WO2001031177A1 - Verfahren zur regelung der kühlwassertemperatur eines kraftfahrzeugs mit einem verbrennungsmotor - Google Patents

Verfahren zur regelung der kühlwassertemperatur eines kraftfahrzeugs mit einem verbrennungsmotor Download PDF

Info

Publication number
WO2001031177A1
WO2001031177A1 PCT/DE2000/003400 DE0003400W WO0131177A1 WO 2001031177 A1 WO2001031177 A1 WO 2001031177A1 DE 0003400 W DE0003400 W DE 0003400W WO 0131177 A1 WO0131177 A1 WO 0131177A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling water
control device
temperature
target temperature
engine
Prior art date
Application number
PCT/DE2000/003400
Other languages
English (en)
French (fr)
Inventor
Michael Baeuerle
Klaus Ries-Mueller
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2001533297A priority Critical patent/JP2003513191A/ja
Priority to EP00978956A priority patent/EP1228294A1/de
Publication of WO2001031177A1 publication Critical patent/WO2001031177A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/02Controlling of coolant flow the coolant being cooling-air
    • F01P7/04Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio
    • F01P7/048Controlling of coolant flow the coolant being cooling-air by varying pump speed, e.g. by changing pump-drive gear ratio using electrical drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/02Arrangements for cooling cylinders or cylinder heads
    • F01P2003/027Cooling cylinders and cylinder heads in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P2007/146Controlling of coolant flow the coolant being liquid using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2023/00Signal processing; Details thereof
    • F01P2023/08Microprocessor; Microcomputer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/60Operating parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1002Output torque
    • F02D2200/1004Estimation of the output torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/701Information about vehicle position, e.g. from navigation system or GPS signal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/70Input parameters for engine control said parameters being related to the vehicle exterior
    • F02D2200/702Road conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3023Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
    • F02D41/3029Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode

Definitions

  • the invention relates to a method for regulating the cooling water temperature of a motor vehicle with an internal combustion engine according to the preamble of the main claim.
  • the method according to the invention with the characterizing features of the main claim has the advantage over the fact that the cooling water temperature is controlled as a function of signals from at least one further sensor and / or at least one further 'vehicle control unit.
  • the individual operating states of the internal combustion engine can be optimized in each individual phase, so that not only is there a reduction in fuel consumption, but pollutants are also reduced in the exhaust gas.
  • a knock sensor is provided as a further sensor, which detects the tendency of the internal combustion engine to knock and emits these signals to the control unit for the cooling water temperature. Since the knock tendency inter alia also depends on the temperature of the cooling water or the cylinder head temperature, the tendency of the engine to knock can also be reduced, for example, by reducing the cooling water temperature.
  • the different operating modes enable different temperature levels, which the control unit can take into account advantageously when forming the setpoint. For example, double injection leads to a reduced tendency to knock. Depending on the design of the cooling system, this may increase the temperature setpoint for the cooling water during the double injection become. Accordingly, a higher temperature level is conceivable in shift operation, which may improve the flammability.
  • the operating mode can also be influenced depending on the cooling capacity currently available or depending on the current temperature level. For example, it is foreseeable to drive at a higher engine temperature in a larger engine operating range in the most economical shift operation.
  • the target temperature for the cooling water is determined as a function of the efficiency of the ignition angle.
  • a further parameter can thus be used to optimize the fuel consumption or the exhaust gas.
  • An assessment of the driver type takes place in modern transmission or engine management control units. Depending on the dynamics of the accelerator pedal movement and / or the brake application, the driver is classified as being more sporty or more economical. The evaluation is used, among other things, for the shift program for multi-stage automatic transmissions.
  • a sporty driver type may have a lower target temperature due to the higher dynamics. Accordingly, the time constant of the temperature controller can be changed in the direction of faster temperature control.
  • the target temperature should be set so that the torque loss is minimal. The same applies to the determination of the target temperature depending on the
  • Exhaust gas recirculation rate boost pressure or from external devices such as a distance controller.
  • the information from a navigation system is used to set the target temperature.
  • the vehicle location, the vehicle destination and / or the planned or driven route can be determined.
  • accurate height information (height above sea level) is also available. For example, it is conceivable to lower the setpoint temperature to a minimum value on longer pass journeys, for example downhill, with longer phases in push mode. This then increases the friction losses of the engine, which leads to a higher braking effect, which is desired in this case. Continue to be thereby reducing blue smoke emissions. Before the end of the pass is reached, the setpoint temperature can then be raised again in order to achieve more favorable conditions with lower friction losses when the increased power output of the engine is to be expected.
  • control program Since no new hardware components are required for the implementation of this method, the implementation in the form of a control program appears to be particularly favorable, this control program being part of an engine control unit which is already present for controlling the engine.
  • Figure 1 shows a block diagram in a schematic representation and Figure 2 shows a flow chart.
  • FIG. 1 shows a block diagram of various engine components which are arranged according to the inventive method.
  • An internal combustion engine 1 is first connected to a heat exchanger (cooler 6) via a cooling circuit with cooling water 5.
  • a corresponding return line 5a leads from the cooler 6 back to the internal combustion engine 1.
  • a valve 9 is shown schematically, with which the inflow to the cooler 6 can be controlled.
  • the cooler 6 is assigned a fan motor 7, which can increase the cooling capacity of the cooler 6. Both the fan motor 7 and also the valve or valves 9 are controlled via corresponding lines by a control unit 2 so that a predetermined target temperature for the cooling water 5 is reached.
  • a temperature sensor 3 and a further sensor, for example a knock sensor 4, are connected to the inputs of the control device 2.
  • the two sensors are located at suitable points in the cooling circuit on the internal combustion engine 1.
  • An engine control unit or a vehicle control unit 8 is also connected to the internal combustion engine 1, which controls the fuel injection, the ignition and / or the valves or controls vehicle functions, for example.
  • An output of the control unit 2 is connected to an input of the engine control unit 8 via a line 10.
  • the method can be used for both gasoline and diesel engines.
  • FIG. 1 only the components essential to the invention were shown in order to keep the overview. In practical implementation, however, significantly more electrical lines and hoses are required for the cooling water 5, but their representation has been omitted here.
  • the control diagram in FIG. 2 is based on an internal combustion engine 1 with direct gasoline injection (BDE).
  • the control unit 2 specifies a temperature setpoint t so _ ⁇ _ for the cooling water temperature, which is formed from a preferably stored map of the current engine load and the engine speed (position 21).
  • a temperature setpoint t so _ ⁇ _ for the cooling water temperature which is formed from a preferably stored map of the current engine load and the engine speed (position 21).
  • position 21 more parameters are stored, for example, an adaptation value Krada ⁇ ur e> - ne cylinder-specific pilot control of the Knock control. This value is a measure of the average knock tendency in a single operating area (item 22). After a conversion and normalization in position 23, a subtraction from the target value tset is carried out in position 26.
  • a signal (position 24) of knock sensor 4 is subtracted from the value in position 27 after corresponding conversion in position 25. This signal indicates whether knocking has occurred during the instantaneous loading of the internal combustion engine 1 or not.
  • the signal t so obtained is called ] _ ] __Kr and specifies the new setpoint for the temperature of the cooling water 5, which takes into account the signal from the knock sensor 4. This setpoint is fed to position 30 of the control loop, which results from positions 29, 30 and 32.
  • Control loop the delivery rate of a water pump is now operated, for example, with a proportional controller (P controller, position 29) and the actuators, pump, fan 7 or valves 9 (position 31). These measures result in a specific cooling capacity of the circulatory system with the cooling water 5, which is supplied to or removed from the internal combustion engine 1 (position 32). In terms of energy, this results in a temperature t- j _ st , which is compared with the upcoming temperature value t soll Kr ⁇ n position 30 and corrected. The result is available in position 33 and can be displayed, for example, on a display that is not shown.
  • This control diagram is preferably executed as a control program and is part of the engine control unit 8.
  • the engine control unit 8 is designed, for example, for engines with gasoline injection for the injection of the fuel, for the control of the ignition and / or the control of the valves.
  • the engine control unit 8 can of course use the same map and the ones stored there Process data.
  • This map is preferably designed with a RAM memory, in which data can both be written in and read out.
  • the engine control unit 8, for example, also specifies the operating modes for the fuel-air mixture homogeneously, homogeneously lean or stratified depending on the operating load.
  • the engine control unit 8 also controls the ignition angle for the gasoline engine and also takes the associated data from the stored map.
  • control unit 2 can pass the actual temperature tist to the engine control unit 8, so that this engine control unit 8 can also take the ignition angle into account, for example, taking into account the actual temperature t-j_ s t- of the internal combustion engine 1 determined.
  • the engine control unit 8 can, for example, pre-control depending on the cooling capacity in the case of temperature-critical operating parameters and thus specify an early ignition angle.
  • the sequence shown in FIG. 2 can be carried out individually for each cylinder.
  • the adaptation values KR acja or the knock signals are available individually for each cylinder in modern engine management systems and can therefore be used directly for cylinder-specific temperature control. If, on the other hand, there is no cylinder-specific cooling water supply, then the adaptive knock value KR acja is expediently calculated from the mean value of the cylinder- specific adaptation values for each cylinder. If knocking occurs, the temperature setpoint can then be reduced.
  • This optimization method advantageously takes into account the cooling capacity, the operating operating point, the knock tendency and / or the ignition angle Optimal operation for low fuel consumption and low exhaust emissions achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

Erfindungsgemäss wird ein Verfahren zur Regelung der Kühlwassertemperatur eines Kraftfahrzeugs mit einem Verbrennungsmotor vorgeschlagen, bei dem mindestens ein weiterer Sensor, beispielsweise ein Klopfsensor, oder ein Fahrzeugsteuergerät zur Bestimmung der Kühlwassertemperatur verwendet wird. Ein Steuergerät (2) ermittelt aus den zugeführten Signalen einen Sollwert (tsoll) unter Berücksichtigung des Klopfverhaltens mittels einer Regelschleife (29, 31, 32). Die geregelte Solltemperatur wird dabei von einem Motorsteuergerät (8) verwendet, um den Zündwinkel beispielsweise auf 'früh' zu stellen.

Description

Verfahren zur Regelung der Kühlwassertemperatur eines Kraftfahrzeugs mit einem Verbrennungsmotor
Stand der Technik
Die Erfindung geht aus von einem Verfahren zur Regelung der Kühlwassertemperatur eines Kraftfahrzeugs mit einem Verbrennungsmotor nach der Gattung des Hauptanspruchs .
Es ist schon bekannt, die Kühlwassertemperatur eines Verbrennungsmotors dadurch zu regeln, daß über einen Kühlwasserkreislauf mit einem Wärmetauscher die Motortemperatur, beispielsweise mittels eines Thermostats, konstant gehalten wird. Zur Abführung der entstehenden Motorwärme wird bedarfsabhängig über ein Ventil der Kühlwasserkreislauf zum Wärmetauscher (Kühler) geöffnet und gegebenenfalls die Kühlleistung des Kühlers durch einen Lüfter unterstützt. Für moderne Verbrennungsmotoren, beispielsweise bei Direkteinspritzung für Benzin oder für Diesel, reichen bekannte Maßnahmen wie Temperaturregelung, Regelung der Einspritzung oder der Zündung zur Optimierung des Verbrauchs und Reduzierung von Schadstoffen im Abgas jedoch nicht mehr aus.
Vorteile der Erfindung Das erfindungsgemäße Verfahren mit den kennzeichnenden Merkmalen des Hauptanspruchs hat dem gegenüber den Vorteil, daß die Kühlwassertemperatur in Abhängigkeit von Signalen mindestens eines weiteren Sensors und/oder mindestens eines weiteren 'Fahrzeugsteuergerätes gesteuert wird. Dadurch können die einzelnen Betriebszustände des Verbrennungsmotors in jeder einzelnen Phase optimiert werden, so daß sich nicht nur eine Verbrauchsreduzierung des Kraftstoffs ergibt, sondern auch beim Abgas die Schadstoffe reduziert werden.
Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Hauptanspruch angegebenen Verfahrens möglich.
Besonders vorteilhaft ist, daß als weiterer Sensor ein Klopfsensor vorgesehen ist, der die Klopfneigung des Verbrennungsmotors erfaßt und diese Signale an das Steuergerät für die Kühlwassertemperatur abgibt. Da die Klopf- neigung u.a. auch von der Temperatur des Kühlwassers bzw. von der Zylinderkopftemperatur abhängt, kann beispielsweise durch Reduzierung der Kühlwassertemperatur auch die Klopf- neigung des Motors reduziert werden.
Als besonders vorteilhaft wird angesehen, daß das Steuer- gerät die Kühlwassertemperatur in Abhängigkeit von den
Betriebsarten wählt, die bei der Benzindirekteinspritzung durch das Verhältnis von Kraftstoff zu Luft bestimmt werden. Die verschiedenen Betriebsarten ermöglichen unterschiedliche Temperaturniveaus, die das Steuergerät vorteilhaft bei der Bildung des Sollwerts berücksichtigen kann. So führt beispielsweise eine Doppeleinspritzung zu einer verringerten Klopfneigung. Dadurch kann - je nach Auslegung des Kühlsystems - während der Doppeleinspritzung unter Umständen der Temperatursollwert für das Kühlwasser erhöht werden. Entsprechend ist bei Schichtbetrieb ein höheres Temperaturniveau denkbar, wodurch unter Umständen die Brennbarkeit verbessert wird. Insbesondere kann auch abhängig von der aktuell zur Verfügung stehenden Kühlleistung bzw. abhängig vom aktuellen Temperaturniveau auf die Betriebsart Einfluß genommen werden. So ist zum Beispiel vorsehbar, bei einer höheren Motortemperatur in einem größeren Motorbetriebsbereich im verbrauchsgünstigen Schichtbetrieb zu fahren.
Günstige Bedingungen ergeben sich auch, wenn im Magerbetrieb die Zylinderkopftemperatur erhöht wird, da dann das Kraftstoff-Luft-Gemisch weiter abgemagert werden kann.
Bei einem Motor mit variablem Ventiltrieb ist es günstig, wenn die Solltemperatur für einen stillgelegten Zylinder abgesenkt wird, da dieser Zylinder dann keine Verbrennungs- wärme mehr erzeugt .
Als besonders vorteilhaft wird angesehen, daß die Solltemperatur für das Kühlwasser in Abhängigkeit vom Wirkungsgrad des Zündwinkels bestimmt wird. Somit kann für eine Optimierung des Brennstoffverbrauchs bzw. des Abgases ein weiterer Parameter herangezogen werden.
In modernen Getriebe- oder Motormanagmentsteuergeräten findet eine Bewertung des Fahrertyps statt. Dabei wird abhängig von der Dynamik der Fahrpedalbewegung und/oder der Bremsenbetätigung der Fahrer als eher sportlich oder eher ökonomisch fahrend klassifiziert. Die Bewertung wird unter anderem für das Schaltprogramm bei Stufenautomatikgetrieben verwendet .
Es ist nun vorteilhaft, diese Bewertung auch für die Steuerung und Regelung der Solltemperatur herangezogen wird. So kann zum Beispiel bei einem sportlichen Fahrertyp aufgrund der höheren Dynamik eine niederere Solltemperatur angebracht sein. Entsprechend kann die Zeitkonstante des Temperaturreglers in Richtung einer schnelleren Temperturregelung verändert werden.
Heutige momentenbasierte Motorsteuerungssysteme berechnen im Normalbetrieb laufend das Verlustmoment des Motors . Änderungen des Verlustmomentes zum Beispiel im Leerlauf werden adaptiert bzw. gelernt und bei der Berechnung der Stellgrößen einer Motorsteuerung (unter anderem: Einspritzung, Luftmasse und Zündwinkel) berücksichtigt. Eine Änderung der Reibungsverluste des Motors wird somit in dieser Verlustmomentenadaption erkannt. Auch hier ist es vorteilhaft, diese Verlustmomente bei der Bestimmung der Solltemperatur zu berücksichtigen.
Die Solltemperatur sollte dabei so eingestellt werden, daß das Verlustmoment minimal wird. Entsprechendes gilt für die Bestimmung der Solltemperatur in Abhängigkeit von der
Abgasrückführrate, des Ladedrucks oder von externen Geräten, wie einem Abstandsregler.
Weiterhin ist vorteilhaft, daß die Information eines NavigationsSystems für die Einstellung der Solltemperatur benutzt wird. Mittels solcher Navigationssysteme kann der Fahrzeugstandort, das Fahrzeugziel und/oder die geplante bzw. gefahrene Wegstrecke ermittelt werden. Unter anderem ist in solchen Systemen auch eine genaue Höheninformation (Höhe über Meeresspiegel) vorhanden. So ist es zum Beispiel denkbar, bei längeren Paßfahrten, beispielsweise bergab, mit längeren Phasen im Schiebebetrieb, die Solltemperatur auf einen Minimalwert abzusenken. Dadurch werden dann die Reibungsverluste des Motors erhöht, was zu einer höheren, in diesem Fall gewünschten Bremswirkung führt. Weiterhin werden dadurch Blaurauchemissionen reduziert. Vor Erreichen des Paßendes kann dann wieder die Solltemperatur angehoben werden, um bei der zu erwartenden erhöhten Leistungsabgabe des Motors wieder günstigere Bedingungen mit geringeren Reibungsverlusten zu erreichen.
Da für die Durchführung dieses Verfahrens keine neuen Hardwarekomponenten benötigt werden, erscheint die Realisierung in Form eines Steuerprogramms besonders günstig, wobei dieses Steuerprogramm Bestandteil eines Motorsteuergeräts ist, das ohnehin für die Steuerung des Motors vorhanden ist.
Zeichnung
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und in der nachfolgenden Beschreibung näher erläutert .
Figur 1 zeigt ein Blockschaltbild in schematischer Darstellung und Figur 2 zeigt ein Ablaufdiagramm.
Beschreibung des Ausführungsbeispiels
Figur 1 zeigt ein Blockschaltbild von verschiedenen Motorkomponenten, die nach dem erfindungsgemäßen Verfahren angeordnet sind. Ein Verbrennungsmotor 1 ist zunächst über einen Kühlkreislauf mit Kühlwasser 5 mit einem Wärmetauscher (Kühler 6) verbunden. Eine entsprechende Rücklaufleitung 5a führt vom Kühler 6 zum Verbrennungsmotor 1 zurück. In diesem Kühlkreislauf ist schematisch ein Ventil 9 dargestellt, mit dem der Zufluß zum Kühler 6 steuerbar ist. Des weiteren ist dem Kühler 6 ein Lüftermotor 7 zugeordnet, der die Kühl- leistung des Kühlers 6 erhöhen kann. Sowohl der Lüftermotor 7 als auch das oder die Ventile 9 werden über entsprechende Leitungen von einem Steuergerät 2 so gesteuert, damit eine vorgegebene Solltemperatur für das Kühlwasser 5 erreicht wird. An den Eingängen des Steuergeräts 2 sind ein Temperatursensor 3 und ein weiterer Sensor, beispielsweise ein Klopfsensor 4, angeschlossen. Die beiden Sensor sitzen an geeigneten Stellen im Kühlkreislauf am Verbrennungsmotor 1. Mit dem Verbrennungsmotor 1 ist des weiteren ein Motorsteuergerät oder ein Fahrzeugsteuergerät 8 verbunden, das beispielsweise die Kraftstoffeinspritzung, die Zündung und/oder die Ventile steuert bzw. Fahrzeugfunktionen steuert. Über eine Leitung 10 ist ein Ausgang des Steuergeräts 2 mit einem Eingang des Motorsteuergeräts 8 verbunden. Das Verfahren ist sowohl für Benzin- als auch für Dieselmotoren anwendbar.
In der Figur 1 wurden nur die erfindungswesentlichen Komponenten dargestellt, um die Übersicht zu bewahren. In der praktischen Ausführung sind jedoch wesentlich mehr elektrische Leitungen und Schläuche für das Kühlwasser 5 erforderlich, auf deren Darstellung aber hier verzichtet wurde .
Im folgenden wird die Funktionsweise dieser Anordnung anhand der Figur 2 näher erläutert.
Dem Regeldiagramm der Figur 2 ist ein Verbrennungsmotor 1 mit einer Benzindirekteinspritzung (BDE) zugrunde gelegt. Zunächst wird von dem Steuergerät 2 für die Kühlwasser- temperatur ein Temperatursollwert tso_τ_ vorgegeben, der aus einem vorzugsweise gespeicherten Kennfeld der augenblicklichen Motorlast und der Motordrehzahl gebildet wird (Position 21) . In einem anderen Kennfeld sind weitere Parameter gespeichert, beispielsweise ein Adaptionswert KRada ^ur e:>-ne zylinderindividuelle Vorsteuerung der Klopfregelung. Dieser Wert ist ein Maß für die mittlere Klopfneigung in einem einzelnen Betriebsbereich (Position 22) . Nach einer Umrechnung und Normierung in Position 23 erfolgt in der Position 26 eine Subtraktion vom Sollwert tsoll- In Position 27 wird von diesem Wert ein Signal (Position 24) des Klopfsensors 4 nach entsprechender Umrechnung in Position 25 vom Wert in Position 27 subtrahiert. Dieses Signal gibt an, ob bei der augenblicklichen Belastung des Verbrennungsmotors 1 ein Klopfen aufgetreten ist oder nicht. In Position 28 wird das so gewonnene Signal tso]_]__Kr genannt und gibt den neuen Sollwert für die Temperatur des Kühlwassers 5 vor, der das Signal des Klopfsensors 4 berücksichtigt. Dieser Sollwert wird in der Position 30 der Regelschleife zugeführt, die sich aus den Positionen 29, 30 und 32 ergibt. In dieser
Regelschleife wird nun die Förderleistung einer Wasserpumpe beispielsweise mit einem Proportionalregler (P-Regler, Position 29) sowie die Stellglieder, Pumpe, Lüfter 7 oder Ventile 9 betätigt (Position 31) . Diese Maßnahmen ergeben eine bestimmte Kühlleistung des Kreislaufsystems mit dem Kühlwasser 5, die dem Verbrennungsmotor 1 zugeführt bzw. abgenommen wird (Position 32) . Energetisch ergibt sich somit eine Temperatur t-j_st, die mit dem anstehenden Temperaturwert tsoll Kr ^n Position 30 verglichen und ausgeregelt wird. Das Ergebnis steht in der Position 33 zur Verfügung und kann beispielsweise auf einer nicht dargestellten Anzeige ausgegeben werden. Dieses Regeldiagramm wird vorzugsweise als Steuerprogramm ausgeführt und ist Bestandteil des Motorsteuergeräts 8. Das Motorsteuergerät 8 ist dabei beispielsweise für Motoren mit Benzineinspritzung ausgebildet für die Einspritzung des Kraftstoffes, für die Steuerung der Zündung und/oder die Steuerung der Ventile ausgebildet. Für die Steuerung der Motorfunktionen kann dabei das Motorsteuergerät 8 selbstverständlich auf das gleiche Kennfeld zurückgreifen und die dort gespeicherten Daten verarbeiten. Dieses Kennfeld ist vorzugsweise mit einem RAM-Speicher ausgebildet, in dem sowohl Daten eingeschrieben als auch ausgelesen werden können. Von dem Motorsteuergerät 8 werden beispielsweise auch die Betriebsarten für das Kraftstoff-Luft-Gemisch homogen, homogen-mager oder geschichtet je nach Betriebslast vorgegeben. Das Motorsteuergerät 8 steuert auch den Zündwinkel für den Benzinmotor und entnimmt die zugehörigen Daten ebenfalls dem gespeicherten Kennfeld. Da das Steuergerät 2 und das Motorsteuergerät 8 miteinander über die Leitung 10 verkoppelt sind, kann das Steuergerät 2 die Ist-Temperatur tist an ^as Motorsteuergerät 8 weitergeben, so daß dieses Motorsteuergerät 8 beispielsweise den Zündwinkel auch unter Berücksichtigung der Ist-Temperatur t-j_st- des Verbrennungsmotors 1 bestimmt. Das Motorsteuergerät 8 kann beispielsweise abhängig von der Kühlleistung bei temperaturkritischen Betriebsparameter vorsteuern und so einen frühen Zündwinkel vorgeben.
Ist in alternativer Ausgestaltung der Erfindung vorgesehen, die einzelnen Zylinder individuell zu kühlen, dann kann der in der Figur 2 dargestellte Ablauf für jeden Zylinder einzeln durchgeführt werden. Die Adaptionswerte KRacja bzw. die Klopfsignale liegen dabei in modernen Motormanagementsystemen zylinderindividuell vor und können somit direkt für eine zylinderindividuelle Temperaturregelung benutzt werden. Ist dagegen eine zylinderindividuelle Kühlwasserzuführung nicht vorhanden, dann wird zweckmäßigerweise der adaptive Klopfwert KRacja aus dem Mittelwert der zylinderindividuellen Adaptionswerte für jeden Zylinder berechnet. Bei auftretenden Klopfereignissen kann dann der Sollwert der Temperatur reduziert werden. Durch dieses Optimierungsverfahren wird vorteilhaft unter Berücksichtigung der Kühlleistung, des Betriebsarbeits- punktes, der Klopfneigung und/oder des Zündwinkels ein optimaler Betrieb für niedrigen Kraftstoffverbrauch und geringe Abgasemissionen erreicht.

Claims

Ansprüche
1. Verfahren zum Regeln der Kühlwassertemperatur eines
Kraftfahrzeugs mit einem Verbrennungsmotor (1) , wobei ein Temperatursensor (3) die Kühlwassertemperatur erfaßt und ein Steuergerät (2) für die Kühlwassertemperatur mindestens ein Ventil (9) und/oder wenigstens einen Lüfter (7) betätigt, um einen vorgegebenen Temperatur-Sollwert (Tso_^) des
Kühlwassers (5) zu erhalten, dadurch gekennzeichnet, daß wenigstens ein weiterer Sensor (4) oder ein weiteres Fahrzeugsteuergerät vorgesehen ist, daß dessen Signale dem Steuergerät (2) zugeführt werden, und daß das Steuergerät (2) aus den zugeführten Signalen wenigstens einen Sollwert für die Temperatur des Kühlwassers (5) bestimmt, wobei der Sollwert im Hinblick auf einen minimalen Kraftstoffverbrauch und/oder zur Optimierung der Abgasemissionen gebildet wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der weitere Sensor (4) ein Klopfsensor ist.
3. Verfahren nach Anspruch 1 oder 2 , dadurch gekennzeichnet, daß das Steuergerät (2) die Kühlwassertemperatur in Abhängigkeit von den Betriebsarten bei der
Kraftstoffdirekteinspritzung (Diesel oder Benzin) wählt.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühl- wasser (5) für die Betriebsarten homogenes oder homogenmageres Kraftstoff-Luft-Gemisch oder geschichtetes Kraftstoff-Luft-Gemisch bestimmt.
5. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühlwasser (5) in Abhängigkeit von der Einspritzart, und/oder vom Lambdawert des Kraftstoffluftgemisches, insbesondere bei einer Doppeleinspritzung oder einer geschichteten Einspritzung bestimmt.
6. Verfahren nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) bei Magerbetrieb die Solltemperatur für den Zylinderkopf erhöht und an das Motorsteuergerät (8) ein Signal zur weiteren Abmagerung des Kraftstoff-Luft-Gemisches liefert.
7. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) für einen stillgelegten Zylinder die Solltemoeratur absenkt.
8. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühlwasser (5) in Abhängigkeit von der Klopfneigung vorgibt.
9. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühlwasser (5) in Abhängigkeit vom Zündwinkel oder dessen Wirkungsgrad bestimmt.
10. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühlwasser (5) in Abhängigkeit vom Fahrertyp, beispielsweise einem sportlich oder ökonomisch fahrenden Fahrer vorgibt .
11. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühlwasser (5) in Abhängigkeit von den Reibungsverlusten des Motors bestimmt.
12. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühlwasser (5) in Abhängigkeit von der Abgasrückführrate eines Abgasrückführsystems bestimmt.
13. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühlwasser (5) in Abhängigkeit vom Signal eines Ladedrucksensors bei einem Motor mit Turboaufladung bestimmt, wobei bei einer Ladedruckerhöhung die Solltemperatur erniedrigt wird.
14. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühlwasser (5) in Abhängigkeit von Signalen eines Abstandsregler bestimmt.
15. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) die Solltemperatur für das Kühlwasser (5) in Abhängigkeit von Signalen eines Navigationssystems bestimmt.
16. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, daß das Steuergerät (2) als Steuerprogramm ausgebildet ist und vorzugsweise Bestandteil des Motorsteuergerätes (8) ist.
PCT/DE2000/003400 1999-10-26 2000-09-27 Verfahren zur regelung der kühlwassertemperatur eines kraftfahrzeugs mit einem verbrennungsmotor WO2001031177A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001533297A JP2003513191A (ja) 1999-10-26 2000-09-27 内燃機関を有する自動車の冷却水温度を制御する方法
EP00978956A EP1228294A1 (de) 1999-10-26 2000-09-27 Verfahren zur regelung der kühlwassertemperatur eines kraftfahrzeugs mit einem verbrennungsmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999151362 DE19951362A1 (de) 1999-10-26 1999-10-26 Verfahren zur Regelung der Kühlwassertemperatur eines Kraftfahrzeugs mit einem Verbrennungsmotor
DE19951362.7 1999-10-26

Publications (1)

Publication Number Publication Date
WO2001031177A1 true WO2001031177A1 (de) 2001-05-03

Family

ID=7926799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003400 WO2001031177A1 (de) 1999-10-26 2000-09-27 Verfahren zur regelung der kühlwassertemperatur eines kraftfahrzeugs mit einem verbrennungsmotor

Country Status (4)

Country Link
EP (1) EP1228294A1 (de)
JP (1) JP2003513191A (de)
DE (1) DE19951362A1 (de)
WO (1) WO2001031177A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11136918B2 (en) 2019-12-23 2021-10-05 General Electric Company Method and apparatus for cooling water system optimization
US20220364958A1 (en) * 2019-10-07 2022-11-17 Precision Planting Llc Systems and methods for testing agricultural implements

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10045613A1 (de) * 2000-09-15 2002-04-18 Volkswagen Ag Verfahren zur Kühlmitteltemperaturregelung und kühlmittelbetriebene Motorkühlung
DE10135057A1 (de) * 2001-07-18 2003-02-13 Bosch Gmbh Robert Verfahren, Computerprogramm, Steuer-und/oder Regelgerät zum Betreiben einer Brennkraftmaschine sowie Brennkraftmaschine
US6684826B2 (en) * 2001-07-25 2004-02-03 Toyota Jidosha Kabushiki Kaisha Engine cooling apparatus
DE10158917B4 (de) 2001-11-30 2006-01-19 Audi Ag Steuergerät für einen Kühlerlüfter
DE10163943A1 (de) * 2001-12-22 2003-07-03 Bosch Gmbh Robert Verfahren zur Ansteuerung von elektrisch betätigbaren Komponenten eines Kühlsystems, Computerprogramm, Steuergerät, Kühlsystem und Brennkraftmaschine
JP3912104B2 (ja) * 2001-12-25 2007-05-09 三菱自動車工業株式会社 エンジンの冷却装置
DE10206297A1 (de) 2002-02-15 2003-09-04 Bosch Gmbh Robert Verfahren zum Betreiben einer Brennkraftmaschine
DE50309078D1 (de) 2002-04-15 2008-03-13 Bosch Gmbh Robert Verfahren zur steuerung und/oder regelung eines kühlsystems eines kraftfahrzeugs
DE10224063A1 (de) 2002-05-31 2003-12-11 Daimler Chrysler Ag Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge
DE10232150A1 (de) 2002-07-16 2004-02-05 Robert Bosch Gmbh Verfahren und Vorrichtung zur Regelung der Temperatur eines Kühlmittels einer Brennkraftmaschine
JP3932277B2 (ja) * 2002-10-18 2007-06-20 日本サーモスタット株式会社 電子制御サーモスタットの制御方法
DE10249541B4 (de) * 2002-10-23 2018-01-25 Att Automotive Thermo Tech Gmbh Verfahren und Vorrichtung zur bedarfsweisen Erhöhung der Abwärme von Brennkraftmaschinen
DE10261793A1 (de) * 2002-12-23 2004-07-15 Robert Bosch Gmbh Regelungseinrichtung und Verfahren zur Regelung und/oder Kalibrierung eines Mischventils
JP2004353602A (ja) * 2003-05-30 2004-12-16 Nippon Thermostat Co Ltd 電子制御サーモスタットの制御方法
DE10336599B4 (de) * 2003-08-08 2016-08-04 Daimler Ag Verfahren zur Ansteuerung eines Thermostaten in einem Kühlkreislauf eines Verbrennungsmotors
JP4496975B2 (ja) * 2005-01-31 2010-07-07 日産自動車株式会社 冷却ファン制御装置
DE102006031052A1 (de) * 2006-07-05 2008-01-10 Ford Global Technologies, LLC, Dearborn Verfahren zum Betreiben einer Brennkraftmaschine, die für den Gebrauch von mindestens zwei unterschiedlichen Kraftstoffsorten vorgesehen ist, und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens
JP4858287B2 (ja) * 2007-04-20 2012-01-18 トヨタ自動車株式会社 内燃機関の制御装置
DE102008049803B4 (de) * 2008-09-30 2018-04-12 Bayerische Motoren Werke Aktiengesellschaft Temperaturführung eines Kühlmittels mit optimierterAusnutzung einer verbleibenden Stressfähigkeit eines Motors
DE102009039374B4 (de) 2009-08-29 2022-01-05 Bayerische Motoren Werke Aktiengesellschaft Vorausschauendes Wärmemanagement in einem Kraftfahrzeug
DE102010003747B4 (de) 2010-04-08 2022-03-24 Bayerische Motoren Werke Aktiengesellschaft Vorausschauendes Wärmemanagement in einem Kraftfahrzeug
US9238995B2 (en) 2012-11-09 2016-01-19 GM Global Technology Operations LLC Energy control systems and methods for a powertrain of a vehicle
JP6020218B2 (ja) * 2013-02-05 2016-11-02 マツダ株式会社 可変気筒エンジン
DE102013205331A1 (de) * 2013-03-26 2014-10-02 Zf Friedrichshafen Ag Verfahren und Steuerungseinrichtung zum Betreiben eines Motorlüfters
JP6306529B2 (ja) 2015-03-06 2018-04-04 日立オートモティブシステムズ株式会社 車両用内燃機関の冷却装置及び制御方法
JP2016210243A (ja) * 2015-04-30 2016-12-15 トヨタ自動車株式会社 車両の自動運転システム
JP6436122B2 (ja) * 2016-03-28 2018-12-12 トヨタ自動車株式会社 内燃機関
DE102018204697A1 (de) * 2018-03-28 2019-10-02 Volkswagen Aktiengesellschaft Verfahren zur Generierung eines Wertes, wobei der Wert einen Rückschluss auf eine Temperatur eines Kühlmittels zulässt

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109498A1 (de) * 1991-03-22 1992-09-24 Bosch Gmbh Robert Vorrichtung und verfahren zur regelung der temperatur einer brennkraftmaschine
EP0557113A2 (de) * 1992-02-19 1993-08-25 Honda Giken Kogyo Kabushiki Kaisha Maschinenkühlanlage
EP0887526A2 (de) * 1997-06-27 1998-12-30 Toyota Jidosha Kabushiki Kaisha Direkteinspritzbrennkraftmaschine und Kühlsystem dafür
DE19728814A1 (de) * 1997-07-05 1999-01-07 Behr Thermot Tronik Gmbh & Co Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges
GB2333354A (en) * 1995-03-17 1999-07-21 Standard Thomson Corp Electronically controlled engine cooling apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4109498A1 (de) * 1991-03-22 1992-09-24 Bosch Gmbh Robert Vorrichtung und verfahren zur regelung der temperatur einer brennkraftmaschine
EP0557113A2 (de) * 1992-02-19 1993-08-25 Honda Giken Kogyo Kabushiki Kaisha Maschinenkühlanlage
GB2333354A (en) * 1995-03-17 1999-07-21 Standard Thomson Corp Electronically controlled engine cooling apparatus
EP0887526A2 (de) * 1997-06-27 1998-12-30 Toyota Jidosha Kabushiki Kaisha Direkteinspritzbrennkraftmaschine und Kühlsystem dafür
DE19728814A1 (de) * 1997-07-05 1999-01-07 Behr Thermot Tronik Gmbh & Co Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220364958A1 (en) * 2019-10-07 2022-11-17 Precision Planting Llc Systems and methods for testing agricultural implements
US11136918B2 (en) 2019-12-23 2021-10-05 General Electric Company Method and apparatus for cooling water system optimization

Also Published As

Publication number Publication date
DE19951362A1 (de) 2001-05-03
EP1228294A1 (de) 2002-08-07
JP2003513191A (ja) 2003-04-08

Similar Documents

Publication Publication Date Title
WO2001031177A1 (de) Verfahren zur regelung der kühlwassertemperatur eines kraftfahrzeugs mit einem verbrennungsmotor
DE102010035118B4 (de) Verfahren und Systeme für Turboladersteuerung
DE112013007079B4 (de) Steuervorrichtung für Verbrennungsmotor
DE112013007145B4 (de) Steuervorrichtung für mit Turbolader ausgerüstetem Verbrennungsmotor
DE69923532T2 (de) Vorrichtung zur steuerung der abgasrückführung in einer brennkraftmaschine
DE19619320A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19631986A1 (de) Steuereinrichtung für eine direkteinspritzende Benzinbrennkraftmaschine
DE112013007227B4 (de) Steuerungsverfahren für eine Verbrennungskraftmaschine
DE10046597B4 (de) Steuersystem für Motoren mit Direkteinspritzung
DE19844213C1 (de) Verfahren zur Regelung oder Steuerung einer aufgeladenen Brennkraftmaschine
DE102004038810A1 (de) Verfahren und System zum Steuern der Motortemperatur durch eine Motordrosselung
DE102004036305B4 (de) Verfahren und System für einen Verbrennungsmotor mit variablem Hubraum
DE10043690A1 (de) Verfahren zur NOx-Massenstrombestimmung aus Kennfelddaten bei variabler Lufteinlass- und Motortemperatur
EP1071874B1 (de) Verfahren und vorrichtung zum betrieb einer brennkraftmaschine
EP0764778B1 (de) Verfahren zur Steuerung der Kraftstoffeinspritzung bei einem Dieselmotor
DE102018207413A1 (de) Verfahren zum Betreiben einer Motorbremse in einer Brennkraftmaschine
DE10345158A1 (de) Verfahren und System zur Leerlaufregelung
EP1190167A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine mit benzindirekteinspritzung
EP0659990B1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP1144828B1 (de) Verfahren zum betreiben einer brennkraftmaschine
DE102007051252B4 (de) Verfahren und Vorrichtung zur Reduzierung des Antriebsmoments bei kurzzeitigen Momenten reduzierenden Eingriffen
DE19828085A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE19958465A1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
EP1081363B1 (de) Verfahren zum Betreiben einer Brennkraftmaschine
DE102006000217A1 (de) Brennstoffeinspritz-Steuerungsvorrichtung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP RU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000978956

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10111238

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 533297

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000978956

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000978956

Country of ref document: EP