WO2001040145A2 - Power assisted automatic supervised classifier creation tool for semiconductor defects - Google Patents

Power assisted automatic supervised classifier creation tool for semiconductor defects Download PDF

Info

Publication number
WO2001040145A2
WO2001040145A2 PCT/US2000/032635 US0032635W WO0140145A2 WO 2001040145 A2 WO2001040145 A2 WO 2001040145A2 US 0032635 W US0032635 W US 0032635W WO 0140145 A2 WO0140145 A2 WO 0140145A2
Authority
WO
WIPO (PCT)
Prior art keywords
images
features
training set
user
portion configured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2000/032635
Other languages
English (en)
French (fr)
Other versions
WO2001040145A3 (en
Inventor
David Bakker
Saibal Banerjee
Ian Smith
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KLA Corp
Original Assignee
KLA Tencor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KLA Tencor Corp filed Critical KLA Tencor Corp
Priority to JP2001541837A priority Critical patent/JP2003515942A/ja
Priority to EP00982744A priority patent/EP1238367B1/en
Priority to AU20541/01A priority patent/AU2054101A/en
Publication of WO2001040145A2 publication Critical patent/WO2001040145A2/en
Anticipated expiration legal-status Critical
Publication of WO2001040145A3 publication Critical patent/WO2001040145A3/en
Ceased legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20092Interactive image processing based on input by user
    • GPHYSICS
    • G06COMPUTING OR CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30108Industrial image inspection
    • G06T2207/30148Semiconductor; IC; Wafer

Definitions

  • Supervised Automatic Dynamic Classifier software 204 uses the extracted features of the images in the training set to classify the images in the working set (W) that were not selected by the user as part of the training set (T) (i.e., to classify the set of images W-T).
  • the classifier 204 uses a nearest neighbor method in which the features are extracted from the image set W-T and each image in W-T is classified as belonging to a class.
  • an image in W-T belongs to the class whose members have feature vectors most closely resembling the feature vector of the image. It should be understood that other automatic classification methods could be used.
  • the features in the feature vectors could be weighted (either by the user or using a predefined weighting).
  • the Smart Gallery window allows the user to view thumbnail images of the defects at adjustable sizes and resolutions, presenting a group of defects in an organized fashion. It also assists the user in the classification scheme creation by providing defects in groups based on appearance.
  • the window of Fig. 3 includes a tool bar 302, which contains commands that allow the user to open and save classes and defect images, to sort images in the working set, and to create and manipulate the training set.
  • a confidence setting area 304 allows the user to adjust the Confidence level, which is an adjustable setting of how close an unknown defect can be to a training set. Values preferably range from 0 (loosest setting) to 1 (tightest setting). Changes can be dynamically viewed in confusion matrix 306.
  • Confusion matrix 306 is used to display the results of manual vs. automatic defect classification.
  • a confusion matrix can be generated for both a current set of images or an explicitly selected set.
  • An area 308 displays the working set of images. These images may be displayed in unsorted order or may by sorted or arranged by natural grouping, at the choice of the user.
  • the user preferably drags and drops images from the working set gallery 308 into the training set gallery 310.
  • images in the training set are displayed arranged in user- specified classes.
  • Training set area 312 displays the classes (also called "bins") that contain the composition of the training set, defines grouping, and allows the user to create new classes/bins. When this area 312 is active, the user can create new classes/bins using the toolbar 302.
  • Natural grouping matrix 314 allows the user to view how the images in the working group are distributed in the natural groupings. The number of images in a group is represented by a number in an element of the matrix 314. The user can click on an element in the matrix 314 to view all defect images in a particular natural grouping.
  • Fig. 4(a) shows an example of confusion matrix 306 where the manual and automatic classification are in agreement (see diagonal elements 402).
  • one image is agreed to be in class "3”
  • three images are agreed to be in class "2”
  • one image is agreed to be in class "1”.
  • Clicking on a "Correct” button next to the matrix will cause results in agreement to be highlighted.
  • Clicking on a "known errors” button will cause results not in agreement to be highlighted.
  • Clicking on the "image” button allows the user to view the images that were used to generate a particular element in the matrix.
  • Figs. 5(a) and 5(b) shows respective examples of an interface 502, 504 that allows the user to display in sorted order the images in the working set and in the training set.
  • the images are preferably sorted by such factors as lot number, manual bin, suggested bin, and size.
  • Fig. 6(a) is a flow chart showing a method for natural grouping of images in the working set 308.
  • images are captured for defect images.
  • Features are extracted from the images in element 604.
  • the extracted features are input to a natural grouping method 606, which can be any appropriate method.
  • the feature vectors of the images are grouped using a known Kohonen mapping technique.
  • the Kohonen map is seeded with non-random numbers to improve stability of the grouping and to make the grouping repeatable.
  • the images are displayed in their natural groups (also called clusters), as shown in Fig. 6(b).
  • the images are arranged to reflect the actual Kohonnen maps layout.
  • Figs. 10(a) and 10(b) are block diagrams of systems in accordance with the present invention distributed over a network, such as the internet or an intranet.
  • a network such as the internet or an intranet.
  • an optical, ebeam, or other types of inspection systems 1002 a classifier 1004/104, and an analysis system 1006 (see Fig. 1) are distributed over the network.
  • Fig. 10(a) an optical, ebeam, or other types of inspection systems 1002
  • a classifier 1004/104, and an analysis system 1006 are distributed over the network.
  • Fig. 1 an optical, ebeam, or other types of inspection systems 1002
  • a classifier 1004/104 are distributed over the network.
  • an analysis system 1006 see Fig. 1
  • Tool history includes, for example, the maintenance history of the tools or machine performing the inspection process and/or the manufacturing process. If the tool has been maintained according to its suggested maintenance schedule, its data may be weighted more than data from an unmaintained tool.
  • Tool History 1055 may also include a threshold of inspection value, indicating that maintenance must be found in order for the classifier to give credence to the data from that tool. This threshold may vary for individual tools or may be the same for all the tools of a particular type or function. Tool history may also indicate, for example, whether two runs of semiconductors where taken from the same tool (or which tool they were taken from). Thus, tool history 1055 may include, for example, equipment Ids.
  • iADC integrated ADC

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
PCT/US2000/032635 1999-11-29 2000-11-29 Power assisted automatic supervised classifier creation tool for semiconductor defects Ceased WO2001040145A2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001541837A JP2003515942A (ja) 1999-11-29 2000-11-29 半導体欠陥用のパワー・アシスト自動監視分類器作製ツール
EP00982744A EP1238367B1 (en) 1999-11-29 2000-11-29 Power assisted automatic supervised classifier creation tool for semiconductor defects
AU20541/01A AU2054101A (en) 1999-11-29 2000-11-29 Power assisted automatic supervised classifier creation tool for semiconductor defects

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US16795599P 1999-11-29 1999-11-29
US60/167,955 1999-11-29
US09/724,633 US6999614B1 (en) 1999-11-29 2000-11-28 Power assisted automatic supervised classifier creation tool for semiconductor defects
US09/724,633 2000-11-28

Publications (2)

Publication Number Publication Date
WO2001040145A2 true WO2001040145A2 (en) 2001-06-07
WO2001040145A3 WO2001040145A3 (en) 2002-07-11

Family

ID=26863656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2000/032635 Ceased WO2001040145A2 (en) 1999-11-29 2000-11-29 Power assisted automatic supervised classifier creation tool for semiconductor defects

Country Status (5)

Country Link
US (1) US6999614B1 (enExample)
EP (1) EP1238367B1 (enExample)
JP (1) JP2003515942A (enExample)
AU (1) AU2054101A (enExample)
WO (1) WO2001040145A2 (enExample)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6833913B1 (en) 2002-02-26 2004-12-21 Kla-Tencor Technologies Corporation Apparatus and methods for optically inspecting a sample for anomalies
US6866559B2 (en) 2002-02-04 2005-03-15 Kla-Tencor Technologies Windows configurable to be coupled to a process tool or to be disposed within an opening in a polishing pad
US7027143B1 (en) 2002-10-15 2006-04-11 Kla-Tencor Technologies Corp. Methods and systems for inspecting reticles using aerial imaging at off-stepper wavelengths
CN1846170A (zh) * 2003-07-03 2006-10-11 恪纳腾技术公司 使用设计者意图数据检查晶片和掩模版的方法和系统
US7123356B1 (en) 2002-10-15 2006-10-17 Kla-Tencor Technologies Corp. Methods and systems for inspecting reticles using aerial imaging and die-to-database detection
US7132652B1 (en) 2003-03-25 2006-11-07 Kla-Tencor Technologies Corporation Automatic classification of defects using pattern recognition applied to X-ray spectra
US7283659B1 (en) 2002-01-09 2007-10-16 Kla-Tencor Technologies Corporation Apparatus and methods for searching through and analyzing defect images and wafer maps
US7352456B2 (en) 2003-04-08 2008-04-01 Kla-Tencor Technologies Corp. Method and apparatus for inspecting a substrate using a plurality of inspection wavelength regimes
US7359544B2 (en) 2003-02-12 2008-04-15 Kla-Tencor Technologies Corporation Automatic supervised classifier setup tool for semiconductor defects
US7379175B1 (en) 2002-10-15 2008-05-27 Kla-Tencor Technologies Corp. Methods and systems for reticle inspection and defect review using aerial imaging
US7738089B2 (en) 2003-09-04 2010-06-15 Kla-Tencor Technologies Corp. Methods and systems for inspection of a specimen using different inspection parameters
US7968354B1 (en) 2002-10-04 2011-06-28 Kla-Tencor Technologies Corp. Methods for correlating backside and frontside defects detected on a specimen and classification of backside defects
CN103196922A (zh) * 2013-04-09 2013-07-10 上海华力微电子有限公司 缺陷检查负载统计系统及方法
US8532949B2 (en) 2004-10-12 2013-09-10 Kla-Tencor Technologies Corp. Computer-implemented methods and systems for classifying defects on a specimen
JP2014199244A (ja) * 2013-03-15 2014-10-23 株式会社リコー 画像検査装置、画像検査システム及び画像検査方法
US9020237B2 (en) 2010-06-07 2015-04-28 Hitachi High-Technologies Corporation Method for optimizing observed image classification criterion and image classification apparatus
US9053527B2 (en) 2013-01-02 2015-06-09 Kla-Tencor Corp. Detecting defects on a wafer
US9087367B2 (en) 2011-09-13 2015-07-21 Kla-Tencor Corp. Determining design coordinates for wafer defects
US9092846B2 (en) 2013-02-01 2015-07-28 Kla-Tencor Corp. Detecting defects on a wafer using defect-specific and multi-channel information
US9659670B2 (en) 2008-07-28 2017-05-23 Kla-Tencor Corp. Computer-implemented methods, computer-readable media, and systems for classifying defects detected in a memory device area on a wafer
US9865512B2 (en) 2013-04-08 2018-01-09 Kla-Tencor Corp. Dynamic design attributes for wafer inspection
CN112102226A (zh) * 2019-05-29 2020-12-18 三星Sds 株式会社 数据处理方法、图案检测方法及晶圆缺陷图案检测方法

Families Citing this family (69)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002132547A (ja) * 2000-10-27 2002-05-10 Fuji Xerox Co Ltd 電子情報管理サーバ、電子情報管理クライアントおよび電子情報管理方法ならびに電子情報管理プログラムを記録したコンピュータ読み取り可能な記録媒体
US20030123737A1 (en) * 2001-12-27 2003-07-03 Aleksandra Mojsilovic Perceptual method for browsing, searching, querying and visualizing collections of digital images
JP4155496B2 (ja) * 2002-04-25 2008-09-24 大日本スクリーン製造株式会社 分類支援装置、分類装置およびプログラム
US20050135667A1 (en) * 2003-12-22 2005-06-23 Abb Oy. Method and apparatus for labeling images and creating training material
US8126861B2 (en) * 2004-01-02 2012-02-28 Cerner Innovation, Inc. System and method for managing large data sets
US20080177640A1 (en) 2005-05-09 2008-07-24 Salih Burak Gokturk System and method for using image analysis and search in e-commerce
US7660468B2 (en) * 2005-05-09 2010-02-09 Like.Com System and method for enabling image searching using manual enrichment, classification, and/or segmentation
US8732025B2 (en) 2005-05-09 2014-05-20 Google Inc. System and method for enabling image recognition and searching of remote content on display
US7760917B2 (en) 2005-05-09 2010-07-20 Like.Com Computer-implemented method for performing similarity searches
US7945099B2 (en) * 2005-05-09 2011-05-17 Like.Com System and method for use of images with recognition analysis
US7657126B2 (en) 2005-05-09 2010-02-02 Like.Com System and method for search portions of objects in images and features thereof
US7519200B2 (en) 2005-05-09 2009-04-14 Like.Com System and method for enabling the use of captured images through recognition
US7783135B2 (en) 2005-05-09 2010-08-24 Like.Com System and method for providing objectified image renderings using recognition information from images
JP4654093B2 (ja) 2005-08-31 2011-03-16 株式会社日立ハイテクノロジーズ 回路パターン検査方法及びその装置
US7570796B2 (en) 2005-11-18 2009-08-04 Kla-Tencor Technologies Corp. Methods and systems for utilizing design data in combination with inspection data
US8571272B2 (en) * 2006-03-12 2013-10-29 Google Inc. Techniques for enabling or establishing the use of face recognition algorithms
US9690979B2 (en) 2006-03-12 2017-06-27 Google Inc. Techniques for enabling or establishing the use of face recognition algorithms
US7875851B1 (en) * 2006-05-01 2011-01-25 Advanced Micro Devices, Inc. Advanced process control framework using two-dimensional image analysis
US8416981B2 (en) 2007-07-29 2013-04-09 Google Inc. System and method for displaying contextual supplemental content based on image content
JP4723544B2 (ja) * 2007-09-10 2011-07-13 シャープ株式会社 基板分類方法および装置、基板分類方法をコンピュータに実行させるためのプログラム、並びに上記プログラムを記録したコンピュータ読み取り可能な記録媒体
DE102007054099A1 (de) * 2007-11-13 2009-05-14 Robert Bosch Gmbh Zuordnung von Partikeln zu Entstehungsprozessen
US8233723B2 (en) 2007-12-06 2012-07-31 Ebay Inc. Image categorization based on comparisons between images
JP5572293B2 (ja) * 2008-07-07 2014-08-13 株式会社日立ハイテクノロジーズ 欠陥検査方法及び欠陥検査装置
CA2730286A1 (en) * 2008-07-14 2010-01-21 Google Inc. System and method for using supplemental content items for search criteria for identifying other content items of interest
EP2394295A2 (en) 2009-02-06 2011-12-14 KLA-Tencor Corporation Selecting one or more parameters for inspection of a wafer
US20100313141A1 (en) * 2009-06-03 2010-12-09 Tianli Yu System and Method for Learning User Genres and Styles and for Matching Products to User Preferences
US8315453B2 (en) * 2010-07-27 2012-11-20 Applied Materials Israel, Ltd. Defect classification with optimized purity
KR101800057B1 (ko) * 2010-10-19 2017-11-21 쓰리엠 이노베이티브 프로퍼티즈 컴파니 트레이닝 영상에 등급을 배정하는 방법 및 장치
SG189226A1 (en) * 2010-10-19 2013-05-31 3M Innovative Properties Co Continuous charting of non-uniformity severity for detecting variability in web-based materials
US9031312B2 (en) 2010-11-12 2015-05-12 3M Innovative Properties Company Rapid processing and detection of non-uniformities in web-based materials
BR112013020467A2 (pt) 2011-02-24 2016-10-25 3M Innovative Properties Co sistema para detecção de não uniformidades em materiais à base de manta
US9170211B2 (en) 2011-03-25 2015-10-27 Kla-Tencor Corp. Design-based inspection using repeating structures
JP5719760B2 (ja) 2011-12-28 2015-05-20 株式会社日立ハイテクノロジーズ 欠陥分類装置
US9715723B2 (en) 2012-04-19 2017-07-25 Applied Materials Israel Ltd Optimization of unknown defect rejection for automatic defect classification
US9858658B2 (en) * 2012-04-19 2018-01-02 Applied Materials Israel Ltd Defect classification using CAD-based context attributes
US10043264B2 (en) 2012-04-19 2018-08-07 Applied Materials Israel Ltd. Integration of automatic and manual defect classification
US9607233B2 (en) * 2012-04-20 2017-03-28 Applied Materials Israel Ltd. Classifier readiness and maintenance in automatic defect classification
US9229446B2 (en) * 2012-05-08 2016-01-05 International Business Machines Corporation Production line quality processes
US9984300B2 (en) * 2012-09-19 2018-05-29 Nec Corporation Image processing system, image processing method, and program
US9189844B2 (en) 2012-10-15 2015-11-17 Kla-Tencor Corp. Detecting defects on a wafer using defect-specific information
US9134254B2 (en) 2013-01-07 2015-09-15 Kla-Tencor Corp. Determining a position of inspection system output in design data space
US9311698B2 (en) 2013-01-09 2016-04-12 Kla-Tencor Corp. Detecting defects on a wafer using template image matching
JP6074272B2 (ja) * 2013-01-17 2017-02-01 キヤノン株式会社 画像処理装置および画像処理方法
US9310320B2 (en) 2013-04-15 2016-04-12 Kla-Tencor Corp. Based sampling and binning for yield critical defects
US10114368B2 (en) 2013-07-22 2018-10-30 Applied Materials Israel Ltd. Closed-loop automatic defect inspection and classification
US10013639B1 (en) * 2013-12-16 2018-07-03 Amazon Technologies, Inc. Analyzing digital images based on criteria
US9349076B1 (en) * 2013-12-20 2016-05-24 Amazon Technologies, Inc. Template-based target object detection in an image
US9430743B2 (en) * 2014-03-06 2016-08-30 Kla-Tencor Corp. Composite defect classifier
US9412048B2 (en) 2014-04-21 2016-08-09 Haier Us Appliance Solutions, Inc. Systems and methods for cookware detection
US9449220B2 (en) * 2014-04-21 2016-09-20 Haier Us Appliance Solutions, Inc. Systems and methods for cookware detection
KR101581917B1 (ko) * 2014-08-12 2016-01-04 네이버 주식회사 컨텐츠 표시 제어 장치, 컨텐츠 표시 제어 방법 및 이를 컴퓨터에서 실행하기 위한 컴퓨터 프로그램
US10599953B2 (en) * 2014-08-27 2020-03-24 Verint Americas Inc. Method and system for generating and correcting classification models
JP6531036B2 (ja) * 2015-12-08 2019-06-12 株式会社Screenホールディングス 教師データ作成支援方法、画像分類方法、教師データ作成支援装置および画像分類装置
US11205119B2 (en) * 2015-12-22 2021-12-21 Applied Materials Israel Ltd. Method of deep learning-based examination of a semiconductor specimen and system thereof
CN106290378B (zh) * 2016-08-23 2019-03-19 东方晶源微电子科技(北京)有限公司 缺陷分类方法和缺陷检查系统
US10223615B2 (en) 2016-08-23 2019-03-05 Dongfang Jingyuan Electron Limited Learning based defect classification
US10964013B2 (en) * 2017-01-10 2021-03-30 Kla-Tencor Corporation System, method for training and applying defect classifiers in wafers having deeply stacked layers
KR102468184B1 (ko) * 2017-01-18 2022-11-17 에이에스엠엘 네델란즈 비.브이. 결함 검토를 위한 정보 추천
US11416979B2 (en) 2017-01-18 2022-08-16 Asml Netherlands B.V. Defect displaying method
US11514357B2 (en) 2018-03-19 2022-11-29 Kla-Tencor Corporation Nuisance mining for novel defect discovery
JP7219023B2 (ja) * 2018-06-22 2023-02-07 日立造船株式会社 情報処理装置および対象物判定プログラム
IL261733B (en) * 2018-09-13 2022-09-01 Inspekto A M V Ltd Streamlining an automatic visual inspection process
US11468553B2 (en) * 2018-11-02 2022-10-11 Kla Corporation System and method for determining type and size of defects on blank reticles
IL263097B2 (en) * 2018-11-18 2024-01-01 Inspekto A M V Ltd Optimizing a set-up stage in an automatic visual inspection process
JP7273556B2 (ja) * 2019-03-15 2023-05-15 株式会社東芝 分析システム、分析方法、プログラム、及び記憶媒体
CN111257715B (zh) * 2020-02-19 2022-06-24 上海韦尔半导体股份有限公司 一种晶圆测试方法及装置
CA3126479A1 (en) * 2020-09-18 2022-03-18 The Boeing Company Machine learning network for screening quantum devices
US11922619B2 (en) * 2022-03-31 2024-03-05 Kla Corporation Context-based defect inspection
CN114723751B (zh) * 2022-06-07 2022-09-23 中国空气动力研究与发展中心设备设计与测试技术研究所 一种基于无监督的带钢表面缺陷在线检测方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4441205A (en) * 1981-05-18 1984-04-03 Kulicke & Soffa Industries, Inc. Pattern recognition system
CA1318977C (en) * 1987-07-22 1993-06-08 Kazuhito Hori Image recognition system
DE68927489T2 (de) * 1988-08-12 1997-03-27 Sumitomo Wiring Systems Bildverarbeitungsgerät zur Erkennung von unvollständigen Gegenständen
US5353356A (en) * 1989-02-09 1994-10-04 Waugh Richard M Product gauge methods and apparatus for use in the optical determination of the acceptability of products
US5226118A (en) 1991-01-29 1993-07-06 Prometrix Corporation Data analysis system and method for industrial process control systems
US5237621A (en) * 1991-08-08 1993-08-17 Philip Morris Incorporated Product appearance inspection methods and apparatus employing low variance filter
FR2681947A1 (fr) 1991-10-01 1993-04-02 Micro Controle Procede de classification automatique de defauts sur des micro-circuits.
US5544256A (en) * 1993-10-22 1996-08-06 International Business Machines Corporation Automated defect classification system
US5526437A (en) * 1994-03-15 1996-06-11 Key Technology, Inc. Integrated food sorting and analysis apparatus
US5991699A (en) * 1995-05-04 1999-11-23 Kla Instruments Corporation Detecting groups of defects in semiconductor feature space
US6292582B1 (en) * 1996-05-31 2001-09-18 Lin Youling Method and system for identifying defects in a semiconductor
US6148099A (en) * 1997-07-03 2000-11-14 Neopath, Inc. Method and apparatus for incremental concurrent learning in automatic semiconductor wafer and liquid crystal display defect classification
WO1999022311A1 (en) 1997-10-27 1999-05-06 Kla-Tencor Corporation Software system and method for graphically building customized recipe flowcharts
US6408219B2 (en) 1998-05-11 2002-06-18 Applied Materials, Inc. FAB yield enhancement system
US6256093B1 (en) 1998-06-25 2001-07-03 Applied Materials, Inc. On-the-fly automatic defect classification for substrates using signal attributes
US6987873B1 (en) 1998-07-08 2006-01-17 Applied Materials, Inc. Automatic defect classification with invariant core classes
US6480627B1 (en) * 1999-06-29 2002-11-12 Koninklijke Philips Electronics N.V. Image classification using evolved parameters
US6577757B1 (en) * 1999-07-28 2003-06-10 Intelligent Reasoning Systems, Inc. System and method for dynamic image recognition

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GLEASON ET AL.: "An integrated spatial signature analysis and automatic defect classification system", PROCEEDINGS OF ELECTROCHEMICAL SOCIETY SYMPOSIUM OF DIAGNOSTIC TECHNIQUES FOR SEMICONDUCTOR MATERIALS AND DEVICES, ECS PV 97-12; SPIE, vol. 3322, pages 204 - 211, XP007910520

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7283659B1 (en) 2002-01-09 2007-10-16 Kla-Tencor Technologies Corporation Apparatus and methods for searching through and analyzing defect images and wafer maps
US7175503B2 (en) 2002-02-04 2007-02-13 Kla-Tencor Technologies Corp. Methods and systems for determining a characteristic of polishing within a zone on a specimen from combined output signals of an eddy current device
US6866559B2 (en) 2002-02-04 2005-03-15 Kla-Tencor Technologies Windows configurable to be coupled to a process tool or to be disposed within an opening in a polishing pad
US6884146B2 (en) 2002-02-04 2005-04-26 Kla-Tencor Technologies Corp. Systems and methods for characterizing a polishing process
US6935922B2 (en) 2002-02-04 2005-08-30 Kla-Tencor Technologies Corp. Methods and systems for generating a two-dimensional map of a characteristic at relative or absolute locations of measurement spots on a specimen during polishing
US7332438B2 (en) 2002-02-04 2008-02-19 Kla-Tencor Technologies Corp. Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, or a characteristic of a polishing pad or tool
US7030018B2 (en) 2002-02-04 2006-04-18 Kla-Tencor Technologies Corp. Methods and systems for monitoring a parameter of a measurement device during polishing, damage to a specimen during polishing, or a characteristic of a polishing pad or tool
US7052369B2 (en) 2002-02-04 2006-05-30 Kla-Tencor Technologies Corp. Methods and systems for detecting a presence of blobs on a specimen during a polishing process
US7012683B2 (en) 2002-02-26 2006-03-14 Kla-Tencor Technologies Corporation Apparatus and methods for optically inspecting a sample for anomalies
US6833913B1 (en) 2002-02-26 2004-12-21 Kla-Tencor Technologies Corporation Apparatus and methods for optically inspecting a sample for anomalies
US7968354B1 (en) 2002-10-04 2011-06-28 Kla-Tencor Technologies Corp. Methods for correlating backside and frontside defects detected on a specimen and classification of backside defects
US7123356B1 (en) 2002-10-15 2006-10-17 Kla-Tencor Technologies Corp. Methods and systems for inspecting reticles using aerial imaging and die-to-database detection
US7027143B1 (en) 2002-10-15 2006-04-11 Kla-Tencor Technologies Corp. Methods and systems for inspecting reticles using aerial imaging at off-stepper wavelengths
US7379175B1 (en) 2002-10-15 2008-05-27 Kla-Tencor Technologies Corp. Methods and systems for reticle inspection and defect review using aerial imaging
US7359544B2 (en) 2003-02-12 2008-04-15 Kla-Tencor Technologies Corporation Automatic supervised classifier setup tool for semiconductor defects
US7132652B1 (en) 2003-03-25 2006-11-07 Kla-Tencor Technologies Corporation Automatic classification of defects using pattern recognition applied to X-ray spectra
US7352456B2 (en) 2003-04-08 2008-04-01 Kla-Tencor Technologies Corp. Method and apparatus for inspecting a substrate using a plurality of inspection wavelength regimes
CN1846170A (zh) * 2003-07-03 2006-10-11 恪纳腾技术公司 使用设计者意图数据检查晶片和掩模版的方法和系统
US9002497B2 (en) 2003-07-03 2015-04-07 Kla-Tencor Technologies Corp. Methods and systems for inspection of wafers and reticles using designer intent data
US7738089B2 (en) 2003-09-04 2010-06-15 Kla-Tencor Technologies Corp. Methods and systems for inspection of a specimen using different inspection parameters
US8384887B2 (en) 2003-09-04 2013-02-26 Kla-Tencor Technologies Corp. Methods and systems for inspection of a specimen using different inspection parameters
EP2256487A2 (en) 2003-09-04 2010-12-01 KLA-Tencor Corporation Methods for inspection of a specimen using different inspection parameters
US8532949B2 (en) 2004-10-12 2013-09-10 Kla-Tencor Technologies Corp. Computer-implemented methods and systems for classifying defects on a specimen
US9659670B2 (en) 2008-07-28 2017-05-23 Kla-Tencor Corp. Computer-implemented methods, computer-readable media, and systems for classifying defects detected in a memory device area on a wafer
US9020237B2 (en) 2010-06-07 2015-04-28 Hitachi High-Technologies Corporation Method for optimizing observed image classification criterion and image classification apparatus
US9087367B2 (en) 2011-09-13 2015-07-21 Kla-Tencor Corp. Determining design coordinates for wafer defects
US9053527B2 (en) 2013-01-02 2015-06-09 Kla-Tencor Corp. Detecting defects on a wafer
US9092846B2 (en) 2013-02-01 2015-07-28 Kla-Tencor Corp. Detecting defects on a wafer using defect-specific and multi-channel information
JP2014199244A (ja) * 2013-03-15 2014-10-23 株式会社リコー 画像検査装置、画像検査システム及び画像検査方法
US9865512B2 (en) 2013-04-08 2018-01-09 Kla-Tencor Corp. Dynamic design attributes for wafer inspection
CN103196922A (zh) * 2013-04-09 2013-07-10 上海华力微电子有限公司 缺陷检查负载统计系统及方法
CN112102226A (zh) * 2019-05-29 2020-12-18 三星Sds 株式会社 数据处理方法、图案检测方法及晶圆缺陷图案检测方法

Also Published As

Publication number Publication date
EP1238367A2 (en) 2002-09-11
JP2003515942A (ja) 2003-05-07
US6999614B1 (en) 2006-02-14
WO2001040145A3 (en) 2002-07-11
EP1238367B1 (en) 2012-09-19
AU2054101A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US6999614B1 (en) Power assisted automatic supervised classifier creation tool for semiconductor defects
US11526979B2 (en) Method of defect classification and system thereof
US11592400B2 (en) System, method and computer program product for object examination
KR101144545B1 (ko) 반도체 제조를 위한 탄력적 혼성 결함 분류
KR100824217B1 (ko) 결함에 대한 하이브리드식 불변의 적응성 자동 분류 방법및 장치
US8437534B2 (en) Defect classification method and apparatus, and defect inspection apparatus
US6718526B1 (en) Spatial signature analysis
JP6391083B2 (ja) 自動欠陥分類における分類器の準備及び保守
US7113628B1 (en) Defect image classifying method and apparatus and a semiconductor device manufacturing process based on the method and apparatus
JP4374303B2 (ja) 検査方法及びその装置
JP5599387B2 (ja) ウェハー上の欠陥を検出して検査結果を生成するシステム及び方法
US7283659B1 (en) Apparatus and methods for searching through and analyzing defect images and wafer maps
US7602962B2 (en) Method of classifying defects using multiple inspection machines
US7359544B2 (en) Automatic supervised classifier setup tool for semiconductor defects
US7570797B1 (en) Methods and systems for generating an inspection process for an inspection system
JP5371916B2 (ja) 検査システムにおける対話型閾値調整方法及びシステム
US20140294239A1 (en) Method and apparatus for automatic detection of features in an image and method for training the apparatus
US20080298670A1 (en) Method and its apparatus for reviewing defects
JP2004047939A (ja) 欠陥分類器の生成方法および欠陥自動分類方法
JP2000162135A (ja) 検査方法、検査システムおよび電子デバイスの製造方法
JP2001188906A (ja) 画像自動分類方法及び画像自動分類装置
Guo et al. Inline inspection improvement using machine learning on broadband plasma inspector in an advanced foundry fab

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 541837

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 2000982744

Country of ref document: EP

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 2000982744

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642