WO2001038625A2 - Procede de fabrication d'un bol en materiau composite thermostructural, bol tel qu'obtenu par le procede, et utilisation du bol comme support de creuset - Google Patents

Procede de fabrication d'un bol en materiau composite thermostructural, bol tel qu'obtenu par le procede, et utilisation du bol comme support de creuset Download PDF

Info

Publication number
WO2001038625A2
WO2001038625A2 PCT/FR2000/003276 FR0003276W WO0138625A2 WO 2001038625 A2 WO2001038625 A2 WO 2001038625A2 FR 0003276 W FR0003276 W FR 0003276W WO 0138625 A2 WO0138625 A2 WO 0138625A2
Authority
WO
WIPO (PCT)
Prior art keywords
bowl
strata
preform
fibrous
densification
Prior art date
Application number
PCT/FR2000/003276
Other languages
English (en)
Other versions
WO2001038625A3 (fr
Inventor
Jean-Michel Guirman
Dominique Coupe
Jean-Michel Georges
Original Assignee
Snecma Moteurs
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR9914766A external-priority patent/FR2801304B1/fr
Priority claimed from FR0010564A external-priority patent/FR2812889B1/fr
Application filed by Snecma Moteurs filed Critical Snecma Moteurs
Priority to JP2001539956A priority Critical patent/JP2003514760A/ja
Priority to US09/889,862 priority patent/US6837952B1/en
Priority to EP00985318A priority patent/EP1187950A2/fr
Publication of WO2001038625A2 publication Critical patent/WO2001038625A2/fr
Publication of WO2001038625A3 publication Critical patent/WO2001038625A3/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • C04B35/83Carbon fibres in a carbon matrix
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/10Crucibles or containers for supporting the melt
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/45Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by forming intermeshing loops or stitches from some of the fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/76Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H13/00Other non-woven fabrics
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H18/00Needling machines
    • D04H18/02Needling machines with needles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/002Inorganic yarns or filaments
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/04Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments in rectilinear paths, e.g. crossing at right angles
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • D04H3/07Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments otherwise than in a plane, e.g. in a tubular way
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/115Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by applying or inserting filamentary binding elements
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/12Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with filaments or yarns secured together by chemical or thermo-activatable bonding agents, e.g. adhesives, applied or incorporated in liquid or solid form
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/48Organic compounds becoming part of a ceramic after heat treatment, e.g. carbonising phenol resins
    • C04B2235/483Si-containing organic compounds, e.g. silicone resins, (poly)silanes, (poly)siloxanes or (poly)silazanes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5252Fibers having a specific pre-form
    • C04B2235/5256Two-dimensional, e.g. woven structures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5268Orientation of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/612Machining
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/614Gas infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/616Liquid infiltration of green bodies or pre-forms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/94Products characterised by their shape
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/131Glass, ceramic, or sintered, fused, fired, or calcined metal oxide or metal carbide containing [e.g., porcelain, brick, cement, etc.]
    • Y10T428/1317Multilayer [continuous layer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24124Fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249928Fiber embedded in a ceramic, glass, or carbon matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to the manufacture of hollow parts made of thermostructural composite material, more particularly of parts having a deep stamped shape, not developable, not necessarily axisymmetric, with a bottom part and a lateral part connected by portions of radii of curvature. can be relatively small.
  • parts will be referred to generically as bowls throughout the remainder of the description and in the claims.
  • One field of application of the invention is for example the manufacture of bowls intended to receive crucibles containing molten metal, such as silicon, in particular for drawing ingots of silicon, or of other metals, in other areas of metallurgy.
  • thermostructural composite material a material comprising a fibrous reinforcement of refractory fibers, for example carbon or ceramic fibers, densified by a refractory matrix, for example carbon or ceramic.
  • Carbon / carbon composite materials (C / C) and ceramic matrix composite materials (CMC) are examples of thermostructural composite materials.
  • a well-known process for the production of monocrystalline silicon intended more particularly for the manufacture of semiconductor products, consists in melting silicon in a receptacle, in bringing into contact with the liquid silicon bath a crystal seed having the arrangement crystalline lens desired, to initiate solidification from the silicon contained in the crucible, with the desired crystalline arrangement, and to mechanically pull out of the crucible a ingot of monocrystalline silicon thus obtained.
  • This process is known as the Czochralski process, or the "CZ" process.
  • the receptacle containing the molten silicon is frequently a crucible made of silica, or quartz (Si0 2 ) placed in a bowl, sometimes called susceptor, which is generally made of graphite.
  • Heating can be provided by radiation from a cylindrical electrically conductive graphite body, for example heated by the Joule effect, which surrounds the bowl.
  • the bowl rests by its bottom on a support.
  • the bottom of the bowl is generally machined, in particular to form a centering surface and a support zone.
  • the requirements of very high purity imply using pure raw materials, non-polluting processes and / or purification processes in the final state or in an intermediate state of manufacture. from the bowl.
  • purification methods by treatment at high temperature (more than 2000 ° C) under a neutral or reactive atmosphere (for example halogen) are known and commonly used.
  • the graphite pieces used as bowls are fragile. They are often made in several parts ("petal" architecture) and cannot retain molten silicon in the event of a leak or rupture of the silica crucible. This security problem becomes more and more critical with the increase in size of the silicon ingots drawn, therefore the increase in the mass of liquid silicon. Furthermore, graphite bowls generally have a short service life and a large thickness, therefore also a large size and mass.
  • the production of a part made of C / C composite material or more generally of thermostructural composite material usually the production of a fibrous preform having a shape corresponding to that of the part to be produced and constituting the fibrous reinforcement of the composite material, and the densification of the preform by the matrix.
  • filament winding consisting of winding wires on a mandrel having a shape corresponding to that of the preform to be produced
  • layup consisting of superimposing layers or strata of two-dimensional fibrous texture on a shape suitable for the shape of the preform to be produced, the superimposed strata possibly being linked together by needling or by sewing, and also three-dimensional weaving or knitting.
  • the densification of the preform can be carried out in a well known manner by the liquid route or by the gaseous route or by a mixed route combining the two.
  • Liquid densification consists of impregnating the preform - or pre-impregnating the filaments or strata which constitute it - with a matrix precursor, for example a carbon or ceramic precursor resin, and transforming the precursor by heat treatment .
  • Densification by gas, or chemical vapor infiltration consists of placing the preform in an enclosure and admitting into the enclosure a gaseous phase precursor of the matrix.
  • the conditions in particular of temperature and pressure are adjusted to allow the gas phase to diffuse within the porosity of the preform and, in contact with the fibers, to form on them a deposit of the material constituting the matrix by decomposition of 'a constituent of the gas phase or reaction between several constituents.
  • a particular difficulty lies in the manufacture of a fibrous preform having the corresponding shape.
  • the filament winding technique is very difficult to implement to obtain a bowl shape in one piece.
  • the solution which can be recommended is to produce the periphery of the preform of the bowl by filament winding and to produce separately the part of the preform corresponding to the bottom of the bowl.
  • the technique of layering layers is also difficult to implement for such complex shapes when one wants to avoid the formation of extra thicknesses due to folds in the strata.
  • a known solution consists in cutting the strata, in particular in forming slits, according to the shape to be produced so that the strata can follow this shape with the lips of the cuts or slits being brought closer when they are draped and shaped. Pre-cutting the strata requires great precision. It also has the drawback of allowing discontinuities of wires to remain in the preform.
  • the invention aims to propose a method of manufacturing a bowl of thermostructural composite material which makes it possible to avoid the drawbacks of the prior art, while remaining simple and economical.
  • the method comprises the steps which consist in:
  • the invention is remarkable in that the bowl preform can be produced from unitary layers in which slots intended to allow the desired shape to have been formed have not been made. This contributes to ensuring the best mechanical strength and cohesion of the bowl obtained by densification of the preform, and to providing maximum security in the event of the crucible breaking, within the framework of the application to the drawing of silicon ingots.
  • the strata are in a deformable fibrous texture.
  • Use is advantageously made of a texture formed of several unidirectional layers superimposed in different directions, for example two unidirectional layers superimposed with directions preferably forming an angle of 45 ° to 60 °, the layers being linked together so as to form deformable elementary meshes.
  • connection of the sheets between them can be carried out by needling or by knitted thread or by sewing. Entire strata are cut to the desired dimensions in the deformable texture. Strata are thus obtained having a sufficient deformation capacity so that they adapt to the desired shape by simple deformation, without forming folds or extra thicknesses.
  • the deformed strata are linked together by needling, in order to transfer transversely to the strata of the fibers taken from the strata by needles.
  • Each new draped layer can be needled on the underlying structure, advantageously by controlling the rate of fibers transferred, throughout the thickness of the preform.
  • the deformed plies can be linked together by sewing or by implantation of wires.
  • the deformable fibrous texture constituting the strata is a knitted fabric.
  • the constituent fibers of the strata are preferably made of carbon or a carbon precursor. In the latter case, a heat treatment is carried out after completion of the preform to transform the precursor into carbon.
  • the preform After the preform has been produced, it can be subjected to a liquid consolidation step, and to a heat treatment for stabilizing the fibers and for purification carried out after or before consolidation.
  • the densification of the possibly consolidated preform is preferably carried out by chemical gas infiltration.
  • two-dimensional fibrous strata which are deformable in one piece, free from cuts or slots, are used so as to obtain a complete bowl preform, in one piece, and densification is carried out on the preform of complete bowl.
  • a one-piece bowl made of thermostructural composite material can thus be obtained directly.
  • two-dimensional fibrous strata which are deformable in a single piece are also used, free from cuts or slots, so as to obtain a complete bowl preform, but a hole is made through the bottom of the preform, before densification by chemical vapor infiltration.
  • the presence of this hole promotes the flow of the gas phase, which can increase the yield of densification, especially in the case of large bowls.
  • the hole is closed by a plug.
  • two-dimensional fibrous layers are used in a single piece having a substantially central opening and the layers are superimposed on the form by aligning their openings so as to obtain a bowl preform having a hole passing through the bottom of the preform and formed by the aligned openings of the layers.
  • the hole is closed by a plug.
  • the plug can be made of thermostructural composite material and a final step of chemical vapor infiltration can be carried out.
  • a final purification heat treatment can then possibly be carried out.
  • a final deposition of pyrolytic carbon and / or silicon carbide (SiC) can be carried out, at least on the internal face of the bowl.
  • the invention also relates to a bowl made of thermostructural composite material as it can be obtained by the process defined above.
  • such a bowl is characterized in that it comprises a fibrous reinforcement comprising two-dimensional fibrous strata which are superimposed and linked together by fibers extending transversely relative to the strata.
  • the fibrous reinforcement is in a single piece formed of two-dimensional layers in one piece, free from cracks and cuts.
  • a coating of pyrolytic carbon may be present on the surface of the bowl, at least on the inside of the bowl.
  • the invention also relates to the use of such a bowl as a crucible support, in particular for the production of monocrystalline silicon.
  • a protective layer for example of thermostructural composite material, such as a C-C composite can be interposed between the bowl and the crucible.
  • FIG. 1 is a very schematic half-sectional view showing a bowl of composite material used as a crucible support in an installation for producing silicon ingots;
  • FIG. 2 is a diagram showing successive steps of a first embodiment of a method according to the invention.
  • FIGS. 3A, 3B and 3C are views illustrating a two-dimensional stratum with deformable mesh usable for the implementation of the method of Figure 2;
  • - Figure 4 is a very schematic view of a needling device in form usable for the implementation of the method of Figure 2; and - Figure 5 is a partial schematic view showing additional layup of strata at a bottom portion of the bowl.
  • FIG. 6 is a diagram showing successive steps of a second embodiment of a method according to the invention
  • FIG. 7 is a schematic sectional view showing the closure by a plug of a hole formed at the bottom of a preform
  • - Figure 8 is a diagram showing successive steps of a third embodiment of a method according to the invention.
  • - Figure 9 is a very schematic view showing a layup of strata according to yet another embodiment of a method according to the invention.
  • FIG. 1 very schematically shows such a bowl made of composite material, for example made of composite material C / C, which supports a crucible 5, generally made of silica.
  • the bowl 1 rests on an annular support formed by a ring 2 mounted at the end of a shaft 3, forming with it a recess 4.
  • the bowl has a bottom part 1a and a perimeter part 1b having a substantially cylindrical portion which is connected to the bottom part by a rounded profile portion.
  • the bottom part of the bowl 1 is machined to form a centering surface corresponding to the step 4 and a bearing surface on the ring 2.
  • the assembly After filling the crucible with silicon, the assembly is placed in an oven and the temperature in the oven is brought to a value sufficient to cause the liquefaction of the silicon. At this temperature, above 1420 ° C, the silica crucible softens and follows the shape of the bowl. A seed having the crystalline arrangement is then brought into contact with the silicon bath, then an ingot is extracted slowly, forming a column between the seed and the bath. An ingot can thus be pulled up to a length which can be from 1 to 2 m.
  • thermostructural composite materials are particularly suitable for the production of bowls intended for this application.
  • the invention also includes the production of bowls made of CMC-type composite materials, with fibrous reinforcement made of ceramic fibers (for example SiC fibers) and with a matrix also ceramic (for example also made of SiC), the technologies for producing CMCs being well known .
  • the fibrous reinforcement can be produced from carbon threads as commercially available, but preferably free of surface treatment usually provided to provide surface functions promoting bonding with an organic matrix, when these threads are used to form composite materials of the fiber / resin type not intended for applications at high temperatures. The absence of surface functions makes it possible to avoid internal stresses during the process of manufacturing the composite material with the process of the invention.
  • the constituent fibers of the threads may be provided with a coating of interphase in thin pyrolytic carbon, typically less than or equal to 0.1 ⁇ m.
  • the pyrolytic carbon interphase coating can be obtained by chemical vapor deposition, as described in patent US Pat. No. 4,748,079.
  • a first mode of implementation of a process for manufacturing a bowl of composite material will now be described with reference to FIG. 2.
  • a first step 10 of the process consists in providing two-dimensional deformable strata made of carbon fibers.
  • the strata are in a deformable fibrous texture advantageously formed of unidirectional layers of carbon threads devoid of surface functions, which are superimposed with different directions and linked together so as to form deformable elementary meshes.
  • connection of the plies together can be carried out by light needling which ensures the cohesion of the texture, while providing sufficient capacity for deformation. It is also possible to bind the sheets together by sewing using a thread passing from one side to the other of the texture. Preferably, the connection of the plies is carried out by knitting a thread passing from one face to the other of the texture, as shown in FIGS. 3A to 3C.
  • deformable textures are known and described in document WO 98/44182 of the applicant. They are formed of two unidirectional layers superimposed with their directions forming an angle between them less than 90 °, preferably lying in the range from 45 ° to 60 °.
  • Figures 3A and 3B show the right and wrong sides of the texture 102
  • Figure 3C shows in detail the knitting stitch 108 used.
  • the point 108 forms interlaced loops 108a, elongated in a longitudinal direction of the texture 102 by forming several parallel rows, and V or zig-zag paths 108b which connect the loops between neighboring rows.
  • the texture 102 is located between the paths 108b located on the right side ( Figure 3A) and the loops 108a located on the reverse side ( Figure 3B), giving the knitted fabric the appearance of a zig-zag stitch on one side and d 'a chain stitch on the other side.
  • the knitting stitch includes several threads of each unidirectional ply according to the gauge chosen for the knitting device.
  • the points of connection between the paths 108b in zigzag and the loops 108a define the vertices of deformable elementary meshes.
  • both the meshes defined by the knitting stitch and the meshes defined by crossing points between threads of the plies are deformable, which crossing points form deformable parallelograms.
  • the knitting yarn used 106 may be a carbon or carbon precursor yarn, or a yarn of fugitive material, that is to say of a material capable of being eliminated by dissolution or by heat, without leaving any residue at a later stage in the manufacturing of the composite bowl.
  • An example of a fugitive yarn is a water-soluble PVA (polyvinyl alcohol) yarn.
  • the layers are cut from the deformable texture to the desired external dimensions depending on the shape and dimensions of the bowl to be produced.
  • the strata are whole, in one piece, that is to say free from internal cuts or slits.
  • the strata are draped over a tool having a shape corresponding to that of the bowl to be produced. Draping can be done manually.
  • the superimposed strata can be given the desired shape without the formation of folds, while using strata in a single piece without slots or cutouts.
  • deformable mesh strata presents the advantages of easier draping and preserving the integrity of the strata structure. This last point is particularly important for the mechanical properties of the bowl finally produced.
  • the layers are superimposed by shifting them angularly around the axis of the preform passing through the top of the latter, so as to avoid an exact superposition of the patterns, a source of structural heterogeneity.
  • the strata are stacked until they reach the desired thickness for the bowl preform and are linked together by needling (step 30).
  • Needling can be carried out after the layering of the layers or, preferably, as the layering takes place, for example by needling each new draped layer.
  • a needling installation is used as described in US Patent 5,226,217 to the Applicant.
  • such an installation comprises a table 300 supporting a shape 302, a robot 304 with its control unit 306 connected to an operator console 308 and a needling head 310 fixed at the end of the arm 312 of the robot 304.
  • the arm 312 is at its other end, articulated around a vertical axis on a support 314 movable vertically.
  • the arm 312 comprises a multiple articulation 316.
  • the needling head 310 thus has the degrees of freedom necessary to be brought into the desired position and with the orientation wanted to needle draped strata on the form 302 according to predetermined trajectories and a predetermined direction of incidence, generally normal to the strata.
  • the form 302 is provided with a base covering, for example a felt into which the needles of the head 310 can penetrate without damage.
  • the needling head 310 is provided with a support plate 310a having perforations for the passage of the needles.
  • the support plate is recalled elastically to allow exerting on the strata during needling a controlled pressure.
  • the needling is carried out with control of the rate of fibers transferred by the needles transversely relative to the strata. This can be achieved by controlling the depth of penetration of the needles so as to obtain a substantially constant needling density in the thickness of the preform.
  • the preform 320 formed by the draped and sharpened strata 102 is advantageously completed by draping additional strata (step 40) having dimensions limited to those of the bottom part of a bowl to be produced.
  • the additional strata 104 which can be of the same nature as the strata 102, are draped over the bottom of the preform 320 until reaching a thickness sufficient to obtain a portion of the bowl bottom which can be machined to form a bearing face and a centering surface.
  • the strata 104 are linked together and to the strata 102 by needling. A needling installation is used for this purpose as described above.
  • the fibrous preform obtained is then subjected to a liquid consolidation process.
  • the fibrous preform 54 is for this purpose placed in a mold
  • the impregnation is carried out for example with a phenolic resin.
  • the preform After polymerization of the resin in the mold, the preform is removed from the mold and subjected to a heat treatment to carbonize the resin.
  • the impregnation can alternatively be carried out on the preform maintained on the form, after needling.
  • resin is introduced into the preform covered by a flexible envelope, for example made of elastomer with possible establishment of a depression.
  • the envelope can be removed, and the preform released, after polymerization of the resin and before carbonization thereof.
  • the next step 60 of the process consists in carrying out a heat treatment to stabilize the carbon fibers dimensionally and to purify the consolidated preform.
  • the heat treatment is carried out at a temperature preferably between 1600 ° C. and 2800 ° C. It makes it possible to avoid a subsequent dimensional variation of the fibers during the continuation of the manufacture of the bowl when the fibers have not been previously exposed to a temperature at least equal to that to which they are subsequently exposed, in particular during densification. . It also makes it possible to promote the evacuation of impurities contained in the fibers and in the coke of consolidation resin.
  • the preform is then densified by a pyrolytic carbon matrix by chemical vapor infiltration (step 70).
  • the preform in a manner well known per se, can be placed in an enclosure into which is introduced a gas phase containing a carbon precursor such as methane.
  • a gas phase containing a carbon precursor such as methane.
  • the pressure and temperature conditions are chosen to allow diffusion of the gas phase within the porosity of the consolidated preform, and decomposition of the methane giving a deposition of pyrocarbon.
  • Chemical vapor infiltration can be carried out under isothermal-isobaric conditions, or with a temperature gradient, processes well known in themselves.
  • Infiltration can also be carried out by immersing the consolidated preform in a liquid precursor and by heating the preform so as to generate a film of gaseous precursor on its surface.
  • a process is described for example in document FR 2 784 695 of the applicant.
  • the densification of the preform could be carried out by the liquid route from a precursor of the matrix in liquid form, such as a resin.
  • the bowl blank obtained is machined (step 80) so as in particular to form the centering surface and the bearing surface at the bottom of the bowl.
  • a final heat treatment (step 90) is carried out, for example at a temperature of 2200 ° C to 2700 ° C, to purify the bowl of C / C composite obtained.
  • the purification treatment can be carried out in the presence of halogen.
  • a final deposition of pyrolytic or pyrocarbon carbon can be carried out by chemical vapor deposition. It is formed on the surface of the bowl, at least on the inside.
  • this final deposit may be made of silicon carbide (SiC), also obtained by chemical vapor deposition.
  • the method comprises the same initial steps 10 to 60 as that of FIG. 2, namely supplying deformable two-dimensional fibrous strata (step 10), draping the strata on a form (step 20). , bonding of the draped strata by needling (step 30), draping of additional strata (step 40), resin impregnation for consolidation (step 50) and heat treatment for stabilization and purification (step 60).
  • the method of FIG. 6 is then distinguished from that of FIG. 2 in that before densification of the preform, a hole 52 is formed by machining in the bottom of the consolidated preform 58 (step 65). Note that the hole 52 can be formed on the non-consolidated preform, before impregnation with the resin or immediately after polymerization and before carbonization of the resin.
  • the presence of the hole 52 can prove to be beneficial when the densification of the preform is carried out by chemical vapor infiltration. Indeed, the hole 52 promotes the circulation of the gas phase in the enclosure where the preform is placed. The phase 70 of densification of the preform is therefore preferably carried out by chemical vapor infiltration. The preform thus densified is machined (step 80) especially at the bottom.
  • a plug is then produced (step 82) to be placed in the hole 52 (step 86).
  • the plug can be made of different materials, for example graphite or, preferably a thermostructural composite material such as a C / C composite.
  • the plug can be produced in one or more pieces obtained by densification of the corresponding preform (s).
  • the or each preform is formed by superposition of two-dimensional layers, for example of fabric, which are linked together by needling or by sewing. Densification by a carbon matrix is then carried out by the liquid route or by chemical vapor infiltration.
  • the plug 84 is in two parts 84a and 84b.
  • the part 84a has a cup shape with a lip-shaped periphery which rests on a recess 52a produced in the hole 52, on the inside of the bowl preform.
  • the external face of the part 84a has a shape which is a continuation of the internal face of the bowl.
  • the part 84b also has a cup shape with a lip-shaped periphery which rests on the external face of the bottom of the bowl preform around the hole 52.
  • the connection between the parts 84a and 84b can be carried out by screwing, the part 84a having a projecting central part which is screwed into a housing of the part 84b. The parts 84a and 84b thus enclosing the edge of the hole 52.
  • step 88 of chemical vapor infiltration can be carried out in order to perfect the assembly of the plug 84 with the bottom part of the bowl preform and complete the densification of the latter. Densification in step 80 may then have been carried out partially.
  • Steps 90 and 100 of final heat treatment for purification and deposition of pyrocarbon can then be carried out as in the process of FIG. 2.
  • This method comprises the same steps 10 to 100 as that of FIG. 2 with the exception of steps 30 and 40 of linking draped strata and draping additional strata.
  • the connection of the strata 102 between them (step 30 ′) is carried out by sewing by means of a wire 202 which passes through all of the draped strata 102.
  • a similar wire 204 is used in the following step 40 ′ to link the additional strata 104 together and with the strata 102, the wire 204 passing through all of the strata 102 and 104.
  • the wires 202 and 204 can be carbon wires similar to those used to form the strata 102 and 104.
  • wires of fugitive material that is to say of a material capable of being eliminated by dissolution or by heat at a later stage of making the bowl.
  • two-dimensional deformable strata having a substantially central opening are used.
  • the strata 202 provided with a central opening 203 are draped over a shape, such as the same shape
  • the layering of the strata 202 is carried out so as to align the openings 203 in the central part of the bottom of the preform being formed.
  • the strata 202 are linked together by needling, as in the case of the process of FIGS. 2 and 6, or by stitching, as in the case of the process of FIG. 4.
  • Additional layers 204 are draped at the bottom of the preform, the layers 204 having substantially central openings 205 aligned.
  • the connection of the strata 204 with each other and with the strata 202 is carried out by needling or by sewing.
  • the aligned openings 203, 205 define a hole 152 passing through the bottom of the preform.
  • the manufacture of the bowl can continue by stages of consolidation by resin impregnation, stabilization and purification heat treatment, densification by chemical vapor infiltration, machining, production and installation of a plug closing the hole 152, final densification by chemical vapor infiltration , heat treatment for purification and deposition of pyrocarbon, such as steps 50, 60, 70, 80, 82, 86, 88, 90 and 100 of the process of FIG. 4.
  • the preform can be produced from wires formed from carbon precursor fibers, instead of carbon fibers.
  • the carbon precursors which can be used are, in known manner, for example preoxidized polyacrylonitrile (PAN), phenolic compounds, pitches.
  • PAN preoxidized polyacrylonitrile
  • phenolic compounds phenolic compounds
  • pitches pitches.
  • the transformation of the precursor into carbon is carried out by heat treatment after constitution of the preform.
  • the consolidation phase of the preform may be omitted.
  • the preform with the layers superimposed and linked to each other can then be placed in a tool of shape corresponding to that of the bowl to be produced to be introduced into a densification chamber by chemical vapor infiltration.
  • the tools can be removed after a first densification phase ensuring sufficient cohesion so that the densification can be continued without tools.
  • the heat treatment phase of the preform before densification may be omitted, in particular when dimensional stabilization of the fibers is not required. This can be so when the carbon fibers of the preform have already been brought to a temperature at least equal to that encountered subsequently.
  • the purification can then be carried out in a single operation, after densification.
  • the final purification phase may be omitted, when a sufficient degree of purity of the preform has been obtained by heat treatment before densification and when densification is carried out with a carbon precursor and under conditions which do not introduce d 'impurities in significant quantity.
  • the level of residual impurities in the bowl should preferably be less than 5 ppm.
  • the densification of the preform may be carried out with a matrix at least partly made of ceramic material, for example silicon carbide obtained by chemical vapor infiltration using a gaseous precursor such as methyltrichlorosilane.
  • ceramic material for example silicon carbide obtained by chemical vapor infiltration using a gaseous precursor such as methyltrichlorosilane.
  • a protective layer may be interposed between the bowl and the crucible, to avoid attack by the composite material of the bowl, as may be the case with a silica crucible and a bowl made of composite material C-C.
  • the protective layer is for example itself made of thermostructural composite material such as a C-C composite and behaves like a "consumable" layer to be replaced periodically.
  • the composite material C-C used can be formed of two-dimensional layers of carbon fibers linked by a carbon matrix obtained by liquid means or chemical vapor infiltration.
  • Such a protective layer 6, matching the shape of the internal surface of the bowl 1 is shown in FIG. 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Ceramic Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Ceramic Products (AREA)
  • Inorganic Fibers (AREA)
  • Reinforced Plastic Materials (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Un procédé de fabrication d'un bol monobloc en matériau composite thermostructural formé d'un renfort fibreux densifié par une matrice qui comprend la fourniture de strates fibreuses déformables en un seul tenant exemptes de fentes ou de découpes, la superposition desdites strates sur une forme correspondant au bol à réaliser, en les déformant, et la liaison des strates superposées entre elles au moyen de fibres s'étendant transversalement par rapport aux strates, par exemple par aiguilletage de manière à obtenir une préforme de bol qui est ensuite densifiée. Le bol (1) est utilisable comme support de creuset (5) dans une installation de production de silicium monocristallin.

Description

Titre de l'invention
Procédé de fabrication d'un bol en matériau composite thermostructural, bol tel qu'obtenu par le procédé, et utilisation du bol comme support de creuset.
Domaine de l'invention
L'invention concerne la fabrication de pièces creuses en matériau composite thermostructural, plus particulièrement de pièces ayant une forme d'embouti profond, non développable, non nécessairement axisymétriques, avec une partie de fond et une partie latérale raccordées par des portions de rayons de courbures pouvant être relativement faibles. Par souci de commodité, de telles pièces seront désignées sous le terme générique de bols dans tout le reste de la description et dans les revendications. Un domaine d'application de l'invention est par exemple la fabrication de bols destinés à recevoir des creusets contenant du métal fondu, tel que du silicium, notamment pour le tirage de lingots de silicium, ou d'autres métaux, dans d'autres domaines de la métallurgie.
Par matériau composite thermostructural, on entend un matériau comprenant un renfort fibreux en fibres réfractaires, par exemple en fibres de carbone ou de céramique, densifié par une matrice réfractaire, par exemple en carbone ou en céramique. Les matériaux composites carbone/carbone (C/C) et les matériaux composites à matrice céramique (CMC) sont des exemples de matériaux composites thermostructuraux.
Arrière-plan de l'invention
Un procédé bien connu de production de silicium monocristaliin, destiné plus particulièrement à la fabrication de produits semi-conducteurs, consiste à faire fondre du silicium dans un réceptacle, à mettre en contact avec le bain de silicium liquide un germe de cristal ayant l'arrangement cristallin désiré, pour initier la solidification à partir du silicium contenu dans le creuset, avec l'arrangement cristallin voulu, et à tirer mécaniquement hors du creuset un lingot de silicium monocristallin ainsi obtenu. Ce procédé est connu sous l'appellation procédé Czochralski, ou procédé "CZ". Le réceptacle contenant le silicium fondu est fréquemment un creuset en silice, ou quartz (Si02) placé dans un bol, quelquefois dénommé suscepteur, qui est généralement en graphite. Le chauffage peut être assuré par rayonnement à partir d'un corps cylindrique conducteur électrique en graphite, par exemple chauffé par effet Joule, qui entoure le bol. Le bol repose par son fond sur un support. A cet effet, le fond du bol est généralement usiné, notamment pour former une portée de centrage et une zone d'appui. En outre, dans l'application considérée, les impératifs de très haute pureté impliquent de faire appel à des matières premières pures, à des procédés non polluants et/ou à des procédés de purification à l'état final ou à un état intermédiaire de fabrication du bol. Pour les produits carbonés (tels que graphite ou composites C/C), des procédés de purification par traitement à haute température (plus de 2000°C) sous atmosphère neutre ou réactive (par exemple halogène) sont connus et utilisés de façon courante.
Les pièces en graphite utilisées comme bols sont fragiles. Elles sont souvent réalisées en plusieurs parties (architecture en "pétales") et ne peuvent retenir le silicium fondu en cas de fuite ou rupture du creuset en silice. Ce problème de sécurité devient de plus en plus critique avec l'augmentation de taille des lingots de silicium tirés, donc l'accroissement de la masse de silicium liquide. Par ailleurs, les bols en graphite ont généralement une faible durée de vie et une épaisseur importante, donc aussi un encombrement et une masse importants.
Pour éviter ces inconvénients, il a déjà été proposé de réaliser des bols en matériau composite C/C. Un tel matériau a une tenue mécanique bien supérieure à celle du graphite. La réalisation de bols de grand diamètre, par exemple atteignant, voire dépassant 850 mm, peut alors être envisagée, pour faire face à la demande de lingots de silicium monocristallins de plus grande section. En outre, l'épaisseur des bols peut être diminuée, par rapport à celle des bols en graphite, ce qui permet une meilleure transmission du flux thermique vers le creuset et diminue l'encombrement. Par ailleurs, les matériaux C/C sont moins exposés que le graphite à la fragilisation consécutive à la corrosion par SiO provenant du creuset. La fabrication d'une pièce en matériau composite C/C ou plus généralement en matériau composite thermostructural, comprend habituellement la réalisation d'une préforme fibreuse ayant une forme correspondant à celle de la pièce à réaliser et constituant le renfort fibreux du matériau composite, et la densification de la préforme par la matrice.
Des techniques couramment utilisées pour réaliser des préformes sont le bobinage filamentaire consistant à enrouler des fils sur un mandrin ayant une forme correspondant à celle de la préforme à réaliser, le drapage consistant à superposer des couches ou strates de texture fibreuse bidimensionnelle sur une forme adaptée à la forme de la préforme à réaliser, les strates superposées étant éventuellement liées entre elles par aiguilletage ou par couture, et encore le tissage ou tricotage tridimensionnel.
La densification de la préforme peut être réalisée de façon bien connue par voie liquide ou par voie gazeuse ou par voie mixte combinant les deux. La densification par voie liquide consiste à imprégner la préforme - ou à pré-imprégner les filaments ou strates qui la constituent - par un précurseur de la matrice, par exemple une résine précurseur de carbone ou de céramique, et à transformer le précurseur par traitement thermique. La densification par voie gazeuse, ou infiltration chimique en phase vapeur, consiste à placer la préforme dans une enceinte et à admettre dans l'enceinte une phase gazeuse précurseur de la matrice. Les conditions notamment de température et de pression sont ajustées pour permettre à la phase gazeuse de diffuser au sein de la porosité de la préforme et, au contact des fibres, de former sur celles-ci un dépôt du matériau constitutif de la matrice par décomposition d'un constituant de la phase gazeuse ou réaction entre plusieurs constituants.
Dans le cas de pièces ayant une forme creuse non développable, telle que celle d'un bol, une difficulté particulière réside dans la fabrication d'une préforme fibreuse ayant la forme correspondante. La technique du bobinage filamentaire est très difficile à mettre en oeuvre pour obtenir une forme de bol en une seule pièce. La solution qui peut être préconisée est de réaliser le pourtour de la préforme du bol par bobinage filamentaire et de réaliser séparément la partie de préforme correspondant au fond du bol. La technique du drapage de strates est aussi difficile à mettre en oeuvre pour des formes aussi complexes lorsque l'on veut éviter la formation de surépaisseurs dues à des plis des strates. Une solution connue consiste à découper les strates, notamment à former des fentes, en fonction de la forme à réaliser pour que les strates puissent épouser cette forme avec rapprochement des lèvres des découpes ou fentes lorsqu'elles sont drapées et mises en forme. Le prédécoupage des strates requiert une grande précision. Il présente en outre l'inconvénient de laisser subsister des discontinuités de fils dans la préforme.
Objets et résumé de l'invention Selon un de ses aspects, l'invention a pour but de proposer un procédé de fabrication d'un bol en matériau composite thermostructural qui permette d'éviter les inconvénients de l'art antérieur, tout en restant simple et économique.
Conformément à l'invention, le procédé comprend les étapes qui consistent à :
- fournir des strates fibreuses bidimensionnelles déformables,
- superposer les strates en les déformant sur une forme ayant une forme correspondante à celle du bol à réaliser, les strates épousant ladite forme par leur déformation, sans former de plis, - lier les strates déformées entre elles au moyen de fibres s'étendant transversalement par rapport aux strates, de manière à obtenir une préforme de bol qui est ensuite densifiée.
L'invention est remarquable en ce que la préforme de bol peut être réalisée à partir de strates unitaires dans lesquelles des fentes destinées à permettre d'épouser la forme voulue n'ont pas été pratiquées. Cela contribue à assurer les meilleures tenues mécanique et cohésion du bol obtenu par densification de la préforme, et à offrir un maximum de sécurité en cas de rupture du creuset, dans le cadre de l'application au tirage de lingots de silicium. Les strates sont en une texture fibreuse deformable. On utilise avantageusement une texture formée de plusieurs nappes unidirectionnelles superposées dans des directions différentes, par exemple deux nappes unidirectionnelles superposées avec des directions faisant entre elles un angle de préférence de 45° à 60°, les nappes étant liées entre elles de manière à former des mailles élémentaires déformables. La liaison des nappes entre elles peut être réalisée par aiguilletage ou par fil tricoté ou par couture. Des strates entières sont découpées aux dimensions voulues dans la texture deformable. On obtient ainsi des strates ayant une capacité de déformation suffisante pour qu'elles s'adaptent à la forme voulue par simple déformation, sans former de plis ou surépaisseurs.
Avantageusement, les strates déformées sont liées entre elles par aiguilletage, afin de transférer transversalement aux strates des fibres prélevées dans les strates par des aiguilles. Chaque nouvelle strate drapée peut être aiguilletée sur la structure sous-jacente, avantageusement en contrôlant le taux de fibres transférées, dans toute l'épaisseur de la préforme.
En variante, les nappes déformées peuvent être liées entre elles par couture ou par implantation de fils.
Dans un autre mode de mise en oeuvre du procédé selon l'invention, la texture fibreuse deformable constituant les strates est un tricot.
Les fibres constitutives des strates sont de préférence en carbone ou en précurseur de carbone. Dans ce dernier cas, un traitement thermique est effectué après réalisation de la préforme pour transformer le précurseur en carbone.
Après réalisation de la préforme, celle-ci peut être soumise à une étape de consolidation par voie liquide, et à un traitement thermique de stabilisation des fibres et de purification réalisé après ou avant consolidation. La densification de la préforme éventuellement consolidée est réalisée de préférence par infiltration chimique en phase gazeuse.
Selon un mode préféré de réalisation, on utilise des strates fibreuses bidimensionnelles déformables en un seul tenant, exemptes de découpes ou de fentes, de manière à obtenir une préforme de bol complète, en une seule pièce, et la densification est réalisée sur la préforme de bol complète. Un bol monobloc en matériau composite thermostructural peut ainsi être directement obtenu.
Selon un autre mode de réalisation, on utilise également des strates fibreuses bidimensionnelles déformables en un seul tenant, exemptes de découpes ou de fentes, de manière à obtenir une préforme de bol complète, mais on réalise un trou à travers le fond de la préforme, avant densification par infiltration chimique en phase vapeur. La présence de ce trou favorise l'écoulement de la phase gazeuse, ce qui peut augmenter le rendement de la densification, notamment dans le cas de bols de grandes dimensions. Après densification au moins partielle de la préforme, le trou est obturé par un bouchon. On pourra utiliser un bouchon en matériau composite thermostructural. Après obturation du trou par le bouchon, une étape finale de densification par infiltration chimique en phase vapeur pourra être réalisée.
Selon encore un autre mode de réalisation, on utilise des strates fibreuses bidimensionnelles en un seul tenant présentant une ouverture sensiblement centrale et on superpose les strates sur la forme en alignant leurs ouvertures de manière à obtenir une préforme de bol présentant un trou traversant le fond de la préforme et formé par les ouvertures alignées des strates. Après densification au moins partielle de la préforme par infiltration chimique en phase vapeur, le trou est obturé par un bouchon. Comme indiqué ci-dessus, le bouchon peut être en matériau composite thermostructural et une étape finale d'infiltration chimique en phase vapeur peut-être réalisée.
Dans tous les cas, après densification de la préforme, on obtient une ébauche de bol.
Un traitement thermique final de purification peut alors être éventuellement réalisé.
En outre, un dépôt final de carbone pyrolytique et/ou de carbure de silicium (SiC) peut être réalisé, au moins sur la face interne du bol.
Selon un autre aspect, l'invention concerne aussi un bol en matériau composite thermostructural tel qu'il peut être obtenu par le procédé défini ci-avant.
Selon l'invention, un tel bol est caractérisé en ce qu'il comprend un renfort fibreux comprenant des strates fibreuses bidimensionnelles qui sont superposées et liées entre elles par des fibres s'étendant transversalement par rapport aux strates.
Avantageusement, le renfort fibreux est en une seule pièce formé de strates bidimensionnelles en un seul tenant, exemptes de fentes et de découpes. Un revêtement de carbone pyrolytique peut être présent sur la surface du bol, au moins du côté intérieur du bol.
L'invention concerne aussi l'utilisation d'un tel bol comme support de creuset, en particulier pour la production de silicium monocristallin. Une couche de protection, par exemple en matériau composite thermostructural, tel qu'un composite C-C peut être interposée entre le bol et le creuset.
Brève description des dessins L'invention sera mieux comprise à la description faite ci-après à titre indicatif mais non limitatif, en référence aux dessins annexés sur lesquels :
- la figure 1 est une demi-vue en coupe très schématique montrant un bol en matériau composite utilisé comme support de creuset dans une installation de production de lingots de silicium ;
- la figure 2 est un diagramme montrant des étapes successives d'un premier mode de mise en oeuvre d'un procédé conforme à l'invention ;
- les figures 3A, 3B et 3C sont des vues illustrant une strate bidimensionnelle à mailles déformables utilisable pour la mise en oeuvre du procédé de la figure 2 ;
- la figure 4 est une vue très schématique d'un dispositif d'aiguilletage en forme utilisable pour la mise en oeuvre du procédé de la figure 2 ; et - la figure 5 est une vue schématique partielle montrant un complément de drapage de strates au niveau d'une partie de fond du bol.
- la figure 6 est un diagramme montrant des étapes successives d'un deuxième mode de mise en oeuvre d'un procédé conforme à l'invention ; - la figure 7 est une vue schématique en coupe montrant l'obturation par un bouchon d'un trou formé au fond d'une préforme ;
- la figure 8 est un diagramme montrant des étapes successives d'un troisième mode de mise en oeuvre d'un procédé conforme à l'invention ; et - la figure 9 est une vue très schématique montrant un drapage de strates selon encore un autre mode de mise en oeuvre d'un procédé conforme à l'invention.
Description détaillée de modes de réalisation de l'invention
Comme déjà indiqué, un exemple non limitatif d'application de l'invention est la réalisation de bols en matériau composite thermostructural pour le support de creusets dans des installations de production de lingots de silicium monocristallin. La figure 1 montre très schématiquement un tel bol en matériau composite, par exemple en matériau composite C/C, qui supporte un creuset 5, généralement en silice. Le bol 1 repose sur un support annulaire formé par une bague 2 montée à l'extrémité d'un arbre 3 en formant avec celui-ci un décrochement 4. Le bol a une partie de fond 1a et une partie de pourtour 1 b ayant une portion sensiblement cylindrique qui se raccorde à la partie de fond par une portion à profil arrondi. La partie de fond du bol 1 est usinée pour former une portée de centrage correspondant au décrochement 4 et une surface d'appui sur la bague 2.
Après remplissage du creuset par du silicium, l'ensemble est placé dans un four et la température dans le four est portée à une valeur suffisante pour provoquer la liquéfaction du silicium. A cette température, supérieure à 1420°C, le creuset de silice se ramollit et épouse la forme du bol. Un germe présentant l'arrangement cristallin est ensuite amené au contact du bain de silicium puis un lingot est extrait lentement en formant une colonne entre le germe et le bain. Un lingot peut ainsi être tiré jusqu'à une longueur pouvant être de 1 à 2 m.
Ce procédé de fabrication de lingots de silicium est bien connu et ne fait pas partie de l'invention, de sorte qu'une description plus détaillée n'est pas nécessaire. Par leur capacité à conserver des bonnes propriétés mécaniques et une bonne stabilité dimensionnelle aux températures élevées, les matériaux composites thermostructuraux conviennent particulièrement pour la réalisation de bols destinés à cette application.
Dans la description qui suit, on envisage la réalisation de bols en matériaux composites C/C à renfort fibreux en fibres de carbone et matrice en carbone ou au moins essentiellement en carbone. L'invention englobe aussi la réalisation de bols en matériaux composite de type CMC, à renfort fibreux en fibres en céramique (par exemple en fibres SiC) et à matrice également céramique (par exemple également en SiC), les technologies d'élaboration des CMC étant bien connues. Le renfort fibreux peut être réalisé à partir de fils de carbone tels que disponibles dans le commerce, mais de préférence exempts de traitement de surface habituellement prévu pour apporter des fonctions de surface favorisant la liaison avec une matrice organique, lorsque ces fils sont utilisés pour former des matériaux composites de type fibres/résine non destinés à des applications à des températures élevées. L'absence de fonctions de surface permet d'éviter des contraintes internes lors du processus de fabrication du matériau composite avec le procédé de l'invention.
En variante, avant ou immédiatement après réalisation du renfort fibreux, on pourra faire subir à des fils de carbone habituels du commerce un traitement thermique visant à éliminer des fonctions de surface, ou on pourra munir les fibres constitutives des fils d'un revêtement d'interphase en carbone pyrolytique de faible épaisseur, typiquement inférieure ou égale à 0,1 μm. Le revêtement d'interphase en carbone pyrolytique peut être obtenu par dépôt chimique en phase vapeur, comme décrit dans le brevet US 4 748 079 de la déposante.
Un premier mode de mise en oeuvre d'un procédé de fabrication de bol en matériau composite sera maintenant décrit en référence à la figure 2. Une première étape 10 du procédé consiste à fournir des strates bidimensionnelles déformables en fibres de carbone.
Les strates sont en une texture fibreuse deformable avantageusement formée de nappes unidirectionnelles en fils de carbone dépourvus de fonctions de surface, qui sont superposées avec des directions différentes et liées entre elles de façon à former des mailles élémentaires déformables.
La liaison des nappes entre elles peut être réalisée par aiguilletage léger qui assure la cohésion de la texture, tout en ménageant une capacité de déformation suffisante. Il est possible aussi de lier les nappes entre elles par couture au moyen d'un fil passant d'une face à l'autre de la texture. De préférence, la liaison des nappes est réalisée par tricotage d'un fil passant d'une face à l'autre de la texture, comme montré par les figures 3A à 3C. De telles textures déformables sont connues et décrites dans le document WO 98/44182 de la déposante. Elles sont formées de deux nappes unidirectionnelles superposées avec leurs directions faisant entre elles un angle inférieur à 90°, de préférence compris dans la plage allant de 45° à 60°.
Les figures 3A et 3B montrent les faces endroit et envers de la texture 102, tandis que la figure 3C montre de façon détaillée le point de tricot 108 utilisé. Le point 108 forme des boucles 108a entrelacées, allongées dans une direction longitudinale de la texture 102 en formant plusieurs rangées parallèles, et des trajets en V ou en zig-zag 108b qui relient les boucles entre rangées voisines. La texture 102 est située entre les trajets 108b situés sur la face endroit (figure 3A) et les boucles 108a situées sur la face envers (figure 3B), donnant au tricot l'apparence d'un point zig-zag sur une face et d'un point chaînette sur l'autre face. Le point de tricot englobe plusieurs fils de chaque nappe unidirectionnelle selon la jauge choisie pour le dispositif de tricotage.
Les points de liaison entre les trajets 108b en zig-zag et les boucles 108a, tels que les points A,B,C,D de la figure 3C, définissent les sommets de mailles élémentaires déformables. Dans ce cas, sont déformables à la fois les mailles définies par le point tricot et les mailles définies par des points de croisement entre fils des nappes, lesquels points de croisement forment des parallélogrammes déformables. Le fil de tricot utilisé 106 peut être un fil de carbone ou en précurseur de carbone, ou un fil en matériau fugitif, c'est-à-dire en un matériau susceptible d'être éliminé par dissolution ou par la chaleur, sans laisser de résidu, à un stade ultérieur de la fabrication du bol composite. Un exemple de fil fugitif est un fil en PVA (alcool polyvinylique) soluble dans l'eau.
Les strates sont découpées dans la texture deformable aux dimensions extérieures voulues selon la forme et les dimensions du bol à réaliser. Les strates sont entières, en un seul tenant, c'est-à-dire exemptes de découpes internes ou fentes. A l'étape suivante 20 du procédé, les strates sont drapées sur un outillage ayant une forme correspondant à celle du bol à réaliser. Le drapage peut être réalisé manuellement.
Grâce à la déformabilité des mailles des strates et au mode de drapage utilisé, on peut donner aux strates superposées la forme désirée sans formation de plis, tout en utilisant des strates en un seul tenant sans fentes ou découpes.
Par rapport à une technique consistant à former des découpes dans des strates bidimensionnelles insuffisamment déformables, par exemple des découpes en forme de pétales, pour leur permettre d'épouser la forme voulue sans plis ou surépaisseurs, l'utilisation des strates à mailles déformables présente les avantages d'une plus grande facilité de drapage et de la préservation de l'intégrité de la structure des strates. Ce dernier point est particulièrement important pour les propriétés mécaniques du bol finalement réalisé.
Les strates sont superposées en les décalant angulairement autour de l'axe de la préforme passant par le sommet de celle-ci, de manière à éviter une superposition exacte des motifs, source d'hétérogénéité de structure. Les strates sont empilées jusqu'à atteindre l'épaisseur désirée pour la préforme de bol et sont liées entre elles par aiguilletage (étape 30).
L'aiguilletage peut être réalisé après le drapage des strates ou, de préférence, au fur et à mesure du drapage, par exemple en aiguilletant chaque nouvelle strate drapée.
On utilise par exemple une installation d'aiguilletage telle que décrite dans le brevet US 5 226 217 de la demanderesse. Comme montré très schématiquement par la figure 4, une telle installation comprend une table 300 supportant une forme 302, un robot 304 avec son unité de commande 306 reliée à une console d'opérateur 308 et une tête d'aiguilletage 310 fixée à l'extrémité du bras 312 du robot 304. Le bras 312 est à son autre extrémité, articulé autour d'un axe vertical sur un support 314 mobile verticalement. Au voisinage de la tête d'aiguilletage, le bras 312 comprend une articulation multiple 316. La tête d'aiguilletage 310 possède ainsi les degrés de liberté nécessaires pour être amenée dans la position voulue et avec l'orientation voulue pour aiguilleter des strates drapées sur la forme 302 suivant des trajectoires préétablies et une direction d'incidence prédéterminée, généralement normale aux strates.
La forme 302 est munie d'un revêtement d'embase, par exemple un feutre dans lequel les aiguilles de la tête 310 peuvent pénétrer sans dommage.
La tête d'aiguilletage 310 est munie d'une plaque d'appui 310a présentant des perforations pour le passage des aiguilles. La plaque d'appui est rappelée élastiquement pour permettre d'exercer sur les strates en cours d'aiguilletage une pression contrôlée.
Avantageusement, l'aiguilletage est réalisé avec contrôle du taux de fibres transférées par les aiguilles transversalement par rapport aux strates. Ceci peut être réalisé en contrôlant la profondeur de pénétration des aiguilles de manière à obtenir une densité d'aiguilletage sensiblement constante dans l'épaisseur de la préforme.
La préforme 320 constituée par les strates 102 drapées et aiguiiletées est avantageusement complétée par drapage de strates supplémentaires (étape 40) ayant des dimensions limitées à celles de la partie de fond d'un bol à réaliser. Comme le montre la figure 5, les strates supplémentaires 104, qui peuvent être de même nature que les strates 102, sont drapées sur le fond de la préforme 320 jusqu'à atteindre une épaisseur suffisante pour obtenir une partie de fond de bol pouvant être usinée pour former une face d'appui et une portée de centrage. Les strates 104 sont liées entre elles et aux strates 102 par aiguilletage. On utilise à cet effet une installation d'aiguilletage telle que décrite ci-avant.
La préforme fibreuse obtenue est ensuite soumise à un processus de consolidation par voie liquide. La préforme fibreuse 54 est à cet effet placée dans un moule
56 et imprégnée par un précurseur liquide de carbone (étape 50).
L'imprégnation est réalisée par exemple par une résine phénolique.
Après polymérisation de la résine dans le moule, la préforme est retirée du moule et soumise à un traitement thermique pour carboniser la résine. L'imprégnation peut en variante être réalisée sur la préforme maintenue sur la forme, après aiguilletage. A cet effet, de la résine est introduite dans la préforme recouverte par une enveloppe souple, par exemple en élastomère avec établissement éventuel d'une dépression. L'enveloppe peut être retirée, et la préforme dégagée, après polymérisation de la résine et avant carbonisation de celle-ci.
L'étape suivante 60 du procédé consiste à réaliser un traitement thermique pour stabiliser les fibres de carbone dimensionnellement et purifier la préforme consolidée. Le traitement thermique est réalisé à une température comprise de préférence entre 1600°C et 2800°C. Il permet d'éviter une variation dimensionnelle ultérieure des fibres lors de la suite de la fabrication du bol lorsque les fibres n'ont pas été préalablement exposées à une température au moins égale à celle à laquelle elles sont exposées ensuite, notamment lors de la densification. Il permet aussi de favoriser l'évacuation d'impuretés contenues dans les fibres et dans le coke de résine de consolidation.
La préforme est ensuite densifiée par une matrice de carbone pyrolytique par infiltration chimique en phase vapeur (étape 70). A cet effet, de façon bien connue en soi, la préforme peut être placée dans une enceinte dans laquelle est introduite une phase gazeuse contenant un précurseur de carbone tel que du méthane. Les conditions de pression et de température sont choisies pour permettre une diffusion de la phase gazeuse au sein de la porosité de la préforme consolidée, et une décomposition du méthane donnant un dépôt de pyrocarbone. L'infiltration chimique en phase vapeur peut être réalisée dans des conditions isothermes-isobares, ou avec gradient de température, processus bien connus en eux-mêmes.
L'infiltration peut aussi être réalisée en immergeant la préforme consolidée dans un précurseur liquide et en chauffant la préforme de manière à engendrer un film de précurseur gazeux à sa surface. Un tel procédé est décrit par exemple dans le document FR 2 784 695 de la déposante.
Selon une autre variante, la densification de la préforme pourrait être réalisée par voie liquide à partir d'un précurseur de la matrice sous forme liquide, tel qu'une résine. Après densification, l'ébauche de bol obtenue est usinée (étape 80) de manière notamment à former la portée de centrage et la surface d'appui au fond du bol.
Un traitement thermique final (étape 90) est réalisé, par exemple à une température de 2200°C à 2700°C, pour purifier le bol en composite C/C obtenu. De façon connue, le traitement de purification peut être réalisé en présence d'halogène.
Un dépôt final de carbone pyrolytique ou pyrocarbone (étape 100) peut être réalisé par dépôt chimique en phase vapeur. Il est formé sur la surface du bol, au moins du côté intérieur. En variante, ce dépôt final pourra être en carbure de silicium (SiC), également obtenu par dépôt chimique en phase vapeur.
Le dépôt final de pyrocarbone ou de SiC pourra être réalisé avant traitement thermique final de purification. Un autre mode de mise en oeuvre d'un procédé selon l'invention sera maintenant décrit en référence aux figures 6 et 7.
Le procédé dont les étapes successives sont montrées sur la figure 6 comprend les mêmes étapes initiales 10 à 60 que celui de la figure 2, à savoir fourniture de strates fibreuses bidimensionnelles déformables (étape 10), drapage des strates sur une forme (étape 20), liaison des strates drapées par aiguilletage (étape 30), drapage de strates supplémentaires (étape 40), imprégnation par résine pour consolidation (étape 50) et traitement thermique de stabilisation et purification (étape 60). Le procédé de la figure 6 se distingue ensuite de celui de la figure 2 en ce qu'avant densification de la préforme, un trou 52 est formé par usinage dans le fond de la préforme consolidée 58 (étape 65). On notera que la formation du trou 52 peut être réalisée sur la préforme non consolidée, avant imprégnation par la résine ou immédiatement après polymérisation et avant carbonisation de la résine.
La présence du trou 52 peut s'avérer bénéfique lorsque la densification de la préforme est réalisée par infiltration chimique en phase vapeur. En effet, le trou 52 favorise la circulation de la phase gazeuse dans l'enceinte où la préforme est placée. La phase 70 de densification de la préforme est donc réalisée de préférence par infiltration chimique en phase vapeur. La préforme ainsi densifiée est usinée (étape 80) notamment au niveau du fond.
Un bouchon est ensuite réalisé (étape 82) pour être mis en place dans le trou 52 (étape 86). Le bouchon peut être en différents matériaux, par exemple en graphite ou, de préférence en matériau composite thermostructural tel qu'en composite C/C. Le bouchon peut être réalisé en une ou plusieurs pièces obtenues par densification de préforme(s) correspondante(s). La ou chaque préforme est formée par superposition de strates bidimensionnelles, par exemple en tissu, qui sont liées entre elles par aiguilletage ou par couture. Une densification par une matrice en carbone est ensuite réalisée par voie liquide ou par infiltration chimique en phase vapeur. Dans l'exemple illustré par la figure 7, le bouchon 84 est en deux pièces 84a et 84b. La pièce 84a a une forme de coupelle avec un pourtour en forme de lèvre qui s'appuie sur un décrochement 52a réalisé dans le trou 52, du côté intérieur de la préforme de bol. La face externe de la pièce 84a a une forme s'inscrivant dans la continuité de la face intérieure du bol. La pièce 84b a également une forme de coupelle avec un pourtour en forme de lèvre qui s'appuie sur la face externe du fond de la préforme de bol autour du trou 52. La liaison entre les pièces 84a et 84b peut être réalisée par vissage, la pièce 84a présentant une partie centrale en saillie qui est vissée dans un logement de la pièce 84b. Les pièces 84a et 84b enserrant ainsi le rebord du trou 52.
Après mise en place du bouchon, une nouvelle étape 88 d'infiltration chimique en phase vapeur peut être réalisée afin de parfaire l'assemblage du bouchon 84 avec la partie de fond de la préforme de bol et compléter la densification de cette dernière. La densification à l'étape 80 pourra alors avoir été réalisée de façon partielle.
Des étapes 90 et 100 de traitement thermique final de purification et de dépôt de pyrocarbone peuvent ensuite être effectuées comme dans le procédé de la figure 2.
Encore un autre mode de mise en oeuvre d'un procédé selon l'invention sera brièvement décrit en référence à la figure 8.
Ce procédé comprend les mêmes étapes 10 à 100 que celui de la figure 2 à l'exception des étapes 30 et 40 de liaison de strates drapées et de drapage de strates supplémentaires. Dans le procédé de la figure 8, la liaison des strates 102 entre elles (étape 30') est réalisée par couture au moyen d'un fil 202 qui traverse l'ensemble des strates 102 drapées. Un fil similaire 204 est utilisé à l'étape 40' suivante pour lier les strates supplémentaires 104 entre elles et avec les strates 102, le fil 204 traversant l'ensemble des strates 102 et 104.
Les fils 202 et 204 peuvent être des fils en carbone similaires à ceux utilisés pour former les strates 102 et 104. En variante, on pourra utilisés des fils en matériau fugitif, c'est-à-dire en un matériau susceptible d'être éliminé par dissolution ou par la chaleur à un stade ultérieur d'élaboration du bol.
Il est possible aussi de réaliser une liaison des strates 102 entre elles par couture, et une liaison des strates 104 entre elles et avec les strates 102 par aiguilletage, comme à l'étape 40 de la figure 6. On notera encore que le mode de liaison des strates 102 et
104 entre elles par couture pourra être aussi substitué au mode de liaison par aiguilletage dans le procédé de la figure 6.
Selon encore un autre mode de mise en oeuvre d'un procédé selon l'invention, on utilise des strates bidimensionnelles déformables présentant une ouverture sensiblement centrale.
Comme le montre la figure 9, les strates 202 munies d'une ouverture centrale 203 sont drapées sur une forme, telle la même forme
302 que celle illustrée par la figure 4. Le drapage des strates 202 est effectué de manière à aligner les ouvertures 203 dans la partie centrale du fond de la préforme en cours de constitution.
Les strates 202 sont liées entre elles par aiguilletage, comme dans le cas du procédé des figures 2 et 6, ou par couture, comme dans le cas du procédé de la figure 4.
Des strates supplémentaires 204 sont drapées au niveau du fond de la préforme, les strates 204 présentant des ouvertures sensiblement centrales 205 alignées. La liaison des strates 204 entre elles et avec les strates 202 est réalisée par aiguilletage ou par couture.
Les ouvertures alignées 203, 205 définissent un trou 152 traversant le fond de la préforme. Après drapage et liaison entre elles des strates 202 et 204, la fabrication du bol peut se poursuivre par des étapes de consolidation par imprégnation de résine, de traitement thermique de stabilisation et purification, de densification par infiltration chimique en phase vapeur, d'usinage, de réalisation et de mise en place d'un bouchon obturant le trou 152, de densification finale par infiltration chimique en phase vapeur, de traitement thermique de purification et de dépôt de pyrocarbone, comme les étapes 50, 60, 70, 80, 82, 86, 88, 90 et 100 du procédé de la figure 4.
Différentes variantes pourront être apportées au procédé décrit ci-avant sans sortir du cadre de protection défini par les revendications annexées. Ainsi, la préforme peut être réalisée en fils formés de fibres de précurseur de carbone, au lieu de fibres de carbone. Les précurseurs de carbone utilisables sont, de façon connue, par exemple le polyacrylonitrile (PAN) préoxydé, les composés phénoliques, les brais. La transformation du précurseur en carbone est réalisée par traitement thermique après constitution de la préforme.
La phase de consolidation de la préforme pourra être omise. La préforme avec les strates superposées et liées les unes aux autres peut alors être placée dans un outillage de forme correspondant à celle du bol à réaliser pour être introduite dans une enceinte de densification par infiltration chimique en phase vapeur. L'outillage peut être retiré après une première phase de densification assurant une cohésion suffisante pour que la densification puisse être poursuivie sans outillage.
La phase de traitement thermique de la préforme avant densification pourra être omise, en particulier lorsqu'une stabilisation dimensionnelle des fibres n'est pas requise. Il peut en être ainsi lorsque les fibres de carbone de la préforme ont déjà été portées à une température au moins égale à celle rencontrée ultérieurement. La purification peut alors être réalisée en une seule opération, après densification. Alternativement, la phase de purification finale pourra être omise, lorsqu'un degré de pureté suffisant de la préforme a été obtenu par traitement thermique avant la densification et lorsque la densification est réalisée avec un précurseur de carbone et dans des conditions n'introduisant pas d'impuretés en quantité significative. Lorsqu'un niveau de pureté élevé doit être respecté pour le métal contenu dans le creuset supporté par le bol fabriqué, comme c'est le cas du silicium destiné à la fabrication de produits semi-conducteurs, le niveau d'impuretés résiduelles dans le bol doit de préférence être inférieur à 5 ppm.
En outre, la densification de la préforme pourra être réalisée avec une matrice au moins en partie réalisée en matériau céramique, par exemple en carbure de silicium obtenu par infiltration chimique en phase vapeur en utilisant un précurseur gazeux tel que le méthyltrichlorosilane.
Enfin, bien que l'on ait envisagé plus haut la formation d'un revêtement de pyrocarbone ou SiC notamment sur la face interne du bol, d'autres modes de protection pourront être adoptés, à la place ou en complément d'un revêtement de pyrocarbone ou SiC.
En particulier, on pourra interposer une couche de protection entre le bol et le creuset, pour éviter l'attaque du matériau composite du bol, comme ce peut être le cas avec un creuset en silice et un bol en matériau composite C-C. La couche de protection est par exemple elle-même en matériau composite thermostructural tel qu'un composite C-C et se comporte comme une couche "consommable" à remplacer périodiquement. Le matériau composite C-C utilisé peut être formé de strates bidimensionnelles en fibres de carbone liées par une matrice en carbone obtenue par voie liquide ou infiltration chimique en phase vapeur.
Une telle couche de protection 6, épousant la forme de la surface interne du bol 1 est montrée sur la figure 1.

Claims

REVENDICATIONS
1. Procédé de fabrication d'un bol monobloc en matériau composite thermostructural formé d'un renfort fibreux densifié par une matrice, comprenant la réalisation d'une préforme constitutive du renfort fibreux par drapage de strates fibreuses bidimensionnelles sur une forme ayant une forme correspondant à celle du bol à réaliser, et la densification de la préforme par un matériau constitutif de la matrice du matériau composite, caractérisé par l'utilisation de strates fibreuses bidimensionnelles déformables, la superposition desdites strates sur la forme, en les déformant, les strates épousant ladite forme par leur déformation, sans former de plis, et la liaison des strates superposées entre elles au moyen de fibres s'étendant transversalement par rapport aux strates, de manière à obtenir une préforme de bol qui est ensuite densifiée.
2. Procédé selon la revendication 1 , caractérisé en ce que l'on utilise des strates en une texture formée de plusieurs nappes unidirectionnelles superposées avec des directions différentes et liées entre elles de manière à former des mailles élémentaires déformables.
3. Procédé selon la revendication 2, caractérisé en ce que l'on utilise des strates en une texture formée de deux nappes unidirectionnelles superposées avec des directions faisant entre elles un angle de 45° à 60°.
4. Procédé selon l'une quelconque des revendications 2 et 3, caractérisé en ce que les nappes unidirectionnelles sont liées entre elles par tricotage d'un fil passant d'un côté à l'autre de la texture.
5. Procédé selon l'une quelconque des revendications 2 et 3, caractérisé en ce que les nappes unidirectionnelles sont liées entre elles par aiguilletage.
6. Procédé selon l'une quelconque des revendications 2 et 3, caractérisé en ce que les nappes unidirectionnelles sont liées entre elles par couture avec un fil passant d'un côté à l'autre de la texture.
7. Procédé selon l'une quelconque des revendications 2 à 6, caractérisé en ce que les strates sont superposées en étant mutuellement décalées angulairement autour d'un axe passant par le sommet du bol.
8. Procédé selon la revendication 1 , caractérisé en ce que l'on utilise des strates fibreuses déformables formées par un tricot.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'on utilise des strates formées de fils en fibres de carbone exemptes de fonctions de surface.
10. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que l'on utilise des strates formées de fils en fibres de carbone munies d'un revêtement d'interphase en carbone pyrolytique.
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les strates superposées sont liées entre elles par aiguilletage afin de transférer transversalement aux strates des fibres prélevées dans celles-ci.
12. Procédé selon la revendication 11 , caractérisé en ce que chaque nouvelle strate drapée est aiguilletée sur la structure sous-jacente.
13. Procédé selon l'une quelconque des revendications 11 et
12, caractérisé en ce que l'on contrôle le taux de fibres transférées transversalement par rapport aux strates dans toute l'épaisseur de la préforme.
14. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les strates superposées sont liées entre elles par couture.
15. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que les strates superposées sont liées entre elles par implantation de fils transversalement par rapport aux strates.
16. Procédé selon l'une quelconque des revendications 1 à 15, caractérisé en ce que l'on réalise une consolidation de la préforme avant densification.
17. Procédé selon la revendication 16, caractérisé en ce que la consolidation de la préforme est réalisée par imprégnation par une résine, polymérisation de la résine et carbonisation de la résine polymérisée.
18. Procédé selon l'une quelconque des revendications 1 à 17, caractérisé en ce que, avant densification, on soumet la préforme à un traitement thermique de stabilisation dimensionnelle et purification à une température comprise entre 1600°C et 2800°C.
19. Procédé selon l'une quelconque des revendications 1 à 18, caractérisé en ce que la préforme est densifiée par infiltration chimique en phase vapeur.
20. Procédé selon l'une quelconque des revendications 1 à 19, caractérisé en ce que l'on utilise des strates fibreuses bidimensionnelles déformables en un seul tenant, exemptes de découpes ou de fentes, de manière à obtenir une préforme de bol complète, en une seule pièce, et la densification est réalisée sur la préforme de bol complète.
21. Procédé selon l'une quelconque des revendications 1 à 19, caractérisé en ce que l'on utilise des strates fibreuses bidimensionnelles déformables en un seul tenant, exemptes de découpes ou de fentes, de manière à obtenir une préforme de bol complète, en une seule pièce, on réalise un trou à travers le fond de la préforme, avant densification de la préforme par infiltration chimique en phase vapeur et on obture ensuite le trou par un bouchon.
22. Procédé selon l'une quelconque des revendications 1 à 19, caractérisé en ce que l'on utilise des strates fibreuses bidimensionnelles déformables en un seul tenant présentant une ouverture sensiblement centrale, on superpose les strates sur la forme en alignant leurs ouvertures de manière à obtenir une préforme de bol présentant un trou traversant le fond de la préforme et formé par les ouvertures alignées des strates, on densifié la préforme par infiltration chimique en phase vapeur, et on obture ensuite le trou par un bouchon.
23. Procédé selon l'une quelconque des revendications 21 et 22, caractérisé en ce que l'on utilise un bouchon en matériau composite thermostructural.
24. Procédé selon l'une quelconque des revendications 21 à 23, caractérisé en ce que l'on réalise une étape d'infiltration chimique en phase vapeur supplémentaire après mise en place du bouchon dans le trou ménagé au fond de la préforme.
25. Procédé selon l'une quelconque des revendications 1 à 24, caractérisé en ce qu'après densification, on réalise un traitement thermique de purification à une température comprise entre 1600°C et 2700°C.
26. Procédé selon l'une quelconque des revendications 1 à 25, caractérisé en ce qu'après densification, on forme sur le bol un revêtement de carbone pyrolytique.
27. Procédé selon l'une quelconque des revendications 1 à 25, caractérisé en ce qu'après densification, on forme sur le bol un revêtement en carbure de silicium.
28. Procédé selon l'une quelconque des revendications 21 à 27, caractérisé en ce que l'on garnit la face intérieure du bol d'un revêtement de protection.
29. Procédé selon la revendication 28, caractérisé en ce que l'on utilise un revêtement de protection en matériau composite thermostructural.
30. Bol en matériau composite thermostructural formé d'un renfort fibreux densifié par une matrice, dans lequel le renfort fibreux comprend des strates fibreuses bidimensionnelles superposées, caractérisé en ce que les strates fibreuses sont liées entre elles par des fibres s'étendant transversalement par rapport aux strates.
31. Bol selon la revendication 30, caractérisé en ce qu'il est monobloc et comprend des strates bidimensionnelles de renfort en un seul tenant, exemptes de découpes ou de fentes.
32. Bol selon l'une quelconque des revendications 30 et 31 , caractérisé en ce que les strates fibreuses sont formées de nappes unidirectionnelles superposées avec des directions différentes.
33. Bol selon la revendication 32, caractérisé en ce que les strates fibreuses sont en fibres de carbone.
34. Bol selon la revendication 33, caractérisé en ce que la matrice est au moins en partie en carbone pyrolytique.
35. Bol selon l'une quelconque des revendications 33 et 34, caractérisé en ce que la matrice est au moins en partie en céramique.
36. Bol selon la revendication 35, caractérisé en ce que la matrice est au moins en partie en carbure de silicium.
37. Bol selon l'une quelconque des revendications 30 à 36, caractérisé en ce qu'au moins sa face interne est revêtue d'une couche de carbone pyrolytique.
38. Bol selon l'une quelconque des revendications 30 à 36, caractérisé en ce qu'au moins sa face interne est revêtue d'une couche de carbure de silicium.
39. Utilisation d'un bol selon l'une quelconque des revendications 30 à 38 pour le support d'un creuset dans une installation de production de lingots de silicium monocristallin, caractérisée en ce que l'on interpose une couche de protection entre le bol et le creuset.
40. Bol selon la revendication 39, caractérisé en ce que l'on utilise une couche de protection en matériau composite thermostructural.
PCT/FR2000/003276 1999-11-24 2000-11-24 Procede de fabrication d'un bol en materiau composite thermostructural, bol tel qu'obtenu par le procede, et utilisation du bol comme support de creuset WO2001038625A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001539956A JP2003514760A (ja) 1999-11-24 2000-11-24 熱構造複合材の容器を製造する方法、その方法により得られた容器、およびその容器のるつぼ支持体としての使用
US09/889,862 US6837952B1 (en) 1999-11-24 2000-11-24 Method for making a bowl in thermostructural composite material
EP00985318A EP1187950A2 (fr) 1999-11-24 2000-11-24 Procede de fabrication d'un bol en materiau composite thermostructural, bol tel qu'obtenu par le procede, et utilisation du bol comme support de creuset

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR99/14766 1999-11-24
FR9914766A FR2801304B1 (fr) 1999-11-24 1999-11-24 Procede de fabrication d'un bol en materiau composite thermostructural, notamment pour une installation de production de silicium monocristallin
FR0010564A FR2812889B1 (fr) 2000-08-11 2000-08-11 Procede de fabrication d'un bol monobloc en materiau composite thermostructural, notamment pour une installation de production de silicium, et bol tel qu'obtenu par ce procede
FR00/10564 2000-08-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US09/889,862 A-371-Of-International US6837952B1 (en) 1999-11-24 2000-11-24 Method for making a bowl in thermostructural composite material
US10/852,612 Division US20040211354A1 (en) 1999-11-24 2004-05-24 Thermostructural composite material bowl

Publications (2)

Publication Number Publication Date
WO2001038625A2 true WO2001038625A2 (fr) 2001-05-31
WO2001038625A3 WO2001038625A3 (fr) 2001-12-20

Family

ID=26212578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/003276 WO2001038625A2 (fr) 1999-11-24 2000-11-24 Procede de fabrication d'un bol en materiau composite thermostructural, bol tel qu'obtenu par le procede, et utilisation du bol comme support de creuset

Country Status (5)

Country Link
US (2) US6837952B1 (fr)
EP (1) EP1187950A2 (fr)
JP (1) JP2003514760A (fr)
KR (1) KR100761580B1 (fr)
WO (1) WO2001038625A2 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825699A1 (fr) * 2001-06-12 2002-12-13 Eads Launch Vehicles Procede de densification et de traitement anticorrosion d'un materiau composite thermostructural
WO2008050068A2 (fr) * 2006-10-26 2008-05-02 Snecma Propulsion Solide Procédé de fabrication d'une pièce en matériau composite thermostructural.
WO2010007308A1 (fr) * 2008-07-17 2010-01-21 Snecma Propulsion Solide Procede de realisation d'une tuyere ou d'un divergent de tuyere en materiau composite
EP2147776A1 (fr) 2008-07-23 2010-01-27 SGL Carbon SE Procédé de fabrication d'une matière composite renforcée par des fibres ainsi que matières composites renforcées par des fibres et leur utilisation
FR2953553A1 (fr) * 2009-12-09 2011-06-10 Snecma Aube de turbine de turbomachine en composite a matrice ceramique avec evidements realises par usinage
CN113427843A (zh) * 2021-08-16 2021-09-24 因达孚先进材料(苏州)有限公司 一种单晶硅炉坩埚碳纤维预制体的制备方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2818291B1 (fr) * 2000-12-19 2003-11-07 Snecma Moteurs Densification de substrats poreux creux par infiltration chimique en phase vapeur
DE102005034401B4 (de) * 2005-07-22 2008-02-14 Airbus Deutschland Gmbh Verfahren zur Herstellung von ein- oder mehrschichtigen Faservorformlingen
KR100841996B1 (ko) * 2006-12-18 2008-06-27 주식회사 실트론 실리콘 단결정 잉곳 제조 장치
FR2913717A1 (fr) * 2007-03-15 2008-09-19 Snecma Propulsion Solide Sa Ensemble d'anneau de turbine pour turbine a gaz
US20100170625A1 (en) * 2007-07-04 2010-07-08 Hunan Kingbo Carbon-Carbon Composites Co. Ltd. Fastener and a manufacture process thereof
JP5002846B2 (ja) * 2008-06-17 2012-08-15 イビデン株式会社 ルツボ保持部材及びその製造方法
TW201019480A (en) * 2008-08-27 2010-05-16 Bp Corp North America Inc High temperature support apparatus and method of use for casting materials
GB2479165A (en) * 2009-10-14 2011-10-05 Rec Wafer Norway As Reusable crucible
WO2011120598A1 (fr) * 2010-03-30 2011-10-06 Rec Wafer Norway As Procédé pour la production de lingots de silicium de qualité convenant pour la fabrication de semi-conducteurs, creusets réutilisables et leur procédé de fabrication
US8263906B2 (en) 2010-05-11 2012-09-11 Cambro Manufacturing Company Food warming system
CA2988760A1 (fr) 2011-01-12 2012-07-19 The Board Of Trustees Of The Leland Stanford Junior University Structures stratifiees composites et procedes de fabrication et d'utilisation associes
CN103482995B (zh) * 2013-08-06 2015-01-07 江苏天鸟高新技术股份有限公司 连续碳纤维增强的坩埚预制体及其制备方法
US10370302B2 (en) 2014-09-02 2019-08-06 Honeywell International Inc. Facilitating pitch stabilization in densified carbon fiber preforms
US10011535B2 (en) * 2014-09-02 2018-07-03 Honeywell International Inc. Sacrificial fibers to create channels in a composite material
JP6597537B2 (ja) * 2016-09-21 2019-10-30 株式会社Sumco 単結晶製造用坩堝及びシリコン単結晶製造装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595621A1 (fr) * 1986-03-12 1987-09-18 Europ Propulsion Procede de fabrication d'une structure de renfort pour piece en materiau composite
FR2669941A1 (fr) * 1990-12-03 1992-06-05 Europ Propulsion Installation pour la realisation de preformes fibreuses aiguilletees destinees a la fabrication de pieces en materiau composite.
WO1997020092A1 (fr) * 1995-11-27 1997-06-05 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Procede pour la realisation de preformes fibreuses destinees a la fabrication de pieces annulaires en materiau composite
WO1998044182A1 (fr) * 1997-03-28 1998-10-08 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite
WO1998055238A1 (fr) * 1997-06-03 1998-12-10 Hitco Carbon Composites, Inc. Composite pur utilise en tant que suscepteur
EP0913504A1 (fr) * 1996-06-27 1999-05-06 Toyo Tanso Co., Ltd. Creuset destine au tirage du cristal et son procede de production
EP0971054A1 (fr) * 1998-07-09 2000-01-12 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Creuset-support pour supporter un creuset à fusion

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4193252A (en) * 1978-06-28 1980-03-18 Hitco Knit-deknit method of handling yarn to produce carbon or graphite yarn
FR2544661A1 (fr) * 1983-04-19 1984-10-26 Europ Propulsion Materiaux composites constitues par une matrice en carbone coke de resine, renforcee par des fibres refractaires revetues de carbone pyrolytique, et procede pour leur obtention
US4869943A (en) * 1985-01-17 1989-09-26 Norton Company Fiber-reinforced silicon nitride ceramics
SU1699755A1 (ru) * 1989-06-08 1991-12-23 Предприятие П/Я В-2859 Способ заглушки отверстий крупногабаритных графитовых тиглей
US5482257A (en) * 1992-09-25 1996-01-09 Martin Marietta Energy Systems, Inc. Non-graphite crucible for high temperature applications
FR2718758B1 (fr) * 1994-04-18 1996-06-14 Aerospatiale Procédé et machine pour la réalisation d'une armature pour une pièce de matière composite.
US5616175A (en) * 1994-07-22 1997-04-01 Herecules Incorporated 3-D carbon-carbon composites for crystal pulling furnace hardware
FR2736941B1 (fr) * 1995-07-17 1997-09-12 Aerospatiale Procede et systeme pour la realisation d'une armature pour une piece de matiere composite
JPH1160373A (ja) 1997-08-06 1999-03-02 Toyo Tanso Kk 単結晶引き上げ用ルツボ
JP4514846B2 (ja) * 1999-02-24 2010-07-28 東洋炭素株式会社 高純度炭素繊維強化炭素複合材料とその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2595621A1 (fr) * 1986-03-12 1987-09-18 Europ Propulsion Procede de fabrication d'une structure de renfort pour piece en materiau composite
FR2669941A1 (fr) * 1990-12-03 1992-06-05 Europ Propulsion Installation pour la realisation de preformes fibreuses aiguilletees destinees a la fabrication de pieces en materiau composite.
WO1997020092A1 (fr) * 1995-11-27 1997-06-05 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Procede pour la realisation de preformes fibreuses destinees a la fabrication de pieces annulaires en materiau composite
EP0913504A1 (fr) * 1996-06-27 1999-05-06 Toyo Tanso Co., Ltd. Creuset destine au tirage du cristal et son procede de production
WO1998044182A1 (fr) * 1997-03-28 1998-10-08 Societe Nationale D'etude Et De Construction De Moteurs D'aviation Procede de realisation de structures fibreuses annulaires, notamment pour la fabrication de pieces en materiau composite
WO1998055238A1 (fr) * 1997-06-03 1998-12-10 Hitco Carbon Composites, Inc. Composite pur utilise en tant que suscepteur
EP0971054A1 (fr) * 1998-07-09 2000-01-12 Wacker Siltronic Gesellschaft für Halbleitermaterialien Aktiengesellschaft Creuset-support pour supporter un creuset à fusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 08, 30 juin 1999 (1999-06-30) & JP 11 060373 A (TOYO TANSO KK), 2 mars 1999 (1999-03-02) *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2825699A1 (fr) * 2001-06-12 2002-12-13 Eads Launch Vehicles Procede de densification et de traitement anticorrosion d'un materiau composite thermostructural
WO2002100797A1 (fr) * 2001-06-12 2002-12-19 E.A.D.S Launch Vehicles - S.A - Procede de densification et de traitement anticorrosion d'un materiau composite thermostructural
WO2008050068A2 (fr) * 2006-10-26 2008-05-02 Snecma Propulsion Solide Procédé de fabrication d'une pièce en matériau composite thermostructural.
FR2907778A1 (fr) * 2006-10-26 2008-05-02 Snecma Propulsion Solide Sa Procede de fabrication d'une piece en materiau composite thermostructural.
WO2008050068A3 (fr) * 2006-10-26 2009-09-17 Snecma Propulsion Solide Procédé de fabrication d'une pièce en matériau composite thermostructural.
US8999439B2 (en) 2006-10-26 2015-04-07 Herakles Process for manufacturing a thermostructural composite part
FR2934014A1 (fr) * 2008-07-17 2010-01-22 Snecma Propulsion Solide Procede de realisation d'une tuyere ou d'un divergent de tuyere en materiau composite.
US8615877B2 (en) 2008-07-17 2013-12-31 Snecma Propulsion Solide Method of producing a nozzle or a divergent nozzle element made of a composite
WO2010007308A1 (fr) * 2008-07-17 2010-01-21 Snecma Propulsion Solide Procede de realisation d'une tuyere ou d'un divergent de tuyere en materiau composite
EP2147776A1 (fr) 2008-07-23 2010-01-27 SGL Carbon SE Procédé de fabrication d'une matière composite renforcée par des fibres ainsi que matières composites renforcées par des fibres et leur utilisation
WO2010010129A1 (fr) * 2008-07-23 2010-01-28 Sgl Carbon Se Procédé de fabrication d'un matériau composite renforcé de mèches de fibres, ainsi que matériau composite renforcé de mèches de fibres et son utilisation
FR2953553A1 (fr) * 2009-12-09 2011-06-10 Snecma Aube de turbine de turbomachine en composite a matrice ceramique avec evidements realises par usinage
WO2011070294A1 (fr) * 2009-12-09 2011-06-16 Snecma Aube de turbine de turbomachine en composite a matrice ceramique avec evidements realises par usinage
US9188013B2 (en) 2009-12-09 2015-11-17 Snecma Turbine engine turbine blade made of a ceramic-matrix composite with recesses made by machining
CN113427843A (zh) * 2021-08-16 2021-09-24 因达孚先进材料(苏州)有限公司 一种单晶硅炉坩埚碳纤维预制体的制备方法

Also Published As

Publication number Publication date
US6837952B1 (en) 2005-01-04
KR100761580B1 (ko) 2007-10-04
WO2001038625A3 (fr) 2001-12-20
US20040211354A1 (en) 2004-10-28
KR20010093272A (ko) 2001-10-27
EP1187950A2 (fr) 2002-03-20
JP2003514760A (ja) 2003-04-22

Similar Documents

Publication Publication Date Title
WO2001038625A2 (fr) Procede de fabrication d'un bol en materiau composite thermostructural, bol tel qu'obtenu par le procede, et utilisation du bol comme support de creuset
EP1851180B1 (fr) Piece en materiau composite a matrice ceramique
EP2315734B1 (fr) Procede de realisation d'une tuyere ou d'un divergent de tuyere en materiau composite
EP3551593B1 (fr) Outillage de conformation et installation pour l'infiltration chimique en phase gazeuse de preformes fibreuses.
EP0819105B1 (fr) Procede d'infiltration chimique en phase vapeur avec parametres d'infiltration variables
EP0459916A1 (fr) Eléments de friction en matériau composite carbone-carbone à texture différentielle, procédés et dispositifs pour les fabriquer
EP3416929B1 (fr) Procede de fabrication d'une piece en materiau composite a matrice ceramique
EP1219730A1 (fr) Procédé pour la protection d'un bol en matériau carboné, notamment en composite C/C, destiné à recevoir un creuset, tel qu'un creuset en silice utilisé pour le tirage de monocristaux de silicium
EP1153000B1 (fr) Procede de fabrication d'un bol en materiau composite thermostructural, notamment pour une installation de production de silicium monocristallin
FR2820737A1 (fr) Procede de fabrication d'un composite carbone/carbure de silicium
EP0452199B1 (fr) Procédé de conformation de préformes pour la fabrication de pièces en matériau composite thermostructural, notamment de pièces en forme de voiles ou panneaux
EP0517593A1 (fr) Chemise de tube de canon en matériau composite, et son procédé de fabrication
EP3592716B1 (fr) Procédé de réalisation d'une préforme fibreuse consolidée
EP3478870B1 (fr) Procédé d'infiltration ou de dépôt chimique en phase vapeur
FR3074173A1 (fr) Densification d'une piece en cmc et outillage adapte
EP0449695B1 (fr) Procédé de conformation d'une texture fibreuse de renfort pour la fabrication d'une pièce en matériau composite
FR2812889A1 (fr) Procede de fabrication d'un bol monobloc en materiau composite thermostructural, notamment pour une installation de production de silicium, et bol tel qu'obtenu par ce procede
EP0963362B1 (fr) Procede de fabrication d'un piston de moteur a combustion interne en materiau composite thermostructural
WO2024084152A1 (fr) Preforme fibreuse et son procede de fabrication pour realiser une piece en materiau composite a matrice ceramique
FR3120811A1 (fr) Procédé amélioré de réalisation d'une préforme fibreuse consolidée

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 2000985318

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09889862

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 539956

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020017009286

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1020017009286

Country of ref document: KR

AK Designated states

Kind code of ref document: A3

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWP Wipo information: published in national office

Ref document number: 2000985318

Country of ref document: EP