WO2001044107A2 - Plättchenförmige presskörper - Google Patents

Plättchenförmige presskörper Download PDF

Info

Publication number
WO2001044107A2
WO2001044107A2 PCT/EP2000/012604 EP0012604W WO0144107A2 WO 2001044107 A2 WO2001044107 A2 WO 2001044107A2 EP 0012604 W EP0012604 W EP 0012604W WO 0144107 A2 WO0144107 A2 WO 0144107A2
Authority
WO
WIPO (PCT)
Prior art keywords
binder
press body
body according
mixture
weight
Prior art date
Application number
PCT/EP2000/012604
Other languages
English (en)
French (fr)
Other versions
WO2001044107A3 (de
Inventor
Stefan Dick
Tim Luong
Greg Morgan
Arthur Schepf
Tateshi Kimura
Original Assignee
Süd-Chemie AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Süd-Chemie AG filed Critical Süd-Chemie AG
Priority to AT00991177T priority Critical patent/ATE279976T1/de
Priority to EP00991177A priority patent/EP1242180B1/de
Priority to US10/149,349 priority patent/US7135127B2/en
Priority to JP2001545201A priority patent/JP4814469B2/ja
Priority to AU31580/01A priority patent/AU3158001A/en
Priority to DE50008361T priority patent/DE50008361D1/de
Publication of WO2001044107A2 publication Critical patent/WO2001044107A2/de
Publication of WO2001044107A3 publication Critical patent/WO2001044107A3/de
Priority to HK03105819A priority patent/HK1053435A1/xx

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/183Physical conditioning without chemical treatment, e.g. drying, granulating, coating, irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/11Clays

Definitions

  • the invention relates to platelet-shaped pressed bodies (wafers) based on an inorganic sorbent and a binder, with a thickness of less than 700 ⁇ m, which are characterized by high mechanical strength and low brittleness and which are capable of inorganic and organic Effectively sorb gases or vapors.
  • zeolite tablets are produced by mixing a zeolite, a binder and a lubricant and extruding the mixture. It is obviously tablets with the same dimensions in all directions.
  • zeolite tablets for use as gas adsorbents is known, powdered and dried at 105 to 110 ° C zeolite mixed with 8.1 wt .-% bentonite powder and kneaded with a 4% aqueous urea solution. The mixture is tableted, dried and calcined at 510 ° C. The increase in compressive strength is due to the urea content.
  • zeolite is mixed in the Na form with 25% by weight of clay, kneaded with water, extruded, calcined at 650 ° C., immersed in a calcium chloride solution, washed, at 110 ° C. dried and activated at 400 ° C.
  • the tablets are used as desiccants.
  • zeolite powder is mixed with kaolin and Na (or NH4-) hydroxyethyl cellulose, molded, dried and calcined at 650 ° C. in order to increase the strength of the zeolite tablets.
  • deodorants are extruded by extruding zeolite powder or grains with calcium chloride or bentonite and water, whereupon the mixture is tabletted and the tablets are calcined.
  • drying agents are produced by extruding a mixture of microporous particles (eg gypsum, cement, ceramic powder) and an inorganic or organic filler, such as CaCl2, LiCl, bentonite, zeolites, PVA or other water-soluble polymers. The mixture is tabletted and then cured.
  • zeolite tablets are produced as drying agents using 20% sepiolite as a binder. The mixture is kneaded with water, tabletted, dried at 150 ° C. and calcined at 550 ° C. The tablets have an improved drying effect compared to bentonite tablets.
  • the tablets produced according to the state of the art are unsuitable for use in confined spaces and under mechanical stress, since they are too thick and too heavy and, based on mass and surface area, have too little sorption power for harmful gases and vapors. With the methods and mixtures according to the prior art, brittle compacts are obtained which crumble in particular after firing.
  • electroluminescent devices only function properly over a long period of time if a desiccant is present. This is due to the sensitivity of the electrodes, especially the cathodes, e.g. due to moisture (the cathodes are made of Ca or Mg alloys). That is why these devices are sealed as well as possible under protective gas.
  • EP 500 382 A2 describes the use of a moisture absorber in an electroluminescent device.
  • the drying agent in the form of a powder or small beads is applied to a black silicone resin coating.
  • the desiccant is filled in a gas-permeable bag.
  • the object of the present invention is to provide platelet-shaped pressed bodies (wafers) based on an inorganic sorbent and an inorganic binder with a very small thickness (less than 700 ⁇ m) which, despite their small thickness, have great strength and thus in particular can be installed in electronic components in which only a limited space is available and which can be exposed to vibrations (eg electronic display devices in automobiles and mobile telephones).
  • platelet-shaped pressed bodies based on at least one inorganic sorbent and at least one binder, with a thickness of less than 700 ⁇ m, which can be obtained by pressing a mixture of or containing the inorganic sorbent, for example 20 to 60 wt .-% of the binder and about 10 to 15 wt .-% water (based on the total mixture) at a pressure of at least 70 MPa; and calcining the green compact obtained at temperatures of at least about 500 ° C until the water content is largely removed.
  • the pressed bodies (wafers) according to the invention have high strength, low brittleness, high sorption speed and high sorption capacities with a low mass. They show a low thermal expansion, no abrasion and are easily colored by adding pigments during production.
  • Zeolite 4A is assumed to be the sorbent, which as a commercially available powder has a water content of 20% by weight, which can only be removed completely above 500 ° C.
  • Bentonite is used as the binder, which, as a commercially available powder, has a water content of 12% by weight, which can be completely removed at 160.degree. This is familiar to the person skilled in the art.
  • the water content is made up of the water added to the mixture (10 parts) and the water loosely bound by the bentonite:
  • This mixture is accordingly determined by a weight ratio of dry sorbent to dry binder of 3.2 and a water content of 12.4% by weight.
  • the weight ratio of dry sorbent to dry binder is
  • the water content is made up of the water that was added to the mixture (15 parts) and the water loosely bound by the bentonite:
  • This mixture is accordingly determined by a weight ratio of dry sorbent to dry binder of 0.4 and a water content of 22.2% by weight.
  • the calcination is about between 20 and 32 wt .-% released as water.
  • the compacts are preferably kept at the calcination temperature or another suitable elevated temperature until this amount of water has been released and constant weight is reached.
  • a residual moisture content of ⁇ 2% by weight (determined at the calcination temperature) is calcined or dried.
  • this thus relates to platelet-shaped pressed bodies (wafers) containing at least one inorganic sorbent and at least one binder with a thickness of less than 700 ⁇ m, the weight ratio of dry sorbent to dry binder being between 3.2 and 0.4 is.
  • the water content of the mixture determined at 160 ° C., is preferably between about 8 and 22% by weight.
  • the pressed bodies are obtainable by a process in which the mixture containing inorganic sorbent, binder, water and optionally pressing aids are pressed at a pressure of at least 70 MPa and the green pressed bodies obtained are calcined at temperatures of at least about 500 ° C.
  • the calcination is preferably carried out to constant weight or to a residual moisture content of 2 2% by weight, determined at the calcination temperature.
  • the preferred mixing ratio of dry sorbent to dry binder is between about 2.1 and
  • the compacts according to the invention are able to sorb other gases (ammonia, amines, oxygen) in addition to water vapor. Since they have a high sorption capacity, the electronic device in which they are used does not need to be completely airtight.
  • the inorganic sorbent is preferably a natural or artificial zeolite.
  • other sorbents such as amorphous silica or aluminum hydroxide and mixtures of inorganic sorbents can also be used.
  • any binder which appears suitable to a person skilled in the art in this field can be used as the binder.
  • a smectitic clay, in particular bentonite is preferably used as the binder.
  • further inorganic binders e.g. Aluminum oxide hydroxide (pseudo boehmite) possible.
  • organic carbohydrate or protein based binders can also be used, e.g. Starch, cellulose derivatives (such as CMC or CEC), casein or synthetic polymers such as PVA, PVP or polyphenols or binders containing tannin (Quebracho). Mixtures of different binders can also be used.
  • the addition of the bentonite to the zeolite surprisingly does not reduce the sorption capacity of the latter. In fact, a synergetic effect can be determined, ie the water vapor absorption of the mixture is far less reduced than would be expected from a purely mathematical point of view.
  • the thickness of the wafer is preferably approximately 200 to 400 ⁇ m, and its binder content is preferably approximately 40 to 50% by weight.
  • the invention furthermore relates to a process, in particular for the production of the pressed bodies defined above, which is characterized in that a mixture comprising the inorganic sorbent is about 20 to 60% by weight of the binder and about 10 to 15% by weight. Water and 0 to 5% by weight of one or more pressing aids are pressed at a pressure of at least approximately 70 MPa and the green compact obtained is calcined at temperatures of at least approximately 500 ° C. until the water content has been largely removed. If the water content of the sorbent or binder used is already sufficient, no additional addition of water is necessary.
  • the weight ratio of the dry sorbent and the dry binder in the mixture is between about 3.2 and 0.4.
  • the water content of the mixture, determined at 160 ° C., is preferably between about 8 and 22% by weight.
  • Preferred procedural measures consist in that the mixture is preferably dried to a water content of approximately 10 to 25% by weight, in particular approximately 12% by weight, whereupon the dried granules are preferably comminuted to a particle size of somewhat less than 250 ⁇ m becomes.
  • the mixture is pressed into the pressed body if the mixture does not contain more than 15% by weight, preferably not more than 8% by weight, in particular 0% by weight of particles> 250 Contains ⁇ m, preferably> 200 ⁇ m and particularly preferably> 150 ⁇ m.
  • the proportion of particles ⁇ 45 ⁇ m should not be more than 50% by weight, preferably not more than 30% by weight, and particularly preferably not more than 20% by weight.
  • the pressed bodies produced in this way have particularly advantageous physical - solve
  • the preferred A zeolite is available in powder form and has a moisture content of about 10 to 22% by weight.
  • the zeolite is mixed with bentonite powder with a moisture content of preferably about 10 to 20, in particular 12% by weight and with water, and this mixture is then granulated.
  • the water content of the mixture depends on the properties of the bentonite; Sufficient water should be added to the bentonite / zeolite mixture so that the mixture can be granulated. An intensive mixer is preferably used for this.
  • the bentonite preferably has a montmorillonite content of> 80% by weight.
  • a fatty acid salt of a 2 or 3-valent metal, such as calcium or aluminum stearate, is preferably used as the pressing aid.
  • the preferred pressing pressure is about 100 to 1300 MPa.
  • the compacts are calcined at about 500 to 900 ° C, preferably at about 650 ° C, until constant weight is reached.
  • the compacts can also be calcined under vacuum, which means that permanent gases such as oxygen are also sorbed.
  • the compact can color pigments, e.g. Fe3Ü4, included.
  • the invention further relates to the use of the pressing bodies defined above as inserts in electronic devices or components, such as display devices, in particular in electroluminescent components, such as organic light emitting diodes (LED). However, they can also be used in moisture sensitive liquid crystal display (LCD) devices.
  • LCD moisture sensitive liquid crystal display
  • the electronic component can be significantly reduced in volume and cost.
  • the wafers have a higher sorption capacity and speed for water vapor in the required temperature and humidity range within an electronic component.
  • it must be taken into account that the volume of the material increases by 100% during the hydration reaction; Therefore, additional volume must be provided for the expansion of the desiccant within the component and a water vapor permeable film must be applied between BaO and the electroluminescent layer, which prevents contact between the expanding and possibly crumbling desiccant and the layer.
  • the wafers show no change in volume when absorbing water vapor and remain mechanically stable, so that the provision of an additional expansion volume within the component and the application of a protective film can be dispensed with.
  • BaO also has the disadvantage that it and its hydration products react strongly basic; it also heats it up very strongly when it absorbs moisture and tends to self-ignite if it comes into direct contact with organic compounds. This limits the choice of polymers for the protective film mentioned above to very expensive ones, for example fluoropolymers, and thus increases the cost of the component.
  • disposal problems arise when using BaO, as it is a health-damaging chemical that makes it very difficult to disassemble, reuse and dispose of the individual parts of the electronic component.
  • the compacts according to the invention can also be used for other purposes, e.g. as inserts in pharmaceutical packaging, since there is only a limited volume available for absorbing a drying agent.
  • the compacts can be in any shape, e.g. be round, square, triangular or rectangular or also contain bores and / or recesses.
  • the compacts according to the invention are dust-free and wear-resistant. They can be produced in large numbers per time unit in conventional press machines. Presses with multiple tools are preferably used.
  • Thickness 300 ⁇ 50 ⁇ m
  • drop test is used as a measure of the compressive strength, whereby 100 calcined compacts (round discs with a diameter of 27 mm) are dropped from a height of 1 m with the flat side down. The percentage of broken test specimens is determined.
  • Thickness 300 ⁇ 50 ⁇ m
  • Example 2 57 kg zeolite 4A (water content 20%), 42 kg bentonite (water content 12%) and 1 kg calcium stearate are mixed in an intensive mixer for 2 minutes. Then water is added until the viscosity rises sharply and mixing is continued for a further 4 minutes. The mixture is dried at 110 ° C. to a water content of 12% and then granulated (Stokes granulator) and sieved on a 250 ⁇ m sieve. 0.22 g of the material with a particle size ⁇ 250 ⁇ m are pressed to a wafer with a pressure of 72 MPa. The green wafers are processed as in Example 2:
  • Thickness 300 ⁇ 50 ⁇ m
  • Thickness 300 + 50 ⁇ m
  • Example 4 The procedure of Example 4 was repeated with the difference that the green wafers were calcined in vacuo.
  • the calcined wafers had essentially the same product properties as the wafers of Example 4, but additionally showed an absorption capacity for oxygen of approximately 5 ml / g (determined in a dry oxygen atmosphere).
  • game 6 In game 6
  • Thickness 300 ⁇ 50 ⁇ m
  • Example 8 The procedure of Example 4 was repeated with the difference that the pressure applied during the pressing was 1200 MPa. The drop test showed 10% break. The reject rate was ⁇ 10%.
  • Example 8 The procedure of Example 4 was repeated with the difference that the pressure applied during the pressing was 1200 MPa. The drop test showed 10% break. The reject rate was ⁇ 10%.
  • Example 4 The procedure of Example 4 was repeated with the difference that 54 kg of zeolite 4A, 40 kg of bentonite, 5 kg of Fe 3 O 4 and 1 kg of calcium stereate were used.
  • the wafers obtained were colored dark and could be used as a contrast surface in an LED display.
  • Thickness 300 + 50 ⁇ m
  • 0 rt W ⁇ 3 ⁇ £ ⁇ 3 ⁇ - ⁇ 0 3 J ort IQ - 3 ⁇ ⁇ ⁇ ⁇ ⁇ - ⁇ t ⁇ . ⁇ o ⁇ ⁇ x- 1 ⁇ ⁇ p ⁇ - CQ rt L ⁇ ⁇ ⁇ ⁇ rt rt ⁇ - g Hi ⁇ I- 1

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Drying Of Gases (AREA)
  • Laminated Bodies (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polishing Bodies And Polishing Tools (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

Beschrieben wird ein plättchenförmiger Presskörper (Wafer) auf der Basis eines anorganischen Sorbens und eines Bindemittels, mit einer Dicke von weniger als 700 νm, erhältlich durch Verpressen eines Gemischs aus dem anorganischen Sorbens, aus etwa 20 bis 60 Gew.-% des Bindemittels und etwa 10 bis 15 Gew.-% Wasser bei einem Druck von mindestens 70 MPa; und Calcinieren des erhaltenen grünen Presskörpers bei Temperaturen von mindestens etwa 500 °C bis zur weitgehenden Entfernung des Wassergehalts.

Description

Patentanmeldung*
Plättchenförmicre Presskörper
Beschreibung
Die Erfindung bezieht sich auf plättchenförmige Presskörper (Wafer) auf der Basis eines anorganischen Sorbens und eines Bindemittels, mit einer Dicke von weniger als 700 μm, die sich durch eine hohe mechanische Festigkeit und geringe Sprödigkeit auszeichnen und die in der Lage sind, anorganische und organische Gase oder Dämpfe effektiv zu sorbieren.
Die Herstellung von Presskörpern, insbesondere von Tabletten, auf der Basis von Zeolithen und Bindemitteln ist bereits bekannt. So werden nach der JP-A-61 15 5216 Zeolith-Tabletten durch Vermischen eines Zeoliths, eines Bindemittels und eines Gleitmittels und Extrudieren des Gemischs hergestellt . Es handelt sich offenbar um Tabletten mit gleichen Abmessungen in allen Richtungen. Aus der JP-A-56063818 ist die Herstellung von Zeolith-Tabletten zur Verwendung als Gasadsorbentien bekannt, wobei gepulverter und bei 105 bis 110°C getrockneter Zeolith mit 8.1 Gew.-% Bentonitpulver vermischt und mit einer 4%igen wäßrigen Harnstofflösung geknetet wird. Das Gemisch wird tablettiert, getrocknet und bei 510°C calciniert. Die Erhöhung der Druckfestigkeit ist durch den Harnstoffgehalt bedingt.
Aus der JP-A-55 16 5144 ist bekannt, Zeolithpulver für Kühlaggregate in Pulverform mit Bentonit und Wasser zu verkneten, das Gemisch zu extrudieren und runde Teilchen mit einem Durchmesser vom 0,8 bis 10 mm zu formen.
Nach der JP-A-55 10 4913 wird Zeolith in der Na-Form mit 25 Gew.-% Ton vermischt, mit Wasser verknetet, extrudiert, bei 650°C calciniert, in eine Calciumchlorid-Lösung getaucht, gewaschen, bei 110°C getrocknet und bei 400°C aktiviert. Die Tabletten werden als Trockenmittel verwendet.
Nach der JP-A-4 603 2572 wird Zeolithpulver mit Kaolin und Na- (oder NH4-) -Hydroxyethylcellulose vermischt, geformt, getrocknet und bei 650°C calciniert, um die Festigkeit der Zeolith-Tabletten zu erhöhen.
Nach der JP-A-21 44 121 werden Deodorantien durch Extrudieren von Zeolithpulver oder -körnern mit Calciumchlorid oder Bentonit und Wasser extrudiert, worauf das Gemisch tablettiert und die Tabletten calciniert werden.
Nach der JP-A-63 218 234 werden Trockenmittel durch Extrudieren eines Gemisches aus mikroporösen Teilchen (z.B. Gips, Zement, keramischem Pulver) und einem anorganischen oder organischen Füllstoff, wie CaCl2, LiCl, Bentonit, Zeolithen, PVA oder anderen wasserlöslichen Polymeren hergestellt. Das Gemisch wird tablettiert und dann ausgehärtet. Nach der JP-A-60 132 643 werden Zeolith-Tabletten als Trockenmittel unter Verwendung vom 20% Sepiolith als Bindemittel hergestellt. Das Gemisch wird mit Wasser geknetet, tablettiert, bei 150°C getrocknet und bei 550°C calciniert. Die Tabletten haben im Vergleich zu Bentonit-Tabletten eine verbesserte Trockenwirkung .
Für den Einsatz unter räumlich beengten Verhältnissen und unter mechanischer Beanspruchung sind die nach dem Stand der Technik hergestellten Tabletten ungeeignet, da sie zu dick und zu schwer sind und masse- und oberflächenbezogen eine zu geringe Sorptionskraft für schädliche Gase und Dämpfe haben. Mit den Verfahren und Mischungen nach dem Stand der Technik werden zu spröde Presskörper erhalten, die insbesondere nach dem Brennen abbröckeln.
Es ist bekannt, dass elektrolumineszierende Geräte nur dann problemlos über eine längere Zeit funktionieren, wenn ein Trockenmittel anwesend ist. Dies ist auf die Empfindlichkeit der Elektroden, insbesondere der Kathoden, z.B. gegenüber Feuchtigkeit zurückzuführen (die Kathoden bestehen aus Ca- oder Mg-Legierungen) . Deshalb werden diese Geräte unter Schutzgas möglichst gut versiegelt.
In der EP 500 382 A2 ist der Einsatz eines Feuchtigkeitsabsorbers in einem elektrolumineszierenden Gerät beschrieben. Das Trockenmittel in Form eines Pulvers oder kleiner Kügelchen wird dabei auf einen schwarzen Siliconharzüberzug aufgebracht . Nach der bevorzugten Ausführungsform ist das Trockenmittel in einem gasdurchlässigen Beutel eingefüllt.
In der US-A-5 , 882 , 761 ist ebenfalls der Einsatz eines Trockenmittels in einem elektroluminiszierenden Gerät beschrieben. Als bevorzugtes Trockenmittel wird BaO eingesetzt . Die aus den vorstehenden Druckschriften bekannten Sorbentien haben den Nachteil, dass sie nur Wasserdampf sorbieren können. Ein Angriff auf die Kathoden kann aber auch durch andere Gase ausgelöst werden, die neben Wasser beim Abbinden des zum Versiegeln benutzten Epoxyharzes entstehen (Ammoniak, flüchtige Amine) . Daneben führt auch die Einwirkung von Sauerstoff zum Versagen der luminiszenten Bauteile (Oxidation der Kathode) .
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, plätt- chenförmige Presskörper (Wafer) auf der Basis eines anorganischen Sorbens und eines anorganischen Bindemittels mit einer sehr geringen Dicke (weniger als 700 μm) bereitzustellen, die trotz ihrer geringen Dicke eine große Festigkeit haben und somit insbesondere in elektronische Bauteile eingebaut werden können, in denen nur ein beschränkter Platz zur Verfügung steht und die Erschütterungen ausgesetzt sein können (z.B. elektronische Anzeigevorrichtungen in Automobilen und Mobil- telefonen) .
Diese Aufgabe wird erfindungsgemäß gelöst durch die Bereitstellung von plättchenförmigen Presskörpern (Wafer) auf der Basis mindestens eines anorganischen Sorbens und mindestens eines Bindemittels, mit einer Dicke von weniger als 700 μm, die durch Verpressen eines Gemisches, aus bzw. enthaltend das anorganische Sorbens, etwa 20 bis 60 Gew.-% des Bindemittels und etwa 10 bis 15 Gew.-% Wasser (bezogen auf das Gesamtgemisch) bei einem Druck von mindestens 70 MPa; und Calci- nieren des erhaltenen grünen Presskörpers bei Temperaturen von mindestens etwa 500°C bis zur weitgehenden Entfernung des Wassergehalts erhältlich sind.
Die erfindungsgemäßen Presskörper (Wafer) weisen eine hohe Festigkeit, geringe Sprödigkeit, hohe Sorptionsgeschwindigkeit und hohe Sorptionskapazitäten bei geringer Masse auf. Sie zeigen eine geringe thermische Ausdehnung, keinen Abrieb und sind leicht durch Zugabe von Pigmenten bei der Herstellung färbbar.
Um erfindungsgemäße grüne Presskörper von ausreichender Festigkeit zu erhalten, ist die Einhaltung der angegebenen Grenzen für das Mischungsverhältnis von Sorbens, Bindemittel und Wasseranteil und der Pressdruck von außerordentlicher Bedeutung. Um den Einfluss des Mischungsverhältnisses von Sorbens und Bindemittel auf die Produkteigenschaften zu untersuchen ist es zweckmäßig, das Gewichtsverhältnis von trockenem Sorbens zu trockenem Bindemittel als Parameter heranzuziehen, um die unterschiedlichen Wassergehalte von verschiedenen Sorben- tien und Bindern zu eliminieren. Zudem ist es vorteilhaft, bei der Berechnung oder Feststellung des Wassergehalts der Mischung nur den relativ locker gebundenen Anteil zu berücksichtigen, der durch Erhitzen auf 160°C bestimmt werden kann, da nur die Menge dieses Wassers Einfluss auf das Verhalten der Mischung beim Pressvorgang und auf die Qualität des Endprodukts hat, nicht aber das von Sorbens oder Bindemittel strukturell und stark gebundene Wasser.
Zur Erläuterung dieses Konzepts mögen die folgenden Beispiele dienen. Als Sorbens wird Zeolith 4A angenommen, der als kommerziell erhältliches Pulver einen Wassergehalt von 20 Gew.-% aufweist, der erst über 500°C vollständig entfernt werden kann. Als Bindemittel wird Bentonit verwendet, der als kommerziell erhältliches Pulver einen Wassergehalt von 12 Gew.-% aufweist, der bei 160 °C vollständig entfernt werden kann. Dies ist dem Fachmann geläufig.
Werden entsprechend Anspruch 1 z.B. 70 Teile Zeolith 4A, 20 Teile Bentonit und 10 Teile Wasser gemischt, so beträgt das Gewichtsverhältnis von trockenem Sorbens zu trockenem Bindemittel
(0,8 * 70) / (0, 88 * 20) = 3,2. Der Wassergehalt, wie er durch Trocknen bei 160°C bestimmt werden kann, setzt sich zusammen aus dem Wasser, das der Mischung zugefügt wurde (10 Teile), sowie dem vom Bentonit locker gebundenen Wasser:
10 + (0,12 * 20) = 12,4.
Diese Mischung ist demgemäß durch ein Gewichtsverhältnis von trockenem Sorbens zu trockenem Bindemittel von 3 , 2 und einem Wassergehalt von 12,4 Gew.-% bestimmt.
Werden gemäß Anspruch 1 z.B. 25 Teile Zeolith 4A, 60 Teile Bentonit und 15 Teile Wasser gemischt, so beträgt das Gewichtsverhältnis von trockenem Sorbens zu trockenem Bindemittel
(0,8 * 25) / (0,88 * 60) = 0,4.
Der Wassergehalt, wie er durch Trocknen bei 160 °C bestimmt werden kann, setzt sich zusammen aus dem Wasser, das der Mischung zugefügt wurde (15 Teile) , sowie dem vom Bentonit locker gebundenen Wasser:
15 + (0,12 * 60) = 22,2.
Diese Mischung ist demgemäß durch ein Gewichtsverhältnis von trockenem Sorbens zu trockenem Bindemittel von 0,4 und einem Wassergehalt von 22,2 Gew.-% bestimmt.
Beim Calcinieren der Presskörper kann außer dem vom Bindemittel locker gebundenen Wasser und dem eventuell vom Sorbens stark gebundenen Wasser auch vom Bindemittel strukturell gebundenes Wasser abgegeben werden. Bei der Verwendung von Bentonit als Bindemittel werden bei der Calcinationstemperatur an oktaedrisch koordinierte Magnesium- und Aluminiumionen gebundene Hydroxylgruppen als Wasser abgespalten. Die Gesamtmenge des bei der Calcination abgegebenen Wassers hängt somit vom Verhältnis von Sorbens zu Bindemittel, von der Natur des Sorbens und des Bindemittels und der Menge des zugesetzten Wassers ab. Beispielsweise werden bei einer Mischung, die aus Zeolith 4A als Sorbens und Bentonit als Bindemittel gebildet wird, wobei das Mischungsverhältnis von trockenem Sorbens zu trockenem Bindemittel 1,3 und der Wassergehalt zwischen 8 und 20 Gew.-% beträgt, bei der Calcination etwa zwischen 20 und 32 Gew.-% als Wasser abgegeben.
Vorzugsweise werden die Presskörper so lange bei der Calcina- tionstemperatur oder einer anderen geeigneten erhöhten Temperatur gehalten, bis diese Menge an Wasser abgegeben wurde und Gewichtskonstanz erreicht ist. So wird nach einer bevorzugten Ausführungsform der Erfindung bis zu einem Rest euchtegehalt von < 2 Gew.-% (bestimmt bei der Calcinationstemperatur) calciniert bzw. getrocknet.
Nach einer bevorzugten Ausführungsform der Erfindung betrifft diese somit plättchenförmige Presskörper (Wafer) , enthaltend mindestens ein anorganisches Sorbens und mindestens ein Bindemittel, mit einer Dicke von weniger als 700 μm, wobei im Gemisch das Gewichtsverhältnis von trockenem Sorbens zu trockenem Bindemittel zwischen 3,2 und 0,4 liegt. Bevorzugt liegt der Wassergehalt des Gemisches, bestimmt bei 160°C, zwischen etwa 8 und 22 Gew.-%. Die Presskörper sind nach einem Verfahren erhältlich, bei dem das Gemisch, enthaltend anorganisches Sorbens, Bindemittel, Wasser und gegebenenfalls Presshilfsmittel bei einem Druck von mindestens 70 MPa verpresst werden und die erhaltenen grünen Presskörper bei Temperaturen von mindestens etwa 500 °C calciniert werden. Vorzugsweise erfolgt die Calcinierung bis zur Gewichtskonstanz oder bis zu einer Restfeuchte von ≤ 2 Gew.-%, bestimmt bei der Calcinationstemperatur. Das bevorzugte Mischungsverhältnis von trockenem Sorbens zu trockenem Bindemittel liegt zwischen etwa 2,1 und Die erfindungsgemäßen Presskörper können in automatisierten Prozessen in großen Stückzahlen pro Zeiteinheit hergestellt werden. Sie sind leicht handhabbar und können beispielsweise mit Hilfe sog. "pick-and-place" Maschinen einem Vorratsbehälter entnommen und in ein elektronisches Gerät eingesetzt werden.
Die erfindungsgemäßen Presslinge sind in der Lage, neben Wasserdampf auch andere Gase (Ammoniak, Amine, Sauerstoff) zu sorbieren. Da sie eine hohe Sorptionskapazität besitzen, braucht das elektronische Gerät, in das sie eingesetzt werden, nicht völlig luftdicht abgeschlossen sein.
Vorzugsweise stellt das anorganische Sorbens einen natürlichen oder künstlichen Zeolith dar. Es können aber auch andere Sor- bentien, wie amorphe Kieselsäure oder Aluminiumhydroxid sowie Gemische anorganischer Sorbentien verwendet werden.
Als Bindemittel kann im Prinzip jedes dem Fachmann auf diesem Gebiet geeignet erscheinende Bindemittel verwendet werden. Bevorzugt wird als Bindemittel ein smektitischer Ton, insbesondere Bentonit, verwendet. Ebenso ist der Einsatz weiterer anorganischer Bindemittel, z.B. Aluminiumoxidhydroxid (Pseudo- boehmit) möglich. Es können aber auch organische Bindemittel auf Kohlenhydrat- oder Proteinbasis verwendet werden, z.B. Stärke, Cellulosederivate (wie CMC oder CEC) , Casein oder auch synthetische Polymere wie PVA, PVP oder Polyphenole oder tan- ninhaltige Bindemittel (Quebracho) . Es können auch Gemische verschiedener Bindemittel verwendet werden.
Durch den Zusatz des Bentonits zum Zeolith wird überraschenderweise das Sorptionsvermögen des letzteren nicht vermindert. Tatsächlich ist ein synergetischer Effekt festzustellen, d.h. die Wasserdampfaufnähme des Gemischs ist weitaus weniger reduziert als es rein rechnerisch zu erwarten wäre. Die Dicke des Wafers beträgt vorzugsweise etwa 200 bis 400 μm, sein Bindemittelgeha] t vorzugsweise etwa 40 bis 50 Gew.-%.
Gegenstand der Erfindung ist ferner ein Verfahren, insbesondere zur Herstellung der vorstehend definierten Presskörper, das dadurch gekennzeichnet ist, dass man ein Gemisch, enthaltend das anorganische Sorbens, etwa 20 bis 60 Gew. -% des Bindemittels und etwa 10 bis 15 Gew.-% Wasser und 0 bis 5 Gew.-% eines oder mehrerer Presshilfsmittel bei einem Druck von mindestens etwa 70 MPa verpresst und den erhaltenen grünen Presskörper bei Temperaturen von mindestens etwa 500°C bis zur weitgehenden Entfernung des Wassergehalts calciniert. Falls der Wassergehalt des verwendeten Sorbens bzw. Bindemittels bereits ausreicht, ist keine zusätzliche Zugabe von Wasser erforderlich.
Nach einer bevorzugten Ausführungsform des Verfahrens liegt das Gewichtsverhältnis des trockenen Sorbens und des trockenen Bindemittels im Gemisch zwischen etwa 3,2 und 0,4. Der Wassergehalt des Gemisches, bestimmt bei 160°C, liegt vorzugsweise zwischen etwa 8 und 22 Gew.-%.
Bevorzugte Verfahrensmaßnahmen bestehen darin, dass das Gemisch vorzugsweise bis auf einen Wassergehalt von etwa 10 bis 25 Gew.-%, insbesondere von etwa 12 Gew.-%, getrocknet wird, worauf das getrocknete Granulat vorzugsweise bis auf eine Teilchengröße von etwas unter 250 μm zerkleinert wird.
Es wurde gefunden, dass beim Verpressen des Gemisches zum Presskörper die besten Resultate erzielt werden können, wenn das Gemisch nicht mehr als 15 Gew.-%, vorzugsweise nicht mehr als 8 Gew.-%, insbesondere 0 Gew.-% an Partikeln > 250 μm, bevorzugt > 200 μm und besonders bevorzugt > 150 μm enthält. Zugleich sollte der Anteil an Partikeln < 45 μm nicht mehr als 50 Gew.-%, bevorzugt nicht mehr als 30 Gew.-%, und besonders bevorzugt nicht mehr als 20 Gew.-% betragen. Die so hergestellten Presskörper weisen besonders vorteilhafte physikali- - lö ¬
sche und chemische Eigenschaften auf.
Der bevorzugt verwendete A-Zeolith ist in Pulverform erhältlich und hat einen Feuchtigkeitsgehalt von etwa 10 bis 22 Gew.-%. Der Zeolith wird mit Bentonitpulver mit einem Feuchtigkeitsgehalt von vorzugsweise etwa 10 bis 20, insbesondere 12 Gew.-% sowie mit Wasser vermischt und dieses Gemisch wird anschließend granuliert.
Der Wassergehalt des Gemischs hängt von den Eigenschaften des Bentonits ab; dem Bentonit/Zeolith-Gemisch sollte soviel Wasser zugesetzt werden, dass das Gemisch granuliert werden kann. Vorzugsweise verwendet man hierzu einen Intensivmischer. Der Bentonit hat vorzugsweise einen Montmorillonitgehalt von > 80 Gew. -% .
Als Presshilfsmittel wird vorzugsweise ein fettsaueres Salz eines 2- oder 3 -wertigen Metalls, wie Calcium- oder Aluminium- stearat, verwendet.
Der bevorzugte Pressdruck beträgt etwa 100 bis 1300 MPa.
Die Presskörper werden bei etwa 500 bis 900 °C, vorzugsweise bei etwa 650°C calciniert, bis Gewichtskonstanz erreicht ist.
Die Presskörper können auch unter Vakuum calciniert werden, wodurch auch permanente Gase, wie Sauerstoff, sorbiert werden.
Ferner können die Presskörper färbende Pigmente, z.B. Fe3Ü4, enthalten.
Gegenstand der Erfindung ist ferner die Verwendung der vorstehend definierten Presskörper als Einsätze in elektronischen Geräten oder Bauteilen, wie Anzeigevorrichtungen, insbesondere in elektrolumineszierenden Bauteilen, wie organischen licht- emittierenden Dioden (LED) . Sie können aber auch in feuchtigkeitsempfindlichen Flüssigkristall-Anzeigevorrichtungen (LCD) verwendet werden .
Diese Geräte oder Bauteile können durch anorganische oder organische Gase oder Dämpfe bei der Herstellung oder während des Gebrauchs in ihrer Funktion geschädigt werden und haben aufgrund ihrer Bauart nur ein sehr geringes Raumangebot für ein Sorptionsmittel .
Diese elektronischen Geräte oder Bauteile (z.B. Anzeigevorrichtungen in Kraftfahrzeugen und Mobiltelefonen) sind häufig starken Erschütterungen ausgesetzt, weshalb es wichtig ist, dass die Presskörper nicht zerbrechen oder zerbröseln. Aufgrund ihrer Festigkeit ist es nicht erforderlich, die Presskörper mit einer gasdurchlässigen Folie abzudecken, wodurch die Herstellung der elektonischen Bauteile vereinfacht wird.
Gegenüber BaO lässt sich eine deutliche Volumen- und Kostenreduktion des elektronischen Bauteils erreichen. So besitzen die Wafer massebezogen eine höhere Sorptionskapazität und -ge- schwindigkeit für Wasserdampf im benötigten Temperatur- und Feuchtigkeitsbereich innerhalb eines elektronischen Bauteils. Zudem muss beim Einsatz von BaO berücksichtigt werden, dass bei der Hydrationsreaktion eine Volumenzunahme des Materials um 100% eintritt; deshalb ist innerhalb des Bauteils zusätzliches Volumen für die Ausdehnung des Trockenmittels vorzusehen und zwischen BaO und der elektrolumineszierenden Schicht eine wasserdampfdurchlässige Folie anzubringen, die den Kontakt zwischen dem sich ausdehnenden und eventuell abbröckelnden Trockenmittel und der Schicht verhindert. Demgegenüber zeigen die Wafer bei der Wasserdampfaufnähme keine Volumenänderung und bleiben mechanisch stabil, so dass auf die Bereitstellung eines zusätzlichen Ausdehnungsvolumens innerhalb des Bauteils sowie die Anbringung einer Schutzfolie verzichtet werden kann. BaO hat zusätzlich den Nachteil, dass es selbst und seine Hydratationsprodukte stark basisch reagieren; zudem erhitzt es es bei der Aufnahme von Feuchtigkeit lokal sehr stark und bei unmittelbarem Kontakt mit organischen Verbindungen neigt es zu Selbstentzündung. Dies schränkt die Auswahl an Polymeren für die oben erwähnte Schutzfolie auf sehr teure, z.B. Fluorpolymere, ein und erhöht so die Kosten des Bauteils. Zudem treten bei der Verwendung von BaO Entsorgungsprobleme auf, da es als gesundheitschädliche Chemikalie die Demontage, Wiederverwendung und Entsorgung der Einzelteile des elektronischen Bauteils stark erschwert.
Die erfindungsgemäßen Presskörper können aber auch anderweitig Verwendung finden, z.B. als Einsätze in Pharmaverpackungen, da hier nur ein begrenztes Volumen für die Aufnahme eines Trok- kenmittels zur Verfügung steht.
Die Presskörper können in beliebigen Formen vorliegen, z.B. rund, quadratisch, dreieckig oder rechteckig sein oder auch Bohrungen und/oder Aussparungen enthalten. Die erfindungsgemäßen Presskörper sind staubfrei und abriebfest. Sie können in üblichen Pressautomaten in großer Stückzahl pro Zeiteinheit hergestellt werden. Bevorzugt werden Pressen mit Mehrfachwerkzeugen verwendet .
Die Erfindung ist durch die nachstehenden Beispiele erläutert:
Beispiel 1 (Vergleich)
75,2 kg Zeolith 4A (Wassergehalt 20%), 23,8 kg Bentonit (Wassergehalt 12%) und 1 kg Calciumstearat werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110 °C auf einen Wassergehalt von 12% getrocknet und anschließend granuliert (Stokes Granulator) und gesiebt (250 μm) . 0,22 g des Materials mit einer Partikelgröße < 250 μm werden mit einem Druck von 69 MPa zu einem runden Wafer gepresst. Die grünen Wafer werden bei 650°C drei Stunden lang calciniert, unter Feuchtigkeitsausschluss abgekühlt und luftdicht verpack . Die Dicke der Wafer nimmt bei der Calcinierung um etwa 15 bis 25% ab.
Produkteigenschaften :
Dicke: 300 ± 50 μm
Feuchte (nach der Calcinierung) : < 1%
Ausschuss bei der Produktion: > 90%
Falltest*: 100% Bruch, Wafer bröckelt am Rand ab
*Als Maß für die Druckfestigkeit dient der sogenannte Falltest, wobei 100 calcinierte Presskörper (runde Scheiben mit einem Durchmesser von 27 mm) aus eine Höhe von 1 m mit der flachen Seite nach unten fallengelassen werden. Es wird der Prozentgehalt der gebrochenen Prüfkörper festgestellt.
Beispiel 2 (Vergleich)
57 kg Zeolith 4A (Wassergehalt 20%) , 42 kg Bentonit (Wassergehalt 12%) und 1 kg Calciumstearat werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110 °C auf einen Wassergehalt von 12% getrocknet und anschließend granuliert (Stokes Granulator) und gesiebt (250 μm) . 0,22 g des Materials mit einer Partikelgröße < 250 μm werden mit einem Druck von 69 MPa zu einem Wafer gepresst. Die grünen Wafer werden bei 650 °C drei Stunden lang calciniert, unter Feuchtigkeitsausschluss abgekühlt und luftdicht verpackt . Produkteigenschaften :
Dicke : 300 ± 50 μm
Feuchte (nach der Calcinierung) < 1%
Ausschuss bei der Produktion: 75%
Falltest : 80% Bruch
Beispiel 3
57 kg Zeolith 4A (Wassergehalt 20%) , 42 kg Bentonit (Wassergehalt 12%) und 1 kg Calciumstearat werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110°C auf einen Wassergehalt von 12% getrocknet und anschließend granuliert (Stokes-Granulator) und auf einem 250 μm-Sieb gesiebt. 0,22 g des Materials mit einer Teilchengröße < 250 μm werden mit einem Druck von 72 MPa zu einem Wafer gepresst . Die grünen Wafer werden wie nach Beispiel 2 weiterbehandelt:
Produkteigenschaften :
Dicke : 300 ± 50 μm
Feuchte (nach der Calcinierung) < 1%
Ausschuss bei der Produktion: < 50%
Falltest: 60% Bruch
Beispiel 4
57 kg Zeolith 4A (Wassergehalt 20%) , 42 kg Bentonit (Wassergehalt 12%) und 1 kg Calciumstereat werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110°C auf einen Wassergehalt von 12% getrocknet, anschließend granuliert (Stokes-Granula- tor) und auf einem 250 μm-Sieb gesiebt. 0,22 g des Materials mit einer Partikelgröße < 250 μm werden mit einem Druck von 350 MPa zu einem Wafer gepresst. Die grünen Wafer werden bei 650 °C drei Stunden calciniert, unter Feuchtigkeitsausschluss abgekühlt und verpackt.
Produkteigenschaften :
Dicke: 300 + 50 μm
Feuchte (nach der Calcinierung) : < 1%
Ausschuss bei der Produktion: < 25%
Falltest: 15% Bruch
Sorptionskapazität * nach einer Stunde: 5,4 Gew.-% nach 5 Stunden: 7,2 Gew.-% nach 24 Stunden: 13,0 Gew.-%
*Die Sorptionskapazität für Wasserdampf wird bei 25 °C in einer Atmosphäre mit einer Luftfeuchtigkeit von 10% bestimmt.
Beispiel 5
Die Arbeitsweise von Beispiel 4 wurde mit der Abweichung wiederholt, dass die Calcinierung der grünen Wafer im Vakuum erfolgte. Die calcinierten Wafer hatten im wesentlichen die gleichen Produkteigenschaften wie die Wafer von Beispiel 4, zeigten jedoch zusätzlich eine Aufnahmekapazität für Sauerstoff von etwa 5 ml/g (in einer trockenen Sauerstoff tmosphäre bestimmt) . Bei spie l 6
56,5 kg Zeolith 4A (Wassergehalt 20%), 41,5kg Bentonit (Wassergehalt 12%) , 1 kg Calciumstearat und 1 kg Quebracho werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird bei 110°C auf einen Wassergehalt von 12% getrocknet und anschließend granuliert (Stokes-Granulator) und gesiebt (250 μm) . 0,22 g des Materials mit einer Partikelgröße < 250 μm werden mit einem Druck von 200 MPa zu einem Wafer gepresst. Die grünen Wafer werden bei 650 °C drei Stunden calciniert, unter Feuchtigkeitsausschluss abgekühlt und verpackt .
Produkteigenschaften :
Dicke: 300 ± 50 μm
Feuchte (nach der Calcinierung) : < 1%
Ausschuss bei der Produktion: < 35%
Falltest: 10% Bruch
Beispiel 7
Die Arbeitsweise von Beispiel 4 wurde mit der Abweichung wiederholt, dass der beim Verpressen angewendete Druck 1200 MPa beträgt. Der Falltest ergab 10% Bruch. Der Ausschuss lag bei < 10%. Beispiel 8
Die Arbeitsweise von Beispiel 4 wurde mit der Abweichung wiederholt, dass 54 kg Zeolith 4A, 40 kg Bentonit 5 kg Fe3θ4 und 1 kg Calciumstereat verwendet wurden. Die erhaltenen Wafer waren dunkel gefärbt und konnten in einem LED-Display als Kontrastfläche verwendet werden.
Beispiel 9
57 kg Zeolith 4A (Wassergehalt 20%) , 42 kg einer 50/50 Mischung aus Attapulgit und Kaolin (Wassergehalt 12%) und 1 kg Calciumstearat werden in einem Intensivmischer 2 Minuten gemischt. Dann wird Wasser bis zu einem starken Anstieg der Viskosität zugegeben und weitere 4 Minuten gemischt. Die Mischung wird auf einen Wassergehalt von 12% getrocknet, anschließend granuliert und auf einem 150 μm Sieb gesiebt. 0,17 g des Materials mit einer Partikelgröße < 150 μm werden mit einem Druck von 200 MPa zu einem Wafer gepresst. Die grünen Wafer werden bei 650°C drei Stunden calciniert, unter Feuchtigkeitsausschluss abgekühlt und verpackt.
Produkteigenschaften :
Dicke: 300 + 50 μm
Feuchte (nach der Calcinierung) : < 1%
Ausschuss bei der Produktion: 25%
Falltest: 70% Bruch ω s: ö CA p. . fr M P-- CQ Ό ^ φ α ^ ? - σi to s; ^ J <1 d rt w n J 0 π* Φ μ- PJ μ- Φ μ- tr Φ H PJ P) PJ X-1 Φ 3 o Ω Φ 3 O 3 μ- μ-
X h >Ü φ to φ to => 3 3 3 o μ- 3 rt CQ rt φ CQ O 3' μ- Φ 3 rt to 3
HJ CD *Ö μ-* μ- P. rt Φ μ- 3^ 3 fr rt σ fr Φ Ω μ- (D tu 3 öd t 0 - 0 Q d < ω 0 ω Φ P) μ- to Φ öd Hi 3' 0
CD CQ rt PJ μ- PJ P- ι-S p rt Φ J , ^^ PJ Ω φ Ξ rt Hi φ Hi
X * » d rt o IQ rh l σi 3 d Φ 3 d -J T μ- O μ- < CQ
CD CD H n* d &) μ- i Φ rt μ- rt •- φ Φ Hh ?d CQ Φ ^ PJ
3 3 CD P, Φ W =s 3 3 φ O P. μ- F φ m Ω φ 3 d- ι-i 3
- rt tr P* μ- μ- μ- rt μ- J Φ 3 d μ- ^ μ- fr fr P^ 3 to Ω μ- ζ Pl: μ-
CQ CD CQ I-* i-i Φ CQ P) μ- CQ Φ - rt x-1 Φ Φ 0= ? Φ Ω to
< Ti σ CO co l-h α Ω d φ rt H- co H! CO s: IQ ^ s: 3 3' Ω
CD i P> φ 3' l-h 3 tö g l-h s; 3 Φ μ- *-* ) P. Φ -
H{ μ- 3 P, er φ < Φ P) μ- Φ μ- s; d PJ h-1 I-1 Hj μ- ) 3 ^ d Φ Q Ω P- μ- Φ φ μ- Φ co Φ N d X d I-! Φ Ω d μ- μ- fr Ω 3 3 H CQ
H! 3' CD Φ hh μ- 3 i-i μ- Φ rr M Ω fr μ- 3' Ω Ω ^ X IQ D
0= rt W Φ 3 φ £ Φ 3 μ- Φ 0 3J o rt IQ - 3^ φ Ω ω φ - φ tΛ . Ω o Φ Φ x-1 φ ιp μ- CQ rt LΠ Φ φ φ rt rt μ- g Hi Φ I-1
CD tQ φ et CQ $, 3 φ 3 rt X-1 μ- σ 3 3 3 Φ Φ 3 μ- P) P- tQ μ- φ
CD o μ- P) X öd - to 0 I o
S fr 0 g 3 φ rt to Φ φ 3 Ω n 3 i IQ P- tß d rt V S Φ 3 μ- μ- to o CQ Φ 3 r π> Dl SU g rt d- to 3 ι-i μ- & P- μ* μ- Φ 3^ d= 3^ g n* rt 3 ffi d rt CQ to
Ω d π* 3 φ CQ 0 Q ι Pi CQ μ- 1 Φ rt rt μ- μ- rj* tfl Φ ~^ 0 ) 3J g ≤ 3 HS I-* ö i CO P) Ω rt Φ fr 3 μ- μ- X CQ PJ s; -
X t-1 p. pi μ- Φ <! d μ- μ- to d 3- μ- ^ φ φ H rt d H-1 ) d o μ- CD to ii 3 o g φ φ < 3 3 1— ' H O Φ H{ n* rt s: 3 öd π* CD H to H{ 3 μ- l-h X ιp 0 φ • Φ ü φ φ CQ PJ Φ Φ μ- μ- φ
0 tΛ Φ ö Ω 3 Φ Φ >υ 3 i-i Ω μ- 3 3 X , rt μ- ^ Φ 3 μ-
IQ CD CD O X Cd μ- H J μ- 3 X T Φ fr fr 0 Φ X-1 SS tn μ- co
H; 3 μ- J ö O H-1 J co H d 3 0 0 H Φ co Φ φ Ό to σi o J μ- to d
Pi α 3 3 μ- O Pl: O N l-h Φ g rt ui φ 3 φ 3 3 μ- Ω ,--. 3 N μ-
Ό CD Φ Φ CQ μ- . — . g 0 g - « fr ≤; - μ- φ
X ≤ ω ω H-* CQ 3' φ < P^ P-. Φ IQ •P Ό CΛ ^ Ω Φ μ- H φ I-* μ- (D P) 2 X μ- Φ HJ Φ μ- d 3 ^ J Φ P. * Ω Φ ^ Φ to α Φ \x Hi
CD HS μ- o φ ι-J iQ φ H φ 3 • ) d ^ μ- 0 3 μ- φ tr P. Φ μ- X φ H
3 * 3 3 Φ φ IQ 3 P X O CQ pi φ rt μ- H-* ω CQ μ- 3 o
CD in er φ p. ^ t*- 3J I rt 0 Ω co ta rt PJ p. H fr
3 tö α φ Φ Hl CQ Φ Φ P) Φ μ- μ- φ d P) IQ 3- X 0 d μ- ω d P^ Φ
CD CD Φ X Φ rt to μ- rt 3 3 CQ Hi d H! rt 0 rt φ Φ 3 d ω
CQ μ- H; J J l-h Φ Ω X Φ PJ rt Hh Φ co 3 s; co 3 3 td X 0 ^ < Cb rt <! d co ^~. 0 to μ- φ Φ iQ tu
\-> μ- O H f 0 H-* P) fr l-1 φ φ N 0 Φ X er IQ ^ CQ P) μ- CD μ- Φ ω φ 3 rt d Φ Φ ^ CQ rt 3 μ- μ- d Φ H <! CQ rt α H d n CD PJ to l-h rt o ιp • 3 φ 3 CQ PJ Φ g μ- d rt
X μ- \-> H* O 0 Φ u*> X oo Φ 0, rt d i er μ- i iQ φ rt 3 0 ) μ- Φ Φ μ- σi 3 N φ 3' to φ rt d Ω Φ μ-
CD *-o 3 S 3 μ- X-1 h-1 X 3 μ- Ω 5 o Φ fr X μ- μ- 3 - ISl H
3 öd l- μ- Φ CQ μ- Ω 3J CQ π μ- (D H-* Φ <! ≤ 3 Φ X d IQ t μ- Φ Φ Φ φ φ K Q 3 Φ μ- CD <; 0 H! H 3 Φ X rt Ω iQ 3 tQ CQ μ- φ μ- H rt . ^-, φ rt P, co |Q rt- tα l μ- H Φ ^ 5 φ rt fr g 3 H, « < μ- φ CQ rt ^--. μ- t) > Φ CQ M P* μ- μ- CQ Φ μ- μ- P, μ- X P P) φ rt C Φ co φ - Λ
CD μ- CD 0 f 5 Φ φ CQ rt H* rt φ Φ rt d i . rt H d
^ CD 3 d d= Φ Ω φ Pi rt W Φ μ- - to IQ φ 51 s; ρι
CD * 3 φ Ω 3 ** ω 3 3 X μ- φ μ- 3 0 Hi d μ- J μ- P-
3 Φ fr μ- X fr d Φ P. φ φ 3 3 PJ Φ fr P^ 0= & 3 3 ^ ^ p. * > er 3 s: 3 μ- ≤ Φ μ- H! P- Φ d Φ φ fr φ Φ 3 P- P)
CD Φ CQ pi rt IQ co X 3 P- φ H< l-h . H φ co Hi 3^
3 er 3 φ 3 Φ 3 d Q CQ
CD to l-h μ- 3 fr μ- fr 3 d 0 d= φ φ Φ μ- 3 i-! 3 fr φ CQ
Teils vor und nach einer Lagerung von 500 h bei 85°C und 85% Luftfeuchtigkeit aufgenommen. Ein Vergleich der beiden Photo- graphien zeigt eine deutlich erkennbares Wachstum dunkler Punkte, die auf einen Angriff auf die Kathode 9 hinweisen.

Claims

Patentansprüche
1. Plättchenförmige Presskörper (Wafer) auf der Basis mindestens eines anorganischen Sorbens und mindestens eines Bindemittels, mit einer Dicke von weniger als 700 μm, erhältlich durch Verpressen eines Gemisches, enthaltend das anorganische Sorbens, etwa 20 bis 60 Gew.-% des Bindemittels und etwa 10 bis 15 Gew.-% Wasser (bezogen auf das Gesamtgemisch) bei einem Druck von mindestens 70 MPa; und Calcinieren des erhaltenen grünen Presskörpers bei Temperaturen von mindestens etwa 500°C, bis zur weitgehenden Entfernung des Wassergehalts.
2. Presskörper nach Anspruch 1, dadurch gekennzeichnet, dass im Gemisch das Gewichtsverhältnis des trockenen Sorbens und des trockenen Bindemittels zwischen etwa 3,2 und 0,4 liegt.
3. Presskörper nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Calcinierung bis zur Gewichtskonstanz oder bis zu einer Restfeuchte von < 2 Gew.-%, bestimmt bei der Calcina- tionstemperatu , durchgeführt wird.
4. Presskörper nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das anorganische Sorbens einen natürlichen oder künstlichen Zeolith darstellt.
5. Presskörper nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das Bindemittel einen smektitischen Ton, vorzugsweise Bentonit, darstellt.
6. Presskörper nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Dicke des Wafers etwa 200 bis 400 μm beträgt .
7. Presskörper nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass sein Bindemittelgehalt etwa 40 bis 50 Gew.-% beträgt.
8. Presskörper nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass der Druck etwa 100 bis 1300 MPa beträgt.
9. Presskörper nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass er mit einem Presähilfsmittel , vorzugsweise einem fettsauren Salz eines 2- oder 3 -wertigen Me alls, ver- presst worden ist .
10. Presskörper nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass er mit einem tanninhaltigen Bindemittel, vorzugsweise Quebracho, verpresst worden ist.
11. Presskörper nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass er unter Vakuum calciniert worden ist.
12. Presskörper nach einem der Ansprüche 1 bis 11, dadurch gekennzeichnet, dass er ein färbendes Pigment enthält.
13. Presskörper mit den Feststoffkomponenten nach einem der Ansprüche 1 bis 12, wobei der Wassergehalt des Gemisches, bestimmt bei 160 °C, vorzugsweise zwischen etwa 12,4 und etwa 22 Gew.-%, jedoch allgemein zwischen etwa 8 und 22% Gew.-% liegt .
14. Verfahren zur Herstellung von plättchenförmigen Presskörpern, dadurch gekennzeichnet, dass man ein Gemisch, enthaltend mindestens ein anorganisches Sorbens, etwa 20 bis 60 Gew.-% mindestens eines Bindemittels und etwa 10 bis 15 Gew. -% Wasser bei einem Druck von mindestens etwa 70 MPa verpresst und den erhaltenen grünen Presskörper bei Temperaturen von mindestens etwa 500°C bis zur weitgehenden Entfernung des Wassergehalts calciniert .
15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass im Gemisch das Gewichtsverhältnis des trockenen Sorbens und des trockenen Bindemittels zwischen etwa 3,2 und 0,4 liegt.
16. Verfahren nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass die Calcinierung bis zur Gewichtskonstanz oder bis zu einer Restfeuchte von < 2%, bestimmt bei der Calcinations- temperatur, durchgeführt wird.
17. Verfahren nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass man einen oder mehrere der in einem der Ansprüche 2 bis 13 angegebenen Bestandteile unter den dort angegebenen Bedingungen verwendet .
18. Verfahren nach einem der Ansprüche 14 bis 17, wobei der Wassergehalt des Gemisches, bestimmt bei 160 °C, vorzugsweise zwischen etwa 12,4 und etwa 22 Gew.-%, jedoch allgemein zwischen etwa 8 und 22% Gew.-% liegt.
19. Verwendung des Presskörpers nach einem der Ansprüche 1 bis 13 als Einsatz in elektronischen Geräten, wie Anzeigevorrichtungen, insbesondere in elektrolumineszierenden Bauteilen.
PCT/EP2000/012604 1999-12-13 2000-12-12 Plättchenförmige presskörper WO2001044107A2 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT00991177T ATE279976T1 (de) 1999-12-13 2000-12-12 Plättchenförmige presskörper
EP00991177A EP1242180B1 (de) 1999-12-13 2000-12-12 Plättchenförmige presskörper
US10/149,349 US7135127B2 (en) 1999-12-13 2000-12-12 Laminated pressed articles
JP2001545201A JP4814469B2 (ja) 1999-12-13 2000-12-12 小プレート状プレス体
AU31580/01A AU3158001A (en) 1999-12-13 2000-12-12 Laminated pressed articles
DE50008361T DE50008361D1 (de) 1999-12-13 2000-12-12 Plättchenförmige presskörper
HK03105819A HK1053435A1 (en) 1999-12-13 2003-08-14 Laminated pressed articles.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19959957A DE19959957A1 (de) 1999-12-13 1999-12-13 Plättchenförmige Preßkörper
DE19959957.2 1999-12-13

Publications (2)

Publication Number Publication Date
WO2001044107A2 true WO2001044107A2 (de) 2001-06-21
WO2001044107A3 WO2001044107A3 (de) 2001-12-27

Family

ID=7932408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012604 WO2001044107A2 (de) 1999-12-13 2000-12-12 Plättchenförmige presskörper

Country Status (9)

Country Link
EP (1) EP1242180B1 (de)
JP (1) JP4814469B2 (de)
KR (1) KR100671571B1 (de)
CN (1) CN1151868C (de)
AT (1) ATE279976T1 (de)
AU (1) AU3158001A (de)
DE (2) DE19959957A1 (de)
HK (1) HK1053435A1 (de)
WO (1) WO2001044107A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002048025A2 (de) * 2000-12-12 2002-06-20 Süd-Chemie AG Plättchenförmige presskörper
JP2004311246A (ja) * 2003-04-08 2004-11-04 Tohoku Pioneer Corp 有機elパネル及びその製造方法
US7135127B2 (en) 1999-12-13 2006-11-14 Süd-Chemie AG Laminated pressed articles
US7585430B2 (en) 2001-01-08 2009-09-08 Sud-Chemie Ag Plate-shaped pressed bodies

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050238803A1 (en) * 2003-11-12 2005-10-27 Tremel James D Method for adhering getter material to a surface for use in electronic devices
DE102004024676A1 (de) * 2004-05-18 2005-12-15 Süd-Chemie AG Filmförmige sorbenshaltige Zusammensetzungen
US8173995B2 (en) 2005-12-23 2012-05-08 E. I. Du Pont De Nemours And Company Electronic device including an organic active layer and process for forming the electronic device
JP5747435B2 (ja) * 2008-10-30 2015-07-15 東ソー株式会社 高強度ゼオライトビーズ成型体及びその製造方法
CN102557068B (zh) * 2011-12-26 2013-11-06 明光市龙腾矿物有限公司 一种中空玻璃4a分子筛及其制备方法
CN102557069B (zh) * 2011-12-26 2013-09-11 明光市龙腾矿物有限公司 一种中空玻璃用分子筛及其制备方法
MX2018000254A (es) * 2015-07-09 2018-05-23 Ingevity South Carolina Llc Sistema de almacenamiento de gas, metodos para fabricar y usar el mismo.
TWI762711B (zh) * 2017-11-07 2022-05-01 日商双葉電子工業股份有限公司 乾燥劑、密封結構體及有機電致發光元件
JP6855418B2 (ja) * 2018-07-30 2021-04-07 双葉電子工業株式会社 有機el素子及びその製造方法
DE102022207442A1 (de) * 2022-07-21 2024-02-01 Volkswagen Aktiengesellschaft Verfahren und Anlage zur Herstellung eines Sorptionselements zur Abtrennung von Kohlenstoffdioxid aus der Umgebungsluft

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360444A (en) * 1980-03-04 1982-11-23 Siemens Aktiengesellschaft Getter body
DE3738916A1 (de) * 1987-11-17 1989-05-24 Ibs Engineering & Consulting I Grossformatiger oder kleinformatiger molekularsieb-formkoerper und verfahren zu seiner herstellung
EP0716140A1 (de) * 1994-11-22 1996-06-12 Ceca S.A. Anwendung von zeolitischen Agglomeraten von kaolinitischen Tonen beim Trocknen von Gasen welche Spuren von Aminen enthalten
WO1999049964A1 (en) * 1998-03-31 1999-10-07 Grace Gmbh & Co. Kg Shaped body of zeolite, a process for its production and its use

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55104913A (en) * 1979-02-03 1980-08-11 Toyo Soda Mfg Co Ltd Manufacture of improved a-type zeolite formed body
JPS55165144A (en) * 1979-06-12 1980-12-23 Toray Ind Inc Deodorant
JPS5663818A (en) * 1979-10-31 1981-05-30 Kojiro Takei Manufacture of zeolite molded body
JPS60129139A (ja) * 1983-12-16 1985-07-10 Matsushita Electric Ind Co Ltd ゼオライトフイルム
JPS61155216A (ja) * 1984-12-27 1986-07-14 Toyo Soda Mfg Co Ltd ゼオライトの成形方法
JPS62124132A (ja) * 1985-11-22 1987-06-05 Sanyo Chem Ind Ltd ゼオライト複合体および製造法
DE3711156A1 (de) * 1987-04-02 1988-10-20 Bayer Ag Verfahren zur herstellung eines adsorptionsmittels
FR2632944B1 (fr) * 1988-06-17 1990-10-12 Ceca Sa Procede pour la preparation d'agglomeres de tamis moleculaires zeolitiques a liant zeolitique
JPH0822366B2 (ja) * 1988-11-25 1996-03-06 新東北化学工業株式会社 脱臭機能を有する固形状乾燥剤
JP3386459B2 (ja) * 1990-06-27 2003-03-17 日揮ユニバーサル株式会社 耐水セピオライト成形体およびその製造方法
JP2885584B2 (ja) * 1991-09-13 1999-04-26 武田薬品工業株式会社 ゼオライト成形用組成物、ゼオライト成形物及び焼成物、並びにその製造方法
JPH0764615B2 (ja) * 1991-12-09 1995-07-12 ユーオーピー ゼオライトからの高密度リューサイト及び/又はポルサイトを主成分とするセラミックス
JP3312390B2 (ja) * 1992-07-27 2002-08-05 住友化学工業株式会社 乾燥用資材の製造方法
DE4243340A1 (de) * 1992-12-21 1994-06-23 Sued Chemie Ag Sorptionsmittel
JPH0753208A (ja) * 1993-08-11 1995-02-28 Takeda Chem Ind Ltd 成形用ゼオライト組成物、ゼオライト成形物、ゼオライト焼成物、それらの製造法および用途
JP4172838B2 (ja) * 1998-02-27 2008-10-29 積水化成品工業株式会社 合成マイカとその製造方法、およびそれを用いた化粧料
DE10065946A1 (de) * 2000-12-12 2002-06-13 Sued Chemie Ag Plättchenförmige Presskörper

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4360444A (en) * 1980-03-04 1982-11-23 Siemens Aktiengesellschaft Getter body
DE3738916A1 (de) * 1987-11-17 1989-05-24 Ibs Engineering & Consulting I Grossformatiger oder kleinformatiger molekularsieb-formkoerper und verfahren zu seiner herstellung
EP0716140A1 (de) * 1994-11-22 1996-06-12 Ceca S.A. Anwendung von zeolitischen Agglomeraten von kaolinitischen Tonen beim Trocknen von Gasen welche Spuren von Aminen enthalten
WO1999049964A1 (en) * 1998-03-31 1999-10-07 Grace Gmbh & Co. Kg Shaped body of zeolite, a process for its production and its use

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch, Week 198534 Derwent Publications Ltd., London, GB; Class A14, AN 1985-206036 XP002169091 & JP 60 129139 A (MATSUSHITA ELEC IND CO LTD), 10. Juli 1985 (1985-07-10) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 262 (C-1201), 19. Mai 1994 (1994-05-19) & JP 06 039235 A (SUMITOMO CHEM CO LTD), 15. Februar 1994 (1994-02-15) *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7135127B2 (en) 1999-12-13 2006-11-14 Süd-Chemie AG Laminated pressed articles
WO2002048025A2 (de) * 2000-12-12 2002-06-20 Süd-Chemie AG Plättchenförmige presskörper
WO2002048025A3 (de) * 2000-12-12 2003-05-30 Sued Chemie Ag Plättchenförmige presskörper
US7585430B2 (en) 2001-01-08 2009-09-08 Sud-Chemie Ag Plate-shaped pressed bodies
JP2004311246A (ja) * 2003-04-08 2004-11-04 Tohoku Pioneer Corp 有機elパネル及びその製造方法

Also Published As

Publication number Publication date
EP1242180A2 (de) 2002-09-25
EP1242180B1 (de) 2004-10-20
ATE279976T1 (de) 2004-11-15
JP4814469B2 (ja) 2011-11-16
CN1151868C (zh) 2004-06-02
CN1414878A (zh) 2003-04-30
KR20020059437A (ko) 2002-07-12
HK1053435A1 (en) 2003-10-24
DE50008361D1 (de) 2004-11-25
WO2001044107A3 (de) 2001-12-27
DE19959957A1 (de) 2001-06-21
JP2003517420A (ja) 2003-05-27
KR100671571B1 (ko) 2007-01-18
AU3158001A (en) 2001-06-25

Similar Documents

Publication Publication Date Title
WO2001044107A2 (de) Plättchenförmige presskörper
DE69906883T2 (de) Agglomerate auf der Basis von Aktivkohle, Verfahren zu deren Herstellung und deren Verwendung als Adsorptionsmittel
DE3712486A1 (de) Geformte aktivkohle auf holzbasis und vorrichtung zur ueberwachung von verdampfungsemissionen unter deren verwendung
US2992068A (en) Method for making synthetic zeolitic material
EP0714696B1 (de) Adsorptions-Luftfilter und Verfahren zu dessen Herstellung
US7585430B2 (en) Plate-shaped pressed bodies
DE10022798C2 (de) Körniges, keramisches Material mit hoher Porosität, Verfahren zu seiner Herstellung und Verwendung des Materials
DE2025893A1 (de) Glasfaserverstärkte Zeohth Granulate
Olafadehan et al. Isotherms, kinetic and thermodynamic studies of methylene blue adsorption on chitosan flakes derived from African giant snail shell
DE1266742B (de) Verfahren zur Herstellung von kieselsaeuregebundenen Formkoerpern aus kristallinen zeolithischen Molekularsieben mit hoher Nassabriebfestigkeit
EP1341736A2 (de) Plättchenförmige presskörper
DE10141020A1 (de) Trockenmittel auf Basis von Ton-gebundenem Zeolith, Verfahren zu dessen Herstellung und dessen Verwendung
WO2005117105A2 (de) Filmförmige sorbenshaltige zusammensetzungen
DD142175A5 (de) Verfahren zur herstellung von harter koerniger aktivkohle
DE2364255A1 (de) Chemisch modifizierte tone und verfahren zu ihrer herstellung
US7135127B2 (en) Laminated pressed articles
DE2514758B2 (de) Körnige Aktivtonerde
DE19826186A1 (de) Verfahren zur Herstellung eines Eisenhydroxid enthaltenden Adsorptionsmittels/Reaktionsmittels
EP0672636A2 (de) Verfahren zum Einbinden von schwermetallhaltigem Filterstaub in keramische Formlinge
DE10258491A1 (de) Sorbenzien mit einheitlicher Porengröße
DE4412411C2 (de) Abriebfestes, ein adsorbierendes Silikat enthaltendes Trockenmittel, ein Verfahren zu seiner Herstellung sowie seine Verwendung
DE3218625A1 (de) Getter aus aktiven, feindispersen metallen
WO2015169758A1 (de) Wasserstoffspeichernde komponente aus schlicker nebst vorrichtung und verfahren dafür
DE1592062A1 (de) Verfahren zur Herstellung von Tonerdekugeln
DE202023105726U1 (de) Eine Zusammensetzung und ein System zur Herstellung und Charakterisierung von Nano-Kalziumsilikat auf tropischen Böden

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020027007224

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 545201

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000991177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 008178518

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027007224

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2000991177

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10149349

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 2000991177

Country of ref document: EP