WO2001045099A1 - Lecteur magneto-optique optimise par le polariseur de lumiere incidente - Google Patents

Lecteur magneto-optique optimise par le polariseur de lumiere incidente Download PDF

Info

Publication number
WO2001045099A1
WO2001045099A1 PCT/FR2000/003485 FR0003485W WO0145099A1 WO 2001045099 A1 WO2001045099 A1 WO 2001045099A1 FR 0003485 W FR0003485 W FR 0003485W WO 0145099 A1 WO0145099 A1 WO 0145099A1
Authority
WO
WIPO (PCT)
Prior art keywords
magneto
optical
photodetector
pol
component
Prior art date
Application number
PCT/FR2000/003485
Other languages
English (en)
Inventor
Jean-Claude Jacquet
Original Assignee
Thales
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales filed Critical Thales
Priority to AU28551/01A priority Critical patent/AU2855101A/en
Priority to US10/149,788 priority patent/US6944102B2/en
Publication of WO2001045099A1 publication Critical patent/WO2001045099A1/fr
Priority to NO20022907A priority patent/NO20022907L/no

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1362Mirrors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • G11B11/10547Heads for reproducing using optical beam of radiation interacting with the magnetisation of an intermediate transfer element, e.g. magnetic film, included in the head
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1365Separate or integrated refractive elements, e.g. wave plates
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10532Heads
    • G11B11/10541Heads for reproducing
    • G11B11/10543Heads for reproducing using optical beam of radiation
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0908Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for focusing only

Definitions

  • the practice is to assess the signal-to-noise Schottky ratio by a quantity which represents it, called the merit factor (or FM).
  • the merit factor depends, under conditions explained in the detailed description of different quantities which are not simultaneously optimal for a given polarization of the incident beam. In structures optimized for the amplitude of the magneto-optical component, the merit factor will be zero if no modification is made to the device.
  • the first solution consists in placing a ⁇ / 2 plate on the path of the incident beam so as to transform the polarization of the incident beam while retaining the orientation of the image of the light source focused on the reading pole.
  • the second solution consists in placing a birefringent plate on the path of the reflected beam so as to linearize the polarization of the reflected beam.
  • the present invention makes it possible to carry out the desired optimizations without additional component, or even with fewer components than the prior art
  • the invention provides a magneto-optical reading device of the type comprising a magneto-optical transducer, arranged to cooperate with a magnetized medium to be read, a light source for applying an excitation beam through an upstream polaser.
  • the magneto-optical transducer produces in response to the excitation beam, a beam reflected which comprises on the one hand a reflected part of the excitation beam, on the other hand, under the effect of a main component (S) of the electric field of the incident wave, a magneto-optical component containing the information reading, characterized in that the upstream polisher is adjusted to let pass both the main component (S) and its orthogonal component (P) with a e lower amplitude, this interacting with the magneto-optical transducer to improve the amplitude / phase state of the magneto-optical component of the beam applied to the photodetection assembly
  • the device further comprises a second polander placed on the path of the reflected beam, the two polanners being jointly adjusted to improve the amplitude / phase state of the magneto-optical component of the beam applied to the photodetector.
  • the device further comprises a second polander on the path of the reflected beam, this second polander being adjusted to adjust the amplitude of the beam applied to the photodetector below the saturation threshold thereof.
  • FIG. 1 shows the block diagram of a device of the prior art
  • - Figure 2 shows the block diagram of a device according to the invention in a preferred embodiment and in a variant
  • - Figure 3 shows the diagram of a device according to the invention in a preferred embodiment
  • FIG. 1 A simplified block diagram of the devices of the prior art is given in FIG. 1 or LAS is a light source, POL-1 is a first polander, TMO is a magneto-optical transducer, MM is a magnetized medium, POL-2 is a second polander and PHO is a photodetector
  • the polarization of a light beam is traditionally analyzed by the projection of the electric field vector E in the eigen coordinate system constitutes by the component P, located in the plane of analysis and normal to the direction propagation, and by the component S, normal to the plane of incidence and normal to the direction of propagation.
  • the polarization component S is therefore perpendicular to the plane of the figure.
  • the polander POL1 is governed so that the component P (which would be in the plane of the figure, orthogonal to the incident beam) is zero
  • the merit factor depends in particular on a quantity T r , the value of which depends on the dimensions of the laser beam at the focal point and on the extension of the zone of the reading pole of the magneto- optical transducer excited by the magnetic bits inscribed on the band T r is maximum when the largest dimension of the incident light beam is parallel to the reading edge (the line of contact between the magneto-optical transducer and the magnetic medium), which is obtained for an S-polarized light, the largest dimension of the light beam being similar to the electric field
  • the merit factor however also depends on a coefficient T c of amplification of the magneto-optical signal, the value of which depends on the quantity of light absorbed by the magneto-optic medium constituting the reading pole.
  • T c coefficient of amplification of the magneto-optical signal
  • T r and T c are therefore optimized for opposite values of the polarization of the main component.
  • the invention consists in using the advantages of the two polarizations
  • Figure 2 1 shows the block diagram of a magneto-optical reading device according to the invention.
  • a light source LAS
  • POL-A polander
  • polarization angle
  • the component S makes it possible to illuminate, in an optimal manner for the merit factor, the magnetized zone of the reading pole by the magnetized medium (MM).
  • This component performs the magneto-optical excitation of the transducer, generating a magneto-optical component of maximum amplitude, when the coupling rate T c is optimal; most of the incident optical power is concentrated in the S polarization (> 95%).
  • the reflection coefficient of the magnetic-optical transducer is chosen so that the intensity of the reflected wave is less than the saturation threshold of the photodetector (PHO), which makes it possible to eliminate the second polander ( POL-2) of the prior art which had in particular the function of keeping the intensity of the signal transmitted to the photodetector at a level below the saturation threshold of the latter
  • PHO saturation threshold of the photodetector
  • POL-2 second polander
  • the device according to the invention will comprise, as shown in FIG. 2.2, a second polisher (POL-B) with an angle of adjustment ⁇ which
  • the merit factor (FM) is given by the following approximate formula FM ⁇ T r T c r sp cos ( ⁇ s ) cos ( ⁇ 2 ) where T r and T c have the meanings indicated above, ⁇ 2 is the adjustment angle of the polisher POL-2, ⁇ . is the ellipticity of the reflected beam, i.e.
  • r sp is the reflection coefficient magneto-optic amplitude generated during the interaction of the incident beam with the magneto-optic medium This coefficient is that of a layer placed in air and of thickness much greater than the skin thickness II is proportional to the amount of light absorbed by the medium
  • T c the optimization of T c by a judicious choice of the layers of the transducer leads to a value of ⁇ s close to ⁇ / 2, that is to say a value of the merit factor close to zero.
  • FIG. 3 represents an exemplary embodiment of a magneto-optical reading device according to the invention.
  • the symbols have the meanings already mentioned or indicated below - L1, L2, L3 and L4 are focusing lenses. or astigmatism correction,
  • - S is an optical separator allowing the incident beam to pass and reflecting the reflected beam at 135 °
  • - O is an opening made in the L-shaped envelope of the device
  • - M1 and M2 are two convex and concave mirrors respectively, at least one of which can be controlled by a signal taken from the photodetector
  • the device according to the invention does not include, in its preferred embodiment, a second polander on the path of the reflected beam, without this modifying the operation of the various optical elements mentioned above.
  • An inductor (Ml ) of high frequency magnetic field will advantageously be placed near the reading area so as to create a field parallel to the magnetized medium (MM) which will stabilize the magnetic domains of said magnetic medium and of the magneto-optical transducer (TMO), thus improving notably the signal to noise ratio and the merit factor
  • the light source can be replaced by a set of sources organized in a linear bar perpendicular to the plane of Figure 2 1
  • the photodetector can be a CCD (Charge Coupled Device) sensor or, preferably, a CMOS sensor whose saturation threshold is higher.
  • CCD Charge Coupled Device

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)

Abstract

Un dispositif de lecture magnéto-optique dans lequel le facteur de mérite est optimisé principalement par le réglage du polariseur de lumière incidente. La composante S de l'onde incidente pompe le transducteur magnéto-optique. La composante P de l'onde incidiente amplifie les variations de l'onde magnéto-optique et génère un onde réfléchie de polarisation sensiblement linéaire.

Description

LECTEUR MAGNETO-OPTIQUE OPTIMISE PAR LE POLARISEUR DE LUMIERE INCIDENTE
La présente invention concerne les lecteurs magnéto-optiques Les lecteurs magnéto-optiques exploitent l'effet Kerr ou l'effet
Faraday. Dans le premier cas auquel se rattache la présente invention, il s'agit de mesurer les variations de polarisation induites sur une lumière polarisée après réflexion sur un milieu dont les variations d aimantation représentent des informations enregistrées au préalable. Le choix de la nature et de la géométrie des différentes couches du transducteur de lecture permet de maximiser l'amplitude de la composante magnéto-optique à lire. On observe cependant que lorsque cet optimum est atteint, le déphasage entre le signal de lecture et le signal à lire est égal à π/2. On dit que la polarisation du signal est elliptique. Au total le signal magnéto-optique n'est pas lisible dans ces conditions. Pour ce type de dispositifs, l'usage est d'apprécier le rapport signal à bruit Schottky par une grandeur qui la représente, appelée facteur de mérite (ou FM). Le facteur de mérite dépend, dans des conditions explicitées dans la description détaillée de différentes grandeurs qui ne sont pas simultanément optimales pour une polarisation donnée du faisceau incident. Dans les structures optimisées pour l'amplitude de la composante magnéto-optique, le facteur de mérite sera nul si aucune modification n'est apportée au dispositif.
L'état antérieur de la technique, dont la présente invention a pour but de surmonter les limitations sur ce plan, est représenté notamment par les brevets français n° 2 569 072, 2 656 723, 2 657 190, 2 680 268 , 2 696 037 et 2 701 332
Dans ces dispositifs de l'art antérieur, deux solutions sont envisagées pour maximiser le facteur de mérite. La première solution consiste à placer une lame λ/2 sur le chemin du faisceau incident de manière à transformer la polarisation du faisceau incident tout en conservant l'orientation de l'image de la source de lumière focalisée sur le pôle de lecture. La deuxième solution consiste à placer une lame biréfringente sur le chemin du faisceau réfléchi de manière à linéariser la polarisation du faisceau réfléchi. Ces deux solutions sont coûteuses en composants, en réglages et en encombrement, ce qui est contradictoire avec les objectifs de réduction de coût et de dimension poursuivis en matière de stockage d'informations
La présente invention permet de réaliser les optimisations souhaitées sans composant supplémentaire, voire avec moins de composants que l'art antérieur
A ces fins, l'invention propose un dispositif de lecture magneto- optique du type comprenant un transducteur magnéto-optique, agencé pour coopérer avec un milieu magnétisé à lire, une source de lumière pour appliquer à travers un polaπseur amont un faisceau d'excitation au transducteur magnéto-optique et un ensemble de photodetectioπ situé sur le trajet optique du faisceau réfléchi issu du transducteur magnéto-optique pour fournir un signal électrique de lecture dans lequel le transducteur magneto- optique produit, en réponse au faisceau d'excitation, un faisceau réfléchi qui comprend d'une part une partie réfléchie du faisceau d'excitation, d'autre part, sous l'effet d'une composante principale (S) du champ électrique de l'onde incidente, une composante magnéto-optique contenant les informations de lecture, caractérisé en ce que le polanseur amont est réglé pour laisser passer à la fois la composante principale (S) et sa composante orthogonale (P) avec une plus faible amplitude, celle-ci interagissant avec le transducteur magnéto-optique pour améliorer l'état amplitude/phase de la composante magnéto-optique du faisceau appliqué à l'ensemble de photodétection
Dans une variante de l'invention, le dispositif comprend en outre un deuxième polanseur place sur le trajet du faisceau réfléchi, les deux polanseurs étant conjointement réglés pour améliorer l'état amplitude/phase de la composante magnéto-optique du faisceau appliqué au photodétecteur.
Dans une autre variante de l'invention, le dispositif comprend en outre un deuxième polanseur sur le trajet du faisceau réfléchi, ce second polanseur étant réglé pour ajuster l'amplitude du faisceau appliqué au photodetecteur sous le seuil de saturation de celui-ci
L'invention sera mieux comprise, et ses différentes caractéristiques et avantages ressortiront de la description qui suit d'un exemple de réalisation, et de ses figures annexées, dont - la figure 1 montre le schéma de principe d'un dispositif de l'art antérieur,
- la figure 2 montre le schéma de principe d un dispositif selon l'invention dans un mode de réalisation préfère et dans une variante, - la figure 3 montre le schéma de réalisation d'un dispositif selon l'invention dans un mode de réalisation préfère
Un schéma de principe simplifié des dispositifs de l'art antérieur est donne en figure 1 ou LAS est une source de lumière, POL-1 est un premier polanseur, TMO est un transducteur magnéto-optique, MM est un milieu magnétisé, POL-2 est un deuxième polanseur et PHO est un photodetecteur La polarisation d'un faisceau de lumière est traditionnellement analysée par la projection du vecteur champ électrique E dans le repère propre constitue par la composante P, située dans le plan d'analyse et normale à la direction de propagation, et par la composante S, normale au plan d'incidence et normale à la direction de propagation. La composante de polarisation S est donc perpendiculaire au plan de la figure. Le polanseur POL1 est régie pour que la composante P (qui serait dans le plan de la figure, orthogonale au faisceau incident) soit nulle
Le facteur de mérite dépend notamment d'une grandeur Tr dont la valeur dépend des dimensions du faisceau laser au point de focalisation et de l'extension de la zone du pôle de lecture du transducteur magneto- optique excitée par les bits magnétiques inscrits sur la bande Tr est maximal lorsque la plus grande dimension du faisceau de lumière incidente est parallèle à l'arête de lecture (le c'est-à-dire la ligne de contact entre le transducteur magnéto-optique et le milieu magnétique), ce qui est obtenu pour une lumière polarisée en S, la plus grande dimension du faisceau lumineux étant co neaire au champ électrique
Le facteur de mérite dépend cependant également d'un coefficient Tc d'amplification du signal magnéto-optique, dont la valeur dépend de la quantité de lumière absorbée par le milieu magnéto-optique constituant le pôle de lecture. Cependant, l'optimisation du couplage du faisceau incident avec le pôle de lecture, s accompagne d'une modification de l'état de polarisation du faisceau réfléchi Ainsi, à l'optimum du couplage, la lumière incidente de polarisation S est réfléchie dans un état de polarisation totalement elliptique, c'est-à-dire que la composante principale S et la composante magnéto-optique oscillent en opposition de phase, donc il ne peut y avoir de pompage de la composante magneto-optique par la composante S du champ réfléchi, puisque lorsque le champ électrique dans l'état S est maximal, celui de la composante magneto-optique est nul et vice- versa Le facteur de mérite est alors nul. Cette modification de l'état de polarisation du faisceau réfléchi n'a pas lieu pour une polarisation incidente P La composante principale P et la composante magnéto-optique oscillent en phase
Dans l'art antérieur, Tr et Tc sont donc optimisés pour des valeurs opposées de la polarisation de la composante principale L'invention consiste à utiliser les avantages des deux polarisations
La figure 2 1 montre le schéma de principe d'un dispositif de lecture magnéto-optique selon l'invention. Une source de lumière (LAS) émet une lumière vers un polanseur (POL-A) qui est réglé avec un angle de polarisation (α) de manière à laisser passer une composante S, perpendiculaire au pian de la figure, et une composante P située dans le plan de la figure, perpendiculaire au rayon laser et d'amplitude petite devant celle de la composante S.
Les interactions de l'onde incidente, polarisée de la manière qui vient d'être décrite, avec le transducteur magnéto-optique (TMO) seront alors les suivantes '
- comme dans l'art antérieur, la composante S permet d'éclairer, de manière optimale pour le facteur de mérite, la zone aimantée du pôle de lecture par le milieu magnétisé (MM). Cette composante réalise l'excitation magneto-optique du transducteur, générant une composante magneto- optique d'amplitude maximale, lorsque le taux de couplage Tc est optimal ; la majeure partie de la puissance optique incidente étant concentrée dans la polarisation S (> 95 %).
- à la différence de l'art antérieur, c'est la composante P qui réalise I amplification de la composante magnéto-optique, en interférant avec celle-ci, générant un faisceau réfléchi en P ou ces deux composantes sont sensiblement en phase. Il est ainsi possible dans les structures où le taux de couplage Tc a été optimisé, d'avoir un bon taux de recouvrement Tr (obtenu avec la partie incidente du faisceau de polarisation S) et d'exploiter dans le faisceau réfléchi une onde électromagnétique dont les composantes d'amplification P et magneto-optique sont en phase
En outre, le coefficient de réflexion du transducteur magneto- optique (TMO) est choisi de manière que l'intensité de l'onde réfléchie soit inférieure au seuil de saturation du photodetecteur (PHO), ce qui permet d'éliminer le deuxième polanseur (POL-2) de l'art antérieur qui avait notamment pour fonction de maintenir l'intensité du signal transmis au photodétecteur à un niveau inférieur au seuil de saturation de ce dernier Toutefois, il peut exister des cas où - l'onde réfléchie a une intensité supérieure au seuil de saturation du photodétecteur ,
- la plage α de réglage du polanseur (POL-A) est insuffisante pour permettre une optimisation du facteur de mente
Dans ces deux cas, le dispositif selon l'invention comportera, comme il est montre sur la figure 2.2, un deuxième polanseur (POL-B) d'angle de réglage β qui
- dans le premier cas, servira uniquement à atténuer l'intensité du faisceau réfléchi à un niveau inférieur au seuil de saturation du photodétecteur , - dans le deuxième cas, sera régie conjointement avec le premier polanseur (POL-A) pour optimiser le facteur de mérite
Dans la configuration de l'art antérieur telle que représentée par la figure 1 , le facteur de mérite (FM) est donné par la formule approchée suivante FM ≈ Tr Tc rsp cos(εs) cos(α2) où Tr et Tc ont les significations indiquées plus haut, α2 est l'angle de réglage du polanseur POL-2, ε. est l'ellipticité du faisceau réfléchi, c'est-a- dire le déphasage entre la composante principale (ici S) et la composante magnéto-optique induite par la réflexion et les interactions dans le transducteur, et rsp est le coefficient de réflexion magnéto-optique en amplitude généré lors de l'interaction du faisceau incident avec le milieu magneto-optique Ce coefficient est celui d'une couche placée dans l'air et d'épaisseur très supérieure à l'épaisseur de peau II est proportionnel à la quantité de lumière absorbée par le milieu On remarque que l'optimisation de Tc par un choix judicieux des couches du transducteur conduit a une valeur de εs proche de π/2, soit une valeur du facteur de mérite proche de zéro
Dans la configuration selon l'invention telle que représentée par les figures 2 1 et 2 2, le facteur de mérite est donné par la formule approchée suivante
FM ≈ Tr Tc rsp cos(εp) cos2(α) εp est l'elhpticite du faisceau réfléchi reçu par le photodetecteur lorsque le faisceau incident comporte une petite polarisation P α est l'angle de polarisation régie sur le polanseur POL-A
La dépendance quadratique par rapport à l'angle de polarisation est introduite par le fait que la base de projection effectue elle-même une rotation selon l'angle de polarisation εP est voisin de zéro
La dépendance du facteur de mérite en εp et non en εs assure l'élimination de l'ellipticite et donc l'amélioration du facteur de mérite, toutes choses étant égales par ailleurs.
La figure 3 représente un exemple de réalisation d'un dispositif de lecture magnéto-optique selon l'invention Sur cette figure, les symboles ont les significations déjà mentionnées ou indiquées ci-dessous - L1 , L2, L3 et L4 sont des lentilles de focalisation ou de correction d'astigmatisme ,
- S est un séparateur optique laissant passer le faisceau incident et réfléchissant à 135° le faisceau réfléchi ,
- O est une ouverture pratiquée dans l'enveloppe en L du dispositif ,
- M1 et M2 sont deux miroirs respectivement convexe et concave, dont l'un au moins peut être commandé par un signal prélevé sur le photodétecteur
Ce mode de réalisation permet à la fois d'assurer une focalisation du faisceau incident sur le transducteur magnéto-optique et de conserver le positionnement du faisceau réfléchi par rapport au photodétecteur malgré les variations de positions du milieu magnétique par rapport au transducteur, lesdites variations étant compensées par le signal de commande en sortie du circuit de traitement (CT) Contrairement à l'art antérieur, le dispositif selon l'invention ne comporte pas dans son mode de réalisation préféré de deuxième polanseur sur le trajet du faisceau réfléchi, sans que cela modifie le fonctionnement des différents éléments optiques ci-dessus mentionnés Un inducteur (Ml) de champ magnétique haute fréquence sera avantageusement placé à proximité de la zone de lecture de manière à créer un champ parallèle au milieu magnétisé (MM) qui stabilisera les domaines magnétiques dudit milieu magnétique et du transducteur magnéto-optique (TMO), améliorant ainsi de manière notable le rapport signal à bruit et le facteur de mérite
La source de lumière peut être remplacée par un ensemble de sources organisées en barette linéaire perpendiculaire au plan de la figure 2 1
Le photodétecteur peut être un capteur CCD (Charge Coupled Device) ou, de préférence, un capteur CMOS dont le seuil de saturation est plus élevé.

Claims

REVENDICATIONS
1. Dispositif de lecture magnéto-optique du type comprenant un transducteur magnéto-optique (TMO), agencé pour coopérer avec un milieu magnétisé à lire (MM), une source de lumière (LAS) pour appliquer à travers un polanseur amont (POL-A) un faisceau d'excitation au transducteur magnéto-optique et un photodétecteur (PHO) situé sur le trajet optique du faisceau réfléchi issu du transducteur magnéto-optique pour fournir un signal électrique de lecture dans lequel le transducteur magnéto-optique produit, en réponse au faisceau d'excitation, un faisceau réfléchi qui comprend d'une part une partie réfléchie du faisceau d'excitation, d'autre part, sous l'effet d'une composante principale (S) du champ électrique de l'onde incidente, une composante magnéto-optique contenant les informations de lecture, caractérisé en ce que le polanseur amont (POL-A) est réglé pour laisser passer à la fois la composante principale (S) et sa composante orthogonale (P) avec une pius faible amplitude, celle-ci interagissant avec le transducteur magnéto-optique pour améliorer l'état amplitude/phase de la composante magnéto-optique du faisceau appliqué à l'ensemble de photodétection.
2. Dispositif selon la revendication 1 du type comprenant en outre un deuxième polanseur (POL-B) placé sur le trajet du faisceau réfléchi, caractérisé en ce que les deux polanseurs (POL-A et POL-B) sont conjointement réglés pour améliorer l'état amplitude/phase de la composante magnéto-optique du faisceau appliqué au photodétecteur.
3. Dispositif selon la revendication 1 du type comprenant en outre un deuxième polanseur (POL-B) sur le trajet du faisceau réfléchi, caractérisé en ce que ce second polanseur est réglé pour ajuster l'amplitude du faisceau appliqué au photodétecteur sous le seuil de saturation de celui- ci.
4. Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre un circuit de traitement (CT) recevant en entrée le courant électrique en sortie du photodétecteur et produisant en sortie, d'une part un signal représentatif des variations du champ magnétique variabie, d'autre part un signal de commande, ainsi que, entre le transducteur magnéto-optique et le photodétecteur, au moins un élément optique (S, M1 , M2) réglable en fonction du signal de commande pour ajuster le trajet optique du faisceau applique au photodetecteur
5. Dispositif selon la revendication 4, caractérise en ce que ledit élément optique est place entre le transducteur magnéto-optique et le deuxième polanseur
6 Dispositif selon l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre, sur le trajet du faisceau incident et/ou sur le trajet du faisceau réfléchi, un ou plusieurs éléments optiques de focalisation et/ou de correction d'astigmatisme (L1 , L2, L3, L4) 7 Dispositif seion l'une des revendications précédentes, caractérisé en ce qu'il comprend en outre un inducteur de champ magnétique haute fréquence (Ml) à proximité du transducteur magnéto- optique
8. Dispositif selon l'une des revendications précédentes, caractérisé en ce que le réglage du ou des polanseurs est effectué pour donner une polarisation sensiblement linéaire au faisceau appliqué au photodétecteur.
PCT/FR2000/003485 1999-12-17 2000-12-12 Lecteur magneto-optique optimise par le polariseur de lumiere incidente WO2001045099A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU28551/01A AU2855101A (en) 1999-12-17 2000-12-12 Magneto-optical reader which is optimized by the incident-light polariser
US10/149,788 US6944102B2 (en) 1999-12-17 2000-12-12 Magneto-optical reader which is optimized by the incident-light polariser
NO20022907A NO20022907L (no) 1999-12-17 2002-06-17 Magnetooptisk leser optimalisert med lyspolarisasjon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9915987A FR2802696B1 (fr) 1999-12-17 1999-12-17 Lecteur magneto optique optimise par le polariseur de lumiere incidente
FR99/15987 1999-12-17

Publications (1)

Publication Number Publication Date
WO2001045099A1 true WO2001045099A1 (fr) 2001-06-21

Family

ID=9553416

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003485 WO2001045099A1 (fr) 1999-12-17 2000-12-12 Lecteur magneto-optique optimise par le polariseur de lumiere incidente

Country Status (5)

Country Link
US (1) US6944102B2 (fr)
AU (1) AU2855101A (fr)
FR (1) FR2802696B1 (fr)
NO (1) NO20022907L (fr)
WO (1) WO2001045099A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG121900A1 (en) * 2004-10-08 2006-05-26 Olympus Technologies Singapore An optical receiving device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372881A2 (fr) * 1988-12-02 1990-06-13 Mitsui Petrochemical Industries, Ltd. Méthode de contrôle d'un signal de sortie optique et appareil à cet effet
EP0380329A1 (fr) * 1989-01-25 1990-08-01 Olympus Optical Co., Ltd. Tourne-disque magnéto-optique
EP0439383A1 (fr) * 1990-01-18 1991-07-31 Thomson-Csf Dispositif de lecture de segments oblongs d'un support d'enregistrement en défilement
EP0468800A1 (fr) * 1990-07-26 1992-01-29 Canon Kabushiki Kaisha Tête optique pour appareil à reproduire des informations magnéto-optiques
EP0557212A2 (fr) * 1992-02-18 1993-08-25 Eastman Kodak Company Appareil et méthode pour l'optimalisation des performances dans une tête reproduction/enregistrement d'un système de stockage optique avec un support de stockage magnéto-optique
FR2696037A1 (fr) * 1992-09-18 1994-03-25 Thomson Csf Dispositif de lecture magnétique.
FR2699724A1 (fr) * 1992-12-22 1994-06-24 Thomson Csf Procédé de lecture d'un support d'enregistrement et système appliquant ce procédé.
EP0611202A1 (fr) * 1993-02-09 1994-08-17 Thomson-Csf Tête de lecture magnéto-optique et appareil de lecture d'enregistrements magnétiques multipistes
US5528576A (en) * 1991-03-28 1996-06-18 Canon Kabushiki Kaisha Optical head including a halfwave plate and a monaxial crystal for splitting a light beam into two orthogonal, polarized light beams
US5790501A (en) * 1995-07-25 1998-08-04 Asahi Kogaku Kogyo Kabushiki Kaisha Information reproducing device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3636535A (en) * 1969-12-10 1972-01-18 Magnavox Co Magneto-optical transducer
JPS5459915A (en) * 1977-10-20 1979-05-15 Sony Corp Method and apparatus for reading of magnetic recording signal
NL8203725A (nl) * 1982-09-27 1984-04-16 Philips Nv Thermo-magneto-optische geheugeninrichting en registratiemedium daarvoor.
EP0156058A3 (fr) * 1983-08-06 1986-01-29 Brother Kogyo Kabushiki Kaisha Appareil de lecture magnéto-optique
US4654837A (en) * 1985-09-06 1987-03-31 Datatape Incorporated Magneto-optic transducer with enhanced signal performance
US4918675A (en) * 1986-12-04 1990-04-17 Pencom International Corporation Magneto-optical head with separate optical paths for error and data detection
JP2706128B2 (ja) * 1989-02-28 1998-01-28 オリンパス光学工業株式会社 光磁気再生装置
FR2726960B1 (fr) * 1994-11-10 1996-12-13 Thomson Csf Procede de realisation de transducteurs magnetoresistifs
US5586101A (en) * 1995-03-01 1996-12-17 Eastman Kodak Company Magneto-optic data storage system with differential detection channels having separate gain control circuit
DE19782042T1 (de) * 1996-10-08 1999-09-02 Sanyo Electric Co Aufzeichnungsmedium und Informations-Aufzeichnungs-/-Wiedergabegerät

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0372881A2 (fr) * 1988-12-02 1990-06-13 Mitsui Petrochemical Industries, Ltd. Méthode de contrôle d'un signal de sortie optique et appareil à cet effet
EP0380329A1 (fr) * 1989-01-25 1990-08-01 Olympus Optical Co., Ltd. Tourne-disque magnéto-optique
EP0439383A1 (fr) * 1990-01-18 1991-07-31 Thomson-Csf Dispositif de lecture de segments oblongs d'un support d'enregistrement en défilement
EP0468800A1 (fr) * 1990-07-26 1992-01-29 Canon Kabushiki Kaisha Tête optique pour appareil à reproduire des informations magnéto-optiques
US5528576A (en) * 1991-03-28 1996-06-18 Canon Kabushiki Kaisha Optical head including a halfwave plate and a monaxial crystal for splitting a light beam into two orthogonal, polarized light beams
EP0557212A2 (fr) * 1992-02-18 1993-08-25 Eastman Kodak Company Appareil et méthode pour l'optimalisation des performances dans une tête reproduction/enregistrement d'un système de stockage optique avec un support de stockage magnéto-optique
FR2696037A1 (fr) * 1992-09-18 1994-03-25 Thomson Csf Dispositif de lecture magnétique.
FR2699724A1 (fr) * 1992-12-22 1994-06-24 Thomson Csf Procédé de lecture d'un support d'enregistrement et système appliquant ce procédé.
EP0611202A1 (fr) * 1993-02-09 1994-08-17 Thomson-Csf Tête de lecture magnéto-optique et appareil de lecture d'enregistrements magnétiques multipistes
US5790501A (en) * 1995-07-25 1998-08-04 Asahi Kogaku Kogyo Kabushiki Kaisha Information reproducing device

Also Published As

Publication number Publication date
US6944102B2 (en) 2005-09-13
US20040042700A1 (en) 2004-03-04
NO20022907D0 (no) 2002-06-17
FR2802696A1 (fr) 2001-06-22
AU2855101A (en) 2001-06-25
NO20022907L (no) 2002-08-07
FR2802696B1 (fr) 2002-07-19

Similar Documents

Publication Publication Date Title
WO1980001016A1 (fr) Dispositif de detection d'anisotropie magneto-optique
FR2606921A1 (fr) Tete de lecture en optique integree pour la lecture d'informations enregistrees sur un support magnetique
CA2047185C (fr) Tete de lecture multipiste magneto-optique
EP1442282A1 (fr) Dispositif a laser couple a une cavite par retroaction optique pour la detection de traces de gaz
FR2533731A1 (fr) Dispositif de memoire thermomagneto-optique et son milieu d'enregistrement
FR2690542A1 (fr) Dispositif de lecture d'inscriptions sur un support, application à la lecture de disques compacts et de codes-barres.
EP0439383A1 (fr) Dispositif de lecture de segments oblongs d'un support d'enregistrement en défilement
EP0022682B1 (fr) Tête de lecture optique à source laser à semi-conducteur, et dispositif de lecture par réflexion d'un support d'information comportant une telle tête optique
JPH04245687A (ja) レーザ・システム,レーザ光発生方法及びレーザ・データ記憶システム
US6441970B2 (en) Optical waveguide device, and light source device and optical apparatus including the optical waveguide device
WO2001045099A1 (fr) Lecteur magneto-optique optimise par le polariseur de lumiere incidente
FR2765351A1 (fr) Systeme de detection de rotation pour miroir galvanique
JP3370487B2 (ja) 情報読取装置
FR2460022A1 (fr) Systeme optique de reproduction d'informations
US6396115B1 (en) Detector layer for an optics module
FR2909192A1 (fr) Isolateur optique integre comportant un reseau de bragg
EP0252813A1 (fr) Dispositif modulateur haute fréquence de polarisation de la lumière
WO2007048778A1 (fr) Detecteur d'ondes electromagnetiques a bande passante terahertz
EP1489607A2 (fr) Capteur optique mince
EP0807982A1 (fr) Photodétecteur à structure optique résonnante avec un réseau
FR2902575A1 (fr) Appareil de caracterisation optique du dopage d'un substrat
FR2688074A1 (fr) Dispositif de deflexion angulaire acousto-optique, et analyseur de spectre utilisant un tel dispositif.
US20040252619A1 (en) Slim optical pickup
US5349576A (en) Apparatus and method for polarization switching of a readout beam in a magneto-optic storage system
FR2591381A1 (fr) Support de memoire magneto-optique

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10149788

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP