNA沉淀用 70%乙醇洗涤, 干燥并溶于水中。 用 2(^g RNA, 在含 20mM 3- ( N- 吗啉代) 丙磺酸 (pH7.0) -5mM乙酸纳 - ImM EDTA-2.2M甲醛的 1.2%琼脂糖凝胶上进 行电泳。 然后转移至硝酸纤维素膜上。 用 oc-32P dATP通过随机引物法制备 32P-标记 的 DM探针。 所用的 D 探针为图 1所示的 PCR扩增的 Ras GTP酶激活蛋白 12编码区序 列(221bp至 544bp)。 将 32P-标记的探针 (约 2 χ 106cpm/ml ) 与转移了 RNA的硝酸纤 维素膜在一溶液中于 42°C杂交过夜, 该溶液包含 50%甲酰胺 -25mM KH2P04 ( pH7.4 ) -5 χ SSC-5 χ Denhardt's溶液和 20(^g/ml鲑精 DNA。 杂交之后, 将滤膜在 1 x SSC- 0.1°/。SDS中于 55。C洗 30min。 然后, 用 Phosphor Imager进行分析和定量。 实施例 5 重组 Ras GTP酶激活蛋白 12的体外表达、 分离和纯化
根据 SEQ ID N0: 1和图 1所示的编码区序列, 设计出一对特异性扩增引物, 序 列如下:
Primer3: 5'- CATGCTAGCATGTTGACAGAGTCTTGCTCTATT -3' ( Seq ID No: 5 ) Primer4: 5'- CCCAAGCTTTTATGCTCCTAGTGGAATTGAACC -3' ( Seq ID No: 6 ) 此两段引物的 5'端分别含有 Nhel和 Hindlll酶切位点, 其后分别为目的基因 5' 端和 3'端的编码序列, Nhel和 Hindlll酶切位点相应于表达载体质粒 pET - 28M+) (Novagen公司产品, Cat. No.69865.3)上的选择性内切酶位点。 以含有全长 目的基因的 pBS- 0488H11质粒为模板, 进行 PCR反应。 PCR反应条件为: 总体积 50μ1 中含 PBS-0488H11质粒 10pg、 引物 Primer- 3和 Pr imer- 4分别为 lOpmol、 Advantage polymerase Mix (Clontech公司产品) 1μ1。 循环参数: 94°C 20s, 60°C 30s, 68°C 2 min,共 25个循环。 用 Nhel和 Hindlll分别对扩增产物和质粒 pET-28 (+)进行双酶切, 分别回收大片段,并用 T4连接酶连接。 连接产物转化用氯化钙法大肠杆细菌 DH5cc, 在含卡那霉素 (终浓度 30μ8/ηι1 ) 的 LB平板培养过夜后, 用菌落 PCR方法筛选阳性 克隆, 并进行测序。 挑选序列正确的阳性克隆(pET- 0488H11 )用氯化钙法将重组 质粒转化大肠杆菌 BL21(DE3)plySs (Novagen公司产品)。 在含卡那霉素 (终浓度 3(^g/ml ) 的 LB液体培养基中, 宿主菌 BL21 ( ρΕΤ-0488Η11 ) 在 37°C培养至对数生 长期, 加入 IPTG至终浓度 1瞧 ol/L, 继续培养 5小时。 离心收集菌体, 经超声波破 菌,离心收集上清液, 用能与 6个组氨酸 (6His-Tag) 结合的亲和层析柱 His. Bind Quick Cartridge ( Novagen公司产品) 进行层析, 得到了纯化的目的蛋白 Ras GTP 酶激活蛋白 12。 经 SDS-PAGE电泳, 在 12kDa处得到一单一的条带 (图 2) 。 将该条 带转移至 PVDF膜上用 Edams水解法进行 N-端氨基酸序列分析, 结果 N-端 15个氨基酸 与 SEQ ID NO: 2所示的 N-端 15个氨基酸残基完全相同。 实施例 6 抗 Ras GTP酶激活蛋白 12抗体的产生
用多肽合成仪 (PE公司产品)合成下述 Ras GTP酶激活蛋白 12特异性的多肽: NH2-Met-Leu-Thr-Glu-Ser-Cys-Ser-I le-Ala-Gln-Ala-Ala-Thr-Gly-Va l- C00H (SEQ ID NO: 7)。 将该多肽分别与血蓝蛋白和牛血清白蛋白耦合形成复合物, 方法参见: Avrameas, et a l. Immunochemi s try, 1969; 6: 43。 用 4mg上述血蓝蛋白 多肽复合物加上完全弗氏佐剂免疫家兔, 15天后再用血蓝蛋白多肽复合物加不完 全弗氏佐剂加强免疫一次。 采用经 15 g/ml牛血清白蛋白多肽复合物包被的滴定板 做 ELISA测定兔血清中抗体的滴度。 用蛋白 A- Sepharose从抗体阳性的家兔血清中 分离总 IgG。 将多肽结合于溴化氰活化的 Sepharose4B柱上, 用亲和层析法从总 IgG 中分离抗多肽抗体。 免疫沉淀法证明纯化的抗体可特异性地与 Ras GTP酶激活蛋白 12结合。 实施例 7 本发明的多核苷酸片段用作杂交探针的应用
从本发明的多核苷酸中挑选出合适的寡核苷酸片段用作杂交探针有多方面的 用途, 如用该探针可与不同来源的正常组织或病理组织的基因组或 cDNA文库杂交 以鉴定其是否含有本发明的多核苷酸序列和检出同源的多核苷酸序列,进一步还可 用该探针检测本发明的多核苷酸序列或其同源的多核苷酸序列在正常组织或病理 组织细胞中的表达是否异常。
本实施例的目的是从本发明的多核苷酸 SEQ ID NO: 1 中挑选出合适的寡核苷 酸片段用作杂交探针, 并用滤膜杂交方法鉴定一些组织中是否含有本发明的多核 苷酸序列或其同源的多核苷酸序列。 滤膜杂交方法包括斑点印迹法、 Southern 印 迹法、 Nor thern 印迹法和复印方法等, 它们都是将待测的多核苷酸样品固定在滤 膜上后使用基本相同的步骤杂交。 这些相同的步骤是: 固定了样品的滤膜首先用 不含探针的杂交缓冲液进行预杂交, 以使滤膜上样品的非特异性的结合部位被载 体和合成的多聚物所饱和。 然后预杂交液被含有标记探针的杂交缓冲液替换, 并 保温使探针与靶核酸杂交。 杂交步骤之后, 未杂交上的探针被一系列洗膜步骤除 掉。 本实施例利用较高强度的洗膜条件 (如较低盐浓度和较高的温度), 以使杂交 背景降低且只保留特异性强的信号。 本实施例选用的探针包括两类: 第一类探针 是完全与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段; 第二类探 针是部分与本发明的多核苷酸 SEQ ID NO: 1相同或互补的寡核苷酸片段。 本实施 例选用斑点印迹法将样品固定在滤膜上, 在较高强度的的洗膜条件下, 第一类探 针与样品的杂交特异性最强而得以保留。
一、 探针的选用
从本发明的多核苷酸 SEQ ID NO: 1 中选择寡核苷酸片段用作杂交探针, 应遵 循以下原则和需要考虑的几个方面:
1, 探针大小优选范围为 18-50个核苷酸;
2, GC含量为 30%-70%, 超过则非特异性杂交增加;
3, 探针内部应无互补区域;
4, 符合以上条件的可作为初选探针, 然后进一步作计算机序列分析, 包 括将该初选探针分别与其来源序列区域 (即 SEQ ID NO: 1 ) 和其它已知的基因组 序列及其互补区进行同源性比较, 若与非靶分子区域的同源性大于 85%或者有超过 15个连续碱基完全相同, 则该初选探针一般就不应该使用;
5, 初选探针是否最终选定为有实际应用价值的探针还应进一步由实验确 定。
完成以上各方面的分析后挑选并合成以下二个探针:
探针 1 (probel ), 属于第一类探针, 与 SEQ ID NO: 1 的基因片段完全同源 或互补(41Nt )
5'- TGTTGACAGAGTCTTGCTCTATTGCCCAGGCTGCAACTGGT -3' ( SEQ ID NO: 8 ) 探针 1 (probe2), 属于第二类探针, 相当于 SEQ ID NO: 1 的基因片段或其 互补片段的替换突变序列 (41Nt):
5'- TGTTGACAGAGTCTTGCTCTGTTGCCCAGGCTGCAACTGGT -3' ( SEQ ID NO: 9 ) 与以下具体实验步骤有关的其它未列出的常用试剂及其配制方法请参考文 献: DNA PROBES G. H. Keller; Μ· M. Manak; Stockton Press, 1989 (USA)以及更常 用的分子克隆实验手册书籍如 《分子克隆实验指南》 U998年第二版) [美]萨姆布 鲁克等著, 科学出版社。
样品制备
1, 从新鲜或冰冻组织中提取 DNA
步骤: 1 ) 将新鲜或新鲜解冻的正常肝组织放入浸在冰上并盛有磷酸盐缓冲液 (PBS) 的平皿中。 用剪刀或手术刀将组织切成小块。 搡作中应保持组织湿润。 2) 以 lOOOg离心切碎组织 10分钟。 3) 用冷匀浆缓冲液 ( 0.25mol/L蔗糖; 25mmol/L Tris-HCl,pH7.5; 25mmol/L NaCl; 25mmol/L MgCl2 ) 悬浮沉淀 (大约 lOml/g )。 4) 在 4°C 用电动匀浆器以全速匀浆组织悬液, 直至组织被完全破碎。 5) lOOOg 离心 10分钟。 6)用重悬细胞沉淀(每 0. lg最初组织样品加 1- 5ml ), 再以 lOOOg离心 10分钟。 7)用裂解缓冲液重悬沉淀(每 O. lg最初组织样品加 lml ), 然后接以下
2, DNA的苯酚抽提法
步骤: 1 )用 l-10ml冷 PBS洗细胞, lOOOg离心 10分钟。 2 )用冷细胞裂解 液重悬浮沉淀的细胞 (I x lO8细胞 /ml ) 最少应用 lOOul 裂解缓冲液。 3)加 SDS 至终浓度为 1%, 如果在重悬细胞之前将 SDS 直接加入到细胞沉淀中, 细胞可能会 形成大的团块而难以破碎, 并降低总产率。 这一点在抽提 >107细胞时特别严重。 4) 加蛋白酶 K至终浓度 200ug/ml。 5) 50°C保温反应 1小时或在 37°C轻轻振摇过夜。 6)用等体积苯酚: 氯仿: 异戊醇 ( 25: 24: 1 )抽提, 在小离心机管中离心 10分 钟。 两相应清楚分离, 否则重新进行离心。 7) 将水相转移至新管。 8) 用等体积 氯仿: 异戊醇 (24: 1 )抽提, 离心 10分钟。 9)将含 DNA的水相转移至新管。 然 后进行 DNA的纯化和乙醇沉淀。
3, DNA的纯化和乙醇沉淀
步骤: 1 ) 将 1八 0体积 2mol/L醋酸纳和 2倍体积冷 100%乙醇加到 DNA溶液 中, 混匀。 在 -20°C放置 1 小时或过夜。 2) 离心 10分钟。 3) 小心吸出或倒出乙 醇。 4)用 70%冷乙醇 500ul洗涤沉淀, 离心 5分钟。 5)小心吸出或倒出乙醇。 用 500ul 冷乙醇洗涤沉淀, 离心 5 分钟。 6)小心吸出或倒出乙醇, 然后在吸水纸上 倒置使残余乙醇流尽。 空气干燥 10-15 分钟, 以使表面乙醇挥发。 注意不要使沉 淀完全干燥, 否则较难重新溶解。 7) 以小体积 TE或水重悬 DNA 沉淀。 低速涡旋 振荡或用滴管吹吸, 同时逐渐增加 TE, 混合至 DNA充分溶解, 每 1-5χ 106细胞所 提取的大约加 lul。
以下第 8-13步骤仅用于必须除去污染时, 否则可直接进行第 14步骤。
8) 将 RNA酶 A加到 DNA溶液中, 终浓度为 10(^g/ml, 37°C保温 30分钟。 9) 加入 SDS和蛋白酶 K, 终浓度分别为 0.5%和 100ug/ml。 37。C保温 30分钟。 10) 用等体积的苯酚: 氯仿: 异戊醇 ( 25: 24: 1 )抽提反应液, 离心 10 分钟。 11 ) 小心移出水相, 用等体积的氯仿: 异戊醇 (24: 1 ) 重新抽提, 离心 10分钟。 12) 小心移出水相, 加 1/10体积 2mol/L醋酸钠和 2.5体积冷乙醇, 混匀置 - 20°C 1小 时。 13) 用 70%乙醇及 100%乙醇洗涤沉淀, 空气干燥, 重悬核酸, 过程同第 3 - 6 步骤。 14) 测定 A26。和 A28。以检测 DNA的纯度及产率。 15)分装后存放于 -20° (:。 样膜的制备
1 ) 取 4x 2 张适当大小的硝酸纤维素膜(NC 膜), 用铅笔在其上轻轻标出 点样位置及样号, 每一探针需两张 NC膜, 以便在后面的实验步骤中分别用高强度 条件和强度条件洗膜 。
2) 吸取及对照各 15微升, 点于样膜上, 在室温中晾干。
3 ) 置于浸润有 0. lmol/L NaOH, 1.5mol/L NaCl的滤纸上 5分钟 (两次 ), 晾干置于浸润有 0.5mol/L Tris-HCl ( pH7.0), 3mol/L NaCl 的滤纸上 5分钟 (两 次), 晾干。
4) 夹于干净滤纸中, 以铝箔包好, 60-80°C真空干燥 2小时。
探针的标记
1 )3μ1 Probe( 0. IOD/Ιθμΐ ),加入 2 lKinase缓冲液,8-10 uCi γ- 32P-dATP+2U Kinase, 以补加至终体积 20μ1。
2) 37 °C 保温 2小时。
3)加 1/5体积的溴酚蓝指示剂 (BPB)。
4 ) 过 Sephadex G-50柱。
5 ) 至有 32P-Pr0be洗出前开始收集第一峰(可用 Monitor监测)。
6) 5滴 /管, 收集 10-15管。
7)用液体闪烁仪监测同位素量。
8)合并第一峰的收集液后即为所需制备的 32P-Probe (第二峰为游离 γ- 32P- dATP )。
预杂交
将样膜置于塑料袋中,加入 3-lOmg预杂交液( 10xDenhardt-s;6xSSC, 0. lmg/ml CT DM (小牛胸腺 DNA))。 封好袋口后, 68°C水浴摇 2小时。
杂交
将塑料袋剪去一角, 加入制备好的探针, 封好袋口后, 42°C水浴摇过夜。 洗膜:
高强度洗膜:
1 )取出已杂交好的样膜。
2 ) 2xSSC, 0.1%SDS中, 40。C洗 15分钟 ( 2次)。
3 ) 0. lxSSC, 0.1%SDS中, 40°C洗 15分钟 ( 2次)。
4) 0. lxSSC, 0.1%SDS中, 55。C洗 30分钟 ( 2次), 室温晾干。 低强度洗膜:
1 )取出已杂交好的样膜。
2 ) 2xSSC , 0. 1°/。SDS中, 37。C洗 15分钟 ( 2次)。
3 ) 0. l xSSC, 0. 1%SDS中, 37°C洗 15分钟 ( 2次)。
4 ) 0. l xSSC, 0. 1%SDS中, 40。C洗 15分钟 ( 2次), 室温晾干。
X -光自显影:
-70°C , X-光自显影 (压片时间根据杂交斑放射性强弱而定)。
实验结果:
采用低强度洗膜条件所进行的杂交实验, 以上两个探针杂交斑放射性强弱没 有明显区别; 而采用高强度洗膜条件所进行的杂交实验, 探针 1 的杂交斑放射性 强度明显强于另一个探针杂交斑的放射性强度。 因而可用探针 1 定性和定量地分 析本发明的多核苷酸在不同组织中的存在和差异表达。 实施例 8 DNA Mi croarray
基因芯片或基因微矩阵 (DM Microarray )是目前许多国家实验室和大制药 公司都在着手研制和开发的新技术, 它是指将大量的靶基因片段有序地、 高密度 地排列在玻璃、 硅等载体上, 然后用荧光检测和计算机软件进行数据的比较和分 析, 以达到快速、 高效、 高通量地分析生物信息的目的。 本发明的多核苷酸可作 为靶 DNA 用于基因芯片技术用于高通量研究新基因功能; 寻找和筛选组织特异性 新基因特别是肿瘤等疾病相关新基因; 疾病的诊断, 如遗传性疾病。 其具体方法 步骤在文献中已有多种报道, 如可参阅文献 DeR i s i , J. L., Lyer, V. &Brown, P. 0.
(1997) Science 278, 680-686.及文献 Hel le, R. A., Schema, M., Cha i, A., Shalom, D. ,
(1997) PNAS 94: 2150-2155.
(一) 点样
各种不同的全长 cDNA共计 4000条多核苷酸序列作为靶 DM,其中包括本发明 的多核苷酸。 将它们分别通过 PCR 进行扩增, 纯化所得扩增产物后将其浓度调到 500ng/ l 左右, 用 Car tes i an 7500 点样仪(购自美囯 Car tes i an公司)点于玻璃 介质上, 点与点之间的距离为 280μιη。 将点样后的玻片进行水合、 干燥、 置于紫 外交联仪中交联, 洗脱后干燥使 DNA 固定在玻璃片上制备成芯片。 其具体方法步 骤在文献中已有多种报道。 本实施例的点样后处理步骤是:
1. 潮湿环境中水合 4小时; 2. 0.2%SDS洗涤 1分钟;
3. ddH20洗涤两次, 每次 1分钟;
4. NaBH4封闭 5分钟;
5. 95°C水中 2分钟;
6. 0.2%SDS洗涤 1分钟;
7. ddH20冲洗两次;
8. 凉干, 25°C储存于暗处备用。
(二)探针标记
用一步法分别从正常肝与肝癌中抽提总 mRNA,并用 Oligotex mRNAMidi Kit (购 自 QiaGen 公司)纯化 mRNA,通过反转录分别将荧光试剂 Cy3dUTP (5- Amino- propargy 1-2' -deoxyuri dine 5' - triphate coupled to Cy3 fluorescent dye, 购 自 Amersham Phamacia Biotech 公司)标记正常肝组织的 mRNA, 用荧光试剂 Cy5dUTP (5-Amino-propargy 1-2· -deoxyuri dine 5'-triphate coupled to Cy5 fluorescent dye, 购自 Amersham Phamacia Biotech公司)标记肝癌组织 mRNA, 经纯化后制备出探针。 具体步骤参照及方法见
Schena,M., Shalon, D., Heller, R. (1996) Proc. Natl. Acad. Sci. USA. Vol.93: 10614-10619. Schena, M. , Shalon, Dari. , Davis, R. W. (1995) Science.270 (20): 467-480.
(三) 杂交
分别将来自以上两种组织的探针与芯片一起在 UniHyb™ Hybridization Solution (购自 TeleChem公司)杂交液中进行杂交 16 小时, 室温用洗涤液 (l x SSC, 0.2%SDS ) 洗涤后用 ScanArray 3000扫描仪 (购自美囯 General Scanning公 司)进行扫描, 扫描的图象用 Imagene软件 (美国 Biodiscovery公司) 进行数据 分析处理, 算出每个点的 Cy3/Cy5 比值, 该比值小于 0.5 大于 2 的点被认为是表 达有差异的基因。
实验结果表明, Cy3 signal=2383.51 ( 取四次实验的平均值 ) , Cy5 signal=2314.29 (取四次实验的平均值) , Cy3/Cy5=l.030,本发明的多核苷酸在以 上两种组织中的表达无明显差异。

Claims

权利要求
1、一种分离的多肽- Ra s GTP酶激活蛋白 12,其特征在于它包含有: SEQ ID NO: 2 所示的氨基酸序列的多肽、 或其多肽的活性片段、 类似物或衍生物。
2、 如权利要求 1所述的多肽, 其特征在于所述多肽、 类似物或衍生物的氨基 酸序列具有与 SEQ ID NO: 2所示的氨基酸序列至少 95%的相同性。
3、 如权利要求 2所述的多肽, 其特征在于它包含具有 SEQ I D NO: 2所示的氨 基酸序列的多肽。
4、 一种分离的多核苷酸, 其特征在于所述多核苷酸包含选自下组中的一种:
(a) 编码具有 SEQ ID NO: 2 所示氨基酸序列的多肽或其片段、 类似物、 衍 生物的多核苷酸;
(b) 与多核苷酸 ) 互补的多核苷酸; 或
(c) 与 (a )或 (b ) 有至少 70%相同性的多核苷酸。
5、 如权利要求 4 所述的多核苷酸, 其特征在于所述多核苷酸包含编码具 有 SEQ I D NO: 2所示氨基酸序列的多核苷酸。
6、如权利要求 4所述的多核苷酸,其特征在于所述多核苷酸的序列包含有 SEQ ID NO: 1中 221-544位的序列或 SEQ ID NO: 1中 1-431 1位的序列。
7、 一种含有外源多核苷酸的重组载体, 其特征在于它是由权利要求 4-6中的 任一权利要求所述多核苷酸与质粒、 病毒或运载体表达载体构建而成的重组载体。
8、 一种含有外源多核苷酸的遗传工程化宿主细胞, 其特征在于它是选自于下 列一种宿主细胞:
(a) 用权利要求 7所述的重组载体转化或转导的宿主细胞; 或
(b) 用权利要求 4-6中的任一权利要求所述多核苷酸转化或转导的宿主细胞。
9、 一种具有 Ra s GTP酶激活蛋白 12 活性的多肽的制备方法, 其特征在于所 述方法包括:
(a) 在表达 Ra s GTP酶激活蛋白 12条件下, 培养权利要求 8所述的工程化宿 主细胞;
(b) 从培养物中分离出具有 Ra s GTP酶激活蛋白 12活性的多肽。
10、 一种能与多肽结合的抗体,其特征在于所述抗体是能与 Ra s GTP酶激活蛋 白 12特异性结合的抗体。
Π、 一类模拟或调节多肽活性或表达的化合物, 其特征在于它们是模拟、 促 进、 拮抗或抑制 Ra s GTP酶激活蛋白 12的活性的化合物。
12、 如权利要求 11所述的化合物, 其特征在于它是 SEQ ID NO: 1所示的多核 苷酸序列或其片段的反义序列。
13、一种权利要求 11所述化合物的应用,其特征在于所述化合物用于调节 Ras GTP酶激活蛋白 12在体内、 体外活性的方法。
14、 一种检测与权利要求 1-3 中的任一权利要求所述多肽相关的疾病或疾病 易感性的方法, 其特征在于其包括检测所述多肽的表达量, 或者检测所述多肽的 活性, 或者检测多核苷酸中引起所述多肽表达量或活性异常的核苷酸变异。
15、 如权利要求 1-3 中的任一权利要求所述多肽的应用, 其特征在于它应用 于筛选 Ras GTP酶激活蛋白 12的模拟物、 激动剂, 拮抗剂或抑制剂; 或者用于肽 指紋图谱鉴定。
16、 如权利要求 4-6 中的任一权利要求所述的核酸分子的应用, 其特征在于 它作为引物用于核酸扩增反应, 或者作为探针用于杂交反应, 或者用于制造基因 芯片或微阵列。
17、 如权利要求 1-6及 11中的任一权利要求所述的多肽、 多核苷酸或化合物 的应用, 其特征在于用所述多肽、 多核苷酸或其模拟物、 激动剂、 拮抗剂或抑制 剂以安全有效剂量与药学上可接受的载体组成作为诊断或治疗与 Ras GTP 酶激活 蛋白 12异常相关的疾病的药物组合物。
18、 权利要求 1-6及 11 中的任一权利要求所述的多肽、 多核苷酸或化合物的 应用, 其特征在于用所述多肽、 多核苷酸或化合物制备用于治疗如恶性肿瘤, 血 液病, HIV感染和免疫性疾病和各类炎症的药物。
PCT/CN2000/000680 1999-12-27 2000-12-25 Nouveau polypeptide, proteine activant la ras gtpase 12, et polynucleotide codant pour ce polypeptide WO2001047998A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU23411/01A AU2341101A (en) 1999-12-27 2000-12-25 A novel polypeptide - ras gtpase-activating protein 12 and polynucleotide encoding the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99125367.1 1999-12-27
CN 99125367 CN1301712A (zh) 1999-12-27 1999-12-27 一种新的多肽——Ras GTP酶激活蛋白12和编码这种多肽的多核苷酸

Publications (1)

Publication Number Publication Date
WO2001047998A1 true WO2001047998A1 (fr) 2001-07-05

Family

ID=5283894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000680 WO2001047998A1 (fr) 1999-12-27 2000-12-25 Nouveau polypeptide, proteine activant la ras gtpase 12, et polynucleotide codant pour ce polypeptide

Country Status (3)

Country Link
CN (1) CN1301712A (zh)
AU (1) AU2341101A (zh)
WO (1) WO2001047998A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010572A1 (en) * 1990-12-07 1992-06-25 Cetus Oncology Corporation Native type ii gap, methods for purifying various gaps and uses of gaps to diagnose cancer
WO1993020201A1 (en) * 1992-03-31 1993-10-14 Whitehead Institute For Biomedical Research GAP-ASSOCIATED PROTEIN p190 AND TRANSDUCTION
US5639651A (en) * 1994-08-09 1997-06-17 The General Hospital Corporation Gap-related gene, human IQGAP1
WO1998037196A1 (en) * 1997-02-25 1998-08-27 Ludwig Institute For Cancer Research PARG, A GTPase ACTIVATING PROTEIN WHICH INTERACTS WITH PTPL1

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992010572A1 (en) * 1990-12-07 1992-06-25 Cetus Oncology Corporation Native type ii gap, methods for purifying various gaps and uses of gaps to diagnose cancer
WO1993020201A1 (en) * 1992-03-31 1993-10-14 Whitehead Institute For Biomedical Research GAP-ASSOCIATED PROTEIN p190 AND TRANSDUCTION
US5639651A (en) * 1994-08-09 1997-06-17 The General Hospital Corporation Gap-related gene, human IQGAP1
WO1998037196A1 (en) * 1997-02-25 1998-08-27 Ludwig Institute For Cancer Research PARG, A GTPase ACTIVATING PROTEIN WHICH INTERACTS WITH PTPL1

Also Published As

Publication number Publication date
CN1301712A (zh) 2001-07-04
AU2341101A (en) 2001-07-09

Similar Documents

Publication Publication Date Title
WO2001068694A1 (fr) Nouveau polypeptide, proteine humaine d'hexokinase 10, et polynucleotide codant pour ce polypeptide
WO2001047998A1 (fr) Nouveau polypeptide, proteine activant la ras gtpase 12, et polynucleotide codant pour ce polypeptide
WO2001072793A1 (fr) Nouveau polypeptide, proteine humaine de regulation 12 de la proteine hydrolase, et polynucleotide codant pour ce polypeptide
WO2001070800A1 (fr) Nouveau polypeptide, proteine humaine 11 helicase atp-dependante, et polynucleotide codant pour ce polypeptide
WO2001066770A1 (fr) Nouveau polypeptide, signal peptidase humaine 15, et polynucleotide codant pour ce polypeptide
WO2001079429A2 (en) A novel polypeptide - human guanine nucleotide exchange factor 10and the polynucleotide encoding said polypeptide
WO2001072796A1 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 11, et polynucleotide codant pour ce polypeptide
WO2001048004A1 (fr) Nouveau polypeptide, proteine de liaison de l'heparine 10, et polynucleotide codant pour ce polypeptide
WO2001062782A1 (fr) Nouveau polypeptide, famille proteique 11 de la rhodopsine, et polynucleotide codant pour ce polypeptide
WO2001079432A2 (en) A novel polypeptide, a human cell differentiation transcription factor 58 and the polynucleotide encoding the polypeptide
WO2001083687A2 (fr) Nouveau polypeptide, proteine pax humaine 23, et polynucleotide codant pour ce polypeptide
WO2001081594A1 (fr) Nouveau polypeptide, proteine pax humaine 17, et polynucleotide codant pour ce polypeptide
WO2001087949A1 (fr) Nouveau polypeptide, proteine pax humaine 9, et polynucleotide codant pour ce polypeptide
WO2001046409A1 (fr) Nouveau polypeptide, proteine ribosomale s7 9, et polynucleotide codant pour ce polypeptide
WO2001070965A1 (fr) Nouveau polypeptide, facteur humain de regulation de la transcription 15, et polynucleotide codant pour ce polypeptide
WO2001049724A1 (fr) Nouveau polypeptide, proteine lissencephale humaine 43, et polynucleotide codant pour ce polypeptide
WO2001090171A1 (fr) Nouveau polypeptide, proteine humaine ribosomale sii 12, et polynucleotide codant ce polypeptide
WO2001046241A1 (fr) Nouveau polypeptide, proteine 12 gvpa, et polynucleotide codant pour ce polypeptide
WO2001074895A1 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 12.1, et polynucleotide codant pour ce polypeptide
WO2001081399A1 (fr) Nouveau polypeptide, proteine pax humaine 14, et polynucleotide codant pour ce polypeptide
WO2001073063A1 (fr) Nouveau polypeptide, proteine humaine hexokinase 13, et polynucleotide codant pour ce polypeptide
WO2001072809A1 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 9, et polynucleotide codant pour ce polypeptide
WO2001072806A1 (fr) Nouveau polypeptide, facteur humain de transcription de la differentiation cellulaire 8, et polynucleotide codant pour ce polypeptide
WO2001081535A2 (fr) Nouveau polypeptide, proteine pax humaine 9.9, et polynucleotide codant pour ce polypeptide
WO2001087951A1 (fr) Nouveau polypeptide, helicase humaine 11, et polynucleotide codant pour ce polypeptide

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP