WO2001043713A2 - Kosmetische mittel enthaltend natürliche chitosane - Google Patents

Kosmetische mittel enthaltend natürliche chitosane Download PDF

Info

Publication number
WO2001043713A2
WO2001043713A2 PCT/EP2000/012320 EP0012320W WO0143713A2 WO 2001043713 A2 WO2001043713 A2 WO 2001043713A2 EP 0012320 W EP0012320 W EP 0012320W WO 0143713 A2 WO0143713 A2 WO 0143713A2
Authority
WO
WIPO (PCT)
Prior art keywords
acid
chitosan
preparation
chitosans
fatty
Prior art date
Application number
PCT/EP2000/012320
Other languages
English (en)
French (fr)
Other versions
WO2001043713A3 (de
Inventor
Ulrich SCHÖRKEN
Kerstin Kuhlmann
Rolf Wachter
Albrecht Weiss
Original Assignee
Cognis Deutschland Gmbh & Co.Kg
Henkel Kommanditgesellschaft Auf Aktien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland Gmbh & Co.Kg, Henkel Kommanditgesellschaft Auf Aktien filed Critical Cognis Deutschland Gmbh & Co.Kg
Publication of WO2001043713A2 publication Critical patent/WO2001043713A2/de
Publication of WO2001043713A3 publication Critical patent/WO2001043713A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/736Chitin; Chitosan; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/37Esters of carboxylic acids
    • A61K8/375Esters of carboxylic acids the alcohol moiety containing more than one hydroxy group
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/92Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9728Fungi, e.g. yeasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q1/00Make-up preparations; Body powders; Preparations for removing make-up
    • A61Q1/02Preparations containing skin colorants, e.g. pigments
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0024Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid beta-D-Glucans; (beta-1,3)-D-Glucans, e.g. paramylon, coriolan, sclerotan, pachyman, callose, scleroglucan, schizophyllan, laminaran, lentinan or curdlan; (beta-1,6)-D-Glucans, e.g. pustulan; (beta-1,4)-D-Glucans; (beta-1,3)(beta-1,4)-D-Glucans, e.g. lichenan; Derivatives thereof
    • C08B37/00272-Acetamido-2-deoxy-beta-glucans; Derivatives thereof
    • C08B37/003Chitin, i.e. 2-acetamido-2-deoxy-(beta-1,4)-D-glucan or N-acetyl-beta-1,4-D-glucosamine; Chitosan, i.e. deacetylated product of chitin or (beta-1,4)-D-glucosamine; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/20Chemical, physico-chemical or functional or structural properties of the composition as a whole
    • A61K2800/30Characterized by the absence of a particular group of ingredients
    • A61K2800/34Free of silicones

Definitions

  • the invention relates to cosmetic preparations which contain natural chitosans from mushrooms of the Mucoraceae family.
  • chitosans are cationic biopolymers under these conditions.
  • the positively charged chitosans can interact with oppositely charged surfaces and are therefore preferably used in cosmetic hair and body care products (see Ullmann 's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A6, Weinheim, Verlag Chemie, 1986, pp. 231-232), where they primarily act as moisturizers and film formers. Further overviews on this topic are also available, for example, from B. Gesslein et al. in HAPPI 27, 57 (1990), O.Skaugrud in Drug Cosm. Ind. 148: 24 (1991) and E. Onoyen et al. in Seifen- ⁇ le-Fette-Wwachs 117. 633 (1991).
  • the chitosans are partially deacetylated chitins of different molecular weights.
  • the production of chitosans is based on chitin, preferably the shell remains of crustaceans, which are available in large quantities as cheap raw materials.
  • the chitin is usually first deproteinized by adding bases, demineralized by adding mineral acids and finally deacetylated by adding strong bases, it being possible for the molecular weights to be distributed over a broad spectrum.
  • Appropriate methods are, for example, made from Makromol. Chem. 177, 3589 (1976) or French patent application FR 2701266 A1.
  • chitosan of microbiological origin in cosmetic preparations is known.
  • chitin is first obtained from chitin-producing microorganisms, and this is then deacetylated to chitosan in a chemical hydrolysis process.
  • chitosans depend considerably on the molecular form in which these substances are present, the molecular weight and the degree of deacetylation in particular playing an important role. Typical features of chitosan are its pronounced tendency to gel even at low concentrations, its poor solubility in many solvents commonly used in cosmetics, and its incompatibility with numerous other components, for example in cosmetic formulations.
  • chitosans which are produced by fungi of the Mucoraceae family and in particular those which continue to have a degree of deacetylation of at least 85% are outstandingly suitable as natural raw materials for use in cosmetics.
  • the invention thus relates to cosmetic preparations which contain, in a suitable carrier material, a natural chitosan from fungi of the Mucoraceae family.
  • the invention furthermore relates to cosmetic preparations which contain, in a suitable carrier material, a natural chitosan from fungi of the Mucoraceae family, the chitosan having a degree of deacetylation of at least 85%.
  • chitosan Only a few microorganisms are able to directly synthesize chitosan. These microorganisms belong to the Mucoraceae family, which includes the following genera: Absidia, Rhizopus, Mucor, Phycomyces, Actinomucor, Circinella, Zygorhynchus, Gongronella. Of these, Absidia has the highest proportion of chitosan, in particular Absidia coerulea ATCC 3018 and Absidia spinosa ATCC 3192. Chitosan from fungi of the genus Absidia or Rhizopus is preferred according to the invention.
  • Chitosan is produced enzymatically by fungi of the Mucoraceae family as a cell wall component under the action of the enzymes chitin deacetylase and chitin synthase (S. Bartnicki-Garcia, L. Davis, Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii , Biochemistry, 1984, 23, 1065-1075).
  • the chitosan is preferably obtained from the mushrooms by extraction methods as are known from the prior art (SA White, PR Farina, I. Fulton, Production and isolation of chitosan from Mucor rouxii, Appl. Environ. Microbiol. , 1979, 38, 323-328; K. Shimahara, Y. Takiguchi, T. Kobayashi, K. Uda, T. Sannan, Screening of mucoraceae strains suitable for chitosan production.
  • Chitin and Chitosan T. Skjak-Braek, T. Anthonsen, P. Sandford (eds.), Elsevier Appl. Sei.
  • the microorganisms from which they are obtained can be grown under controlled conditions and regardless of environmental influences.
  • the problem of heavy metal contamination is avoided from the outset, which is not uncommon in conventional chitosans obtained from crustaceans, depending on the location of the animals and the heavy metal pollution in the local waters.
  • macroscopic impurities which frequently occur in crustacean chitosan as a result of insoluble bycatch, are also ruled out in the fermentative production of natural chitosan.
  • the natural chitosan described above has properties which are particularly advantageous for use in cosmetic preparations, in particular good solubility and a comparatively low viscosity in solution, which not only facilitates the preparation of the preparations, but also the preparation of preparations with a relatively high level Allows concentrations of chitosan. Furthermore, due to the good solubility properties and low viscosities of the chitosans or their solutions used according to the invention, it is particularly advantageously possible to prepare, in particular, preparations with a high alcohol content and / or for use as sprays those for hair care. Experience has shown that the formulation of such preparations with the conventionally used crustacean chitosans frequently leads to considerable difficulties and restrictions in the amount of chitosans which can be used in the formulations.
  • the chitosan contained in the preparations according to the invention has an average molecular weight in the range from 100,000 to 2,000,000, preferably from 400,000 to 1,000,000 and particularly preferably from 500,000 to 800,000 daltons (relative weight against polyethylene glycol standard).
  • cosmetic preparations are to be understood as means for cleaning and / or caring for the body, especially the skin and hair.
  • Preparations according to the invention which contain natural chitosans are, for example, hair shampoos, hair lotions, hair styling agents, hair fixatives, foam baths, shower baths, creams, gels, lotions, alcoholic and aqueous / alcoholic solutions, emulsions, wax / fat compositions, stick preparations, sprays, foams, powders or ointments ,
  • Preferred cosmetic preparations for the purposes of the invention are hair and skin care products, with hair sprays, hair setting agents and hair care products in the form of foams or gels being particularly preferred.
  • the carrier suitable according to the invention preferably contain one or more adjuvants such as. B. mild surfactants, oil bodies, emulsifiers, superfatting agents, pearlescent waxes, consistency agents, thickening agents, polymers, silicone compounds, fats, waxes, stabilizers, biogenic agents, deodorant agents, antidandruff agents, film formers, swelling agents, UV light protection factors, antioxidants, hydrotropes, preservatives, Insect repellents, self-tanners, solubilizers, perfume oils, dyes, germ-inhibiting agents and the like in a suitable, preferably aqueous, aqueous-alcoholic or alcoholic medium.
  • adjuvants such as. B. mild surfactants, oil bodies, emulsifiers, superfatting agents, pearlescent waxes, consistency agents, thickening agents, polymers, silicone compounds, fats, waxes, stabilizers, biogenic agents, deodorant agents, antidandruff agents, film formers,
  • Suitable mild, ie particularly skin-compatible, surfactants are fatty alcohol polyglycol ether sulfates, monoglyceride sulfates, mono- and / or dialkyl sulfosuccinates, fatty acid isethionates, fatty acid sarcosinates, fatty acid tauids, fatty acid glutamates, olefin sulfonates, ether carboxylic acids, alkyl oligogluco acids side, fatty acid glucamides, alkyl amido betaines and / or protein fatty acid condensates, the latter preferably based on wheat proteins.
  • Guerbet alcohols based on fatty alcohols with 6 to 18, preferably 8 to 10 carbon atoms, esters of linear CQ-C 22 fatty acids with linear C 6 -C 22 fatty alcohols, esters of branched C 6 -C 13 carboxylic acids are used as oil bodies, for example linear C 6 -C 22 -fatty alcohols, such as myristyl myristate, myristyl palmitate, myristyl stearate, Myristylisostearat, myristyl, Myristylbehenat, Myristylerucat, cetyl myristate, cetyl palmitate, cetyl stearate, Cetylisostearat, Cetylo- leat, cetyl behenate, Cetylerucat, Stearylmyristat, stearyl palmitate, stearyl stearate, Stearylisostearat, stearyl oleate , stearyl behenate, ryl
  • esters of linear C 6 -C 22 fatty acids with branched alcohols in particular 2-ethylhexanol
  • esters of hydroxycarboxylic acids with linear or branched C 6 -C 22 fatty alcohols in particular dioctyl malates
  • esters of linear and / or branched Fatty acids with polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • esters of linear and / or branched Fatty acids with polyhydric alcohols such as propylene glycol, dimer diol or trimer triol
  • triglycerides based on C ⁇ -Cio fatty acids liquid mono- / di- / triglyceride mixtures based on C ⁇ -Ci ⁇ fatty acids
  • esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids in particular benzoic acid, esters of C 2 -C 2 -dicarboxylic acids with
  • Finsolv® TN linear or branched, symmetrical or asymmetrical dialkyl ethers with 6 to 22 carbon atoms per alkyl group, ring opening products of epoxidized fatty acid esters with polyols, silicone oils and / or aliphatic or naphthenic hydrocarbons , such as squalane, squalene or dialkylcyclohexanes.
  • suitable emulsifiers are nonionic surfactants from at least one of the following groups:
  • alkyl mono- and oligoglycosides with 8 to 22 carbon atoms in the alkyl radical and their ethoxylated analogs
  • polyol and especially polyglycerol esters such as e.g. Polyglycerol polyricinoleate, polyglycerol poly-12-hydroxystearate or polyglycerol dimerate stearate. Mixtures of compounds from several of these classes of substances are also suitable;
  • partial esters based on linear, branched, unsaturated or saturated C 6/22 fatty acids, ricinoleic acid as well as 12-hydroxystearic acid and glycerin, polyglycerin, pentaerythritol, dipentaerythritol, sugar alcohols (e.g. sorbitol), alkyl glucoside (e.g. methyl glucoside), butyl glucoside as well as polyglucosides (eg cellulose);
  • Glycerol carbonate The adducts of ethylene oxide and / or of propylene oxide with fatty alcohols, fatty acids, alkylphenols, glycerol mono- and diesters as well as sorbitan mono- and diesters with fatty acids or with castor oil are known, commercially available products. whose average degree of alkoxylation corresponds to the ratio of the amounts of ethylene oxide and / or propylene oxide and substrate with which the addition reaction is carried out.
  • C ⁇ / i ⁇ alkyl mono- and oligoglycosides their preparation and their use are known from the prior art. They are produced in particular by reacting glucose or oligosaccharides with primary alcohols with 8 to 18 carbon atoms.
  • glycoside residue both monoglycosides in which a cyclic sugar residue is glycosidically bonded to the fatty alcohol and oligomeric glycosides with a degree of oligomerization of up to about 8 are suitable.
  • the degree of oligomerization is a statistical mean value which is based on a homolog distribution customary for such technical products.
  • Zwitterionic surfactants can also be used as emulsifiers.
  • Zwitterionic surfactants are surface-active compounds that contain at least one quaternary ammonium group and at least one carboxylate and one sulfonate group in the molecule.
  • Particularly suitable zwitterionic surfactants are the so-called betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glycinate, for example the coconut acylaminopropyldimethylammonium glycinate, and 2-alkyl-3-car-boxyl -3-hydroxyethylimidazolines each having 8 to 18 carbon atoms in the alkyl or acyl group and the cocoacylaminoethylhydroxyethylcarboxymethylglycinate.
  • betaines such as the N-alkyl-N, N-dimethylammonium glycinate, for example the coconut alkyldimethylammonium glycinate, N-acylaminopropyl-N, N-dimethylammonium glyc
  • Suitable emulsifiers are ampholytic surfactants.
  • Ampholytic surfactants are surface-active compounds which, in addition to a C ⁇ / is-alkyl or -acyl group, contain at least one free amino group and at least one -COOH or -SOaH group in the molecule and are capable of forming internal salts.
  • ampholytic surfactants are N-alkylglycines, N-alkylpropionic acids, N-alkylaminobutyric acids, N-alkyliminodi- propionic acids, N-hydroxyethyl-N-alkylamidopropylglycine, N-alkyltaurine, N-alkyl sarcosine, 2-alkylaminopropionic acid and alkylaminoacetic acid, each with about 8 to 18 carbon atoms in the alkyl group.
  • Particularly preferred ampholytic surfactants are N-cocoalkylaminopropionate, cocoacylaminoethylaminopropionate and C 2 / ⁇ -acyl sarcosine.
  • quaternary emulsifiers are also suitable, those of the ester quat type, preferably methyl-quaternized difatty acid triethanolamine ester salts, being particularly preferred.
  • Substances such as lanolin and lecithin and polyethoxylated or acylated lanolin and lecithin derivatives, polyol fatty acid esters, monoglycerides and fatty acid alkanolamides can be used as superfatting agents, the latter simultaneously serving as foam stabilizers.
  • Pearlescent waxes that can be used are, for example: alkylene glycol esters, especially ethylene glycol distearate; Fatty acid alkanolamides, especially coconut fatty acid diethanolamide; Partial glycerides, especially stearic acid monoglyceride; Esters of polyvalent, optionally hydroxy-substituted carboxylic acids with fatty alcohols having 6 to 22 carbon atoms, especially long-chain esters of tartaric acid; Fatty substances, such as, for example, fatty alcohols, fatty ketones, fatty aldehydes, fatty ethers and fatty carbonates, which have a total of at least 24 carbon atoms, especially lauron and distearyl ether; Fatty acids such as stearic acid, hydroxystearic acid or behenic acid, ring opening products of olefin epoxides with 12 to 22 carbon atoms with fatty alcohols with 12 to 22 carbon atoms and / or polyols with 2 to 15
  • Suitable consistency agents are primarily fatty alcohols or hydroxy fatty alcohols with 12 to 22 and preferably 16 to 18 carbon atoms and also partial glycerides, fatty acids or hydroxy fatty acids. A combination of these substances with alkyl oligoglucosides and / or fatty acid N-methylglucamides of the same chain length and / or polyglycerol poly-12-hydroxystearates is preferred.
  • Suitable thickeners are, for example, Aerosil types (hydrophilic silicas), polysaccharides, in particular xanthan gum, guar guar, agar agar, alginates and tyloses, carboxymethyl cellulose and hydroxyethyl cellulose, furthermore higher molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates (eg Carbopole® from Goodrich or Synthalene® from Sigma), polyacrylamides, polyvinyl alcohol and polyvinylpyrrolidone, surfactants such as, for example, ethoxylated fatty acid glycide, esters of fatty acids with polyols such as pentaerythritol or trimethylolpropane, Fatty alcohol ethoxylates with a narrow homolog distribution or alkyl oligoglucosides as well as electrolytes such as table salt and ammonium chloride.
  • Aerosil types hydrophilic silicas
  • Suitable cationic polymers are, for example, cationic cellulose derivatives, such as e.g. a quaternized hydroxyethyl cellulose available under the name Polymer JR 400® from Amerchol, cationic starch, copolymers of diallyl ammonium salts and acrylamides, quaternized vinyl pyrrolidone / vinyl imidazole polymers such as e.g.
  • Luviquat® condensation products of polyglycols and amines, quaternized collagen polypeptides, such as, for example, lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®UGrünau), quaternized wheat polypeptides, polyethyleneimine, cationic silicone polymers, e.g. Amidomethicones, copolymers of adipic acid and dimethylaminohydroxypropyldiethylenetriamine (Cartaretine® / Sandoz), copolymers of acrylic acid with dimethyldiallylammonium chloride (Merquat® 550 / Chemviron), polyaminopolyamides, e.g.
  • cationic chitin derivatives such as quaternized chitosan, optionally microcrystalline, condensation products of dihaloalkylene, such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1, 3-propane, cationic guar gum, such as e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese, quaternized ammonium salt polymers such as e.g. Mirapol® A-15, Mirapol® AD-1, Mirapol® AZ-1 from Miranol.
  • dihaloalkylene such as e.g. Dibromobutane with bisdialkylamines, e.g. Bis-dimethylamino-1, 3-propane
  • cationic guar gum such as e.g. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 from Celanese
  • quaternized ammonium salt polymers such as e.
  • Anionic, zwitterionic, amphoteric and nonionic polymers include, for example, vinyl acetate / crotonic acid copolymers, vinylpyrrolidone / vinyl acrylate copolymers, vinyl acetate / butyl maleate / isobornyl acrylate copolymers, methyl vinyl ether / maleic anhydride copolymers and polyacrylamide and acrylates, non-acrylated polyamides and their esters, unreacted polychloride and acrylates, and their esters, non-acrylated polyamides and non-ester polyacrylates with unreacted polychloride and acrylates / Acrylate copolymers, octylacrylamide / methyl methacrylate / tert-butylaminoethyl methacrylate / 2-hydroxypropyl methacrylate copolymers, polyvinylpyrrolidone, vinylpyrrolidone / vinyl acetate copolymers, vinyl
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylpolysiloxanes, cyclic silicones and amino-, fatty acid-, alcohol-, polyether-, epoxy-, fluorine-, glycoside- and / or alkyl-modified silicone compounds which can be both liquid and resinous at room temperature.
  • Simethicones which are mixtures of dimethicones with an average chain length of 200 to 300 dimethylsiloxane units and hydrogenated silicates, are also suitable.
  • a detailed overview of suitable volatile silicones can also be found by Todd et al. in Cosm.Toil. 91, 27 (1976).
  • fats are glycerides
  • waxes include natural waxes, e.g. Candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice-germ oil wax, sugar cane wax, ouricury wax, montan wax, beeswax, shellac wax, walnut, lanolin (wool wax), pretzel fat, ceresin, ozokerite (earth wax), petrolatum, paraffin wax microcrystalline waxes; chemically modified waxes (hard waxes), e.g. Montanester waxes, Sasol waxes, hydrogenated jojoba waxes and synthetic waxes, such as Polyalkylene waxes and polyethylene glycol waxes in question.
  • natural waxes e.g. Candelilla wax, carnauba wax, Japanese wax, esparto grass wax, cork wax, guaruma wax, rice-germ oil wax
  • Metal salts of fatty acids such as e.g. Magnesium, aluminum and / or zinc stearate or ricinoleate are used.
  • Biogenic active substances are, for example, tocopherol, tocopherol acetate, tocopherol palmitate, ascorbic acid, deoxyribonucleic acid, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudo doceramides, essential oils, plant extracts and vitamin complexes.
  • Antiperspirants such as aluminum chlorohydates are suitable as deodorant active ingredients. These are colorless, hygroscopic crystals that easily dissolve in the air and arise when aqueous aluminum chloride solutions are evaporated.
  • Aluminum chlorohydrate is used in the manufacture of antiperspirant and deodorant preparations and is likely to act via the partial occlusion of the sweat glands by protein and / or polysaccha- Rid precipitation [cf. J.Soc. Cosm.Chem. 24, 281 (1973)].
  • an aluminum chlorohydrate that corresponds to the formula [AI 2 (OH) CI] * 2.5 H 2 O and whose use is particularly preferred is commercially available under the brand Locron® from Hoechst AG, Frankfurt / FRG.
  • esterase inhibitors can be added as further deodorant active ingredients. These are preferably trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Dusseldorf / FRG). The substances inhibit enzyme activity and thereby reduce odor. The cleavage of the citric acid ester probably releases the free acid, which lowers the pH value on the skin to such an extent that the enzymes are inhibited.
  • trialkyl citrates such as trimethyl citrate, tripropyl citrate, triisopropyl citrate, tributyl citrate and in particular triethyl citrate (Hydagen® CAT, Henkel KGaA, Dusseldorf / FRG).
  • esterase inhibitors include sterol sulfates or phosphates, such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate, dicarboxylic acids and their esters, such as, for example, glutaric acid, monoethyl glutarate, Diethyl glutarate, adipic acid, monoethyl adipate, diethyl adipate, malonic acid and diethyl malonate, hydroxycarboxylic acids and their esters such as, for example, citric acid, malic acid, tartaric acid or tartaric acid diethyl ester.
  • sterol sulfates or phosphates such as, for example, lanosterol, cholesterol, campesterol, stigmasterol and sitosterol sulfate or phosphate
  • dicarboxylic acids and their esters such as, for example, glutaric acid, monoethyl glutarate,
  • Antibacterial agents that influence the bacterial flora and kill sweat-killing bacteria or inhibit their growth can also be contained in the stick preparations.
  • Examples include chitosan, phenoxyethanol and chlorhexidine gluconate.
  • 5-Chloro-2- (2,4-dichlorophen-oxy) phenol which is sold under the Irgasan® brand by Ciba-Geigy, Basel / CH, has also proven to be particularly effective.
  • Climbazole, octopirox and zinc pyrethione can be used as antidandruff agents.
  • Common film formers are, for example, polyvinyl pyrrolidone, vinyl pyrrolidone / vinyl acetate copolymers, polymers of the acrylic acid series, quaternary cellulose derivatives, collagen, hyaluronic acid or its salts and similar compounds. Montmorillonites, clay minerals, pemulene and alkyl-modified carbopolypes (Goodrich) can serve as swelling agents for aqueous phases. Further suitable polymers or swelling agents can be found in the overview by R. Lochhead in Cosm.Toil. 108, 95 (1993).
  • UV light protection factors are understood to mean, for example, organic substances (light protection filters) which are liquid or crystalline at room temperature and which are able to absorb ultraviolet rays and release the absorbed energy in the form of longer-wave radiation, for example heat.
  • UVB filters can be oil-soluble or water-soluble. Examples of oil-soluble substances are:
  • 3-benzylidene camphor or 3-benzylidene norcampher and its derivatives e.g. 3- (4-methylbenzylidene) camphor as described in EP 0693471 B1;
  • 4-aminobenzoic acid derivatives preferably 2-ethylhexyl 4- (dimethylamino) benzoate, 2-octyl 4- (dimethylamino) benzoate and amyl 4- (dimethylamino) benzoate;
  • Esters of cinnamic acid preferably 4-methoxycinnamic acid 2-ethylhexyl ester, 4-methoxycinnamic acid propyl ester, 4-methoxycinnamic acid isoamyl ester 2-cyano-3,3-phenylcinnamic acid 2-ethylhexyl ester (octocrylene);
  • esters of salicylic acid preferably salicylic acid 2-ethylhexyl ester, salicylic acid 4-isopropylbenzyl ester, salicylic acid homomethyl ester;
  • benzophenone preferably 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy-4'-methylbenzophenone, 2,2'-dihydroxy-4-methoxybenzophenone;
  • esters of benzalmalonic acid preferably di-2-ethylhexyl 4-methoxybenzmalonate
  • Triazine derivatives e.g. 2,4,6-trianilino- (p-carbo-2'-ethyl-1'-hexyloxy) -1, 3,5-triazine and octyl triazone, as described in EP 0818450 A1;
  • Propane-1,3-dione e.g. 1- (4-tert-butylphenyl) -3- (4'methoxyphenyl) propane-1,3-dione;
  • Sulfonic acid derivatives of 3-benzylidene camphor such as 4- (2-oxo-3-bornylidenemethyl) benzenesulfonic acid and 2-methyl-5- (2-oxo-3-bornylidene) sulfonic acid and their salts.
  • benzoylmethane such as 1- (4'-tert-butylphenyl) -3- (4'-methoxyphenyl) propane-1,3-dione, 4-tert-butyl, are particularly suitable as typical UV-A filters -4'-methoxydibenzoylmethane (Parsol 1789), or 1-phenyl-3- (4'-isopropylphenyl) propane-1,3-dione.
  • insoluble light protection pigments namely finely dispersed metal oxides or salts
  • suitable metal oxides are, in particular, zinc oxide and titanium dioxide and, in addition, oxides of iron, zirconium, silicon, manganese, aluminum and cerium and mixtures thereof.
  • Silicates (talc), barium sulfate or zinc stearate can be used as salts.
  • the oxides and salts are used in the form of the pigments for skin-care and skin-protecting emulsions and decorative cosmetics.
  • the particles should have an average diameter of less than 100 nm, preferably between 5 and 50 nm and in particular between 15 and 30 nm. They can have a spherical shape, but it is also possible to use particles which have an ellipsoidal shape or a shape which differs from the spherical shape in some other way.
  • the pigments can also be surface-treated, ie hydrophilized or hydrophobicized. Typical examples are coated titanium dioxides such as titanium dioxide T 805 (Degussa) or Eusolex® T2000 (Merck). Silicones, and in particular trialkoxyoctylsilanes or simethicones, are particularly suitable as hydrophobic coating agents. So-called micro- or nanopigments are preferably used in sunscreens. Micronized zinc oxide is preferably used. Further suitable UV light protection filters can be found in the overview by P.Finkel in S ⁇ FW-Journal 122, 543 (1996).
  • secondary light stabilizers of the antioxidant type can also be used, which interrupt the photochemical reaction chain which is triggered when UV radiation penetrates the skin.
  • Typical examples are amino acids (e.g. glycine, histidine, tyrosine, tryptophan) and their derivatives, imidazoles (e.g. urocanic acid) and their derivatives, peptides such as D, L-camosine, D-carnosine, L-carnosine and their derivatives (e.g. anserine) , Carotenoids, carotenes (e.g.
  • ⁇ -carotene, ß-carotene, lycopene) and their derivatives chlorogenic acid and their derivatives, lipoic acid and their derivatives (e.g. dihydroliponic acid), aurothioglucose, propylthiouracil and other thiols (e.g.
  • thioredoxin glutathione, cysteine, Cystine, cystamine and their glycosyl, N-acetyl, methyl, ethyl, propyl , Amyl, butyl and lauryl, palmitoyl, oleyl, ⁇ -linoleyl, cholesteryl and glyceryl esters) and their salts, dilauryl thiodipropionate, distearyl thio propionate, thiodipropionic acid and their derivatives (esters, ethers, peptides, lipids, nucleotides , Nucleosides and salts) as well as sulfoximine compounds (e.g.
  • buthioninsulfoximines homocysteine sulfoximine, butioninsulfones, penta-, hexa-, heptathioninsulfoximine
  • very low tolerable dosages e.g. pmol to ⁇ mol / kg
  • metal chelators e.g. ⁇ -hydroxy fatty acids, palmitic acid , Phytic acid, lactoferrin
  • ⁇ -hydroxy acids e.g. citric acid, lactic acid, malic acid
  • humic acid bile acid, bile extracts, bilirubin, biliverdin, EDTA, EGTA and their derivatives, unsaturated fatty acids and their derivatives (e.g.
  • ⁇ -linolenic acid, linoleic acid, oleic acid) Folic acid and its derivatives, ubiquinone and ubiquinol and their derivatives, vitamin C and derivatives (eg ascorbyl palmitate, Mg ascorbyl phosphate, ascorbyl acetate), tocopherols and D derivatives (e.g.
  • vitamin E acetate
  • vitamin A and derivatives vitamin A palmitate
  • stilbenes and their derivatives e.g. stilbene oxide, trans-stilbene oxide
  • Derivatives suitable according to the invention salts, esters, ethers, sugars, nucleotides, nucleosides, peptides and lipids
  • Hydrotropes such as ethanol, isopropyl alcohol or polyols can also be used to improve the flow behavior.
  • Polyols that come into consideration here preferably have 2 to 15 carbon atoms and at least two hydroxyl groups.
  • the polyols can also contain further functional groups, in particular amino groups, or be modified with nitrogen. Typical examples are
  • Alkylene glycols such as, for example, ethylene glycol, diethylene glycol, propylene glycol, butylene glycol, hexylene glycol and polyethylene glycols with an average molecular weight of 100 to 1,000 daltons;
  • Methyl compounds such as in particular trimethylolethane, trimethylolpropane, trimethylolbutane, pentaerythritol and dipentaerythritol;
  • Lower alkyl glucosides in particular those with 1 to 8 carbons in the alkyl radical, such as methyl and butyl glucoside;
  • Sugar alcohols with 5 to 12 carbon atoms such as sorbitol or mannitol,
  • Aminosugars such as glucamine
  • Dialcohol amines such as diethanolamine or 2-amino-1, 3-propanediol.
  • Suitable preservatives are, for example, phenoxyethanol, formaldehyde solution, parabens, pentanediol or sorbic acid and the other classes of substances listed in Appendix 6, Parts A and B of the Cosmetics Ordinance.
  • N, N-diethyl-m-toluamide, 1, 2-pentanediol or 3535 insect repellants are suitable as insect repellants, and dihydroxyacetone is suitable as a self-tanning agent.
  • Perfume oils include mixtures of natural and synthetic fragrances. Natural fragrances are extracts of flowers (lily, lavender, roses, jasmine, neroli, ylang-ylang), stems and leaves (geranium, patchouli, petitgrain), fruits (anise, coriander, caraway, juniper), fruit peel (bergamot, lemon, Oranges), roots (mace, angelica, celery, cardamom, costus, iris, calmus), wood (pine, sandal, guaiac, cedar, rosewood), herbs and grasses (tarragon, lemongrass, sage, thyme), Needles and twigs (spruce, fir, pine, mountain pine), resins and balms (galbanum, elemi, benzoin, myrrh, olibanum, opoponax).
  • Typical synthetic fragrance compounds are products of the ester, ether, aldehyde, ketone, alcohol and hydrocarbon type. Fragrance compounds of the ester type are e.g. Benzyl acetate, phenoxyethyl isobutyrate, p-tert-butylcyclohexyl acetate, linalyl acetate, dimethylbenzylcarbinylacetate,
  • ethers include, for example, benzyl ethyl ether, the aldehydes, for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxycitronellal, lilial and bourgeonal, the ketones, for example the jonones, oc-isomethylionone and methylcedryl ketone, and the alcohols anole , Eugenol, isoeugenol, geraniol, linalool, phenylethyl alcohol and terpineol, the hydrocarbons mainly include the terpenes and balsams.
  • the aldehydes for example, the linear alkanals having 8 to 18 carbon atoms, citral, citronellal, citronellyloxyacetaldehyde, cyclamenaldehyde, hydroxyci
  • fragrance oils of lower volatility which are mostly used as aroma components, are also suitable as perfume oils, for example sage oil, chamomile oil, clove oil, lemon balm oil, mint oil, cinnamon leaf oil, linden blossom oil,
  • Juniper berry oil, vetiver oil, oliban oil, galbanum oil, labolanum oil and lavandin oil Preferably, bergamot oil, dihydromyrcenol, lilial, lyral, citronellol, phenylethyl alcohol, ⁇ -hexylcinnamaldehyde, geraniol, benzyl acetone, cyclamen aldehyde, linalool, Boisambrene Forte, Ambroxan, indole, hedione, Sandelice, lemon oil, mandarin oil, orange oil, allyl amyl glycolate, Cyclovertal, lavandin oil, muscatel Sage oil, ß-damascone, geranium oil bourbon, cyclohexyl salicylate, Vertofix Coeur, Iso-E-Super, Fixolide NP, evernyl, iraldein gamma, phen
  • the dyes which can be used are those substances which are suitable and approved for cosmetic purposes, as compiled, for example, in the publication "Cosmetic Dyes” by the Dye Commission of the German Research Foundation, Verlag Chemie, Weinheim, 1984, pp. 81-106. These dyes are usually used in concentrations of 0.001 to 0.1% by weight, based on the mixture as a whole.
  • germ-inhibiting agents are preservatives with a specific action against gram-positive bacteria, such as, for example, 2,4,4'-trichloro-2'-hydroxydiphenyl ether, chlorhexidine (1,6-di- (4-chlorophenyl-biguanido) hexane) or TCC (3,4,4'-trichlorocarbanilide).
  • gram-positive bacteria such as, for example, 2,4,4'-trichloro-2'-hydroxydiphenyl ether, chlorhexidine (1,6-di- (4-chlorophenyl-biguanido) hexane) or TCC (3,4,4'-trichlorocarbanilide).
  • Numerous fragrances and essential oils also have antimicrobial properties.
  • Typical examples are the active ingredients eugenol, menthol and thymol in clove, mint and thyme oil.
  • terpene alcohol farnesol (3,7,11-trimethyl-2,6,10-dodecatrien-1-ol), which is present in the linden blossom oil and has a lily of the valley smell.
  • Glycerol monolaurate has also proven itself as a bacteriostatic.
  • the amount of natural chitosans used in the cosmetic preparations is usually in the order of 0.1 to 5, preferably 0.5 to 3 and in particular 1 to 2% by weight, based on the total weight of the preparations.
  • the preparations can be produced by customary cold or hot processes; the phase inversion temperature method is preferably used.
  • Example 1 Production of natural chitosan from Absidia coerulea ATCC 3018
  • the insoluble mushroom cell mass (alkali insoluble material) was filtered off and washed twice with 200 ml of distilled water.
  • the alkali insoluble material was then mixed with 80 ml of 2% by weight acetic acid and stirred at 25 ° C. for 12 h. After centrifugation (10 min at 5000 rpm) and removal of the supernatant, the remaining alkali insoluble material was again mixed with 80 ml of 2% strength by weight acetic acid and stirred at 50 ° C. for 2 h. After renewed centrifugation (10 min at 5000 rpm), the supernatants from both centrifugations were combined (total 160 ml).
  • the result was 0.21 g of chitosan with a degree of deacetylation of 91% and an average molecular weight of 670,000 (relative weight against polyethylene glycol standard).
  • the viscosity of a 1% by weight solution in 0.5% glycolic acid was approx. 100 mPa / s.
  • Tables 1 and 2 below contain formulation examples with the natural chitosan from Example 1.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Mycology (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Materials Engineering (AREA)
  • Emergency Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)

Abstract

Vorgeschlagen wird die Verwendung von Chitosanen, die aus Pilzen der Familie Mucoraceae erhältlich sind, in der Kosmetik. Die Chitosane stellen natürliche Stoffe dar und haben besonders vorteilhafte Eigenschaften für den Einsatz in der Kosmetik, insbesondere hinsichtlich ihrer Lölichkeits - und Viskositätseigenschaften. Chitosane mit ernem

Description

„Kosmetische Mittel enthaltend natürliche Chitosane"
Die Erfindung betrifft kosmetische Zubereitungen, welche natürliche Chitosane aus Pilzen der Familie Mucoraceae enthalten.
Im Gegensatz zu den meisten Hydrokolloiden, die im Bereich biologischer pH- Werte negativ geladen sind, stellen Chitosane unter diesen Bedingungen kationische Biopolymere dar. Die positiv geladenen Chitosane können mit entgegengesetzt geladenen Oberflächen in Wechselwirkung treten und werden daher vorzugsweise in kosmetischen Haar- und Körperpflegemitteln eingesetzt (vgl. Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol. A6, Weinheim, Verlag Chemie, 1986, S. 231-232), wo sie in erster Linie als Feuchtigkeitsspender und Filmbildner wirken. Weitere Übersichten zu diesem Thema sind auch beispielsweise von B.Gesslein et al. in HAPPI 27, 57 (1990), O.Skaugrud in Drug Cosm.lnd. 148, 24 (1991 ) und E.Onsoyen et al. in Seifen-Öle-Fette-Wachse 117. 633 (1991 ) erschienen.
Chemisch betrachtet, handelt es sich bei den Chitosanen um partiell deacetylierte Chitine unterschiedlichen Molekulargewichtes. Zur Herstellung der Chitosane geht man von Chitin, vorzugsweise den Schalenresten von Krustentieren aus, die als billige Rohstoffe in großen Mengen zur Verfügung stehen. Das Chitin wird dabei üblicherweise zunächst durch Zusatz von Basen deproteiniert, durch Zugabe von Mineralsäuren demineralisiert und schließlich durch Zugabe von starken Basen deacetyliert, wobei die Molekulargewichte über ein breites Spektrum verteilt sein können. Entsprechende Verfahren sind beispielsweise aus Makromol. Chem. 177, 3589 (1976) oder der französischen Patentanmeldung FR 2701266 A1 bekannt.
Aus der WO 9014071 ist die Verwendung von Chitosan mikrobiologischen Ursprungs in kosmetischen Präparaten bekannt. Zur Herstellung dieses Chitosans wird zunächst Chitin aus Chitin-produzierenden Mikroorganismen gewonnen, und dieses anschließend in einem chemischen Hydrolyseprozeß zu Chitosan deacetyliert.
In der Kosmetik ist bereits seit längerer Zeit ein starker Trend hin zu natürlichen Inhaltsstoffen zu beobachten, worunter solche Stoffe zu verstehen sind, die aus natürlichen Rohstoffen ohne jegliche chemische Verfahrensschritte erhältlich sind, welche zu einer Veränderung der molekularen Zusammensetzung des natürlichen Inhaltsstoffs führen. Als natürlicher Rohstoff bevorzugt sind nicht-tierische Organismen wie beispielsweise Pflanzen oder Mikroorganismen. Weiterhin besteht auch ein Bedarf nach Chitosanen, die natürlichen Ursprungs sind und die aufgrund ihrer physikochemischen Eigenschaften zum Einsatz in der Kosmetik geeignet sind.
Die Eigenschaften und Anwendungsmöglichkeiten von Chitosanen hängen erheblich davon ab, in welcher molekularen Form diese Stoffe vorliegen, wobei insbesondere das Molekulargewicht sowie der Deacetylierungsgrad eine wesentliche Rolle spielen. Typische Merkmale von Chitosan sind seine ausgeprägte Neigung zur Gelbildung selbst bei niedrigen Konzentrationen, seine Schwerlöslichkeit in vielen in der Kosmetik gebräuchlichen Lösungsmitteln sowie seine Unverträglichkeit mit zahlreichen anderen Komponenten beispielsweise in kosmetischen Rezepturen.
Wegen dieser Probleme bei der Handhabung und der Formulierung einerseits und der von seiner chemischen Struktur bedingten praktisch grenzenlosen Vielfalt von Chitosanen andererseits ist es selbst für den Fachmann nicht vorhersehbar, welche Chitosane für welche Einsatzzwecke geeignet sind.
Aufgabe der vorliegenden Erfindung war es daher, ein für Anwendungen in der Kosmetik geeignetes, insbesondere hinsichtlich seiner Löslichkeits- und Viskositätseigenschaften vorteilhaftes Chitosan zu finden, welches im Sinne der vorstehenden Definition natürlichen und vorzugsweise nicht-tierischen Ursprungs ist.
Überraschenderweise wurde gefunden, daß sich Chitosane, die von Pilzen der Familie Mucoraceae produziert werden und insbesondere solche, die weiterhin einen Deacetylierungsgrad von mindestens 85% aufweisen, hervorragend als natürliche Rohstoffe zum Einsatz in der Kosmetik eignen. Gegenstand der Erfindung sind somit kosmetische Zubereitungen, die in einem geeigneten Trägermaterial ein natürliches Chitosan aus Pilzen der Familie der Mucoraceae enthalten.
Ein weiterer Gegenstand der Erfindung sind kosmetische Zubereitungen, die in einem geeigneten Trägermaterial ein natürliches Chitosan aus Pilzen der Familie der Mucoraceae enthalten, wobei das Chitosan einen Deacetylierungsgrad von mindestens 85% aufweist.
Nur wenige Mikroorganismen sind in der Lage, direkt Chitosan zu synthetisieren. Diese Mikroorganismen gehören zur Familie der Mucoraceae, zu der folgende Gattungen zählen: Absidia, Rhizopus, Mucor, Phycomyces, Actinomucor, Circi- nella, Zygorhynchus, Gongronella. Von diesen weist Absidia den höchsten Chito- sananteil auf, insbesondere Absidia coerulea ATCC 3018 und Absidia spinosa ATCC 3192. Erfindungsgemäß bevorzugt ist Chitosan aus Pilzen der Gattung Absidia oder Rhizopus.
Chitosan wird von Pilzen der Familie Mucoraceae als Zellwandbestandteil enzy- matisch unter Einwirkung der Enzyme Chitin-Deacetylase und Chitin-Synthase produziert (S. Bartnicki-Garcia, L. Davis, Chitosan synthesis by the tandem action of chitin synthetase and chitin deacetylase from Mucor rouxii, Biochemistry, 1984, 23, 1065-1075).
Das Chitosan wird aus den Pilzen vorzugsweise durch Extraktionsverfahren gewonnen, wie sie aus dem Stand der Technik bekannt sind (S. A. White, P. R. Fa- rina, I. Fulton, Production and isolation of chitosan from Mucor rouxii, Appl. Envi- ron. Microbiol., 1979, 38, 323-328; K. Shimahara, Y. Takiguchi, T. Kobayashi, K. Uda, T . Sannan, Screening of mucoraceae strains suitable for chitosan production. In: Chitin and Chitosan, T. Skjak-Braek, T. Anthonsen, P. Sandford (eds.), Elsevier Appl. Sei. London - New York, 1989, 171 - 178; K. D. Rane, D. G. Hoo- ver, Production of chitosan by fungi, Food Biotechnol., 1993, 7 (1 ), 11 - 33: W. J. McGahren, G. A. Perkinson, J. A. Growich, R. A. Leese, G. A. Ellestad, Chitosan by fermentation, Process Biochem., 1984, 19, 88-90; S. Arcidiacono, S. J. lom- bardii, D. L. Kaplan, Fermentation processing and enzyme characterization for chitosan biosynthesis by Mucor rouxii. In: Chitin and Chitosan, T. Skjak-Braek, T. Anthonsen, P. Sandford (eds.), Elsevier Appl. Sei. London - New York, 1989, 319-332; N. Davoust, G. Hansson, Identifying the conditions for development of beneficial mycelium morphology for chitosan-producing Absidia spp. in submer- sed cultures, Appl. Microbiol. Biotechnol., 1992, 36, 618-620; M. M. Jaworska, K. W. Stewczyk, Chitosan from Absidia sp., In: Advances in Chitin Sciences II, A. Dormard, G. F. Roberts, K. M. Varum (eds.), Jacques Andre Publisher, Lyon, France, 1997, 48-55; J. Synowiecki, N. A. A. Quawi Al-Khateeb, Mycelia of Mucor rouxii as a source of chitin and chitosan, Food Chemistry, 1997, 60, 605-610; EP 542249 (Shin-Etsu Chemical Co., Ltd., Japan); EP 531991 (Shin-Etsu Chemical Co., Ltd., Japan). Der Gehalt an extrahierbarem Chitosan ist gattungsabhängig und nimmt ab in der Reihenfolge Absidia, Rhizopus, sowie restliche Gattungen der Mucoraceae (K. Shimahara, Y. Takiguchi, T. Kobayashi, K. Uda, T. Sannan, Screening of mucoraceae strains suitable for chitosan production, in: Chitin and Chitosan, T. Skjak-Braek, T. Anthonsen, P. Sandford (eds.), Elsevier Appl. Sei., London - New York, 1989, 171 - 178; K.D. Rane, D.G. Hoover, Production of chitosan by fungi, Food Biotechnol., 1993, 7 (1 ), 11 - 33).
Für die Verwendung natürlicher Chitosane in der Kosmetik ist es weiterhin besonders vorteilhaft, daß die Mikroorganismen, aus welchen sie gewonnen werden, unter kontrollierten Bedingungen und unabhängig von Umwelteinflüssen gezüchtet werden können. So wird beispielsweise das Problem der Schwermetallkontamination von vorneherein vermieden, was bei herkömmlichen, aus Crustaceen gewonnenen Chitosanen je nach Fangort der Tiere und der Schwermetallbelastung der dortigen Gewässer nicht selten auftritt. Darüber hinaus werden bei der fermentativen Herstellung von natürlichem Chitosan auch makroskopische Verunreinigungen von vorneherein ausgeschlossen, wie sie im Crusta- ceen-Chitosan resultierend aus unlöslichem Beifang häufig auftreten.
Das vorstehend beschriebene natürliche Chitosan weist Eigenschaften auf, welche für den Einsatz in kosmetischen Zubereitungen besonders vorteilhaft sind, insbesondere eine gute Löslichkeit und eine vergleichsweise niedrige Viskosität in Lösung, was nicht nur die Herstellung der Zubereitungen erleichtert, sondern auch die Herstellung von Zubereitungen mit relativ hohen Konzentrationen an Chitosan ermöglicht. Weiter ist es aufgrund der guten Löslichkeitseigenschaften und niedrigen Viskositäten der erfindungsgemäß verwendeten Chitosane bzw. ihrer Lösungen besonders vorteilhaft möglich, Zubereitungen mit einem hohen Alkoholanteil und / oder zur Anwendung als Sprays herzustellen, insbesondere solche für die Haarpflege. Die Formulierung derartiger Zubereitungen mit den herkömmlich verwendeten Crustaceen-Chitosanen führt erfahrungsgemäß häufig zu erheblichen Schwierigkeiten und Einschränkungen in der Menge der in den Formulierungen einsetzbaren Chitosane.
Das in den erfindungsgemäßen Zubereitungen enthaltene Chitosan weist ein mittleres Molekulargewicht im Bereich von 100.000 bis 2.000.000, bevorzugt von 400.000 bis 1.000.000 und besonders bevorzugt von 500.000 bis 800.000 Dalton auf (relatives Gewicht gegen Polyethylenglykol-Standard).
Im Sinne der Erfindung sind unter kosmetischen Zubereitungen Mittel zur Reinigung und/oder Pflege des Körpers, speziell der Haut und der Haare zu verstehen. Erfindungsgemäße, natürliche Chitosane enthaltende Zubereitungen sind beispielsweise Haarshampoos, Haarlotionen, Haarstylingmittel, Haarfestiger, Schaumbäder, Duschbäder, Cremes, Gele, Lotionen, alkoholische und wäßrig/alkoholische Lösungen, Emulsionen, Wachs/Fett-Massen, Stiftpräparate, Sprays, Schäume, Puder oder Salben.
Bevorzugte kosmetische Zubereitungen im Sinne der Erfindung sind Haar- und Hautpflegemittel, wobei Haarsprays, Haarfestiger sowie Haarpflegemittel in der Form von Schäumen oder Gelen besonders bevorzugt sind.
Die erfindungsgemäß geeigneten Träger enthalten bevorzugt ein oder mehrere Adjuvantien wie z. B. milde Tenside, Ölkörper, Emulgatoren, Überfettungsmittel, Perlglanzwachse, Konsistenzgeber, Verdickungsmittel, Polymere, Siliconverbindungen, Fette, Wachse, Stabilisatoren, biogene Wirkstoffe, Deowirkstoffe, Antischuppenmittel, Filmbildner, Quellmittel, UV-Lichtschutzfaktoren, Antioxidan- tien, Hydrotrope, Konservierungsmittel, Insektenrepellentien, Selbstbräuner, Solubilisatoren, Parfümöle, Farbstoffe, keimhemmende Mittel und dergleichen in einem geeigneten, vorzugsweise wäßrigen, wäßrig-alkoholischen oder alkoholischen Medium.
Typische Beispiele für geeignete milde, d.h. besonders hautverträgliche Tenside sind Fettalkoholpolyglycolethersulfate, Monoglyceridsulfate, Mono- und/oder Dialkylsulfosuccinate, Fettsäureisethionate, Fettsäuresarcosinate, Fettsäuretau- ride, Fettsäureglutamate, Olefinsulfonate, Ethercarbonsäuren, Alkyloligogluco- side, Fettsäureglucamide, Alkylamidobetaine und/oder Proteinfettsäurekondensate, letztere vorzugsweise auf Basis von Weizenproteinen.
Als Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen CQ- C22-Fettsäuren mit linearen C6-C22-Fettalkoholen, Ester von verzweigten C6-C13- Carbonsäuren mit linearen C6-C22-Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristylisostearat, Myristyloleat, Myristylbehenat, Myristylerucat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetylo- leat, Cetylbehenat, Cetylerucat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearylerucat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, Isostearyloleat, Isostea- rylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, Oleylstearat, Oleyli- sostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpal- mitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behe- nylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucy- loleat, Erucylbehenat und Erucylerucat. Daneben eignen sich Ester von linearen C6-C22-Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von Hydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalko- holen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis Cβ-Cio-Fettsäuren, flüssige Mono-/Di-/Triglyceridmischungen auf Basis von Cβ-Ciβ-Fettsäuren, Ester von C6-C22-Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesondere Benzoesäure, Ester von C2-Cι2-Dicarbonsäuren mit linearen oder verzweigten Alkoholen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche öle, verzweigte primäre Alkohole, substituierte Cyclohexane, lineare und verzweigte CQ- C22-Fettalkoholcarbonate, Guerbetcarbonate, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22-Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetrische oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Alkylgruppe, Ringöffnungsprodukte von epoxidierten Fettsäureestern mit Polyolen, Siliconöle und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht. Als Emulgatoren kommen beispielsweise nichtionogene Tenside aus mindestens einer der folgenden Gruppen in Frage:
(1 ) Anlagerungsprodukte von 2 bis 30 Mol Ethylenoxid und/ oder 0 bis 5 Mol Propylenoxid an lineare Fettalkohole mit 8 bis 22 C-Atomen, an Fettsäuren mit 12 bis 22 C-Atomen und an Alkylphenole mit 8 bis 15 C-Atomen in der Alkylgruppe;
(2) Ci2/ιβ-Fettsäuremono- und -diester von Anlagerungsprodukten von 1 bis 30 Mol Ethylenoxid an Glycerin;
(3) Glycerinmono- und -diester und Sorbitanmono- und -diester von gesättigten und ungesättigten Fettsäuren mit 6 bis 22 Kohlenstoffatomen und deren Ethylenoxidanlagerungsprodukte;
(4) Alkylmono- und -oligoglycoside mit 8 bis 22 Kohlenstoffatomen im Alkylrest und deren ethoxylierte Analoga;
(5) Anlagerungsprodukte von 15 bis 60 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(6) Polyol- und insbesondere Polyglycerinester, wie z.B. Polyglycerinpolyrici- noleat, Polyglycerinpoly-12-hydroxystearat oder Polyglycerindimeratisostea- rat. Ebenfalls geeignet sind Gemische von Verbindungen aus mehreren dieser Substanzklassen;
(7) Anlagerungsprodukte von 2 bis 15 Mol Ethylenoxid an Ricinusöl und/oder gehärtetes Ricinusöl;
(8) Partialester auf Basis linearer, verzweigter, ungesättigter bzw. gesättigter C6/22-Fettsäuren, Ricinolsäure sowie 12-Hydroxystearinsäure und Glycerin, Polyglycerin, Pentaerythrit, Dipentaerythrit, Zuckeralkohole (z.B. Sorbit), Alkylglucoside (z.B. Methylglucosid, Butylglucosid, Laurylglucosid) sowie Polyglucoside (z.B. Cellulose);
(9) Mono-, Di- und Trialkylphosphate sowie Mono-, Di- und/oder Tri-PEG-al- kylphosphate und deren Salze;
(10) Wollwachsalkohole;
(11 ) Polysiloxan-Polyalkyl-Polyether-Copolymere bzw. entsprechende Derivate;
(12) Mischester aus Pentaerythrit, Fettsäuren, Citronensäure und Fettalkohol gemäß DE 1165574 PS und/oder Mischester von Fettsäuren mit 6 bis 22 Kohlenstoffatomen, Methylglucose und Polyolen, vorzugsweise Glycerin oder Polyglycerin,
(13) Polyalkylenglycole sowie
(14) Glycerincarbonat. Die Anlagerungsprodukte von Ethylenoxid und/oder von Propylenoxid an Fettalkohole, Fettsäuren, Alkylphenole, Glycerinmono- und -diester sowie Sorbitan- mono- und -diester von Fettsäuren oder an Ricinusöl stellen bekannte, im Handel erhältliche Produkte dar. Es handelt sich dabei um Homologengemische, deren mittlerer Alkoxylierungsgrad dem Verhältnis der Stoffmengen von Ethylenoxid und/ oder Propylenoxid und Substrat, mit denen die Anlagerungsreaktion durchgeführt wird, entspricht.
Cβ/iβ-Alkylmono- und -oligoglycoside, ihre Herstellung und ihre Verwendung sind aus dem Stand der Technik bekannt. Ihre Herstellung erfolgt insbesondere durch Umsetzung von Glucose oder Oligosacchariden mit primären Alkoholen mit 8 bis 18 C-Atomen. Bezüglich des Glycosidrestes gilt, daß sowohl Monoglycoside, bei denen ein cyclischer Zuckerrest glycosidisch an den Fettalkohol gebunden ist, als auch oligomere Glycoside mit einem Oligomerisationsgrad bis vorzugsweise etwa 8 geeignet sind. Der Oligomerisierungsgrad ist dabei ein statistischer Mittelwert, dem eine für solche technischen Produkte übliche Homologenverteilung zugrunde liegt.
Weiterhin können als Emulgatoren zwitterionische Tenside verwendet werden. Als zwitterionische Tenside werden solche oberflächenaktiven Verbindungen bezeichnet, die im Molekül mindestens eine quartäre Ammoniumgruppe und mindestens eine Carboxylat- und eine Sulfonatgruppe tragen. Besonders geeignete zwitterionische Tenside sind die sogenannten Betaine wie die N-Alkyl- N,N-dimethylammoniumglycinate, beispielsweise das Kokosalkyldimethylammo- niumglycinat, N-Acylaminopropyl-N,N-dimethylammoniumglycinate, beispielsweise das Kokosacylaminopropyldimethylammoniumglycinat, und 2-Alkyl-3-car- boxylmethyl-3-hydroxyethylimidazoline mit jeweils 8 bis 18 C-Atomen in der Alkyl- oder Acylgruppe sowie das Kokosacylaminoethylhydroxyethylcarboxymethyl- glycinat. Besonders bevorzugt ist das unter der CTFA-Bezeichnung Cocamidopropyl Betaine bekannte Fettsäureamid-Derivat. Ebenfalls geeignete Emulgatoren sind ampholytische Tenside. Unter ampholytischen Tensiden werden solche oberflächenaktiven Verbindungen verstanden, die außer einer Cβ/is-Alkyl- oder -Acylgruppe im Molekül mindestens eine freie Aminogruppe und mindestens eine -COOH- oder -SOaH-Gruppe enthalten und zur Ausbildung innerer Salze befähigt sind. Beispiele für geeignete ampholytische Tenside sind N-Alkylglycine, N-Alkylpropionsäuren, N-Alkylaminobuttersäuren, N-Alkyliminodi- propionsäuren, N-Hydroxyethyl-N-alkylamidopropylglycine, N-Alkyltaurine, N- Alkylsarcosine, 2-Alkylaminopropionsäuren und Alkylaminoessigsäuren mit jeweils etwa 8 bis 18 C-Atomen in der Alkylgruppe. Besonders bevorzugte ampholytische Tenside sind das N-Kokosalkylaminopropionat, das Kokosacylaminoethylaminopropionat und das Cι2/ιβ-Acylsarcosin. Neben den ampholytischen kommen auch quartäre Emulgatoren in Betracht, wobei solche vom Typ der Esterquats, vorzugsweise methylquaternierte Difettsäuretrietha- noIaminester-Salze, besonders bevorzugt sind.
Als Überfettungsmittel können Substanzen wie beispielsweise Lanolin und Lecithin sowie polyethoxylierte oder acylierte Lanolin- und Lecithinderivate, Polyolfettsäureester, Monoglyceride und Fettsäurealkanolamide verwendet werden, wobei die letzteren gleichzeitig als Schaumstabilisatoren dienen.
Als Perlglanzwachse kommen beispielsweise in Frage: Alkylenglycolester, speziell Ethylenglycoldistearat; Fettsäurealkanolamide, speziell Kokosfettsäure- diethanolamid; Partialglyceride, speziell Stearinsäuremonoglycerid; Ester von mehrwertigen, gegebenenfalls hydroxysubstituierte Carbonsäuren mit Fettalkoholen mit 6 bis 22 Kohlenstoffatomen, speziell langkettige Ester der Weinsäure; Fettstoffe, wie beispielsweise Fettalkohole, Fettketone, Fettaldehyde, Fettether und Fettcarbonate, die in Summe mindestens 24 Kohlenstoffatome aufweisen, speziell Lauron und Distearylether; Fettsäuren wie Stearinsäure, Hydroxystea- rinsäure oder Behensäure, Ringöffnungsprodukte von Olefinepoxiden mit 12 bis 22 Kohlenstoffatomen mit Fettalkoholen mit 12 bis 22 Kohlenstoffatomen und/oder Polyolen mit 2 bis 15 Kohlenstoffatomen und 2 bis 10 Hydroxylgruppen sowie deren Mischungen.
Als Konsistenzgeber kommen in erster Linie Fettalkohole oder Hydroxyfettalko- hole mit 12 bis 22 und vorzugsweise 16 bis 18 Kohlenstoffatomen und daneben Partialglyceride, Fettsäuren oder Hydroxyfettsäuren in Betracht. Bevorzugt ist eine Kombination dieser Stoffe mit Alkyloligoglucosiden und/oder Fettsäure-N- methylglucamiden gleicher Kettenlänge und/oder Polyglycerinpoly-12-hydro- xystearaten.
Geeignete Verdickungsmittel sind beispielsweise Aerosil-Typen (hydrophile Kieselsäuren), Polysaccharide, insbesondere Xanthan-Gum, Guar-Guar, Agar- Agar, Alginate und Tylosen, Carboxymethylcellulose und Hydroxyethylcellulose, ferner höhermolekulare Polyethylenglycolmono- und -diester von Fettsäuren, Polyacrylate, (z.B. Carbopole® von Goodrich oder Synthalene® von Sigma), Poly- acrylamide, Polyvinylalkohol und Polyvinylpyrrolidon, Tenside wie beispielsweise ethoxylierte Fettsäureglycehde, Ester von Fettsäuren mit Polyolen wie beispielsweise Pentaerythrit oder Trimethylolpropan, Fettalkoholethoxylate mit eingeengter Homologenverteilung oder Alkyloligoglucoside sowie Elektrolyte wie Kochsalz und Ammoniumchlorid.
Geeignete kationische Polymere sind beispielsweise kationische Cellulosederi- vate, wie z.B. eine quaternierte Hydroxyethylcellulose, die unter der Bezeichnung Polymer JR 400® von Amerchol erhältlich ist, kationische Stärke, Copolymere von Diallylammoniumsalzen und Acrylamiden, quaternierte Vinylpyrroli- don/Vinylimidazol-Polymere, wie z.B. Luviquat® (BASF), Kondensationsprodukte von Polyglycolen und Aminen, quaternierte Kollagenpolypeptide, wie beispielsweise Lauryldimonium hydroxypropyl hydrolyzed collagen (Lamequat®UGrünau), quaternierte Weizenpolypeptide, Polyethylenimin, kationische Siliconpolymere, wie z.B. Amidomethicone, Copolymere der Adipinsäure und Dimethyla- minohydroxypropyldiethylentriamin (Cartaretine®/Sandoz), Copolymere der Acrylsäure mit Dimethyldiallylammoniumchlorid (Merquat® 550/Chemviron), Polyaminopolyamide, wie z.B. beschrieben in der FR 2252840 A sowie deren vernetzte wasserlöslichen Polymere, kationische Chitinderivate wie beispielsweise quaterniertes Chitosan, gegebenenfalls mikrokristallin verteilt, Kondensationsprodukte aus Dihalogenalkylen, wie z.B. Dibrombutan mit Bisdialkylaminen, wie z.B. Bis-Dimethylamino-1 ,3-propan, kationischer Guar- Gum, wie z.B. Jaguar® CBS, Jaguar® C-17, Jaguar® C-16 der Firma Celanese, quaternierte Ammoniumsalz-Polymere, wie z.B. Mirapol® A-15, Mirapol® AD-1 , Mirapol® AZ-1 der Firma Miranol.
Als anionische, zwitterionische, amphotere und nichtionische Polymere kommen beispielsweise Vinylacetat/Crotonsäure-Copolymere, Vinylpyrrolidon/Vinylacrylat- Copolymere, Vinylacetat/Butylmaleat/ Isobornylacrylat-Copolymere, Methylvi- nylether/Maleinsäureanhydrid-Copolymere und deren Ester, unvernetzte und mit Polyolen vernetzte Polyacrylsäuren, Acrylamidopropyltrimethylammoniumchlorid/ Acrylat-Copolymere, Octylacrylamid/Methylmethacry- lat/tert.Butylaminoethylmethacrylat/2-Hydroxyproylmethacrylat-Copolymere, Polyvinylpyrrolidon, Vinylpyrrolidon/Vinylacetat-Copolymere, Vinylpyrrolidon/ Dimethylaminoethylmethacrylat/Vinylcaprolactam-Terpolymere sowie gegebenenfalls derivatisierte Celluloseether und Silicone in Frage.
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Me- thylphenylpolysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, epoxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raumtemperatur sowohl flüssig als auch harzförmig vorliegen können. Weiterhin geeignet sind Simethicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnittlichen Kettenlänge von 200 bis 300 Dimethyl- siloxan-Einheiten und hydrierten Silicaten handelt. Eine detaillierte Übersicht über geeignete flüchtige Silicone findet sich zudem von Todd et al. in Cosm.Toil. 91 , 27 (1976).
Typische Beispiele für Fette sind Glyceride, als Wachse kommen u.a. natürliche Wachse, wie z.B. Candelillawachs, Carnaubawachs, Japanwachs, Espartogras- wachs, Korkwachs, Guarumawachs, Reis-keimölwachs, Zuckerrohrwachs, Ouri- curywachs, Montanwachs, Bienenwachs, Schellackwachs, Walrat, Lanolin (Wollwachs), Bürzelfett, Ceresin, Ozokerit (Erdwachs), Petrolatum, Paraffinwachse, Mikrowachse; chemisch modifizierte Wachse (Hartwachse), wie z.B. Montanesterwachse, Sasolwachse, hydrierte Jojobawachse sowie synthetische Wachse, wie z.B. Polyalkylenwachse und Polyethylenglycolwachse in Frage.
Als Stabilisatoren können Metallsalze von Fettsäuren, wie z.B. Magnesium-, Aluminium- und/oder Zinkstearat bzw. -ricinoleat eingesetzt werden.
Unter biogenen Wirkstoffen sind beispielsweise Tocopherol, Tocopherolacetat, Tocopherolpalmitat, Ascorbinsäure, Desoxyribonucleinsäure, Retinol, Bisabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramide, Pseu- doceramide, essentielle Öle, Pflanzenextrakte und Vitaminkomplexe zu verstehen.
Als Deowirkstoffe kommen z.B. Antiperspirantien wie etwa Aluminiumchlorhydate in Frage. Hierbei handelt es sich um farblose, hygroskopische Kristalle, die an der Luft leicht zerfließen und beim Eindampfen wäßriger Aluminiumchloridlösungen anfallen. Aluminiumchlorhydrat wird zur Herstellung von schweißhemmenden und desodorierenden Zubereitungen eingesetzt und wirkt wahrscheinlich über den partiellen Verschluß der Schweißdrüsen durch Eiweiß- und/oder Polysaccha- ridfällung [vgl. J.Soc. Cosm.Chem. 24, 281 (1973)]. Unter der Marke Locron® der Hoechst AG, Frankfurt/FRG, befindet beispielsweise sich ein Aluminiumchlorhydrat im Handel, das der Formel [AI2(OH) CI]*2,5 H2O entspricht und dessen Einsatz besonders bevorzugt ist [vgl. J.Pharm.Pharmacol. 26, 531 (1975)]. Neben den Chlorhydraten können auch Aluminiumhydroxylactate sowie saure Aluminium/Zirkoniumsalze eingesetzt werden. Als weitere Deowirkstoffe können Esteraseinhibitoren zugesetzt werden. Hierbei handelt es sich vorzugsweise um Trialkylcitrate wie Trimethylcitrat, Tripropylcitrat, Triisopropylcitrat, Tributylcitrat und insbesondere Triethylcitrat (Hydagen® CAT, Henkel KGaA, Düssel- dorf/FRG). Die Stoffe inhibieren die Enzymaktivität und reduzieren dadurch die Geruchsbildung. Wahrscheinlich wird dabei durch die Spaltung des Citronensäu- reesters die freie Säure freigesetzt, die den pH-Wert auf der Haut soweit absenkt, daß dadurch die Enzyme inhibiert werden. Weitere Stoffe, die als Esteraseinhibitoren in Betracht kommen, sind Sterolsulfate oder -phosphate, wie beispielsweise Lanosterin-, Cholesterin-, Campesterin-, Stigmasterin- und Sitosterin- sulfat bzw -phosphat, Dicarbonsäuren und deren Ester, wie beispielsweise Glu- tarsäure, Glutarsäuremonoethylester, Glutarsäurediethylester, Adipinsäure, Adi- pinsäuremonoethylester, Adipinsäurediethylester, Malonsäure und Malonsäure- diethylester, Hydroxycarbnonsäuren und deren Ester wie beispielsweise Citro- nensäure, Äpfelsäure, Weinsäure oder Weinsäurediethylester. Antibakterielle Wirkstoffe, die die Keimflora beeinflussen und schweißzersetzende Bakterien abtöten bzw. in ihrem Wachstum hemmen, können ebenfalls in den Stiftzubereitungen enthalten sein. Beispiele hierfür sind Chitosan, Phenoxyethanol und Chlorhexidingluconat. Besonders wirkungsvoll hat sich auch 5-Chlor-2-(2,4- dichlorphen-oxy)-phenol erwiesen, das unter der Marke Irgasan® von der Ciba- Geigy, Basel/CH vertrieben wird.
Als Antischuppenmittel können Climbazol, Octopirox und Zinkpyrethion eingesetzt werden. Gebräuchliche Filmbildner sind beispielsweise Polyvinylpyrrolidon, Vinylpyrrolidon-Vinylacetat-Copolymerisate, Polymere der Acrylsäurereihe, quaternäre Cellulose-Derivate, Kollagen, Hyaluronsäure bzw. deren Salze und ähnliche Verbindungen. Als Quellmittel für wäßrige Phasen können Montmorillonite, Clay Mineralstoffe, Pemulen sowie alkylmodifizierte Carbopolty- pen (Goodrich) dienen. Weitere geeignete Polymere bzw. Quellmittel können der Übersicht von R.Lochhead in Cosm.Toil. 108, 95 (1993) entnommen werden. Unter UV-Lichtschutzfaktoren sind beispielsweise bei Raumtemperatur flüssig oder kristallin vorliegende organische Substanzen (Lichtschutzfilter) zu verstehen, die in der Lage sind, ultraviolette Strahlen zu absorbieren und die aufgenommene Energie in Form längerwelliger Strahlung, z.B. Wärme wieder abzugeben. UVB-Filter können öllöslich oder wasserlöslich sein. Als öllösliche Substanzen sind z.B. zu nennen:
• 3-Benzylidencampher bzw. 3-Benzylidennorcampher und dessen Derivate, z.B. 3-(4-Methylbenzyliden)campher wie in der EP 0693471 B1 beschrieben;
• 4-Aminobenzoesäurederivate, vorzugsweise 4-(Dimethylamino)benzoesäure- 2-ethylhexylester, 4-(Dimethylamino)benzoesäure-2-octylester und 4-(Di- methylamino)benzoesäureamylester;
• Ester der Zimtsäure, vorzugsweise 4-Methoxyzimtsäure-2-ethylhexylester, 4- Methoxyzimtsäurepropylester, 4-Methoxyzimtsäureisoamylester 2-Cyano-3,3- phenylzimtsäure-2-ethylhexylester (Octocrylene);
• Ester der Salicylsäure, vorzugsweise Salicylsäure-2-ethylhexylester, Salicylsäure-4-isopropylbenzylester, Salicylsäurehomomenthylester;
• Derivate des Benzophenons, vorzugsweise 2-Hydroxy-4- methoxybenzophenon, 2-Hydroxy-4-methoxy-4'-methylbenzophenon, 2,2'- Dihydroxy-4-methoxybenzophenon;
• Ester der Benzalmalonsäure, vorzugsweise 4-Methoxybenzmalonsäuredi-2- ethylhexylester;
• Triazinderivate, wie z.B. 2,4,6-Trianilino-(p-carbo-2'-ethyl-1'-hexyloxy)-1 ,3,5- triazin und Octyl Triazon, wie in der EP 0818450 A1 beschrieben;
• Propan-1 ,3-dione, wie z.B. 1-(4-tert.Butylphenyl)-3-(4'methoxyphenyl)propan- 1 ,3-dion;
• Ketotricyclo(5.2.1.0)decan-Derivate, wie in der EP 0694521 B1 beschrieben.
Als wasserlösliche Substanzen kommen in Frage:
• 2-Phenylbenzimidazol-5-sulfonsäure und deren Alkali-, Erdalkali-, Ammonium- , Alkylammonium-, Alkanolammonium- und Glucammoniumsalze;
• Sulfonsäurederivate von Benzophenonen, vorzugsweise 2-Hydroxy-4- methoxybenzophenon-5-sulfonsäure und ihre Salze;
• Sulfonsäurederivate des 3-Benzylidencamphers, wie z.B. 4-(2-Oxo-3- bornylidenmethyl)benzol- sulfonsäure und 2-Methyl-5-(2-oxo-3-bornyliden)sulfonsäure und deren Salze. Als typische UV-A-Filter kommen insbesondere Derivate des Benzoylmethans in Frage, wie beispielsweise 1-(4'-tert.Butylphenyl)-3-(4'-methoxyphenyl)propan-1 ,3- dion, 4-tert.-Butyl-4'-methoxydibenzoylmethan (Parsol 1789), oder 1-Phenyl-3-(4'- isopropylphenyl)-propan-1 ,3-dion. Die UV-A und UV-B-Filter können selbstverständlich auch in Mischungen eingesetzt werden. Neben den genannten löslichen Stoffen kommen für diesen Zweck auch unlösliche Lichtschutzpigmente, nämlich feindisperse Metalloxide bzw. Salze in Frage. Beispiele für geeignete Metalloxide sind insbesondere Zinkoxid und Titandioxid und daneben Oxide des Eisens, Zirkoniums, Siliciums, Mangans, Aluminiums und Cers sowie deren Gemische. Als Salze können Silicate (Talk), Bariumsulfat oder Zinkstearat eingesetzt werden. Die Oxide und Salze werden in Form der Pigmente für hautpflegende und hautschützende Emulsionen und dekorative Kosmetik verwendet. Die Partikel sollten dabei einen mittleren Durchmesser von weniger als 100 nm, vorzugsweise zwischen 5 und 50 nm und insbesondere zwischen 15 und 30 nm aufweisen. Sie können eine sphärische Form aufweisen, es können jedoch auch solche Partikel zum Einsatz kommen, die eine ellipsoide oder in sonstiger Weise von der sphärischen Gestalt abweichende Form besitzen. Die Pigmente können auch oberflächenbehandelt, d.h. hydrophilisiert oder hydrophobiert vorliegen. Typische Beispiele sind gecoatete Titandioxide, wie z.B. Titandioxid T 805 (Degussa) oder Eusolex® T2000 (Merck). Als hydrophobe Coatingmittel kommen dabei vor allem Silicone und dabei speziell Trialkoxyoctylsilane oder Simethicone in Frage. In Sonnenschutzmitteln werden bevorzugt sogenannte Mikro- oder Nanopigmente eingesetzt. Vorzugsweise wird mikronisiertes Zinkoxid verwendet. Weitere geeignete UV-Lichtschutzfilter sind der Übersicht von P.Finkel in SÖFW-Journal 122, 543 (1996) zu entnehmen.
Neben den beiden vorgenannten Gruppen primärer Lichtschutzstoffe können auch sekundäre Lichtschutzmittel vom Typ der Antioxidantien eingesetzt werden, die die photochemische Reaktionskette unterbrechen, welche ausgelöst wird, wenn UV-Strahlung in die Haut eindringt. Typische Beispiele hierfür sind Aminosäuren (z.B. Glycin, Histidin, Tyrosin, Tryptophan) und deren Derivate, Imidazole (z.B. Urocaninsäure) und deren Derivate, Peptide wie D,L-Camosin, D- Carnosin, L-Carnosin und deren Derivate (z.B. Anserin), Carotinoide, Carotine (z.B. α-Carotin, ß-Carotin, Lycopin) und deren Derivate, Chlorogensäure und deren Derivate, Liponsäure und deren Derivate (z.B. Dihydroliponsäure), Au- rothioglucose, Propylthiouracil und andere Thiole (z.B. Thioredoxin, Glutathion, Cystein, Cystin, Cystamin und deren Glycosyl-, N-Acetyl-, Methyl-, Ethyl-, Propyl- , Amyl-, Butyl- und Lauryl-, Palmitoyl-, Oleyl-, γ-Linoleyl-, Cholesteryl- und Glycerylester) sowie deren Salze, Dilaurylthiodipropionat, Distearylthiodi- propionat, Thiodipropionsäure und deren Derivate (Ester, Ether, Peptide, Lipide, Nukleotide, Nukleoside und Salze) sowie Sulfoximinverbindungen (z.B. Buthioninsulfoximine, Homocysteinsulfoximin, Butioninsulfone, Penta-, Hexa-, Heptathioninsulfoximin) in sehr geringen verträglichen Dosierungen (z.B. pmol bis μmol/kg), ferner (Metall)-Chelatoren (z.B. α-Hydroxyfettsäuren, Palmitinsäure, Phytinsäure, Lactoferrin), α-Hydroxysäuren (z.B. Citronensäure, Milchsäure, Apfelsäure), Huminsäure, Gallensäure, Gallenextrakte, Bilirubin, Biliverdin, EDTA, EGTA und deren Derivate, ungesättigte Fettsäuren und deren Derivate (z.B. γ-Linolensäure, Linolsäure, ölsäure), Folsäure und deren Derivate, Ubichinon und Ubichinol und deren Derivate, Vitamin C und Derivate (z.B. Ascorbylpalmitat, Mg-Ascorbylphosphat, Ascorbylacetat), Tocopherole und Derivate (z.B. Vitamin-E-acetat), Vitamin A und Derivate (Vitamin-A-palmitat) sowie Koniferylbenzoat des Benzoeharzes, Rutinsäure und deren Derivate, α- Glycosylrutin, Ferulasäure, Furfurylidenglucitol, Carnosin, Butylhydroxytoluol, Butylhydroxyanisol, Nordihydroguajakharzsäure, Nordihydroguajaretsäure, Trihydroxybutyrophenon, Harnsäure und deren Derivate, Mannose und deren Derivate, Superoxid-Dismutase, Zink und dessen Derivate (z.B. ZnO, ZnSO ) Selen und dessen Derivate (z.B. Selen-Methionin), Stilbene und deren Derivate (z.B. Stilbenoxid, trans-Stilbenoxid) und die erfindungsgemäß geeigneten Derivate (Salze, Ester, Ether, Zucker, Nukleotide, Nukleoside, Peptide und Lipide) dieser genannten Wirkstoffe.
Zur Verbesserung des Fließverhaltens können ferner Hydrotrope, wie beispielsweise Ethanol, Isopropylalkohol, oder Polyole eingesetzt werden. Polyole, die hier in Betracht kommen, besitzen vorzugsweise 2 bis 15 Kohlenstoffatome und mindestens zwei Hydroxylgruppen. Die Polyole können noch weitere funktioneile Gruppen, insbesondere Aminogruppen, enthalten bzw. mit Stickstoff modifiziert sein. Typische Beispiele sind
• Glycerin;
• Alkylenglycole, wie beispielsweise Ethylenglycol, Diethylenglycol, Propylenglycol, Butylenglycol, Hexylenglycol sowie Polyethylenglycole mit einem durchschnittlichen Molekulargewicht von 100 bis 1.000 Dalton; • technische Oligoglyceringemische mit einem Eigenkondensationsgrad von 1 ,5 bis 10 wie etwa technische Diglyceringemische mit einem Diglyceringehalt von 40 bis 50 Gew.-%;
• Methyolverbindungen, wie insbesondere Trimethylolethan, Trimethylolpropan, Trimethylolbutan, Pentaerythrit und Dipentaerythrit;
• Niedrigalkylglucoside, insbesondere solche mit 1 bis 8 Kohlenstoffen im Alkylrest, wie beispielsweise Methyl- und Butylglucosid;
• Zuckeralkohole mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Sorbit oder Mannit,
• Zucker mit 5 bis 12 Kohlenstoffatomen, wie beispielsweise Glucose oder Saccharose;
• Aminozucker, wie beispielsweise Glucamin;
• Dialkoholamine, wie Diethanolamin oder 2-Amino-1 ,3-propandiol.
Als Konservierungsmittel eignen sich beispielsweise Phenoxyethanol, Formal- dehydlösung, Parabene, Pentandiol oder Sorbinsäure sowie die in Anlage 6, Teil A und B der Kosmetikverordnung aufgeführten weiteren Stoffklassen. Als Insekten-Repellentien kommen N,N-Diethyl-m-toluamid, 1 ,2-Pentandiol oder Insekten-Repellent 3535 in Frage, als Selbstbräuner eignet sich Dihydroxyaceton.
Als Parfümöle seien genannt Gemische aus natürlichen und synthetischen Riechstoffen. Natürliche Riechstoffe sind Extrakte von Blüten (Lilie, Lavendel, Rosen, Jasmin, Neroli, Ylang-Ylang), Stengeln und Blättern (Geranium, Patchouli, Petitgrain), Früchten (Anis, Koriander, Kümmel, Wacholder), Fruchtschalen (Bergamotte, Zitrone, Orangen), Wurzeln (Macis, Angelica, Sellerie, Kardamon, Costus, Iris, Calmus), Hölzern (Pinien-, Sandel-, Guajak-, Zedern-, Rosenholz), Kräutern und Gräsern (Estragon, Lemongras, Salbei, Thymian), Nadeln und Zweigen (Fichte, Tanne, Kiefer, Latschen), Harzen und Balsamen (Galbanum, Elemi, Benzoe, Myrrhe, Olibanum, Opoponax). Weiterhin kommen tierische Rohstoffe in Frage, wie beispielsweise Zibet und Castoreum. Typische synthetische Riechstoffverbindungen sind Produkte vom Typ der Ester, Ether, Aldehyde, Ketone, Alkohole und Kohlenwasserstoffe. Riechstoffverbindungen vom Typ der Ester sind z.B. Benzylacetat, Phenoxyethylisobutyrat, p-tert.-Bu- tylcyclohexylacetat, Linalylacetat, Dimethylbenzylcarbinylacetat,
Phenylethylacetat, Linalylbenzoat, Benzylformiat, Ethylmethylphenylglycinat, Allylcyclohexylpropionat, Styrallylpropionat und Benzylsalicylat. Zu den Ethern zählen beispielsweise Benzylethylether, zu den Aldehyden z.B. die linearen Alkanale mit 8 bis 18 Kohlenstoffatomen, Citral, Citronellal, Citronellyloxyacetaldehyd, Cyclamenaldehyd, Hydroxycitronellal, Lilial und Bourgeonal, zu den Ketonen z.B. die Jonone, oc-lsomethylionon und Methylcedrylketon, zu den Alkoholen Anethol, Citronellol, Eugenol, Isoeugenol, Geraniol, Linalool, Phenylethylalkohol und Terpineol, zu den Kohlenwasserstoffen gehören hauptsächlich die Terpene und Balsame. Bevorzugt werden jedoch Mischungen verschiedener Riechstoffe verwendet, die gemeinsam eine ansprechende Duftnote erzeugen. Auch ätherische Öle geringerer Flüchtigkeit, die meist als Aromakomponenten verwendet werden, eignen sich als Parfümöle, z.B. Salbeiöl, Kamillenöl, Nelkenöl, Melissenöl, Minzenöl, Zimtblätteröl, Lindenblütenöl,
Wacholderbeerenöl, Vetiveröl, Olibanöl, Galbanumöl, Labolanumöl und Lavandinöl. Vorzugsweise werden Bergamotteöl, Dihydromyrcenol, Lilial, Lyral, Citronellol, Phenylethylalkohol, α-Hexylzimtaldehyd, Geraniol, Benzylaceton, Cyclamenaldehyd, Linalool, Boisambrene Forte, Ambroxan, Indol, Hedione, Sandelice, Citronenöl, Mandarinenöl, Orangenöl, Allylamylglycolat, Cyclovertal, Lavandinöl, Muskateller Salbeiöl, ß-Damascone, Geraniumöl Bourbon, Cyclohexylsalicylat, Vertofix Coeur, Iso-E-Super, Fixolide NP, Evernyl, Iraldein gamma, Phenylessigsäure, Geranylacetat, Benzylacetat, Rosenoxid, Romilllat, Irotyl und Floramat allein oder in Mischungen, eingesetzt.
Als Farbstoffe können die für kosmetische Zwecke geeigneten und zugelassenen Substanzen verwendet werden, wie sie beispielsweise in der Publikation "Kosmetische Färbemittel" der Farbstoffkommission der Deutschen Forschungsgemeinschaft, Verlag Chemie, Weinheim, 1984, S.81-106 zusammengestellt sind. Diese Farbstoffe werden üblicherweise in Konzentrationen von 0,001 bis 0,1 Gew.-%, bezogen auf die gesamte Mischung, eingesetzt.
Typische Beispiele für keimhemmende Mittel sind Konservierungsmittel mit spezifischer Wirkung gegen gram-positive Bakterien wie etwa 2,4,4'-Trichlor-2'- hydroxydiphenylether, Chlorhexidin (1 ,6-Di-(4-chlorphenyl-biguanido)-hexan) oder TCC (3,4,4'-Trichlorcarbanilid). Auch zahlreiche Riechstoffe und etherische Öle weisen antimikrobielle Eigenschaften auf. Typische Beispiele sind die Wirkstoffe Eugenol, Menthol und Thymol in Nelken-, Minz- und Thymianöl. Ein interessantes natürliches Deomittel ist der Terpenalkohol Farnesol (3,7,11- Trimethyl-2,6,10-dodecatrien-1-ol), der im Lindenblütenöl vorhanden ist und einen Maiglöckchengeruch hat. Auch Glycerinmonolaurat hat sich als Bakteriostatikum bewährt.
Die Einsatzmenge der natürlichen Chitosane in den kosmetischen Zubereitungen liegt üblicherweise in der Größenordnung von 0,1 bis 5, vorzugsweise 0,5 bis 3 und insbesondere 1 bis 2 Gew.-%, bezogen auf das Gesamtgewicht der Zubereitungen.
Die Herstellung der Zubereitungen kann durch übliche Kalt - oder Heißprozesse erfolgen; vorzugsweise arbeitet man nach der Phaseninversionstemperatur- Methode.
Beispiele
Beispiel 1 : Herstellung von natürlichem Chitosan aus Absidia coerulea ATCC 3018
Nach Überimpfen von 100 μl einer lyophilisierten Pilzkultur in eine Vorkultur (10 ml Medium in einem Schüttelkolben eines Volumens von 100 ml mit Schikane; Medium, welches auf 1 Liter Wasser 20 g Glukose, 10 g Pepton, 1 g Hefeextrakt, 5 g Ammoniumsulfat, 1 g Dikaliumhydrogenphosphat, 1 g Natriumchlorid, 0,5 g Magnesiumsulfat und 0,1 g Calziumchlorid enthielt und dessen pH auf 4,5 eingestellt war) wurde diese für 48 h bei 26 °C und 150 Umdrehungen pro Minute Schüttlergeschwindigkeit inkubiert. Nach Überimpfen der Vorkultur in eine Hauptkultur (200 ml Medium in einem Schüttelkolben eines Volumens von 1000 ml mit Schikane, Medium wie oben) wurde diese ebenfalls für 48 h bei 26 °C und 150 Umdrehungen pro Minute Schüttlergeschwindigkeit inkubiert. Die Pilzzellmasse wurde anschließend abfiltriert und zweimal mit jeweils 200 ml destilliertem Wasser gewaschen. Dann wurde die gewaschene Pilzzellmasse mit 80 ml 2 Gew.-%iger Natronlauge versetzt und zum Zerkleinern der Pilzpellets für 1 min bei Raumtemperatur mit einem Ultra-Turrax behandelt. Nach Autoklavieren der resultierenden alkalischen Pilzsuspension (30 min, 120 °C unter Druck) wurde die unlösliche Pilzzellmasse (Alkali insoluble material) abfiltriert und zweimal mit jeweils 200 ml destilliertem Wasser gewaschen. Das Alkali insoluble material wurde dann mit 80 ml 2 Gew.-%iger Essigsäure versetzt und 12 h bei 25 °C gerührt. Nach Zentrifugation (10 min bei 5000 rpm) und Abtrennung des Überstands wurde das verbleibende Alkali insoluble material erneut mit 80 ml 2 Gew.-%iger Essigsäure versetzt und 2 h bei 50 °C gerührt. Nach erneuter Zentrifugation (10 min bei 5000 rpm) wurden die Überstände beider Zentrifugationen vereinigt (insgesamt 160 ml). Zur Flockung von kolloidal gelösten Partikeln wurden sodann 200 mg frisch hergestellten kolloidalen Chitins zugegeben (Herstellung des kolloidalem Chitin nach C. Jeuniaux, Chitinases, Meth. Enzymol., (1966), 8, 644-650), 5 min gerührt und anschließend zentrifugiert (10 min bei 5000 rpm). Der Überstand wurde abgetrennt und durch Zugabe von 1 Gew.-%iger Natronlauge auf einen pH-Wert von 9,0 eingestellt, wobei das Chitosan ausfiel. Nach Abzentrifugation (10 min bei 5000 rpm) des Chitosans wurde es mit 200 ml destilliertem Wasser gewaschen, durch erneute Zentrifugation vom Waschwasser befreit und getrocknet. Es resultierten 0,21 g Chitosan mit einem Deacetylierungsgrad von 91 % und einem mittleren Molekulargewicht von 670.000 (relatives Gewicht gegen Polyethylenglykol- Standard). Die Viskosität einer 1 Gew.-%igen Lösung in 0,5 %iger Glykolsäure lag bei ca. 100 mPa/s.
Beispiele 2.1 bis 2.20: Formulierungen mit natürlichem Chitosan
Die nachfolgenden Tabellen 1 und 2 enthalten Formulierungsbeispiele mit dem natürlichen Chitosan aus Beispiel 1.
Tabelle 1
Kosmetische Zubereitungen 2.1 bis 2.10 (Wasser, Konservierungsmittel ad
100 Gew.-%)
Figure imgf000022_0001
Figure imgf000023_0001
(1) W/O-Sonnenschutzcreme, (2-4) W/O-Sonnenschutzlotion, (5, 8, 10) O/W-
Sonnenschutzlotion,
(6, 7, 9) O/W-Sonnenschutzcreme
Tabelle 2
Kosmetische Zubereitungen 2.11 bis 2.20 (Wasser, Konservierungsmittel ad
100 Gew.-%)
Figure imgf000024_0001
Figure imgf000025_0001
(11-15) Schaumbad, (16) Softcreme, (17) Feuchtigkeitsemulsion, (18-20) Nachtcreme

Claims

Patentansprüche
1. Kosmetische Zubereitung, dadurch gekennzeichnet, daß sie in einem geeigneten Träger ein natürliches Chitosan aus Pilzen der Familie Mucoraceae enthält.
2. Zubereitung nach Anspruch 1 , dadurch gekennzeichnet, daß das Chitosan einen Deacetylierungsgrad von mindestens 85% aufweist.
3. Zubereitung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Pilze der Gattung Absidia oder Rhizopus angehören.
4. Zubereitung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Chitosan ein mittleres Molekulargewicht im Bereich von 100.000 bis 2.000.000, bevorzugt von 400.000 bis 1.000.000 und besonders bevorzugt von 500.000 bis 800.000 Dalton aufweist.
5. Zubereitung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß das Chitosan aus den Pilzen durch Extraktion gewonnen ist.
6. Zubereitung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Chitosan in Mengen von 0,1 bis 5 Gew.-% - bezogen auf die Zubereitungen - enthalten ist.
7. Zubereitung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es sich bei der Zubereitung um ein Haarpflegemittel handelt.
8. Zubereitung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es sich bei der Zubereitung um ein Hautpflegemittel handelt.
9. Zubereitung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß es sich um ein Spray handelt.
10. Verwendung von natürlichem Chitosan aus Pilzen der Familie Mucoraceae zur Herstellung von kosmetischen Zubereitungen.
11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß das Chitosan einen Deacetylierungsgrad von mindestens 85% aufweist.
12. Verwendung nach Anspruch 10 oder 11 , dadurch gekennzeichnet, daß die Pilze der Gattung Absidia oder Rhizopus angehören.
13. Verwendung nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß das Chitosan ein mittleres Molekulargewicht im Bereich von 100.000 bis 2.000.000, bevorzugt von 400.000 bis 1.000.000 und besonders bevorzugt von 500.000 bis 800.000 Dalton aufweist.
14. Verwendung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß es sich bei der Zubereitung um ein Haarpflegemittel handelt.
15. Verwendung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß es sich bei der Zubereitung um ein Hautpflegemittel handelt.
16. Verwendung nach einem der Ansprüche 10 bis 13, dadurch gekennzeichnet, daß es sich bei der Zubereitung um ein Spray handelt.
PCT/EP2000/012320 1999-12-16 2000-12-07 Kosmetische mittel enthaltend natürliche chitosane WO2001043713A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19960632A DE19960632A1 (de) 1999-12-16 1999-12-16 Kosmetische Mittel enthaltend natürliche Chitosane
DE19960632.3 1999-12-16

Publications (2)

Publication Number Publication Date
WO2001043713A2 true WO2001043713A2 (de) 2001-06-21
WO2001043713A3 WO2001043713A3 (de) 2002-05-23

Family

ID=7932843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/012320 WO2001043713A2 (de) 1999-12-16 2000-12-07 Kosmetische mittel enthaltend natürliche chitosane

Country Status (2)

Country Link
DE (1) DE19960632A1 (de)
WO (1) WO2001043713A2 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1497335A2 (de) * 2002-04-02 2005-01-19 Cargill, Inc. Herstellung von chitosan
US8697753B1 (en) 2013-02-07 2014-04-15 Polichem Sa Method of treating onychomycosis
EP4450048A1 (de) * 2023-04-18 2024-10-23 L'oreal Zusammensetzung auf chitosanbasis und nanomineralpigment mit spezifischer oberflächenbehandlung
EP4450049A1 (de) * 2023-04-18 2024-10-23 L'oreal Zusammensetzung auf chitosan- und pigmentbasis mit spezifischer oberflächenbehandlung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE1014638A6 (fr) * 2002-02-12 2004-02-03 Univ Liege Methode de preparation de derives de la paroi cellulaire a partir de biomasse.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014071A2 (de) * 1989-05-17 1990-11-29 Rhone-Poulenc Chemicals Limited Kosmetische präparate
EP0531991A2 (de) * 1991-09-11 1993-03-17 Shin-Etsu Chemical Co., Ltd. Verfahren zur Herstellung von Chitosan
DE4303415A1 (de) * 1993-02-05 1994-08-11 Adolf Riedl Emulsion enthaltend Chitosan
WO1996016991A1 (de) * 1994-12-02 1996-06-06 Henkel Kommanditgesellschaft Auf Aktien Kationische biopolymere
DE19537001A1 (de) * 1995-08-28 1997-03-06 Henkel Kgaa Verfahren zur Herstellung versprühbarer kationischer Biopolymere
EP1067197A2 (de) * 1999-07-08 2001-01-10 Food Industry Research and Development Institute Herstellung von Chitin und Chitosan

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05184378A (ja) * 1991-11-13 1993-07-27 Shin Etsu Chem Co Ltd キトサンの製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990014071A2 (de) * 1989-05-17 1990-11-29 Rhone-Poulenc Chemicals Limited Kosmetische präparate
EP0531991A2 (de) * 1991-09-11 1993-03-17 Shin-Etsu Chemical Co., Ltd. Verfahren zur Herstellung von Chitosan
DE4303415A1 (de) * 1993-02-05 1994-08-11 Adolf Riedl Emulsion enthaltend Chitosan
WO1996016991A1 (de) * 1994-12-02 1996-06-06 Henkel Kommanditgesellschaft Auf Aktien Kationische biopolymere
DE19537001A1 (de) * 1995-08-28 1997-03-06 Henkel Kgaa Verfahren zur Herstellung versprühbarer kationischer Biopolymere
EP1067197A2 (de) * 1999-07-08 2001-01-10 Food Industry Research and Development Institute Herstellung von Chitin und Chitosan

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SYNOWIECKI, JOZEF ET AL: "Mycelia of Mucor rouxii as a source of chitin and chitosan" FOOD CHEM. (1997), 60(4), 605-610 , XP001006993 in der Anmeldung erw{hnt *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1497335A2 (de) * 2002-04-02 2005-01-19 Cargill, Inc. Herstellung von chitosan
EP1497335A4 (de) * 2002-04-02 2009-08-12 Cargill Inc Herstellung von chitosan
US8697753B1 (en) 2013-02-07 2014-04-15 Polichem Sa Method of treating onychomycosis
US9107877B2 (en) 2013-02-07 2015-08-18 Polichem Sa Method of treating onychomycosis
US10172811B2 (en) 2013-02-07 2019-01-08 Polichem Sa Topical antifungal composition for treating onychomycosis
EP4450048A1 (de) * 2023-04-18 2024-10-23 L'oreal Zusammensetzung auf chitosanbasis und nanomineralpigment mit spezifischer oberflächenbehandlung
EP4450049A1 (de) * 2023-04-18 2024-10-23 L'oreal Zusammensetzung auf chitosan- und pigmentbasis mit spezifischer oberflächenbehandlung

Also Published As

Publication number Publication date
WO2001043713A3 (de) 2002-05-23
DE19960632A1 (de) 2001-07-05

Similar Documents

Publication Publication Date Title
EP1171087B1 (de) Desodoriende zubereitungen enthaltend wasserlösliche -(1,3)-glucane
EP1066024B1 (de) Verfahren zur herstellung von kosmetischen reinigungsmitteln mit erhöhter viskosität
DE19911056B9 (de) Kosmetische Zubereitungen und deren Verwendung
WO2000054742A1 (de) VERWENDUNG VON WASSERLÖSLICHEN β-(1,3)-GLUCANEN ALS WIRKSTOFFE ZUR HERSTELLUNG VON THERAPEUTISCHEN MITTELN ZUR HAUTBEHANDLUNG
EP1165037B1 (de) VERWENDUNG VON NANOSKALIGEN WASSERLÖSLICHEN $g(b)-(1,3)-GLUCANEN
EP1173488B1 (de) Kollagenfreie kosmetische zubereitungen
DE19916211C2 (de) Kosmetische und/oder pharmazeutische Zubereitungen
EP1137794B1 (de) Enzymatische veresterung
WO2001043713A2 (de) Kosmetische mittel enthaltend natürliche chitosane
EP1162941A2 (de) Sonnenschutzmittel
DE19950017A1 (de) Emulgatormischung
DE19857548C1 (de) O-substituierte Biopolymere, Verfahren zur Herstellung und Verwendung
DE19857546A1 (de) N-substituierte Biopolymere
DE19857547C1 (de) N,O-substituierte Biopolymere, Verfahren zur Herstellung und Verwendung
DE19922230A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19922229A1 (de) Kosmetische und/oder pharmazeutische Zubereitungen
DE19855956C2 (de) Sterolphosphate
EP0992489B1 (de) Betaine
WO2001037791A2 (de) Verwendung von alkyl- und/oder alkenyloligoglykosid-fettsäureestern als pigmentdispergator
EP0982024A2 (de) Kosmetische und/oder pharmazeutische W/O-Emulsionen
EP1244417A1 (de) Verwendung von alkyl- und/oder alkenyloligoglykosid-fettsäureestern zur verbesserung der sensorischen beurteilung von emulsionen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP