WO2001030936A2 - Composition de marquage d'un produit solide ou liquide, procede de fabrication d'une telle composition - Google Patents

Composition de marquage d'un produit solide ou liquide, procede de fabrication d'une telle composition Download PDF

Info

Publication number
WO2001030936A2
WO2001030936A2 PCT/FR2000/002992 FR0002992W WO0130936A2 WO 2001030936 A2 WO2001030936 A2 WO 2001030936A2 FR 0002992 W FR0002992 W FR 0002992W WO 0130936 A2 WO0130936 A2 WO 0130936A2
Authority
WO
WIPO (PCT)
Prior art keywords
microspheres
fluorescent
fluorescent molecules
marking
molecules
Prior art date
Application number
PCT/FR2000/002992
Other languages
English (en)
Other versions
WO2001030936A3 (fr
Inventor
Sébastien DE LAMBERTERIE
Original Assignee
Cypher Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cypher Sciences filed Critical Cypher Sciences
Priority to BR0015073-8A priority Critical patent/BR0015073A/pt
Priority to CA002389027A priority patent/CA2389027A1/fr
Priority to EP00974575A priority patent/EP1230388A2/fr
Priority to AU12826/01A priority patent/AU1282601A/en
Publication of WO2001030936A2 publication Critical patent/WO2001030936A2/fr
Publication of WO2001030936A3 publication Critical patent/WO2001030936A3/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/531Production of immunochemical test materials
    • G01N33/532Production of labelled immunochemicals
    • G01N33/533Production of labelled immunochemicals with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54353Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/185Nucleic acid dedicated to use as a hidden marker/bar code, e.g. inclusion of nucleic acids to mark art objects or animals

Definitions

  • composition for marking a solid or liquid product process for manufacturing such a composition, use of such a composition and use of the manufacturing process
  • the invention relates to a composition for marking a solid or liquid product and to the process for manufacturing such a composition.
  • the invention relates more particularly to a composition for labeling a solid or liquid product, comprising microspheres and fluorescent molecules, allowing secret traceability of products. It is known in the prior art to mark liquid or solid products, by means of microspheres or microbeads charged with fluorescence, in order to make it possible to identify and / or control the movements of the products.
  • Patent WO 94 04918 relates to a method of marking material, more particularly liquid, by adding to the liquid an additive comprising particles such as microspheres which are recognized by detection means.
  • the microspheres are made of polymeric materials with a diameter between 0.05 and 100 ⁇ m.
  • the detection means can consist of fluorescent compounds incorporated without covalent bond in the microspheres and DNA molecules linked by a covalent bond to the microspheres.
  • the fluorescent compounds used as markers, make it possible to observe by epifluorescence microscopy the microspheres which remain invisible to the naked eye and the microspheres serve to localize the DNA molecules and DNA support, the DNA molecules serving as a tracer.
  • microspheres charged with fluorescent molecules can be added to a liquid such as a hydrocarbon, a varnish or an ink for example.
  • a liquid sample can be taken and observed by a microscope under a specific light source to make it possible to detect fluorescence and thus locate the microspheres.
  • the DNA molecules can be removed and amplified by PCR (Polymerise Chain Reaction) technology using the molecular key complementary to the strand sequences in order to identify the sequences and therefore the product. Mark.
  • PCR Polymerise Chain Reaction
  • the incorporation of the fluorescent molecules into the microspheres can be carried out during the polymerization of the microspheres.
  • Such microspheres have a weak fluorescence and require very precise means to detect it.
  • Another method consists in mixing the microspheres with the fluorescent molecules in a solvent, the microspheres expanding, under the effect of the solvent or an increase in temperature, soak up fluorescent molecules. A drop in temperature or the evaporation of the solvent then makes it possible to trap the fluorescent molecules inside the microspheres.
  • a fluorescent microsphere of this type is produced by the creation, at high pH, of a covalent bond between a latex microsphere having on the surface grafts of carboxyl, methyl ester and hydroxyl ester group and a diamine and an amino fluorescent molecule.
  • the fluorescent microspheres obtained have a significant fluorescence which will allow them to be easily detected.
  • fluorescent microspheres must preserve their fluorescence over time, whatever the medium in which they are placed.
  • fluorescent microspheres presented in these prior patents are not chemically and thermally resistant. Indeed, in the case where the microspheres incorporating the fluorescent molecules, are placed in an aggressive medium such as a solvent medium, they lose their fluorescence. In this medium, the microspheres expand and release the fluorescent compounds. Since the fluorescent molecules are no longer associated with the microspheres, the microspheres can no longer be located and no longer fulfill their labeling role. In some cases, the microspheres are completely destroyed by the solvent.
  • the polymer constituting the microspheres can dissolve in the solvent. Likewise if the temperature becomes too high, the polymer may dissolve. The solubilization of polymers generally takes place between 90 and 120 ° C. However, the fluorescent microspheres can be used for marking plastic and during plastic extrusion, the temperatures can reach 300 ° C., causing this solubilization of the fluorescent microspheres in the plastic.
  • An object of the invention is to propose a method for manufacturing a composition for marking solid or liquid products, based on the use of fluorescent microspheres chemically and thermally resistant and whose fluorescence takes place over time and in aggressive environments such as solvents.
  • This object is achieved by a process for the manufacture of a composition for marking solid or liquid products, characterized in that it consists in creating a covalent bond between fluorescent molecules and microspheres based on mineral physics.
  • this process consists in creating a covalent bond between fluorescent molecules and microspheres based on divinylbenzene.
  • this method consists in creating the covalent bond by a reaction of the microspheres having primary amine endings with fluorescent molecules having reactive endings with primary amines.
  • the microspheres are made of porous silica.
  • the microspheres are made of solid silica.
  • the fluorescent molecule has a succinimidyl ester termination reacting with the amine grafts of the silica microspheres to form carboxamide bonds.
  • the fluorescent molecule is a molecule marketed under the brand "ALEXA".
  • the microspheres are of the "Uptispheres NH 2 " type sold by the company InterChim or of the "Exsil Amino" type sold by the company YMC.
  • the method comprises
  • the method comprises - a step of preparing a buffer solution to obtain a pH between 7.8 and 8.5;
  • a step of dissolving in the buffer solution of porous silica microspheres a step of dissolving dehydrated fluorescent molecules in demineralized water having a succinimidyl ester termination;
  • the method comprises a step of adding a tracer constituted by strands of DNA.
  • the method comprises a step of coupling the DNA strands with the microspheres.
  • Another object of the invention is to propose a composition for marking solid or liquid products characterized in that it comprises microspheres based on a mineral physical base having covalent bonds with fluorescent molecules.
  • the fluorescent molecules are linked to the microspheres by amide-type bonds.
  • the composition comprises microspheres having carboxamide bonds with fluorescent molecules.
  • the microspheres are porous silica microspheres having amine (NH 2 ) grafts ensuring the establishment of carboxamide bonds with fluorescent molecules.
  • the microspheres are made of solid silica.
  • the composition comprises tracers made up of DNA strands.
  • tracers made up of DNA strands, are linked by a covalent bond to the microspheres.
  • the composition comprises microspheres from 0.05 to 100 microns.
  • the marking composition according to the invention is used for marking a varnish or an ink.
  • the marking composition according to the invention is used for marking polymeric materials or glue.
  • the polymer material is chosen from unexpanded polystyrene, polypropylene, polyethylene, polyamide, polyester, polymethyl methacrylate, polycarbonate.
  • the polymer material is a film 8 to 1000 ⁇ m thick.
  • the manufacturing process consisting in creating a covalent bond between fluorescent molecules and microspheres is used for the behavioral study of fluorescent molecules.
  • the labeling composition according to the invention comprises microspheres or microbeads and fluorescent molecules linked together by covalent bonds, for example of the amide type.
  • This connection chemical between fluorescent molecules and microspheres is obtained by reacting microspheres having amino terminations (NH 2 ) with fluorescent molecules having terminations reactive to primary amines. This chemical bond ensures a stable bond whatever the environment.
  • fluorescent molecules represents all molecules whose fluorescence can be observed by a detection means such as an epifluorescence microscope.
  • the microspheres can be of different natures, organic or mineral. According to one embodiment, the microspheres are based on mineral physics and consist of porous silica microspheres grafted with primary amines. The porosity of the microspheres can of course vary. The active surface of the microspheres, defined by the number of amino sites, is a function of its porosity.
  • the porous silica microspheres are of the "Uptispheres NH 2 " type sold by the company InterChim or of the "Exsil Amino" type sold by the company YMC, these microspheres being traditionally used in chromatography columns. They have for example a porosity of the order of 100 to 120 ⁇ . To ensure an optimal labeling reaction, the microspheres must be perfectly clean.
  • the microspheres with a mineral physical base are made of solid silica, which reduces the active surface of the microsphere.
  • the solid silica microspheres sold by the company Bangs Laboratory comprise on the surface grafts of carboxyl groups. To obtain full silica microspheres having primary amino grafts, diamines are reacted on the carboxyl groups.
  • the microspheres with a mineral physical base are made of ceramic.
  • the ceramic of these ceramic microspheres sold by the company "Sphere Service” is a mixture of silica in a proportion ranging from 55 to 65% and various metals such as iron, aluminum, titanium.
  • the fluorescent molecules used in the present invention can be observed by means of a mercury or xenon vapor lamp microscope using a set of filters adapted to the excitation and emission wavelengths of the fluorescent molecule.
  • This filter set includes an excitation filter and an emission filter causing fluorescence by selection of an excitation peak and makes it possible to highlight the fluorescent molecules by improving the contrast between the sphere and the environment in which is the sphere.
  • the fluorescent molecules used In order to ensure the effectiveness of the labeling product, the fluorescent molecules used must be photostable and thus resist prolonged exposure to daylight for a minimum of 30 days and a minimum exposure of 3 minutes to the source of excitation constituted by the mercury or xenon lamp mounted on a microscope.
  • the fluorescent molecules dissolve in water or any other solvent in order to allow the labeling or coupling reaction between the fluorescent molecules and the microspheres.
  • the range of fluorescent molecules from the company Molecular Probes can be used.
  • the fluorescent molecule “FLUOR X” sold by the company Research Organics and the molecules of the "BODIPY” range sold by Molecular Probes can be used.
  • the “FLUOR X” molecule has a succinimidyl ester termination.
  • the "ALEXA” and “BODIPY” ranges also include succinimidyl ester-terminated fluorescent molecules with different wavelengths of excitation and mercury vapor emission.
  • succinimidyl ester-terminated fluorescent molecules for example from the "ALEXA” range, are packaged in the form dehydrated in polypropylene tubes and currently sold in protein labeling kits. These fluorescent molecules, used in the field of protein labeling, exhibit a stable fluorescence which lasts over time.
  • the succinimidyl ester termination of this fluorescent molecule makes it possible to form a carboxamide bond between the microsphere and the fluorescent molecule according to the reaction illustrated in FIG. 1, in which
  • A represents a microsphere grafted with primary amine (NH 2 ),
  • B represents the fluorescent molecule having a succinimidyl ester termination, "R” being the fluorescent group of the molecule,
  • a buffer solution can be added during the labeling reaction in order to adjust the pH conditions and optimize the reaction.
  • the pH of the mixture must be between 7 and 9, preferably between 7.8 and 8.5.
  • the pH is increased by the addition of a buffer solution devoid of ammonium ions or primary amines in order to avoid any parasitic reaction.
  • a sodium bicarbonate solution can be used as a buffer solution.
  • the reaction consists in reacting porous microspheres of amino silica with fluorescent molecules of the "ALEXA" type, to obtain fluorescent silica microspheres.
  • the manufacturing process includes the following steps:
  • microsphere washing step can be done using two different methods.
  • the fluorescent microspheres obtained are deposited in a dialysis rod introduced into a large volume of water, for example 5 grams of microspheres under dialysis in 3 liters of water. The whole is stirred, for example, by magnetic stirring, for several hours. The measurement of the pH of the water before and after dialysis then indicates that the transfer of the salts from the fluorescent microspheres to the water occurs well. The stabilization of the PH after several dialysis baths indicates the end of the enema.
  • the fluorescent microspheres are dispersed in a large volume of water. The mixture is stirred and left to stand for several hours, the microspheres then slowly sediment. Then the water loaded with salts and unbound fluorescent molecules is removed.
  • the measurement of the pH of the water before and after the dispersion indicates that the transfer of the salts from the microspheres to the water occurs well.
  • the stabilization of the PH after several baths indicates the end of the enema. After enema, one can optionally switch from an aqueous base to a solvent base.
  • the microspheres are microspheres of copolymers containing 10% of divinylbenzene.
  • These microspheres with a certain level of amino grafts are, for example, synthesized by the company "DYNO” in Norway.
  • These crosslinked physical base microspheres just like the mineral physical microspheres and unlike polymer based microspheres such as polystyrene (PS) or polymethyl methacrylate (PMMA), are compatible with aggressive solvents such as those used in inks like ethylacetate.
  • PS polystyrene
  • PMMA polymethyl methacrylate
  • these divinylbenzene microspheres are not thermally resistant and cannot be used for labeling products made of polymer material. The labeling of the microspheres can be checked by observation with an epifluorescence microscope.
  • a homogeneous distribution of the fluorescent molecules on the microspheres is obtained by a good assay of the quantity of fluorescence used per gram of microspheres.
  • This assay which can be defined empirically, is a function of the reactivity of the microspheres and of the fluorescent molecules.
  • the dosage thus depends on several parameters. These parameters are the density and porosity of the microspheres, the number of amino sites (NH 2 ) available per microsphere, the activity of the fluorescent molecules, the molar mass of the fluorescent molecule and the volume of the reaction.
  • the labeling is characterized by the ratio R of the mass of fluorescent molecules spent per gram of labeled microspheres. In the example described above, the ratio R is of the order of 0.67
  • the fluorescent silica microspheres will be protected from light, for example in an amber polypropylene bottle, kept at a temperature of the order of 4 ° C.
  • microspheres stored in powder form, can be used as they are in different applications.
  • liquids such as hydrocarbons, varnishes or sludges
  • the microspheres are dissolved in a solvent miscible with the liquid which it is desired to mark.
  • Additives such as wetting agents or dispersants can be added to ensure a homogeneous dispersion of the fluorescent silica microspheres in the different solutions.
  • the observation of a sample of a labeled liquid product may be preceded by a stage of concentration or recovery of the fluorescent microspheres, for example, by a centrifugation process or a filtration process or a magnetic recovery process based on the use of microspheres having a physical magnetic base, for example, ceramic.
  • the fluorescent microspheres according to the invention can be inserted in an ink or varnish.
  • the ink or varnish can then be applied to different supports, such as packaging, in order to mark said support and the products it contains.
  • the microspheres can be dissolved in an alcohol / ester solvent for marking rotogravure or flexography inks.
  • a solvent (cyclohexanol / Ethoxypropylacetate) can be used for the traceability of pad printing inks and varnishes. Other types of solvent can be used for marking inks and varnishes used in "offset" or screen printing processes.
  • the microspheres are dissolved in water for the labeling of aqueous systems.
  • the fluorescent microspheres according to the invention can also be inserted into products during their manufacture, such as in the resin used for the manufacture of plywoods. Fluorescent microspheres can be used for marking of glue or of polymeric materials, such as unexpanded polystyrene, polypropylene, polyethylene, polyamide, polyester, polymethyl methacrylate, etc.
  • the dry fluorescent mineral microspheres are mixed (directly or via a masterbatch) with polymer granules or with a polymer powder.
  • the mixture is extruded and then transformed into a film (by stretching, using the bulb process), into a wire (through dies), into a specific form (by injection into a mold).
  • Polymeric materials are not always extruded, they can be "thermoformed", that is to say mold under pressure and under heat. They can also "polymerize” by chemical reaction and / or under the action of heat or UV radiation.
  • the microspheres can also be inserted as an additive during the polymerization step of the polymer material.
  • Polystyrene is for example used in the manufacture of plates or films, polyethylene in the manufacture of flexible packaging or "blister", polypropylene in the manufacture of polypropylene film used to support banknotes, polyamide and polyester in the manufacture of textile thread, polymethyl methacrylate in the manufacture of base materials for pens or lighter, polycarbonate in the manufacture of packaging, elastomers in the manufacture of dolls or coating of sleeves tools.
  • the physical nature of the microspheres can be chosen according to the use to which it will be put.
  • the silica microspheres will preferably be used for marking very aggressive products, or intended to be worn at high temperature.
  • the manufacturing temperatures of product in polymer material being often high, the silica microspheres, thermally resistant, are perfectly adapted for the marking of these products in polymer material.
  • different types of covalent bond can be envisaged between the microsphere and the fluorescent molecule.
  • fluorescences having isothiocyanate or sulfonyl chloride endings can be used to form thiourea and sulfonamide bonds respectively.
  • the choice of the size of the microspheres is made according to their application.
  • the size of the microspheres will depend on the thickness of the layer of ink deposited. In order to prevent a large number of fluorescent microspheres from being lost in the mass of ink deposited and that only the surface fluorescent microspheres are visible under the microscope, the size of the microspheres is substantially equal to the thickness of the layer d opaque ink. Depending on the ink application process, the layer can reach a thickness of 30 to 100 ⁇ m or be of the order of 1 to 2 ⁇ m, obtained, for example, by a gravure process.
  • the size of the microspheres is of little importance since the fluorescence of the microspheres included in the mass can be observed through the varnish or the polymer material.
  • the size of the microspheres can be a function of the concentration process used.
  • the process is carried out by dissolving the labeled polymer and by filtration of the dissolving product. The micospheres are then observed on the filtration membranes of the dissolution product.
  • the fluorescent microspheres according to the invention are associated with a tracer, of DNA type, to ensure the inviolability of the labeling.
  • the DNA molecules synthesized can be deposited at the same time as the microspheres on the products to be labeled, the microspheres then used only to locate the DNA strands.
  • the DNA binding reaction with the microspheres can be carried out before or after the labeling reaction of the microspheres with the fluorescent molecules described above. In the case of microspheres of polymers or copolymers, covalent bonds of different natures can be envisaged.
  • the marking composition according to the invention makes it possible to carry out an effective and lasting marking of a large number of products which remained impossible by the use of microspheres based on polymer of the prior art.
  • the manufacturing method according to the invention consisting in creating a covalent bond between the fluorescent molecules and the microspheres, can be used to facilitate the study of the behaviors of fluorescent molecules, such as the lifetime of the fluorescence.
  • fluorescent molecules intended for labeling proteins it is easier to study the behavior of the molecule on a support such as a microsphere than on a protein.
  • the presence of a stable covalent bond between the fluorescent molecule and the microsphere ensures an efficient behavioral study of the fluorescent molecule.
  • the study on microsphere according to the invention is all the more realistic as the bonds between the fluorescent molecule and the microsphere and between the fluorescent molecule and the protein are of the same nature, each constituted by a covalent bond.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)
  • Paints Or Removers (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)

Abstract

L'invention concerne une composition de marquage d'un produit solide ou liquide et le procédé de fabrication d'une telle composition. Le procédé de fabrication d'une composition de marquage de produits solides ou liquides se caractérise en ce qu'il consiste à créer une liaison covalente entre des molécules fluorescentes et des microsphères à base physique minérale, en faisant par exemple réagir des microsphères de silice poreuse présentant des terminaisons amines primaires, avec des molécules fluorescentes présentant des terminaisons réactives avec les amines primaires telle qu'une terminaison succinimidyl ester.

Description

Composition de marquage d'un produit solide ou liquide, procédé de fabrication d'une telle composition, utilisation d'une telle composition et utilisation du procédé de fabrication
L'invention concerne une composition de marquage d'un produit solide ou liquide et le procédé de fabrication d'une telle composition.
L'invention concerne plus particulièrement une composition de marquage d'un produit solide ou liquide, comprenant des microsphères et des molécules fluorescentes, permettant une traçabilité secrète de produits. II est connu dans l'art antérieur de marquer des produits liquides ou solides, par l'intermédiaire de microsphères ou microperles chargées de fluorescence, afin de permettre d'identifier et/ou de contrôler les mouvements des produits. Le brevet WO 94 04918 concerne une méthode de marquage de matériau, plus particulièrement de liquide, en ajoutant au liquide un additif comprenant des particules telles que des microsphères qui sont reconnues par des moyens de détection. Les microsphères sont constituées de matériaux polymères présentant un diamètre compris entre 0,05 et 100 μm. Les moyens de détection peuvent être constitués par des composés fluorescents incorporés sans liaison covalente dans les microsphères et des molécules d'ADN liées par une liaison covalente aux microsphères. Dans ce document, les composés fluorescents, utilisés comme marqueurs, permettent d'observer par microscopie à épifluorescence les microsphères qui demeurent invisibles à l'œil nu et les microsphères servent à localiser les molécules d'ADN et de support à l'ADN, les molécules d'ADN servant de traceur. Ainsi des microsphères chargées de molécules fluorescentes peuvent être additionnées à un liquide tel qu'un hydrocarbure, un vernis ou une encre par exemple. Un échantillon de liquide peut être prélevé et observé par un microscope sous une source de lumière spécifique pour permettre de dépister la fluorescence et ainsi de localiser les microsphères. Lorsque les microsphères sont localisées, les molécules d'ADN peuvent être prélevées et être amplifiées par la technologie PCR (Polymerise Chain Reaction) par l'intermédiaire de la clé moléculaire complémentaire des séquences des brins afin d'identifier les séquences et par conséquent le produit marqué. De telles microsphères fluorescentes invisibles à l'oeil nu permettent ainsi de tracer secrètement les produits.
L'incorporation des molécules fluorescentes dans les microsphères peut être effectuée lors de la polymérisation des microsphères. De telles microsphères présentent une faible fluorescence et nécessitent des moyens très précis pour la détecter. Une autre méthode consiste à mélanger dans un solvant les microsphères avec les molécules fluorescentes, les microsphères se dilatant, sous l'effet du solvant ou d'une augmentation de la température, s'imprègnent de molécules fluorescentes. Une baisse de température ou l'évaporation du solvant permet ensuite d'emprisonner les molécules fluorescentes à l'intérieur des microsphères.
Il est également connu dans le brevet US 5,194,300 des microsphères fluorescentes utilisées pour le marquage de protéines et la détection de gènes spécifiques. Une microsphère fluorescente de ce type est fabriquée par la création à PH élevé, d'une liaison covalente entre une microsphère de latex disposant en surface de greffes de groupement carboxyle, méthyle ester et hydroxyle ester et une diamine et une molécule fluorescente aminée. Les microsphères fluorescentes obtenues disposent d'une fluorescence importante qui leur permettra d'être facilement détectées.
Il est également connu dans le brevet US 5,759,447 une mémoire optique effaçable constituée d'un chromophore photoactif bistable lié par covalence à une microsphère en polymère telle que du polystyrène. Ce type de produit est principalement utilisé dans le domaine de l'informatique.
Pour présenter un intérêt dans le domaine du marquage de produits, les microsphères fluorescentes doivent préserver leur fluorescence dans le temps quel que soit le milieu où elles sont placées. Or, Il s'avère que les microsphères fluorescentes présentées dans ces brevets antérieurs ne sont pas résistantes chimiquement et thermiquement. En effet, dans le cas où les microsphères incorporant les molécules fluorescentes, sont placées dans un milieu agressif tel qu'un milieu solvant, elles perdent leur fluorescence. Dans ce milieu, les microsphères se dilatent et libèrent les composés fluorescents. Les molécules fluorescentes n'étant plus associées aux microsphères, les microsphères ne peuvent plus être localisées et ne remplissent plus leur rôle de marquage. Dans certains cas, les microsphères sont totalement détruites par le solvant. Dans le cas où les microsphères en polymère sont liées par covalence aux molécules fluorescentes, le polymère constituant les microsphères, selon la nature du solvant, peut se dissoudre dans le solvant. De même si la température devient trop élevé, le polymère peut se solubiliser. La solubilsation des polymères intervient en général entre 90 et 120°C. Or, les microsphères fluorescentes peuvent être utilisées pour le marquage de plastique et lors d'extrusion de plastique, les températures peuvent atteindre 300°C, provoquant alors cette solubilisation des microsphères fluorescentes dans le plastique.
Un but de l'invention est de proposer un procédé de fabrication d'une composition de marquage de produits solides ou liquides, basée sur l'utilisation de microsphères fluorescentes résistantes chimiquement et thermiquement et dont la fluorescence tient dans le temps et dans les environnements agressifs tels que les solvants.
Ce but est atteint par un procédé de fabrication d'une composition de marquage de produits solides ou liquides, caractérisé en ce qu'il consiste à créer une liaison covalente entre des molécules fluorescentes et des microsphères à base physique minérale.
Selon une autre particularité, ce procédé consiste à créer une liaison covalente entre des molécules fluorescentes et des microsphères à base de divinylbenzène. Selon une autre particularité, ce procédé consiste à créer la liaison covalente par une réaction des microsphères présentant des terminaisons aminés primaires avec des molécules fluorescentes présentant des terminaisons réactives avec les aminés primaires. Selon une autre particularité, les microsphères sont en silice poreuse.
Selon une autre particularité, les microsphères sont en silice pleine.
Selon une autre particularité, la molécule fluorescente présente une terminaison succinimidyl ester réagissant avec les greffes d'amines des microsphères de silice pour former des liaisons carboxamide.
Selon une autre particularité, la molécule fluorescente est une molécule commercialisée sous la marque "ALEXA".
Selon une autre particularité, les microsphères sont de type "Uptisphères NH2" commercialisées par la société InterChim ou de type "Exsil Amino" commercialisées par la société YMC.
Selon une autre particularité, le procédé comprend
- une étape de préparation d'une solution tampon à un pH déterminé ;
- une étape de mise en solution de microsphères dans la solution tampon ;
- une étape de mise en solution dans un solvant de molécules fluorescentes déshydratées ;
- une étape de mélange et d'agitation pendant un temps déterminé de la solution de molécules fluorescentes et des microsphères, à une température déterminée ;
- une étape de lavement des microsphères fluorescentes obtenues pour les séparer des sels du tampon, des molécules fluorescentes non liées et des molécules secondaires de la réaction ;
- et une étape d'évaporation du solvant. Selon une autre particularité, le procédé comprend - une étape de préparation d'une solution tampon pour obtenir un pH compris entre 7,8 et 8,5 ;
- une étape de mise en solution dans la solution tampon de microsphères de silice poreuse ; - une étape de mise en solution dans de l'eau déminéralisée de molécules fluorescentes déshydratées présentant une terminaison succinimidyl ester ;
- une étape de mélange et d'agitation pendant approximativement une heure, de la solution de molécules fluorescentes et des microsphères, à température ambiante ;
- une étape de lavement des microsphères fluorescentes obtenues pour les séparer des sels du tampon, des molécules fluorescentes non liées et des molécules secondaires de la réaction ;
- et une étape d'évaporation du solvant. Selon une autre particularité, le procédé comprend une étape d'addition d'un traceur constitué par des brins d'ADN.
Selon une autre particularité, le procédé comprend une étape de couplage des brins d'ADN avec les microsphères.
Un autre but de l'invention est de proposer une composition de marquage de produits solides ou liquides caractérisée en ce qu'elle comprend des microsphères à base physique minérale présentant des liaisons covalentes avec des molécules fluorescentes.
Selon une autre particularité, les molécules fluorescentes sont liées aux microsphères par des liaisons de type amide. Selon une autre particularité, la composition comprend des microsphères présentant des liaisons carboxamide avec des molécules fluorescentes.
Selon une autre particularité, les microsphères sont des microsphères poreuses de silice présentant des greffes d'amines (NH2) assurant l'établissement des liaisons carboxamide avec les molécules fluorescentes.
Selon une autre particularité, les microsphères sont en silice pleine.
Selon une autre particularité, la composition comprend des traceurs constitués de brins d'ADN.
Selon une autre particularité, des traceurs, constitués de brins d'ADN, sont liés par une liaison covalente aux microsphères.
Selon une autre particularité, la composition comprend des microsphères de 0,05 à 100 microns. Selon une autre particularité, la composition de marquage selon l'invention est utilisée pour le marquage d'un vernis ou d'une encre.
Selon une autre particularité, la composition de marquage selon l'invention est utilisée pour le marquage de matériaux polymères ou de colle.
Selon une autre particularité, le matériau polymère est choisi parmi le polystyrène non expansé, le polypropylène, le polyéthylène, le polyamide, le polyester, le polyméthacrylate de méthyle, le polycarbonate.
Selon une autre particularité, le matériau polymère est un film de 8 à 1000 μm d'épaisseur.
Selon une autre particularité, le procédé de fabrication consistant à créer une liaison covalente entre des molécules fluorescentes et des microsphères est utilisé pour l'étude comportementale de molécules fluorescentes.
D'autres particularités et avantages de la présente invention apparaîtront plus clairement à la lecture de la description ci-après faite en référence au dessin annexé dans lequel la figure unique représente une réaction de couplage selon l'invention d'une microsphère avec une molécule fluorescente.
La composition de marquage, selon l'invention, comprend des microsphères ou microperles et des molécules fluorescentes reliées entre elles par des liaisons covalentes, par exemple de type amide. Cette liaison chimique entre les molécules fluorescentes et les microsphères est obtenue en faisant réagir des microsphères présentant des terminaisons aminés (NH2) avec des molécules fluorescentes présentant des terminaisons réactives aux aminés primaires. Cette liaison chimique assure une liaison stable quel que soit l'environnement. La désignation "molécules fluorescentes" représente toutes molécules dont la fluorescence peut être observée par un moyen de détection tel qu'un microscope à épifluorescence.
Les microsphères, dont la taille peut varier de 0,05 μm à 100 μm, peuvent être de natures différentes, organiques ou minérales. Selon un mode de réalisation, les microsphères sont à base physique minérale et sont constituées de microsphères poreuses de silice greffées d'amines primaires. La porosité des microsphères peut bien entendu varier. La surface active des microsphères, définie par le nombre de sites aminés, est fonction de la porosité de celle-ci. A titre d'exemple, les microsphères poreuses de silice sont de type "Uptisphères NH2" commercialisées par la société InterChim ou de type "Exsil Amino" commercialisées par la société YMC, ces microsphères étant traditionnellement utilisées dans les colonnes de chromatographie. Elles présentent par exemple une porosité de l'ordre de 100 à 120 Λ. Afin d'assurer une réaction de marquage optimale, les microsphères doivent être parfaitement propres.
Selon une variante, les microsphères à base physique minérale sont en silice pleine, ce qui réduit la surface active de la microsphère. Les microsphères en silice pleines commercialisées par la société Bangs Laboratory comprennent en surface des greffes de groupement carboxyles. Pour obtenir des Microsphères de silice pleine disposant de greffes aminés primaires, on fait réagir des diamines sur les groupements carboxyles.
Selon une autre variante, les microsphères à base physique minérale sont en céramique. La céramique de ces microsphères en céramique commercialisées par la société « Sphère Service », est un mélange de silice dans une proportion allant de 55 à 65% et de métaux divers tels que du fer, de l'aluminium, du titane.
Les molécules fluorescentes utilisées dans la présente invention peuvent être observées au moyen d'un microscope à lampe à vapeur de mercure ou xénon en utilisant un jeu de filtres adapté aux longueurs d'ondes d'excitation et d'émission de la molécule fluorescente. Ce jeu de filtre comprend un filtre d'excitation et un filtre d'émission provoquant la fluorescence par sélection d'un pic d'excitation et permet de mettre en évidence les molécules fluorescentes en améliorant le contraste entre la sphère et l'environnement dans lequel se trouve la sphère. Afin d'assurer l'efficacité du produit de marquage, les molécules fluorescentes utilisées doivent être photostables et ainsi résister à une exposition prolongée à la lumière du jour de 30 jours minimum et à une exposition minimum de 3 minutes à la source d'excitation constituée par la lampe de mercure ou xénon montée sur un microscope. Les molécules fluorescentes se dissolvent dans l'eau ou tout autre solvant afin de permettre la réaction de marquage ou couplage entre les molécules fluorescentes et les microsphères.
A titre d'exemple, la gamme de molécules fluorescentes de la société Molecular Probes, commercialisée sous la marque "ALEXA", peut être utilisée. De même, la molécule fluorescente « FLUOR X » commercialisée par la société Research Organics et les molécules de la gamme « BODIPY » commercialisées par Molecular Probes peuvent être utilisées. La molécule « FLUOR X » présente une terminaison succinimidyl ester. Les gammes "ALEXA" et « BODIPY » comprennent également des molécules fluorescentes à terminaison succinimidyl ester de différentes longueurs d'onde d'excitation et d'émission à la vapeur de mercure. On peut imaginer pouvoir modifier la molécule fluorescente en fonction des greffes des microsphères.
Les molécules fluorescentes à terminaison succinimidyl ester, par exemple de la gamme « ALEXA », sont conditionnées sous forme déshydratée dans des tubes de polypropylène et actuellement commercialisées dans des kits de marquage de protéines. Ces molécules fluorescentes, utilisées dans le domaine du marquage de protéines, présentent une fluorescence stable qui tient dans le temps. La terminaison succinimidyl ester de cette molécule fluorescente permet de former une liaison carboxamide entre la microsphère et la molécule fluorescente selon la réaction illustrée à la figure 1 , sur laquelle
- "A" représente une microsphère greffée d'aminé primaire (NH2),
- "B" représente la molécule fluorescente présentant une terminaison succinimidyl ester, "R " étant le groupement fluorescent de la molécule,
- "C" représente la microsphère fluorescente, et
- "D" représente le composé secondaire de la réaction.
Suivant la nature de la liaison, une solution tampon peut être ajoutée lors de la réaction de marquage afin d'ajuster les conditions de pH et optimiser la réaction. Dans le cas d'une terminaison succinimidyl ester, le pH du mélange doit être compris entre 7 et 9, préférentiellement entre 7,8 et 8,5. Le pH est augmenté par l'addition d'une solution tampon dépourvue d'ions ammonium ou d'amines primaires afin d'éviter toute réaction parasite. A titre d'exemple, une solution de bicarbonate de sodium peut être utilisée comme solution tampon.
Un exemple de réaction de marquage selon l'invention va à présent être décrit. Dans cet exemple, la réaction consiste à faire réagir des microsphères poreuses de silice aminée avec des molécules fluorescentes de type "ALEXA", pour obtenir des microsphères de silice fluorescentes. Le procédé de fabrication comprend les étapes suivantes :
- dans un bêcher, préparer 30 ml d'une solution tampon de bicarbonate de sodium à 1 M, pour obtenir un pH de l'ordre de 8,3 (+/- 0,1 ) ;
- mettre en solution de 7,5 g microsphères, par exemple déshydratées, dans la solution tampon ; - agiter pour bien disperser les microsphères dans la solution ; - amener un tube contenant 5 mg de molécule fluorescente à température ambiante ;
- mettre 1 ml d'eau déminéralisée dans le tube contenant les molécules fluorescentes, fermer le tube et le renverser plusieurs fois pour bien solubiliser les molécules fluorescentes ;
- verser le contenu du tube dans le bêcher, rincer le tube avec 1 ml d'eau déminéralisée et verser l'eau de rinçage dans le bêcher ;
- agiter magnétiquement avec une barre d'agitation pendant approximativement une heure à température ambiante ; - laver les microsphères fluorescentes obtenues pour les séparer des sels du tampon, des molécules fluorescentes non liées et des molécules secondaires de la réaction ;
- évaporer l'eau.
Ce procédé permet ainsi d'obtenir des microsphères de silice fluorescentes déshydratées. L'étape de lavement des microsphères peut se faire suivant deux méthodes différentes.
Selon la première méthode, les microsphères fluorescentes obtenues sont déposées dans un boudin de dialyse introduit dans un grand volume d'eau, par exemple 5 grammes de microsphères sous dialyse dans 3 litres d'eau. On agite l'ensemble, par exemple, par agitation magnétique, pendant plusieurs heures. La mesure du PH de l'eau avant et après dialyse indique alors que le transfert des sels depuis les microsphères fluorescentes vers l'eau se produit bien. La stabilisation du PH après plusieurs bains de dialyse indique la fin du lavement. Selon la deuxième méthode, les microsphères fluorescentes sont dispersées dans un grand volume d'eau. On agite et on laisse au repos pendant plusieurs heures, les microsphères sédimentent alors lentement. Ensuite on retire l'eau chargée en sels et en molécules fluorescentes non liées. La mesure du PH de l'eau avant et après la dispersion indique que le transfert des sels depuis les microsphères vers l'eau se produit bien. La stabilisation du PH après plusieurs bains indique la fin du lavement. Après lavement, on peut éventuellement passer d'une base aqueuse à une base solvant.
Selon une variante de réalisation, les microsphères sont des microsphères de copolymères contenant 10% de divinylbenzène. Ces microsphères disposant d'un certain taux de greffes aminés sont, par exemple, synthétisées par la société « DYNO » en Norvège. Ces microsphères de base physique réticulée, tout comme les microsphères à base physique minérale et à l'inverse des microsphères à base polymère tel que le polystyrène (PS) ou le polyméthacrylate de méthyle (PMMA), sont compatibles avec des solvants agressifs tels que ceux utilisés dans les encres comme l'éthylacétate. En revanche ces microsphères en divinylbenzène ne sont pas résistantes thermiquement et ne pourront pas être utilisées pour le marquage de produits en matériau polymère. Le contrôle du marquage des microsphères peut être effectué par observation au microscope à épifluorescence. Une répartition homogène des molécules fluorescentes sur les microsphères est obtenue par un bon dosage de la quantité de fluorescence utilisée par gramme de microsphères. Ce dosage, qui peut être défini de façon empirique, est fonction de la réactivité des microsphères et des molécules fluorescentes. Le dosage dépend ainsi de plusieurs paramètres. Ces paramètres sont la densité et la porosité des microsphères, le nombre de sites aminés (NH2) disponibles par microsphère, l'activité des molécules fluorescentes, la masse molaire de la molécule fluorescente et le volume de la réaction. Quantitativement le marquage se caractérise par le rapport R de la masse de molécules fluorescentes dépensées par gramme de microsphères marquées. Dans l'exemple décrit précédemment, le rapport R est de l'ordre de 0,67 Pour leur conservation, les microsphères de silice fluorescente seront protégées de la lumière, par exemple dans un flacon de polypropylène ambré, conservé à une température de l'ordre de 4°C.
Les microsphères, conservées sous forme de poudre, peuvent être utilisées telles quelles dans différentes applications. Pour le marquage ou la traçabilité secrète de liquides, tels que des hydrocarbures, vernis ou boues, les microsphères sont mises en solution dans un solvant miscible au liquide que l'on désire marquer. Des additifs tels que des mouillants ou dispersants peuvent être ajoutés pour assurer une dispersion homogène des microsphères fluorescentes de silice dans les différentes solutions. Suivant la concentration en microsphères fluorescentes, l'observation d'un échantillon d'un produit liquide marqué peut être précédée d'une étape de concentration ou de récupération des microsphères fluorescentes, par exemple, par un procédé de centrifugation ou un procédé de filtration ou un procédé de récupération magnétique basé sur l'utilisation de microsphères disposant d'une base physique magnétique, par exemple, en céramique. Les microsphères fluorescentes selon l'invention peuvent être insérées dans une encre ou vernis. L'encre ou le vernis peuvent ensuite être appliqués sur différents supports, tels que des emballages, afin de marquer ledit support et les produits qu'il contient. A titre d'exemple, les microsphères peuvent être mises en solution dans un solvant alcool/ester pour le marquage d'encres d'héliogravure ou de flexographie. Un solvant (cyclohexanol/ Ethoxypropylacetate) peut être utilisé pour la traçabilité des encres et vernis de tampographie. D'autres types de solvant peuvent être utilisés pour le marquage d'encres et vernis utilisés dans les procédés "offset" ou de sérigraphie. Les microsphères sont mises en solution dans l'eau pour le marquage de systèmes aqueux. Les microsphères fluorescentes selon l'invention peuvent également être insérées dans des produits lors de leur fabrication, tels que dans la résine utilisée pour la fabrication de contre- plaqués. Les microsphères fluorescentes peuvent être utilisées pour le marquage de colle ou de matériaux polymères, tels que le polystyrène non expansé, le polypropylène, le polyéthyléne, le polyamide, le polyester, le le polyméthacrylate de méthyle,... Pour le marquage, par exemple, de produits en matériau plastique obtenus par un passage en extrusion, on mélange (directement ou par l'intermédiaire d'un mélange maître) les microsphères minérales fluorescentes sèches à des granulés de polymère ou à une poudre de polymères. Le mélange est extrudé puis transformé en film (par étirement, par le procédé bulbe), en fil (par filières), en forme spécifique (par injection dans un moule). Les matériaux polymères ne sont pas toujours extrudés, ils peuvent être « thermoformer », c'est-à-dire mouler sous pression et sous la chaleur. Ils peuvent également « polymériser » par réaction chimique et/ou sous l'action de la chaleur ou de rayonnement UV. Les microsphères peuvent également être insérées en tant qu'additif lors de l'étape de polymérisation du matériau polymère. Le polystyrène est par exemple utilisé dans la fabrication de plaques ou de films, le polyéthyléne dans la fabrication d'emballage flexible ou de « blister », le polypropylène dans la fabrication de film de polypropylène servant de support aux billets de banque, le polyamide et le polyester dans la fabrication de fil textile, le le polyméthacrylate de méthyle dans la fabrication de matériaux de base de stylos ou de briquet, le polycarbonate dans la fabrication d'emballage, les élastomères dans la fabrication de poupées ou de revêtement de manches d'outils.
La nature physique des microsphères peut être choisie en fonction de l'utilisation qui en sera faite. Les microsphères de silice seront de préférence utilisées pour le marquage de produits très agressifs, ou destinés à être portés à haute température. Les températures de fabrication de produit en matériau polymère étant souvent élevées, les microsphères de silice, résistantes thermiquement, sont parfaitement adaptées pour le marquage de ces produits en matériau polymère. Bien entendu différents types de liaison covalentes peuvent être envisagés entre la microsphère et la molécule fluorescente. Dans le cas de liaison de type amide, des fluorescences présentant des terminaisons isothiocyanate ou chlorure de sulfonyl peuvent être utilisées pour former respectivement des liaisons thio- urée et sulfonamide. Le choix de la taille des microsphères est effectué en fonction de leur application. Dans le cas de l'insertion de microsphères fluorescentes dans une encre opaque destinée à être appliquée sur des produits pour leur marquage, la taille des microsphères sera fonction de l'épaisseur de la couche d'encre déposée. Afin d'éviter qu'un grand nombre de microsphères fluorescentes ne soient perdues dans la masse d'encre déposée et que seules les microsphères fluorescentes de surface soient visibles au microscope, la taille des microsphères est sensiblement égale à l'épaisseur de la couche d'encre opaque. Selon le procédé d'application de l'encre, la couche peut atteindre une épaisseur de 30 à 100 μm ou être de l'ordre de 1 à 2 μm, obtenue, par exemple, par un procédé d'héliogravure. Dans le cas de vernis déposés sur des produits ou de matériaux polymères translucides, la taille des microsphères a peu d'importance étant donné que la fluorescence des microsphères comprises dans la masse pourra être observée à travers le vernis ou le matériau polymère. Dans le cas du marquage de liquides tels que des hydrocarbures ou des boues, la taille des microsphères peut être fonction du procédé de concentration utilisé. Pour des produits en matériau polymère coloré, on peut dans certains cas observer les microsphères fluorescentes à travers la masse opacifiante du plastique. Dans d'autres cas, on procède par dissolution du polymère marqué et par filtration du produit de dissolution. Les micosphères sont alors observées sur les membranes de filtration du produit de dissolution.
Selon un mode de réalisation, les microsphères fluorescentes selon l'invention sont associées à un traceur, de type ADN, pour assurer l'inviolabilité du marquage. Les molécules d'ADN synthétisées peuvent être déposées en même temps que les microsphères sur les produits à marquer, les microsphères servant alors uniquement à localiser les brins d'ADN. La réaction de liaison de l'ADN avec les microsphères peut être effectuée avant ou après la réaction de marquage des microsphères avec les molécules fluorescentes décrites précédemment. Dans le cas de microsphères de polymères ou copolymères, des liaisons covalentes de différentes natures peuvent être envisagées.
La composition de marquage, selon l'invention, permet de réaliser un marquage efficace et durable d'un grand nombre de produits qui demeurait impossible par l'utilisation des microsphères à base polymère de l'art antérieur. De plus, le procédé de fabrication selon l'invention, consistant à créer une liaison covalente entre les molécules fluorescentes et les microsphères, peut être utilisé pour faciliter l'étude des comportements de molécules fluorescentes, tels que la durée de vie de la fluorescence. Dans le cas, par exemple, de molécules fluorescentes destinées au marquage de protéines, il est plus facile d'étudier le comportement de la molécule sur un support tel qu'une microsphère que sur une protéine. La présence d'une liaison covalente stable entre la molécule fluorescente et la microsphère permet d'assurer une étude comportementale efficace de la molécule fluorescente. Dans le cas de molécules fluorescentes destinées aux protéines, l'étude sur microsphère selon l'invention est d'autant plus réaliste que les accroches entre la molécule fluorescente et la microsphère et entre la molécule fluorescente et la protéine sont de même nature, constituées chacune par une liaison covalente.
Il doit être évident pour les personnes versées dans l'art que la présente invention permet des modes de réalisation sous de nombreuses autres formes spécifiques sans l'éloigner du domaine d'application de l'invention comme revendiqué. Par conséquent, les présents modes de réalisation doivent être considérés à titre d'illustration, mais peuvent être modifiés dans le domaine défini par la portée des revendications jointes, et l'invention ne doit pas être limitée aux détails donnés ci-dessus.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une composition de marquage de produits solides ou liquides, caractérisé en ce qu'il consiste à créer une liaison covalente entre des molécules fluorescentes et des microsphères à base physique minérale.
2. Procédé de fabrication d'une composition de marquage de produits solides ou liquides, caractérisé en ce qu'il consiste à créer une liaison covalente entre des molécules fluorescentes et des microsphères à base de divinylbenzène.
3. Procédé de fabrication d'une composition de marquage de produits solides ou liquides selon la revendication 1 ou 2, caractérisé en ce qu'il consiste à créer la liaison covalente par une réaction des microsphères présentant des terminaisons aminés primaires avec des molécules fluorescentes présentant des terminaisons réactives avec les aminés primaires.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce les microsphères sont en silice poreuse.
5. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que les microsphères sont en silice pleine.
6. Procédé selon la revendication 4 ou 5, caractérisé en ce que la molécule fluorescente présente une terminaison succinimidyl ester réagissant avec les greffes d'amines des microsphères de silice pour former des liaisons carboxamide.
7. Procédé selon la revendication 6, caractérisé en ce que la molécule fluorescente est une molécule commercialisée sous la marque "ALEXA".
8. Procédé selon l'une des revendications 3 à 5, caractérisé en ce que les microsphères sont de type "Uptisphères NH2" commercialisées par la société InterChim ou de type "Exsil Amino" commercialisées par la société YMC.
9. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend s - une étape de préparation d'une solution tampon à un pH déterminé ;
- une étape de mise en solution de microsphères dans la solution tampon ;
- une étape de mise en solution dans un solvant de molécules 0 fluorescentes déshydratées ;
- une étape de mélange et d'agitation pendant un temps déterminé de la solution de molécules fluorescentes et des microsphères, à une température déterminée ;
- une étape de lavement des microsphères fluorescentes obtenues 5 pour les séparer des sels du tampon, des molécules fluorescentes non liées et des molécules secondaires de la réction ;
- et une étape d'évaporation du solvant.
10. Procédé selon l'une des revendications 4 à 9, caractérisé en ce qu'il comprend 0 - une étape de préparation d'une solution tampon pour obtenir un pH compris entre 7,8 et 8,5 ;
- une étape de mise en solution dans la solution tampon de microsphères de silice poreuse ;
- une étape de mise en solution dans de l'eau déminéralisée de 5 molécules fluorescentes déshydratées présentant une terminaison succinimidyl ester ;
- une étape de mélange et d'agitation pendant approximativement une heure, de la solution de molécules fluorescentes et des microsphères, à température ambiante ; - une étape de lavement des microsphères fluorescentes obtenues pour les séparer des sels du tampon, des molécules fluorescentes non liées et des molécules secondaires de la réaction ;
- et une étape d'évaporation du solvant.
1 1 . Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape d'addition d'un traceur constitué par des brins d'ADN.
12. Procédé selon l'une des revendications précédentes, caractérisé en ce qu'il comprend une étape de couplage des brins d'ADN avec les microsphères.
13. Composition pour le marquage de produits liquides ou solides caractérisée en ce qu'elle comprend des microsphères à base physique minérale présentant des liaisons covalentes avec des molécules fluorescentes.
14. Composition de marquage selon la revendication 13, caractérisée en ce que les molécules fluorescentes sont liées aux microsphères par des liaisons de type amide.
15. Composition de marquage selon la revendication 14, caractérisée en ce qu'elle comprend des microsphères présentant des liaisons carboxamide avec des molécules fluorescentes.
16. Composition de marquage selon la revendication 15, caractérisée en ce que les microsphères sont des microsphères poreuses de silice présentant des greffes d'amines (NH2) assurant l'établissement des liaisons carboxamide avec les molécules fluorescentes.
17. Composition de marquage selon la revendication 16, caractérisée en ce que les microsphères sont en silice pleine.
18. Composition de marquage selon l'une des revendications 13 à 16, caractérisée en ce qu'elle comprend des traceurs constitués de brins d'ADN.
19. Composition de marquage selon l'une des revendications 13 à 17, caractérisée en ce que des traceurs, constitués de brins d'ADN, sont liés par une liaison covalente aux microsphères.
20. Composition de marquage selon l'une des revendications 13 à 19, caractérisée en ce qu'elle comprend des microsphères de 0,05 à 100 microns.
21. Utilisation d'une composition de marquage selon l'une des revendications 13 à 20 pour le marquage d'un vernis ou d'une encre.
22. Utilisation d'une composition de marquage selon l'une des revendications 13 à 20 pour le marquage de matériaux polymères ou de colle.
23. Utilisation selon la revendication 22, caractérisée en ce que le matériau polymère est choisi parmi le polystyrène non expansé, le polypropylène, le polyéthyléne, le polyamide, le polyester, le le polyméthacrylate de méthyle, le polycarbonate.
24. Utilisation selon la revendication 22, caractérisé en ce que le matériau polymère est un film de 8 à 1000 μm d'épaisseur.
25. Utilisation du procédé de fabrication consistant à créer une liaison covalente entre des molécules fluorescentes et des microsphères selon l'une des revendications 1 à 12, pour l'étude comportementale de molécules fluorescentes.
PCT/FR2000/002992 1999-10-28 2000-10-27 Composition de marquage d'un produit solide ou liquide, procede de fabrication d'une telle composition WO2001030936A2 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR0015073-8A BR0015073A (pt) 1999-10-28 2000-10-27 Composição de marcação de um produto sólido ou lìquido, processo de fabricação de uma tal composição, utilização de uma tal composição e utilização do processo de fabricação
CA002389027A CA2389027A1 (fr) 1999-10-28 2000-10-27 Composition de marquage d'un produit solide ou liquide, procede de fabrication d'une telle composition, utilisation d'une telle composition et utilisation du procede de fabrication
EP00974575A EP1230388A2 (fr) 1999-10-28 2000-10-27 Composition de marquage d'un produit solide ou liquide et le procede de fabrication d'une telle composition
AU12826/01A AU1282601A (en) 1999-10-28 2000-10-27 Composition for marking a solid or liquid product, method for making same, use of same and use of manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9913506A FR2800384B1 (fr) 1999-10-28 1999-10-28 Composition de marquage d'un produit solide ou liquide et procede de fabrication d'une telle composition
FR99/13506 1999-10-28

Publications (2)

Publication Number Publication Date
WO2001030936A2 true WO2001030936A2 (fr) 2001-05-03
WO2001030936A3 WO2001030936A3 (fr) 2002-06-20

Family

ID=9551480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002992 WO2001030936A2 (fr) 1999-10-28 2000-10-27 Composition de marquage d'un produit solide ou liquide, procede de fabrication d'une telle composition

Country Status (6)

Country Link
EP (1) EP1230388A2 (fr)
AU (1) AU1282601A (fr)
BR (1) BR0015073A (fr)
CA (1) CA2389027A1 (fr)
FR (1) FR2800384B1 (fr)
WO (1) WO2001030936A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318539C (zh) * 2004-04-23 2007-05-30 中国科学院化学研究所 一种荧光微球制备方法、荧光微球及其水分散体系

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8627902B2 (en) 2011-06-23 2014-01-14 Baker Hughes Incorporated Estimating drill cutting origination depth using marking agents

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194300A (en) * 1987-07-15 1993-03-16 Cheung Sau W Methods of making fluorescent microspheres
WO1994004918A1 (fr) * 1992-08-26 1994-03-03 James Howard Slater Procede de marquage d'un liquide
US5759447A (en) * 1995-12-22 1998-06-02 Hughes Electronics Corporation Erasable optical memory and method
US5763176A (en) * 1993-07-12 1998-06-09 Slater; James Howard Methods and devices for marking a solid and subsequently detecting the markings
WO1998040726A1 (fr) * 1997-03-14 1998-09-17 Trustees Of Tufts College Capteur a fibres optiques avec microspheres codees

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5194300A (en) * 1987-07-15 1993-03-16 Cheung Sau W Methods of making fluorescent microspheres
WO1994004918A1 (fr) * 1992-08-26 1994-03-03 James Howard Slater Procede de marquage d'un liquide
US5763176A (en) * 1993-07-12 1998-06-09 Slater; James Howard Methods and devices for marking a solid and subsequently detecting the markings
US5759447A (en) * 1995-12-22 1998-06-02 Hughes Electronics Corporation Erasable optical memory and method
WO1998040726A1 (fr) * 1997-03-14 1998-09-17 Trustees Of Tufts College Capteur a fibres optiques avec microspheres codees

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1318539C (zh) * 2004-04-23 2007-05-30 中国科学院化学研究所 一种荧光微球制备方法、荧光微球及其水分散体系

Also Published As

Publication number Publication date
CA2389027A1 (fr) 2001-05-03
WO2001030936A3 (fr) 2002-06-20
BR0015073A (pt) 2002-06-18
EP1230388A2 (fr) 2002-08-14
FR2800384A1 (fr) 2001-05-04
FR2800384B1 (fr) 2003-01-10
AU1282601A (en) 2001-05-08

Similar Documents

Publication Publication Date Title
Jordan et al. Molecular containers assembled through the hydrophobic effect
CN113853250B (zh) 可生物降解的微胶囊的制备方法和以该方式获得的微胶囊
CA1271468A (fr) Matiere seche hydratable en un gel aqueux contenant des particules de polymeres dispersees, son procede de preparation et son application en biologie
CN101675086B (zh) 分子响应性凝胶粒子及其制造方法和其利用
CN1299116C (zh) 封入信号产生物质的芯-壳型粒子及其制造方法
JP2015504943A (ja) 高密度蛍光色素クラスター
US20050019944A1 (en) Colorable microspheres for DNA and protein microarray
FR3002745A1 (fr) Particules de type cœur-ecorce a base de polydopamine et d'huile vegetale
Yamada et al. Microarrays of phospholipid bilayers generated by inkjet printing
CA2626823A1 (fr) Polymeres a empreinte moleculaire, leur procede de preparation et leur utilisation pour detecter des molecules en milieu biologique
Clerc et al. Visible light-responsive materials: the (photo) chemistry and applications of donor–acceptor Stenhouse adducts in polymer science
Fulzele et al. Preparation and evaluation of microcapsules using polymerized rosin as a novel wall forming material
EP1230388A2 (fr) Composition de marquage d'un produit solide ou liquide et le procede de fabrication d'une telle composition
EP1501842A2 (fr) Supports solides fonctionnalises par des dendrimeres phosphores, leur procede de preparation et applications
Wang et al. Synthesis of Light‐Induced Expandable Photoresponsive Polymeric Nanoparticles for Triggered Release
KR20220049558A (ko) 표면 관능화 기재 및 이의 제조 방법
EP2621470A1 (fr) Procédé de préparation d'une structure chimique présentant une partition de phases, apte à générer un spectre de fluorescence spécifique et ses applications
EP2226637A1 (fr) Agents de reticulation sur support solide
Mansfield et al. Fabrication and characterization of spatially defined, multiple component, chemically functionalized domains in enclosed silica channels using cross-linked phospholipid membranes
Dyess Research and Review of Polymethyl-methacrylate Copolymers in the Development of Enhanced Pharmaceutical Delivery Systems
FR2663337A1 (fr) Particules polymeres, comportant une couche de surface contenant des groupements reactifs aldehydes aromatiques, permettant de fixer par covalence des ligands biologiques amines, leur preparation et leur utilisation.
Liu Photo-responsive systems in aqueous solution: from model polyelectrolytes to polyelectrolyte-surfactant complexes
Popov Process Development for Manufacturing Stochastic Peptide Microarrays
Chung Developing novel lipid architectures as a platform for membrane biophysics
FR2689516A1 (fr) Latex fluorescent possédant un seuil de détection en émission fluorescente très faible.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000974575

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2389027

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 518593

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 12826/01

Country of ref document: AU

AK Designated states

Kind code of ref document: A3

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWP Wipo information: published in national office

Ref document number: 2000974575

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2000974575

Country of ref document: EP