WO2001032417A1 - Mehrschichtiges, öberflächenstrukturiertes halbzeug aus thermoplastichen kunststoffen und filmstrukturierungsverfahren - Google Patents

Mehrschichtiges, öberflächenstrukturiertes halbzeug aus thermoplastichen kunststoffen und filmstrukturierungsverfahren Download PDF

Info

Publication number
WO2001032417A1
WO2001032417A1 PCT/EP2000/010841 EP0010841W WO0132417A1 WO 2001032417 A1 WO2001032417 A1 WO 2001032417A1 EP 0010841 W EP0010841 W EP 0010841W WO 0132417 A1 WO0132417 A1 WO 0132417A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
finished product
film
film layer
filler
Prior art date
Application number
PCT/EP2000/010841
Other languages
English (en)
French (fr)
Inventor
Werner Wagner
Original Assignee
Advanced Design Concepts Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Design Concepts Gmbh filed Critical Advanced Design Concepts Gmbh
Priority to US10/129,466 priority Critical patent/US6863952B1/en
Priority to AU13914/01A priority patent/AU1391401A/en
Publication of WO2001032417A1 publication Critical patent/WO2001032417A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/222Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length characterised by the shape of the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/18Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets by squeezing between surfaces, e.g. rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/022Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing characterised by the disposition or the configuration, e.g. dimensions, of the embossments or the shaping tools therefor
    • B29C59/025Fibrous surfaces with piles or similar fibres substantially perpendicular to the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • B29C59/046Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts for layered or coated substantially flat surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0068Permeability to liquids; Adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B38/00Ancillary operations in connection with laminating processes
    • B32B38/0012Mechanical treatment, e.g. roughening, deforming, stretching
    • B32B2038/0028Stretching, elongating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/724Permeability to gases, adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/726Permeability to liquids, absorption
    • B32B2307/7265Non-permeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/91Product with molecular orientation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249981Plural void-containing components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]

Definitions

  • Multi-layer, surface-structured semi-finished product made of thermoplastic materials and fil structuring process
  • the invention relates to a multilayer semifinished product with at least a first and a second film layer, the semifinished product having a velor-like structure on an outer surface of the first film layer facing away from the second film layer and the second film layer having a filler.
  • EP 309 073 A2 discloses a method for producing vapor-permeable films which consist of stretched polyolefin film with a laminated HDPE fleece;
  • the polyolefin film is to a large extent filled with an inorganic filler, so that there is a water vapor permeability of at least 1000 g / m 2 per day.
  • the film produced by the known process requires the additional step of laminating the fleece with an adhesive. Especially when the nonwoven layer is very thin, problems arise when applying the adhesive. Recycling compatibility is difficult to achieve and the required setting time for the adhesive delays the process.
  • thermoplastic material in the molten state or in the form of a film is applied to a surface with fine cavities that has been worked out as a negative structure (matrix) with respect to the desired structure.
  • the matrix surface is exposed to a negative pressure from the outside or from the inside, so that the cavities belonging to the matrix are evacuated.
  • the matrix, including the cavities is at least partially filled by the thermoplastic material and the deformed thermoplastic material - while still lying on the surface - is solidified by cooling, taking on the corresponding surface structure on the side brought into contact with the surface.
  • the plastic material is pulled off the surface, the thermoplastic material introduced into and extracted from the cavities forming a pile consisting of projections.
  • the projections forming the pile are stretched by combing, brushing, squeegee and / or shear, the length of the projections being increased by at least twice the original length and a semifinished product being formed on at least one side, in which the projections are elongated into hair fibers .
  • a filler of a known type, of organic or inorganic origin is mixed in to convert the film into a porous or vapor-permeable film after stretching close. If the film material is filled very high, that is, as much filler is added as would be necessary for the design of the vapor permeability, then the film surface or the melt can no longer be made thin enough to produce the fine hair fibers.
  • a multilayer semifinished product with at least a first and a second film layer, the semifinished product having a velor-like structure on an outer surface of the first film layer facing away from the second film layer and the second film layer having a filler, in that the first and the second film layer is permeable, a first proportion of a filler in the first film layer being less than a second proportion of a filler in the second film layer.
  • a suitable suede film is therefore obtained if a polymer material is prepared and melted in at least two extruders, each polymer preparation is fed to a nozzle and the melt emerging from the nozzle is brought into direct contact with a matrix roller.
  • a matrix roller has proven to be suitable here, which has 1,500 to 10,000 bores per square centimeter with a depth of 250 to 450 ⁇ m with a bore diameter of 40 to 80 ⁇ m.
  • a steel roller which bears fine bores of the dimensions mentioned is preferably suitable as the matrix surface.
  • Steel rollers with a plastic surface can also be used.
  • Fine holes of the aforementioned type can be made by laser.
  • the melt applied to the matrix surface can be introduced into the cavities more easily if, as is known per se, the cavities are practically evacuated by evacuation or by applying a vacuum to the bottom of the cavities, so that the melt is sucked into the cavities , After cooling, the melt solidifies and a film can be removed from the matrix.
  • the first step is to create a two-layer film that has a large number of fine knobs on its surface.
  • the knobs can be elongated by appropriate and known processing, in particular combs, brushes, doctor blades and / or shear crushing.
  • a film in another method, can also be produced with the help of a film that has already been prefabricated.
  • a forming tool is used for the film, which consists of at least two rollers, namely a heated steel roller and, as a second roller, a steel roller which is equipped with a nem plastic jacket in which the matrix with the cavities has been introduced by a laser beam.
  • the matrix has a number of 200 to 10,000 fine holes per square centimeter with a hole diameter of 50 to 80 ⁇ m and a hole depth of about 600 ⁇ m.
  • the film to be processed is heated in the nip or shortly beforehand to such an extent that it begins to flow on its surface.
  • the polymer layer on the front of the film is pressed into the cavities under the pressure in the nip and pressed out due to the excess pressure when the film is pulled off.
  • a fine nub structure is created on the film. This can be increased by combing, brushing, knife coating and / or shearing by at least twice the original length, so that the projections are elongated into hair fibers.
  • the new process uses two recipes for the melts.
  • the carrier film not equipped with the velor contains a larger proportion of fillers than the front of the film equipped with the velor.
  • Calcium carbonate or barium sulfate are used as fillers, which are mixed with the carrier film in a proportion of 40 to 50% by weight, while the film layer on the front side contains only 20 to 30% by weight of the same filler.
  • the finely ground inorganic fillers the grain size of which is preferably 3 to 5 ⁇ m, can be mixed with hydrophobizing or surface-active substances, such as calcium stearate, which facilitate incorporation into the plastic mass.
  • Suitable fillers are organic and / or inorganic substances with a low affinity for and with a significantly lower elasticity than the surrounding thermoplastic material.
  • Fillers can be selected from the group calcium carbonate, talc, clay, kaolin, quartz, diatomaceous earth, magnesium carbonate, barium carbonate, magnesium sulfate, barium sulfate, calcium sulfate, zinc oxide, magnesium oxide, titanium dioxide, glass powder or zeolite.
  • Polyolefins such as polyethylene or polypropylene, mixtures of the polymers mentioned, copolymers and mixtures of homopolymers and copolymers are preferably used as polymers for the production of the films.
  • plastics based on other thermoplastics such as polyesters, copolyesters, polyamides, polyether esters, polyether amines, polyvinyl alcohols, polyvinyl alkanols and mixtures or copolymers of the polymer groups mentioned, can also be used.
  • first and a second film In addition to a first and a second film, several films lying one above the other can also be used. Any slide can be made another material, for example metal foil or other. Each film can have a special function: stabilization, insulation, thermal and / or electrical conduction, coloring, marking etc.
  • a subsequent stretching process with a suitable mixture ensures that the two-layer film is given both a velor surface and a water vapor permeability.
  • the film is stretched in the machine direction or in both directions if it is an already prefabricated tubular blow molding film. In the case of cast films or films cooled directly on the matrix, the stretching is preferably carried out in the cross direction to the machine direction.
  • the velor film is sent after the length of the hair on two rollers that run at different speeds. The second roll is moved a little faster and thus pulls the film in the direction of the machine.
  • stretching in stretching frames is used.
  • Another type of stretching uses rollers that partially stretch the films to the left and right with interlocking elements.
  • One roller is held and driven in a fixed manner in its bearing.
  • the counter roll preferably dips into the fixed roll at least 2 mm, depending on the required degree of stretching.
  • the immersion depth of the rollers can be changed.
  • the teeth of the upper roller are moved against the stop to prevent damage to the teeth of the lower roller. It is not necessary to drive the top roller because the film to be stretched transmits power.
  • Another arrangement of rollers consists of a pair of rollers which have left-hand and right-hand cutouts which mesh with one another in the manner of a gearwheel.
  • the millings are rounded on the outside and have very finely crafted bars of about 0.7 mm thickness. Both rolls have a diameter of 200 to 250 mm.
  • the immersion depth is a maximum of 3 to 6 mm, a working depth of about 2 to 2.5 mm being preferred.
  • a second pair of rollers ensures CD stretching. Compared to the above-mentioned device, an offset of 90 ° is used here.
  • the roller diameter is also 200 to 250 mm.
  • the web thickness is 0.78 mm.
  • the maximum penetration depth is 6 mm.
  • the depth of penetration during the forming is about 2 to 2.5 mm.
  • drawing is carried out at normal room temperature, that is to say between about 25 and 30 ° C.
  • the meter output per minute is comparatively very high.
  • the film becomes wider and thinner, that is to say an approximately 80 ⁇ m thick polyethylene film with a weight of 80 grams per square meter will weigh about 55 to 60 grams per square meter after stretching.
  • a stretched film with an initial thickness of about 60 ⁇ m weighs about 42 g per square meter after stretching.
  • the water vapor permeability is 1,500 to 3,000 g / m 2 day, measured in accordance with ASTM E 96 E, measuring temperature 37 ° C.
  • the teeth of the rollers can also work offset at a certain angle or work vertically in or in motion.
  • the image of the film can be changed accordingly until the play of the rollers and the stretching thereby generated. It should be emphasized that the textile grip of the suede film is practically not changed by the stretching process, since the code density of the knobs on the film surface, the appearance and the grip of the film remain practically unchanged even after stretching.
  • the film When stretching both in the machine direction and transversely thereto, the film optically has a geometric image of a fabric-like warp-weft structure. If stretched diagonally, the finished film has an interesting satin-like appearance.
  • a double-layer extrusion system produces a two-layer polyethylene film, which has a front layer made of relatively easy-flowing polyethylene and a back layer made of a tougher, less good-flowing polyethylene. Both layers are filled with a calcium carbonate with a mean grain size of 1.0 ⁇ m, which has been surface-treated with calcium stearate.
  • the polyethylene mass of the front layer preferably contains 20 to 30% by weight of a filler, in particular calcium carbonate, while the back layer preferably contains at least 50% by weight of a filler, in particular calcium carbonate as a filler.
  • Both film layers have the same thickness; the total thickness is 60 ⁇ m to 80 ⁇ m.
  • This polymer mixture was melted in an extruder and fed to the double nozzle.
  • a second extruder was fed with an HDD polyethylene which contains 45% by weight of calcium carbonate and has a melt index of 2.1 dg / min and a density of 0.920 g / cm 3 before the calcium carbonate is mixed in.
  • the two-layer film is then produced using the chill roll process.
  • the cooled film is converted into a velor film using forming tools.
  • This film is stretched by 30 to 50% in the machine direction and by 25 to 60% in the transverse direction, so that it obtains a fine microporosity.
  • the velor film After stretching at a temperature of 25 to 30 degrees Celsius, the velor film has a water vapor permeability of 2,500 g / m 2 “ day, measured in accordance with ASTM E 96 E.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Die Erfindung betrifft ein mehrschichtiges Halbzeug mit zumindest einer ersten und einer zweiten Folienschicht, wobei das Halbzeug an einer von der zweiten Folienschicht abgekehrten Außenfläche der ersten Folienschicht eine velourartige Struktur aufweist und die zweite Folienschicht einen Füllstoff aufweist. Die erste und die zweite Folienschicht sind permeabel, wobei ein erster Anteil eines Füllstoffes in der ersten Folienschicht geringer ist als ein zweiter Anteil eines Füllstoffes in der zweiten Folienschicht.

Description

Mehrschichtiges, oberflächenstrukturiertes Halbzeug aus thermoplastischen Kunststoffen und Fil strukturierungsverfahren
Die Erfindung betrifft ein mehrschichtiges Halbzeug mit zumindest einer ersten und einer zweiten Folienschicht, wobei das Halbzeug an einer von der zweiten Folienschicht abgekehrten Außenfläche der ersten Folienschicht eine veloursartige Struktur aufweist und die zweite Folienschicht einen Füllstoff aufweist.
Bekannt ist aus der EP 309 073 A2 ein Verfahren zur Herstel- lung dampfdurchlässiger Folien, die aus gereckter Polyolefin- Folie mit einem aufkaschierten HDPE-Vlies bestehen; dabei ist die Polyolefin-Folie zu einem hohen Anteil gefüllt mit einem anorganischen Füllmittel, so dass sich eine Wasserdampf- Durchlässigkeit von wenigstens 1000 g/m2 pro Tag ergibt. Die nach dem bekannten Verfahren hergestellte Folie erfordert neben der eigentlichen Herstellung der Polyolefin-Folie den zu- sätzlichen Arbeitsgang des Kaschierens des Vlieses mit einem Klebstoff. Insbesondere dann, wenn die Vlies-Lage sehr dünn ist, ergeben sich Probleme für den Klebstoff-Auftrag. Die Recycling-Kompatibilität ist schwer zu erreichen und die erfor- derliche Abbindezeit für den Klebstoff verzögert den Verfahrensablauf.
Ein Verfahren zur Herstellung eines oberflächenstrukturierten, folienartigen Halbzeugs aus einem Thermoplasten ist an sich bekannt aus der DE 1981 2097 Cl . Gemäß dieser Patent- schrift wird ein thermoplastisches Kunststoffmaterial in geschmolzenem Zustand oder in Form einer Folie auf eine gegenüber der erwünschten Struktur als Negativstruktur (Matrix) ausgearbeitete Oberfläche mit feinen Kavitäten aufgebracht. Die Matrix-Oberfläche wird von außen oder von innen her einem Unterdruck ausgesetzt, so dass die zu der Matrix gehörenden Kavitäten evakuiert werden. Die Matrix einschließlich der Kavitäten wird vom thermoplastischen Kunststoff aterial wenigstens teilweise ausgefüllt und das verformte thermoplastische Kunststoffmaterial wird - noch auf der Oberfläche liegend - durch Abkühlung zum Erstarren gebracht, wobei es auf der mit der Oberfläche in Kontakt gebrachten Seite die entsprechende Flächenstruktur annimmt. Räch dem Erstarren wird das Kunststoffmaterial von der Oberfläche abgezogen, wobei das in die Kavitäten eingebrachte und aus diesen herausgezogene ther- moplastische Material einen aus Vorsprüngen bestehenden Flor bildet.
Die den Flor bildenden Vorsprünge werden durch Kämmen, Bürsten, Rakeln und/oder Scherguetsehen gereckt, wobei die Länge der Vorsprünge um wenigstens das Zweifache der Ursprungslänge vergrößert wird und ein auf wenigstens einer Seite faserartig strukturiertes Halbzeug entsteht, bei dem die Vorsprünge zu Haarfasern gelängt sind. Versuche haben gezeigt, dass es nicht ausreicht, die in der vorgenannten Patentschrift genannte Folie in ihrer Rezeptur dahingehend zu ändern, dass ihr ein Füller an sich bekannter Art organischen oder anorganischen Ursprungs beigemischt wird, um die Folie nach dem Recken zu einer porösen oder dampfdurchlässigen Folie zu machen. Wenn das Folienmaterial sehr hoch gefüllt wird, das heißt, soviel Füller zugesetzt wird, wie es für die Ausgestaltung der Dampfdurchlässigkeit erforderlich wäre, dann kann die Folienoberfläche bzw. die Schmelze nicht mehr dünnflüssig genug gemacht werden, um die feinen Haarfasern zu erzeugen.
Bei einer zweischichtigen Folie ergibt sich grundsätzlich das Problem, dass eine hochgefüllte Masse zwar eine Folie im gereckten Zustand mit ausreichender Dampfdurchlässigkeit er- gibt, die zweite Schicht, bei der eine Schmelze eingesetzt wird, die zur Härchen-Bildung gemäß dem Stand der Technik geeignet ist, wiederum nicht bis zur Dampfdurchlässigkeit gereckt werden kann.
Es stellt sich daher die Aufgabe, ein mehrschichtiges Halb- zeug der eingangs genannten Art anzugeben, das dampf- und/oder flüssigkeitsdurchlässig ist.
Diese Aufgabe wird bei einem mehrschichtigen Halbzeug mit zumindest einer ersten und einer zweiten Folienschicht, wobei das Halbzeug an einer von der zweiten Folienschicht abgekehr- ten Außenfläche der ersten Folienschicht eine veloursartige Struktur aufweist und die zweite Folienschicht einen Füllstoff aufweist, dadurch gelöst, dass die erste und die zweite Folienschicht permeabel sind, wobei ein erster Anteil eines Füllstoffes in der ersten Folienschicht geringer ist als ein zweiter Anteil eines Füllstoffes in der zweiten Folienschicht. Eine geeignete Veloursfolie ergibt sich demnach, wenn ein Polymermaterial in wenigstens zwei Extrudern vorbereitet und aufgeschmolzen wird, jede Polymeren-Zubereitung einer Düse zugeführt und die aus der Düse austretende Schmelze in direk- te Kontakt mit einer Matrixwalze gebracht wird. Beispielsweise hat sich hier eine Matrixwalze als geeignet erwiesen, die 1.500 bis 10.000 Bohrungen pro Quadratzentimeter mit einer Tiefe von 250 bis 450 um bei einem Bohrungsdurchmesser von 40 bis 80 um aufweist.
Als Matrixoberfläche eignet sich vorzugsweise eine Stahlwalze, die feine Bohrungen genannter Abmessungen trägt. Auch Stahlwalzen mit einer Kunststoffoberfläche können verwendet werden. Feine Bohrungen der vorgenannten Art können durch Laser eingebracht werden.
Die auf die Matrixoberfläche aufgebrachte Schmelze kann in die Kavitäten leichter eingebracht werden, wenn die Kavitäten, wie an sich bekannt, durch vorheriges Evakuieren oder durch Anlegen eines Vakuums an der Sohle der Kavitäten praktisch luftleer gemacht werden, so dass die Schmelze in die Kavitäten eingesogen wird. Nach Abkühlung verfestigt sich die Schmelze und eine Folie kann von der Matrix abgezogen werden. Dabei entsteht zunächst eine zweischichtige Folie, die an ihrer Oberfläche mit einer Vielzahl feiner Noppen ausgestattet ist. Die Noppen können durch entsprechende und an sich be- kannte Bearbeitung, insbesondere Kämmen, Bürsten, Rakeln und/oder Scherquetschen gelängt werden.
In einem anderen Verfahren kann eine Folie auch mit Hilfe einer bereits vorgefertigten Folie hergestellt werden. Hier wird für die Folie ein Umformwerkzeug verwendet, das aus min- destens zwei Walzen besteht, nämlich einer beheizten Stahlwalze und als zweiter Walze aus einer Stahlwalze, die mit ei- nem KunstStoffmantel versehen ist, in den die Matrix mit den Kavitäten durch einen Laserstrahl eingebracht worden ist.
Auch hier besitzt die Matrix eine Zahl von 200 bis 10.000 feinster Bohrungen pro Quadratzentimeter mit einem Lochdurch- messer von 50 bis 80 μm und einer Lochtiefe von etwa 600 μm. Die zu bearbeitende Folie wird im Walzenspalt oder kurz vorher soweit aufgeheizt, dass sie an ihrer Oberfläche zu fließen beginnt. Die Polymerschicht der Vorderseite der Folie wird unter dem Druck im Walzenspalt in die Kavitäten einge- drückt und aufgrund des Überdruckes bei Abziehen der Folie herausgedrückt .
Nach dem Abkühlung entsteht auf der Folie eine feine Noppenstruktur. Diese kann durch Kämmen, Bürsten, Rakeln und/oder Scherquetschen um wenigstens das Zweifache der Ursprungslänge vergrößert werden, so dass die Vorsprünge zu Haarfasern gelängt sind.
Es stellt sich damit die Aufgabe, ein verbessertes Verfahrens anzugeben, bei dem die obengenannten Nachteile nicht auftreten und mit dem es möglich ist, ohne Wechsel der verfahren- stechnischen Einheiten die Herstellung eines mehrschichtigen, oberflächenstrukturierten, porösen folienartigen Halbzeugs aus thermoplastischen Kunststoffen vorzunehmen. Dabei soll das Anwendungsgebiete dieser Halbzeuge auf dem Gebiete der Haushalterzeugnisse, der Hygieneerzeugnisse und weiterer An- wendungsgebiete liegen, auf denen poröse oder dampfdurchlässige Folien oder Halbzeuge benötigt werden.
Diese Aufgabe wird gelöst bei einem Filmstrukturierungsver- fahren der eingangs genannten Art, welches die Merkmale des Anspruches 9 besitzt. Bei dem neuen Verfahren werden zwei Rezepturen für die Schmelzen verwendet. Die nicht mit dem Velour ausgestattete Trägerfolie enthält einen größeren Anteil an Füllern als die mit dem Velour ausgestattete Vorderseite der Folie.
Als Füller dienen beispielsweise Calciumcarbonat oder Bariumsulfat, die der Trägerfolie mit einem Anteil von 40 bis 50 Gew.-% beigemischt werden, während die Folienschicht der Vorderseite nur 20 bis 30 Gew.-% desselben Füllers enthält. Die feingemahlenen anorganischen Füller, deren Korngröße vorzugs- weise 3 bis 5 um beträgt, können mit hydrophobisierenden oder oberflächenaktiven Stoffen, wie Calciumstearat, versetzt sein, die das Einarbeiten in die Kunststoffmasse erleichtern.
Als Füller eignen sich organische und/oder anorganische Stoffe mit geringer Affinität zu dem und mit einer signifikant geringeren Elastizität als der umgebende thermoplastische Kunststoff. Füller können ausgewählt werden aus der Gruppe Calciumcarbonat, Talkum, Ton, Kaolin, Quarz, Diatomeenerde, Magnesiumcarbonat, Bariumcarbonat, Magnesiumsulfat, Bariumsulfat, Calciumsulfat, Zinkoxid, Magnesiumoxid, Titandioxid, Glaspulver oder Zeolith.
Als Polymere zur Herstellung der Folien werden bevorzugt Po- lyolefine verwendet, wie Polyethylen oder Polypropylen, Mischungen der genannten Polymere, Copolymere sowie Mischungen aus Homopolymeren und Copolymeren. Es können jedoch auch Kunststoffe auf Basis anderer Thermoplasten, wie Polyestern, Copolyestern, Polyamiden, Polyetherestern, Polyetheraminen, Polyvinylalkoholen, Polyvinylalkanolen sowie Mischungen oder Copolymere der genannten Polymergruppen verwendet werden.
Neben einer ersten und einer zweiten Folie können auch mehre- re Folien übereinanderliegend verwendet. Jede Folie kann aus einem anderen material bestehen, zum Beispiel auch Metallfolie oder anderes. Jede Folie kann eine spezielle Funktion aufweisen: Stabilisierung, Isolierung, thermische und/oder elektrische Leitung, Färbung, Kennzeichnung etc.
Durch einen anschließenden Reckprozeß bei geeigneter Mischung wird erreicht, dass der zweischichtigen Folie sowohl eine Velourfläche als auch eine Wasserdampfdurchlässigkeit verschafft wird. Das Verstrecken der Folie geschieht in Maschinenrichtung oder in beiden Richtungen, wenn es sich um eine bereits vorgefertigte Schlauchblasform-Folie handelt. Bei gegossenen oder direkt auf der Matrix erkalteten Folien erfolgt die Streckung vorzugsweise in der Querrichtung zur Maschinenlaufrichtung. Um die Streckung in Maschinenlaufrichtung zu erreichen, wird die Veloursfolie nach dem Längen der Härchen über zwei Rollen geschickt, die mit unterschiedlichen Umlaufgeschwindigkeiten laufen. Die zweite Rolle wird etwas schneller gefahren und zieht damit die Folie in Maschinenlaufrichtung in eine Streckung.
Um eine Streckung quer zur Maschinenlaufrichtung zu errei- chen, wird das Verstrecken in Streckrahmen angewandt. Eine andere Art des Streckens verwendet Walzen, die links und rechts steigend mit ineinandergreifenden Elementen die Folien partiell verstrecken. Dabei wird die eine Walze fixiert in ihrem Lager gehalten und angetrieben. Die Gegenwalze taucht vorzugsweise mindestens 2 mm in die fixierte Walze ein, je nach dem erforderlichen Verstreckungsgrad. Die Eintauchtiefe der Walzen ist veränderbar. Die Zähne der Oberwalze werden gegen Anschlag gefahren, um Schäden an den Zähnen der unteren Walze zu vermeiden. Es ist nicht erforderlich, die Oberwalze anzutreiben, da eine Kraftübertragung durch die zu verstrek- kende Folie erfolgt. Eine andere Walzenanordnung besteht aus einem Walzenpaar, das links- und rechtsgerichtete Einfräsungen aufweist, die zahnradartig ineinander greifen. Die Einfräsungen sind an ihrer Außenseite gerundet und haben sehr fein ausgearbeitete Stege von etwa 0,7 mm Dicke. Beide Walzen haben einen Durchmesser von 200 bis 250 mm. Die Eintauchtiefe beträgt maximal 3 bis 6 mm, wobei eine Arbeitstiefe von etwa 2 bis 2,5 mm bevorzugt wird.
Ein zweites Walzenpaar sorgt für eine CD-Verstreckung. Hier wird gegenüber der genannten Vorrichtung mit einer Versetzung um 90° gearbeitet. Der Walzendurchmesser ist ebenfalls 200 bis 250 mm. Die Stegdicke beträgt 0,78 mm. Die maximale Eindringtiefe beträgt 6 mm. Für das Folienmaterial bleibt auf beiden Seiten der Folienbahn ein Spielraum von ca. 0,4 bis 0,5 mm. Je nach Verstreckung ist die Eindringtiefe bei der Umformung etwa 2 bis 2,5 mm. Die Verstreckung erfolgt in allen Fällen bei üblicher Zimmertemperatur, das heißt etwa zwischen 25 bis 30°C. Die Meter-Leistung pro Minute ist vergleichsweise sehr hoch.
Die Folie wird durch die Verstreckung breiter und dünner, das heißt, eine ca. 80 μm dicke Polyethylen-Folie mit einem Quadratmeter-Gewicht von 80 Gramm wird nach der Streckung etwa 55 bis 60 Gramm pro Quadratmeter wiegen. Eine quergestreckte Folie mit einer Ausgangsdicke von etwa 60 um wiegt nach der Streckung etwa 42 g pro Quadratmeter. Die Wasserdampfdurch- lässigkeit beträgt je nach Verstreckungsgrad 1.500 bis 3.000 g/m2-Tag, gemessen nach ASTM E 96 E, Meßtemperatur 37 °C.
Die Zähne der Walzen können auch unter einem bestimmten Winkel versetzt arbeiten oder senkrecht Zulauf oder in Lauf ar- beiten. Das Bild der Folie kann entsprechend bis Spiels der Walzen und die dabei erzeugte Streckung verändert werden. Hervorzuheben ist, dass der textile Griff der Veloursfolie durch den Verstreckungsprozess praktisch nicht verändert wird, da die Codedichte der auf der Folienfläche vorhandenen Noppen das Aussehen und den Griff der Folie auch nach dem Verstrecken praktisch unverändert bleiben.
Bei einer Streckung sowohl in Maschinenrichtung als auch quer dazu ergibt sich für die Folie optisch ein geometrisches Bild einer gewebeartigen Kette-Schuß-Struktur. Wird diagonal gereckt, entsteht ein interessantes satinartiges Aussehen der fertigen Folie.
Zur Erläuterung des Verfahrens wird ein Beispiel gebracht:
Auf einer Doppeldüsen-Extrusionsanlage wird eine zweischichtige Polyethylenfolie erzeugt, die eine Vorderschicht aus relativ leicht fließendem Polyethylen und eine Rückenschicht aus einem zäheren, weniger gut fließenden Polyethylen aufweist. Beide Schichten werden gefüllt mit einem Calciumcarbonat der mittleren Korngröße 1,0 μm, das mit Calciumstearat oberflächenbehandelt wurde. Die Polyethylenmasse der Vorderschicht enthält vorzugsweise 20 bis 30 Gew.-% eines Füllstof- fes, insbesondere Calciumcarbonat, während die Rückenschicht vorzugsweise mindestens 50 Gew.-% eines Füllstoffes, insbesondere Calciumcarbonat als Füller, enthält.
Beide Folienschichten haben dieselbe Dicke; die gesamte Dicke beträgt 60 μm bis 80 μm.
Für die Vorderschicht wurde eine Mischung aus 70 Teilen eines Polyethylens mit einem Schmelzindex von 30, gemessen nach ASTM D 1238, und mit einer Dichte von 0,885 g/cm3 , gemessen nach ASTM D 792, mit 30 Teilen eines Polyethylen-Harzes, insbesondere eines Ethylen-Octen-Copolymers, mit einem Schmel- zindex von 30 dg/min und einer Dichte von 0,902 cj/cm3 nach ASTM D 792, oberflächenbehandeltem Calciumstearat mit 22 Gew.-%, sowie bekannten Stabilisatoren und Pigmenten, versetzt und vorgranuliert. Dieses Polymergemisch wurde in einem Extruder aufgeschmolzen und der Doppeldüse zugeführt.
Ein zweiter Extruder wurde mit einem HDD-Polyethylen beschickt, welches 45 Gew.-% Calciumcarbonat enthält und einem Schmelzindex von 2,1 dg/min und eine Dichte von 0,920 g/cm3 vor dem Zumischen des Calciumcarbonat aufweist, geschickt.
Die zweischichtige Folie wird dann nach dem Chillroll- Verfahren hergestellt. Die gekühlte Folie wird mit Umformungswerkzeugen in eine Veloursfolie überführt. Es entsteht so eine Polyethylen-Folie mit deutlichem Velour-Charakter. Diese Folie wird in Maschinenrichtung um 30 bis 50 % und in Querrichtung dazu um 25 bis 60 % gestreckt, so dass sie eine feine Mikroporosität erhält. Nach der Verstreckung bei einer Temperatur von 25 bis 30 Grad Celsius hat die Veloursfolie eine Wasserdampfdurchlässigkeit von 2.500 g/mTag, gemessen nach ASTM E 96 E.

Claims

Patentansprüche :
1. Mehrschichtiges Halbzeug mit zumindest einer ersten und einer zweiten Folienschicht, wobei das Halbzeug an einer von der zweiten Folienschicht abgekehrten Außenfläche der ersten Folienschicht eine velourartige Struktur auf- weist und die zweite Folienschicht einen Füllstoff aufweist, dadurch gekennzeichnet, dass die erste und die zweite Folienschicht permeabel sind, wobei ein erster Anteil eines Füllstoffes in der ersten Folienschicht geringer ist als ein zweiter Anteil eines Füllstoffes in der zweiten Folienschicht.
2. Halbzeug nach Anspruch 1, dadurch gekennzeichnet, dass die erste und die zweite Folienschicht zumindest teilweise dampfdurchlässig und flüssigkeitsundurchlässig sind.
3. Halbzeug nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die erste Folienschicht einen ersten Anteil von bis zu 30 Gewichtsprozent an Füllstoff hat.
4. Halbzeug nach Anspruch 1, 2 oder 3, dadurch gekennzeich- net, dass die erste und die zweite Folienschicht denselben Füllstoff aufweisen.
5. Halbzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein erstes Material der ersten Folienschicht weniger leicht fließend ist als ein zweites Material der zweiten Folienschicht.
6. Halbzeug nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass dieses eine Wasserdampfdurch- lässigkeit zwischen 1500 und 3000 g/m2 -Tag aufweist.
7. Halbzeug nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass der Füllstoff anorganisch ist mit einem oberflächenaktiven Stoff, insbesondere ein Calciumcarbonat, das mit Calciumstearat oberflächenbehandelt ist.
8. Halbzeug nach einem der vorhergehenden Ansprüche, da- durch gekennzeichnet, dass das Halbzeug etwa 60 g/m2 und weniger wiegt.
9. Filmstrukturierungsverfahren mit den folgenden Schritten:
- zur Verfügungsstellung zumindest einer ersten und einer zweiten Folienschicht, wobei die erste Folien- schicht einen geringeren Füllstoffanteil aufweist als die zweite Folienschicht,
- Erzeugung eines oberflächenstrukturierten filmartigen Halbzeugs aus einer Außenfläche des Halbzeugs bildenden Oberfläche der ersten Folienschicht, die von der zweiten Folienschicht, wobei eine velourartige Struktur mittels eines Umformungswerkzeuges herausgearbeitet wird, und
- wobei die erste und die zweite Folienschicht vor oder nach dem Herausarbeiten der Struktur gestreckt werden, um ein permeables Halbzeug zu erhalten.
10. Filmstrukturierungsverfahren nach Anspruch 9, dadurch gekennzeichnet, dass die erste und die zweite Folienschicht getrennt voneinander verstreckt werden.
11. Filmstrukturierungsverfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass das Halbzeug in Maschinenrichtung zwischen 30 % und 50 % und in Querrichtung zwischen 25 % bis 60 % verstreckt wird.
12. Filmstrukturierungsverfahren nach Anspruch 9 oder 10, dadurch gekennzeichnet, dass das Halbzeug diagonal verstreckt wird.
13. Filmstrukturierungsverfahren nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass die velourartige Struktur gelängt wird.
14. Filmstrukturierungsverfahren nach einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass das Halbzeug so gereckt wird, dass ein dampfdurchlässiges und wasserundurchlässiges Halbzeug entsteht.
15. Filmerzeugungsvorrichtung zur Erzeugung eines Halbzeugs mit einer velourartigen Oberflächenstruktur nach Anspruch 9, wobei die Vorrichtung aufweist:
- eine Zuführvorrichtung für zumindest eine erste und eine zweite thermoplastische füllstoffgefüllte Folien- schicht, um diese aufeinanderliegend einer nächstkommenden Bearbeitungsstation zur Verfügung zu stellen,
- ein Umformungswerkzeug, auf der die aufeinanderliegen- den Folienschichten aufgebracht werden können,
- eine Streckeinrichtung zur Streckung des Halbzeugs zur Erzeugung eines permeablen Halbzeugs, wobei die Strek- keinrichtung so angeordnet ist, dass ihr ein Halbzeug mit velourartiger Außenfläche zugeführt wird.
16. Anwendung eines Halbzeugs mit den Merkmalen des Anspruchs 1 in einem Haushaltserzeugnis.
17. Anwendung eines Halbzeugs mit den Merkmalen des Anspruchs 1 in einem Hygieneerzeugnis.
PCT/EP2000/010841 1999-11-03 2000-11-03 Mehrschichtiges, öberflächenstrukturiertes halbzeug aus thermoplastichen kunststoffen und filmstrukturierungsverfahren WO2001032417A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/129,466 US6863952B1 (en) 1999-11-03 2000-11-03 Multilayered, surface-structured semi-finished product consisting of thermoplastics and film-structuring method
AU13914/01A AU1391401A (en) 1999-11-03 2000-11-03 Multilayered, surface-structured semi-finished product consisting of thermoplastics and film-structuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19953039.4 1999-11-03
DE19953039A DE19953039A1 (de) 1999-11-03 1999-11-03 Verfahren zur Herstellung eines mehrschichtigen oberflächenstrukturierten Halbzeugs aus thermoplastischen Kunststoffen

Publications (1)

Publication Number Publication Date
WO2001032417A1 true WO2001032417A1 (de) 2001-05-10

Family

ID=7927872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/010841 WO2001032417A1 (de) 1999-11-03 2000-11-03 Mehrschichtiges, öberflächenstrukturiertes halbzeug aus thermoplastichen kunststoffen und filmstrukturierungsverfahren

Country Status (4)

Country Link
US (1) US6863952B1 (de)
AU (1) AU1391401A (de)
DE (1) DE19953039A1 (de)
WO (1) WO2001032417A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849319B2 (en) 2001-12-03 2005-02-01 Tredegar Film Products Corporation Apertured nonwoven composites and method for making
US7601415B2 (en) 2001-12-03 2009-10-13 Tredegar Film Products Corporation Absorbent device using an apertured nonwoven as an acquisition distribution layer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143420C2 (de) * 2001-09-05 2003-10-09 Reifenhaeuser Masch Verfahren und Vorrichtung zur Herstellung einer atmungsaktiven Materialbahn
US20090269566A1 (en) * 2008-04-23 2009-10-29 Berry Plastics Corporation Pre-stretched multi-layer stretch film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032272A1 (en) * 1997-12-19 1999-07-01 Kimberly-Clark Worldwide, Inc. Microporous films having zoned breathability
DE19812097C1 (de) * 1998-03-19 1999-09-02 Wagner Verfahren zur Herstellung eines oberflächenstrukturierten, folienartigen Halbzeugs aus einem Thermoplasten

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB919100A (en) 1960-09-14 1963-02-20 Dunbee Elm Ltd A method and apparatus for the production of an embossing tool for providing specialsurface finishes for plastic materials
GB1158471A (en) 1966-07-22 1969-07-16 Ici Ltd Embossed Thermoplastic Sheet Material
US3399425A (en) 1966-08-23 1968-09-03 Jerome H. Lemelson Apparatus for surface forming materials
DE1964736A1 (de) 1968-12-24 1970-07-09 Kureha Chemical Ind Co Ltd Verfahren zur Herstellung von kuenstlichen Fellen und aehnlichen haarartigen Stoffen
GB1384707A (en) 1971-04-30 1975-02-19 Ici Ltd Products containing fibres
GB1451311A (en) 1972-12-04 1976-09-29 Ici Ltd Apparatus and process for the production of pile surfaced materials
GB1472405A (en) 1973-09-27 1977-05-04 Ici Ltd Production of pile surfaced materials
US3895153A (en) 1973-10-05 1975-07-15 Minnesota Mining & Mfg Friction-surface sheet
US4257755A (en) 1974-06-25 1981-03-24 Lemelson Jerome H Molding system and method
US4183889A (en) 1975-03-22 1980-01-15 Metzeler Schaum Gmbh Method for the production of a polymer substrate with a fibrous surface
GB1593256A (en) 1976-10-07 1981-07-15 Ici Ltd Pile surface products
US4308649A (en) 1979-03-21 1982-01-05 Milliken Research Corporation Apparatus to pattern brush pile fabric
US4463045A (en) 1981-03-02 1984-07-31 The Procter & Gamble Company Macroscopically expanded three-dimensional plastic web exhibiting non-glossy visible surface and cloth-like tactile impression
IN158982B (de) 1982-03-22 1987-02-28 American Can Co
US4629643A (en) 1985-05-31 1986-12-16 The Procter & Gamble Company Microapertured polymeric web exhibiting soft and silky tactile impression
GB8700249D0 (en) 1987-01-07 1987-02-11 Ici Plc Vascular prosthesis
US4929303A (en) * 1987-03-11 1990-05-29 Exxon Chemical Patents Inc. Composite breathable housewrap films
JPS6414364A (en) 1987-07-09 1989-01-18 Kanebo Ltd Raising setting method for pile fiber structure
US5192484A (en) 1988-09-14 1993-03-09 Matsuzawa Co., Ltd. Method of forming blisters
US4877679A (en) * 1988-12-19 1989-10-31 Ppg Industries, Inc. Multilayer article of microporous and porous materials
JPH03253341A (ja) 1990-03-02 1991-11-12 Toyobo Co Ltd 積層ポリエステルフィルム
US5099553A (en) 1990-10-24 1992-03-31 Milliken Research Corporation Method and apparatus for treatment of thermoplastic fabric having upright piles
DE4141352A1 (de) 1991-12-14 1993-06-17 Basf Ag Verfahren zur herstellung von mikrostrukturkoerpern
JP3298887B2 (ja) 1993-06-11 2002-07-08 ミネソタ マイニング アンド マニュファクチャリング カンパニー レーザー加工複製工具
CA2116081C (en) * 1993-12-17 2005-07-26 Ann Louise Mccormack Breathable, cloth-like film/nonwoven composite
US5505747A (en) 1994-01-13 1996-04-09 Minnesota Mining And Manufacturing Company Method of making an abrasive article
WO1996013979A1 (en) 1994-11-02 1996-05-17 Tredegar Industries, Inc. Vapor permeable, liquid impermeable films formed using a multi-layer screen assembly
US5814413A (en) 1995-06-07 1998-09-29 Huntsman United Films Corporation Multilayer protective garment film
DE19524076C1 (de) 1995-07-01 1996-10-24 Hcd Gmbh Verfahren und Vorrichtung zur Herstellung eines oberflächenstrukturierten, folienartigen Halbzeugs aus einem Thermoplasten
DE19526044C2 (de) * 1995-07-17 1999-03-18 M & W Verpackungen Gmbh Flauschige Verbundfolie und Verfahren zur Herstellung einer solchen Verbundfolie
US5733628A (en) 1996-10-10 1998-03-31 Tredegar Industries, Inc. Breathable elastic polymeric film laminates
DE19731315A1 (de) 1997-07-16 1999-01-21 Ransmayer A & Rodrian A Verfahren zur Herstellung speziell strukturierter Oberflächen thermoplastischer Kunststoff-Formkörper und ihre Anwendung
US6605332B2 (en) 1997-07-29 2003-08-12 3M Innovative Properties Company Unitary polymer substrate having napped surface of frayed end microfibers
US6132845A (en) 1997-08-25 2000-10-17 Agru Kunststofftechnik Gmbh Apparatus and method for forming micro spike liners and a micro spike liner formed thereby
DE69815130T2 (de) 1997-10-01 2004-04-08 Minnesota Mining And Mfg. Co., Saint Paul Geprägte orientierte polymerfolien
DE19817237C2 (de) 1998-04-18 2000-06-08 Werner Wagner Verfahren zur Herstellung einer mit Kavitäten besetzten Matrix und Vorrichtung mit einer derartigen Matrix
DE19843109C2 (de) 1998-09-21 2000-11-09 Hcd Gmbh Verfahren zur Herstellung eines oberflächenstrukturierten, folienartigen Halbzeugs mit Druckanwendung
DE19856223B4 (de) 1998-12-04 2004-05-13 Advanced Design Concepts Gmbh Verfahren und Vorrichtung zur Herstellung einer strukturierten, voluminösen Vliesbahn oder Folie

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999032272A1 (en) * 1997-12-19 1999-07-01 Kimberly-Clark Worldwide, Inc. Microporous films having zoned breathability
DE19812097C1 (de) * 1998-03-19 1999-09-02 Wagner Verfahren zur Herstellung eines oberflächenstrukturierten, folienartigen Halbzeugs aus einem Thermoplasten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6849319B2 (en) 2001-12-03 2005-02-01 Tredegar Film Products Corporation Apertured nonwoven composites and method for making
US7601415B2 (en) 2001-12-03 2009-10-13 Tredegar Film Products Corporation Absorbent device using an apertured nonwoven as an acquisition distribution layer

Also Published As

Publication number Publication date
DE19953039A1 (de) 2001-05-23
US6863952B1 (en) 2005-03-08
AU1391401A (en) 2001-05-14

Similar Documents

Publication Publication Date Title
DE69926497T2 (de) Hochgeschwindigkeitsverfahren zur herstellung einer mikroporösen folie
EP1784306B1 (de) Vlies-folien-laminate
DE69029902T2 (de) Opake orientierte Mehrschicht-Kunststoffolie und Verfahren zu ihrer Herstellung
EP1115553B1 (de) Verfahren zur herstellung eines oberflächenstrukturierten, folienartigen halbzeugs mit druckanwendung
DE60021918T2 (de) Mikroporöser mehrschichtfilm und verfahren zu dessen herstellung
EP3265290B1 (de) Verfahren zur herstellung einer mehrlagigen folienbahn und mehrlagige folienbahn
DE1067772B (de) Verfahren zur Herstellung eines wasserdampfundurchlaessigen Schichtstoffes durch Verbinden eines Polyaethylenfilmes mit Gewebe
DE2432350A1 (de) Verfahren zur herstellung von netzwerkstrukturen
DE19840991A1 (de) Verfahren zur Herstellung einer biaxial orientierten Folie aus einem geschäumten orientierbaren thermoplastischen Polymer
EP3560709B1 (de) Verfahren zur herstellung von bedruckten vlies-folien-laminaten
DE19812097C1 (de) Verfahren zur Herstellung eines oberflächenstrukturierten, folienartigen Halbzeugs aus einem Thermoplasten
DE3028993A1 (de) Gefuellte extrudierte endlose thermoplastische flaechige materialien und ihre herstellung
DE3436065A1 (de) Opake polypropylenfolie mit lichtdurchlaessigen bereichen, verfahren zu ihrer herstellung und ihre verwendung
DE10211376A1 (de) Verfahren zur Herstellung von folienartigen Harzmaterialien und folienartige Harzmaterialien
WO2001032417A1 (de) Mehrschichtiges, öberflächenstrukturiertes halbzeug aus thermoplastichen kunststoffen und filmstrukturierungsverfahren
DE10238772A1 (de) Harzhaltiges Bahnenmaterial, thermogeformter Gegenstand und Mehrschichtstruktur
DE3325977C2 (de) Geprägter, mit Dekor versehener Flächenbelag sowie Verfahren zu seiner Herstellung
DE68918113T2 (de) Thermoverformbare polyaryletherketon-/polyvinylfluorid-schichtstoffe.
DE2112030B2 (de) Verfahren zur herstellung einer papieraehnlichen polymeren folie
EP1915918B1 (de) Verbunde mit als Teil von Klettverschlüssen geeigneter Oberfläche und ihre Herstellung
DE2753803A1 (de) Verfahren zur beschichtung von bahnensubstraten mit thermoplastischem polymer
DE19616862C1 (de) Mehrstoffverbundmaterial aus einem halogenverbindungsfreien flexiblen Kunststoff und Verfahren zur Herstellung desselben
DE3726117C2 (de)
DE4041453A1 (de) Formmasse und verfahren zum kalandrieren von folien auf basis von polyethylen
DE1914972C3 (de) Verfahren zum Herstellen beschreibbaren synthetischen Papiers

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AM AU BA BG BR BY CA CN CU CZ DZ EE GE HR HU ID IL IN JP KG KR KZ LK LT LV MA MK MX NO NZ PL RO RU SG SI SK TR UA US VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AM AZ BY KG KZ MD RU TJ TM

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10129466

Country of ref document: US