WO2001026701A2 - Partikuläres konstrukt zur verwendung in der transplantationsmedizin - Google Patents

Partikuläres konstrukt zur verwendung in der transplantationsmedizin Download PDF

Info

Publication number
WO2001026701A2
WO2001026701A2 PCT/DE2000/003658 DE0003658W WO0126701A2 WO 2001026701 A2 WO2001026701 A2 WO 2001026701A2 DE 0003658 W DE0003658 W DE 0003658W WO 0126701 A2 WO0126701 A2 WO 0126701A2
Authority
WO
WIPO (PCT)
Prior art keywords
cells
constructs
construct
polymer
dispersion solution
Prior art date
Application number
PCT/DE2000/003658
Other languages
English (en)
French (fr)
Other versions
WO2001026701A3 (de
Inventor
Albrecht Bettermann
Rainer Buchholz
Holger HÜBNER
Claudia Schneider
Original Assignee
Albrecht Bettermann
Rainer Buchholz
Huebner Holger
Claudia Schneider
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albrecht Bettermann, Rainer Buchholz, Huebner Holger, Claudia Schneider filed Critical Albrecht Bettermann
Priority to AT00984834T priority Critical patent/ATE260681T1/de
Priority to EP00984834A priority patent/EP1231949B1/de
Priority to AU21482/01A priority patent/AU2148201A/en
Priority to DE50005546T priority patent/DE50005546D1/de
Publication of WO2001026701A2 publication Critical patent/WO2001026701A2/de
Publication of WO2001026701A3 publication Critical patent/WO2001026701A3/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/60Materials for use in artificial skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/10Hair or skin implants
    • A61F2/105Skin implants, e.g. artificial skin

Definitions

  • the invention relates to the use of a biologically active particulate construct based on a spatial support structure made of at least one hardened biocompatible polymer, a plurality of cells of at least one human cell type being embedded in the support structure, a particulate construct which is particularly suitable for use, and a method for its manufacture.
  • the skin has three main layers, which differ in their function. Starting from the surface The build-up begins with the epidermis. This is a multi-layered, horny squamous epithelium, in which the keratinocytes predominate with a share of approx. 75%. Mitotic processes only take place in the stratum basale, the lowest layer of the epidermis. It is firmly attached to the underlying basement membrane, an extracellular matrix.
  • the dermis which consists of connective tissue, lies below the basement membrane. This is a combination of fibroblasts, intercellular substances and fat cells.
  • the intercellular substances consist, for example, of collagen, fibronectm and elastin.
  • the dermis serves to stabilize the skin and regulate the skin pressure.
  • the keratinocytes differentiate in it.
  • the subcutaneous tela closes the skin to the underlying structures, fascia, bones and / or muscles.
  • the concept of creating an artificial skin is based on the technology of flat tissue constructs. These have a sandwich structure containing a flat substrate and a layer of cultivated, living body surface cells, in particular fibroblasts and / or keratocytes, adhering to the flat, non-living substrate.
  • the body surface cells are not necessarily a cell assembly, as occurs in an organism.
  • Flat tissue constructs are used to close and regenerate wounds, particularly burns.
  • Flat tissue constructions of known construction are described, for example, in the literature references US-A 5,131,907, US-A 5,273,900 (a comprehensive background illustration of the technological context is given here), US-A 5,282,859, US-A 5,800,537 and US-A 5,888,248.
  • Fibrin glue consists of two components, fibrmogen and thrombin, which causes the fibrmogen to cure enzymatically.
  • the ready-to-use cell suspension is produced by first suspending the cells in the fibrmogen component and adding the thrombin immediately before the application. While this technology leads to improved growth of intact cells, it has other disadvantages.
  • a particular disadvantage is that the cells have no protection against shear stresses and can be mechanically overloaded during application or when moving in the wound area.
  • the level of proliferation-requiring signal substances, in particular the growth factors, in the area of the sprayed-on cells is rather low and the growth rate can therefore be improved.
  • Reference W099 / 15637 describes particulate constructs for use, inter alia, known in transplantation medicine, which consist of a solid fibrin core and human cells arranged on the surface of the core.
  • the fibrin is highly cross-linked.
  • a disadvantage of these constructs is that cell growth and consequently tissue formation are essentially two-dimensional and the level of growth factors is comparatively low.
  • the cells are not protected against shear loads due to their arrangement on the outside.
  • this is disadvantageous already during the manufacture and preparation of the constructs. After all, such structures tend to clump together.
  • the invention is based on the technical problem of specifying cells-containing constructs for transplantation medicine, which ensure a drafty and as complete as possible reconstruction of damaged skin areas and at the same time are simple to use.
  • the invention teaches the use of a biologically active particulate construct based on a spatial support structure made of at least one hardened biocompatible polymer, wherein in the support structure a plurality of cells of at least one (preferably human) Cell type is embedded in transplant medicine.
  • the concentration of growth factors within a particular construct is quite high due to the high cell density that can be achieved with contact inhibition not yet occurring.
  • the cell density can be easily optimized in terms of production technology.
  • the surrounding support structure protects the cells against shear stress.
  • the application is very simple, since a dispersion containing the constructs only needs to be introduced into a wound, and without an immediate previous one
  • the expression biologically active means, based on cells, that at least 20%, preferably at least 50%, most preferably at least 80%, based on the cell numbers, of the cells are capable of proliferation, measured for example by means of the MTS proliferation assay (CellTitre 96 AQueous One Solution Cell Proliferation assay, Promega).
  • MTS proliferation assay CellTitre 96 AQueous One Solution Cell Proliferation assay, Promega.
  • a particulate construct has a pronounced three-dimensional extension in contrast to flat constructs, which essentially extend in two spatial dimensions. In other words, it is a particle, the maximum extents of which do not differ significantly in the 3 spatial dimensions. Factors between the maximum extents in any two of the three spatial dimensions are less than 10, preferably less than 5, most preferably less than 2.
  • Particulate constructs in particular have an essentially spherical outer shape (factors less than 1.2).
  • Particulate constructs can be solid, hollow, or porous.
  • massive means a porosity (open + closed porosity) of less than 5% by volume, measured for example by small-angle neutron scattering.
  • a spatial support structure describes a supporting framework made of a solid material, which gives the particular construct its shape.
  • the cells arranged in it are fixed and immobilized by the support structure.
  • Biocompatible are polymers that are (human) contracted, ie do not cause immunological reactions of a (human) body or symptoms of intoxication. Biocompatible polymers can also be absorbed by a (human) organism and / or dissolved in body fluids.
  • the biocompatible polymers are selected such that the support structure of a construct which has been introduced into a human skin lysate and has a support structure weight of 0.1 mg within a period of 0.1 to 20 days. preferably 1 to 10 days, most preferably 2 to 5 days, is completely degraded or dissolved.
  • Transplantation medicine means in particular the medicine of skin replacement by constructs that form artificial skin tissue. Skin replacement may be necessary, for example, in the case of burn wounds or for closing other skin defect wounds (for example congenital skin defects and / or circulatory disorders), the defect wounds may also have arisen in the course of a medically necessary excision.
  • Transplantation medicine in the sense of the invention also includes the replacement and / or supplementation of other types of tissue with suitable cells. This can be particularly useful if tissue has malfunctions. It is then possible to replace or supplement, for example, cells that do not have this malfunction.
  • the expression of transplantation medicine also includes veterinary medical applications.
  • the term "fully cured” encompasses both the crosslinking of polymer molecules and drying. Drying is the solidification of polymer compositions from a solution or dispersion (aqueous or organic) containing the composition, for example by expelling the solvent or segregating the composition from the solvent.
  • the degree of crosslinking of the polymer is given by the relative proportion of crosslinked polymer molecules to the total number of polymer molecules (crosslinked + uncrosslinked).
  • Physiologically active substances are substances that influence the metabolism of the organism and / or the cells of a construct. It is understood that such active ingredients are used in an effective dose.
  • a construct has non-contact inhibited cells if at least 20%, preferably at least 50%, most preferably at least 70%, ideally 80% to 100%, of the cells in the construct are not contact inhibited.
  • Autologous cells are cells from an organism, which are then implanted again in this organism.
  • a polymer can be cured in a number of ways.
  • the polymer can be gelled and thus solidified, for example by lowering the temperature compared to the temperature of the liquid polymer.
  • solidification can take place by chemical reaction.
  • the solidification can be carried out enzymatically. For the latter, the fibrmogen / thromb reaction is an example.
  • a hardening reagent is a substance or a
  • An uncured polymer is a liquid polymer.
  • a cured polymer is a solidified polymer.
  • a dispersion solution is a liquid phase, in which a second, immiscible or difficult to mix Liquid or a solid substance can be dispersed. Dispersion means that the dispersed phase practically does not aggregate.
  • a dispersion solution can contain, for example, emulsifiers such as lecithin or Triton X100.
  • a cell suspension essentially consists of isolated cells in a liquid phase, for example in uncured polymer and / or in medium.
  • subconfluence is typically present at cell densities below 1.5 * 10 5 cells / cm 2 , in particular below 5 * 10 4 cells / cm 2 .
  • dropping or dropleting means that drops form from a liquid phase above a dispersing solution, which practically do not disintegrate into smaller drops in the dispersing solution and are practically not disintegrated within them, but are kept intact only in suspension become.
  • the support structure can contain a biocompatible polymer or several such polymers from the group consisting of "fibrin, collagen I, hyaluronic acid, collagen-glycosaminoglycan and chondroitin- ⁇ -sulfate", in particular consist thereof. These polymers are characterized by excellent human tolerance and good behavior in terms of absorption kinetics (Resorption of the support structure of a construct in a skin wound within 1 to 5 days).
  • the polymer expediently has a degree of crosslinking of less than 30%, preferably less than 15%.
  • the carrier structure contains a physiologically active substance or several such substances from the group consisting of "therapeutic substances, vitamins, vitamin derivatives, growth factors, glycocorticosteroids, steroids, antibiotics, antibacterial substances, antiviral substances, fungicides, cytostatics, tumor inhibitors , Enzymes, enzyme inhibitors, proteins, peptides, minerals, neurotransmitters, lipoprotems, glycoprotems, immunomodulators, immunoglobulms and fragments thereof, fatty acid derivatives, polysaccharides, anti-inflammatory substances, nucleic acids, polynucleotides and anesthetics ". Pain relief can be achieved locally in the wound area using anesthetics. Other substances in the group prevent inflammatory reactions. Growth factors also require the regeneration of the new tissue. In any case, it is essential that the active ingredient not inhibit the proliferation of the cell type used in the construct or even cause apoptosis.
  • the human cell type is selected from the group "fibroblasts, fat cells, keratmocytes, chondrocytes, osteoplasts, endothelial cells, nerve cells, liver cells, pancreatic cells, spleen cells, kidney cells and muscle cells", autologous cells preferably being used. Fibroblasts, keratocytes and / or Fat cells are particularly suitable in the area of skin grafting. The other cell types are suitable in cases in which the corresponding tissue of a patient has functional disorders. The implantation of intact pancreatic cells, by means of which a lack of insulin production can be restored, may be mentioned merely as an example. It is also possible to work with autologous cells that have been repaired, for example, by genetic engineering.
  • a construct which can be used according to the invention can be obtained, for example, by adding a suspension of isolated cells in a biocompatible polymer, optionally mixed with a reagent which cures the polymer, dispersing uncured particulate constructs into a dispersion solution and forming these constructs in the dispersion solution be hacked.
  • constructs with particularly uniform dimensions are obtained.
  • the diameter of the constructs obtained is typically in the range from 0.05 mm to 5 mm, preferably between 0.1 mm and 2 mm, and can be selected within the scope of the dropping technology.
  • the spread in diameter is particularly small.
  • the invention also relates to a construct which can be used particularly advantageously and which is obtainable by dropping a cell suspension together with a biocompatible polymer into a dispersion solution and curing the droplets formed in the dispersion solution.
  • the polymer is preferably mixed with a hardening reagent, preferably an enzymatic hardening reagent, for example thrombin, immediately before being introduced into the dispersion solution.
  • the dispersion solution is expediently not aqueous and advantageously has two (liquid) phases, the densities of the two phases being chosen such that the constructs cannot sediment beyond the phase boundary between the two phases.
  • This has the effect that dripped uncured constructs cannot sink to the bottom of a vessel containing the dispersion solution, but in any case are kept in suspension in the region of the phase boundary.
  • a magnetic stirrer can be used as an agitation element, for example, without the agitation element being able to mechanically damage the constructs.
  • a third liquid phase can also be used, which is then arranged at the top and has a lower density than the constructs, uncured or hardened.
  • constructs according to the invention are porous and medium, for example, therefore has access to the entire construct volume.
  • the cultivation is also particularly unproblematic because the cells are mechanically protected. Highly efficient cultivation techniques can therefore be used (for example in stirred and / or fumigated bioreactors or columns), with the result that the time taken to produce an autologous construct is considerably reduced.
  • constructs with different cell types for example fibroblasts and keratocytes, can be cultivated in a single reactor, separated only by a membrane, under the same conditions. Cultivation is advantageously carried out only as long as subconfluence is maintained. This also ensures that the cells are differentiated not in vitro but in vivo, which is particularly advantageous for the reconstruction of skin tissue, for example
  • the invention also teaches a method for producing a biologically active particulate construct, wherein a suspension of a plurality of isolated human cells in a biocompatible polymer, forming uncured particulate constructs, is dripped into a dispersion solution, the uncured particulate constructs being cured in the dispersion solution and wherein the hardened particulate constructs are taken from the dispersion solution.
  • (porous) solid spheres are obtained in the sense that the cells are distributed essentially uniformly in the construct volume.
  • the uncured particulate constructs are preferably carried out Formed droplets from a capillary and then introduced into the dispersing solution.
  • Anisotropic constructs can be achieved if uncured particulate constructs are produced by feeding a suspension containing isolated cells and a biocompatible polymer to a dropping device, the dropping device being provided with a central cell suspension capillary opening and a polymer cartridge arranged coaxially therewith. has pillar opening, wherein the suspension containing isolated cells and the polymer are simultaneously dripped from the cell suspension capillary opening and the polymer capillary opening to unhardened particular constructs and introduced into the dispersion solution, the unhardened particular constructs being hardened in the dispersing solution and the hardened particulate Constructs of the dispersion solution are taken.
  • Hollow spheres are then obtained in the sense that the polymer forms a spherical shell in which the cells are arranged, the cells not being embedded in a polymer matrix.
  • Such constructs are advantageous in terms of cell growth, since the exchange of self-generated growth factors is improved.
  • a gas flow jacket be generated when dripping.
  • an annular gas outlet opening coaxial with the capillary outlet opening can be provided in the area of a capillary outlet opening.
  • the gas flow jacket requires uniform drop formation and can (instead of or in addition to that Volume flow from the Kapallarauslenfino réelle) can also be used to control the drop size and varied.
  • a dropletization technology which is advantageous with regard to droplet formation and formation consists in that when dropletization occurs in a capillary, rotationally symmetrical vibrations m are generated in the liquid jet in the capillary and are superimposed on the liquid jet, the wavelength of the vibrations being greater than the circumference of the liquid jet without superposition of vibrations is.
  • Unhardened and / or hardened constructs if appropriate after cultivation, preferably contain 10 4 to 10 6 cells per ml of construct volume.
  • V79 firoblasts were grown in culture bottles in medium DMEM / F12 with 3% FCS.
  • the cells were detached and separated after removal of the medium using a PBS / EDTA solution.
  • the detached cells were then transferred to a centrifuge tube and 5 mm. centrifuged at 1000 rpm. The supernatant was discarded and the cells were taken up in 200 ⁇ l medium DMEM / F12 with HEPES and 3% FCS.
  • game 2 In game 2
  • Example 1 The cells obtained in Example 1 (seed density: 10 "to 10 6 cells e ml) were encapsulated as follows.
  • 1 ml fibrinogen solution (TISSUCOL ® kit 1.0 from Immuno; 126-198 mg dry substance contain 80-120 mg human plasma protein fraction with 70 -110mg fibrinogen, 2-9mg plasma fibronectin, 10-50 U [1E corresponds to the activity contained in 1ml of fresh normal plasma] blood coagulation factor XIII and 0.02-0.08 mg plasminogen, rest: auxiliary substances NaCl, sodium citrate, aprotin, Glycine, heparin, triton, human albumin) was prepared according to the package insert (product version: June 1, 1999) 200 ⁇ l of the resuspended cells from example 1 were taken up in the fibrmogen solution and mixed well (total volume: 1.2 ml).
  • thrombin L- Solution 1 ml thrombin L- Solution (TISSUCOL 0 kit from Immuno, product version: 01.06.1999) was prepared according to the package insert and mixed with 200 ⁇ l sterile water for injection (total volume: 1.2ml) Both solutions were mixed in different chambers of a double syringe it is placed directly adjacent to the exit nozzles of the chambers. By actuating the two syringe pistons (producing the same volume flows from the chambers), drops were generated, the two solutions merging in the area of the outlet nozzles. The drops were dropped into a dispersion solution.
  • the dispersion solution consisted of Fluorinert 0 dielectrics FC40 from 3M (according to 3M data sheet in the version dated 03.01.1998 a primary perfluorocompound with 12 carbon atoms) and, layered over it, Miglyol 0 from H ls AG (T ⁇ glycerides from C8 to C12 Fatty acids).
  • the resulting dispersion solution was used before use 20 mm. autoclaved at 121 ° C.
  • the dispersing solution was in a beaker with angled Ruhr fish on a magnetic stirrer (200 - 500 rpm) and at room temperature. Then they were cured at room temperature with stirring.
  • Fibroblasts were separated in the above manner and added to a collagen I solution.
  • the solution was obtained by dissolving the collagen in medium using HC1 and then neutralizing with NaCl.
  • the cell suspension obtained in this way was dripped from a simple syringe into the dispersion solution described above. After 16 hours at 37 ° C., solid constructs were obtained by gelling and further treated as described above.

Abstract

Die Erfindung lehrt die Verwendung eines biologisch aktiven partikulären Konstrukts auf Basis einer räumlichen Trägerstruktur aus zumindest einem ausgehärteten biokompatiblen Polymeren, wobei in der Trägerstruktur eine Mehrzahl von Zellen zumindest eines humanen Zelltyps eingebettet ist, in der Transplantationsmedizin, ein hierfür geeignetes Konstrukt sowie ein Verfahren zu dessen Herstellung.

Description

Partikulares Konstrukt zur Verwendung m der
Transplantationsmedizin
Beschreibung
Die Erfindung betrifft eine Verwendung eines biologisch aktiven partikularen Konstrukts auf Basis einer räumlichen Tragerstruktur aus zumindest einem ausgeharteten biokompa- tiblen Polymeren, wobei in der Tragerstruktur eine Mehrzahl von Zellen zumindest eines humanen Zelltyps eingebettet ist, ein für die Verwendung besonders geeignetes partikulares Konstrukt sowie ein Verfahren zu dessen Herstellung.
In der Transplantationsmedizin, insbesondere zur Heilung von tiefen Hautdefekten, kommen verschiedene Ansätze zur Anwendung. Die Standardmethode ist die Transplantation von patienteneigenen (autologen) Hautarealen. Bei Patienten mit beispielsweise großflächigen Verbrennungen ist eine Versorgung der Wunden mit autologen Transplantaten aufgrund der der geringen Restflache intakter Hautareale offensichtlich aus Kapazitatsgrunden begrenzt. Die Nutzung von Fremdhauttransplantaten ist aufgrund regelmäßig ein- tretender immunologischer Abstoßungsreaktionen allenfalls als Zwischenlosung geeignet.
Ein weiterer Ansatz ist die in vitro Kultivierung von insbesondere autologen Hautzellen und deren Implantation als flachige Gewebekonstrukte. Zum Verständnis dieser Technik ist es hilfreich, die Histologie der Haut zu beschreiben. Die Haut besitzt drei Hauptschichten, die sich m ihrer Funktion unterscheiden. Ausgehend von der Oberflache beginnt der Aufbau mit der Epidermis. Diese ist ein mehrschichtiges, verhorntes Plattenepithel, worin die Kera- tinozyten mit einem Anteil von ca. 75% überwiegen. Mitoti- sche Vorgange finden nur im Stratum basale, der untersten Epidermisschicht , statt. Sie ist fest mit der darunter befindlichen Basalmembran, einer extrazellularen Matrix, verbunden. Von dort ausgehend differenzieren die Zellen unter Veränderung ihrer Morphologie bis m das Stratum corneum, der äußersten Hautschicht, aus, wo sie dann nach einer gewissen Zeit abgestoßen werden, der naturliche Erneuerung der Haut. Unterhalb der Basalmembran liegt die aus Bindegewebe bestehende Dermis. Diese ist eine Kombination aus Fibroblasten, Interzellularsubstanzen und Fettzellen. Die Interzellularsubstanzen bestehen z.B. aus Kollagen, Fibronektm und Elastin. Die Dermis dient der Stabilisierung der Haut und reguliert den Hautdruck. In ihr differenzieren die Keratmozyten . Die Tela subcutanea schließt die Haut zu den darunter liegenden Strukturen, Faszien, Knochen und/oder Muskulatur, ab.
Einer Konzeption der Schaffung einer künstlichen Haut liegt die Technolgie der flachigen Gewebekonstrukte zugrunde. Diese haben eine Sandwichstruktur enthaltend ein flächiges Substrat und eine auf dem flächigen, nicht lebenden Substrat anhaftende Schicht von kultivierten, lebenden Korperoberflachenzellen, insbesondere Fibroblasten und/oder Keratmozyten. Hierbei sind die Korperoberflachenzellen nicht zwingend ein Zellverband, wie in einem Organismus vorkommend. Flächige Gewebekonstrukte werden zum Verschluß und zur Regeneration von Wunden, insbesondere Verbrennungswunden, verwendet. Flächige Gewebekonstrukte bekannten Aufbaus sind beispielsweise in den Literaturstellen US-A 5,131,907, US-A 5,273,900 (hierin ist eine umfängliche Hintergrunddarstellung der technologischen Zusammenhange gegeben), US-A 5,282,859, US-A 5,800,537 und US-A 5,888,248 beschrieben. Diesem Stand der Technik ist gemeinsam, daß als Substrat beispielsweise Collagen verwendet wird und daß Korperoberflachenzellen, beispielsweise Fibroblasten und/oder Keratmozyten, darauf zu einem dichten Zellrasen kultiviert sind. Der Zellrasen ist also mehrschichtig und weist eine voll ausgebildete Kontaktmhibierung auf. Im Ergebnis wird ein vollständiges Gewebe (im eigentlichen Sinne des Ausdrucks) m vitro hergestellt und gleichsam kopfüber (Substrat außenliegen) in eine Wunde eingebracht. Solche flachigen Gewebekonstrukte haben mehrere Nachtei- le. Zum ersten ist ein Substrat beispielsweise aus Collagen, sei es unvernetzt oder vernetzt, nicht hinreichend elastisch bzw. nicht hinreichend elastisch dehnbar, um bei (dreidimensional) komplexen Wundenformen im gesamten Wundbereich anliegend eingebracht wer- den zu können. Selbst bei weniger komplexen Wundenformen ist die Anwendung aufwendig, da der Arzt ein voll- standiges Anliegen bewirken und gewahrleisten muß. Ein vollständiges Anliegen ist jedoch eine wesentliche Voraussetzung für ein Anwachsen der Zellen an das Ge- webe des Patienten. Weiterhin ist ein beachtlicher Anteil der Zellen in einem dichten Zellrasen kontak- tmhibiert mit der Folge, daß eine Proliferation und folglich ein Wachstum bzw. ein Anwachsen in nicht befriedigendem Maße stattfindet. Insgesamt zeigt es sich, daß die insofern bekannten Gewebekonstrukte nicht hinreichend sicher anwachsen, wodurch im Falle des Nichtanwachsens wiederholte Behandlungen mit der kunstlichen Haut und/oder Transplantationen zwingend erforderlich werden. Die Anheilungsrate betragt m der Praxis meist nicht mehr als 30%.
Weiterhin bekannt ist eine Technologie, bei welcher nicht kontaktinhibierte, wenig differenzierte Zellen in einem humanen Fibrinkleber suspendiert sind und diese Suspension auf die Wunde aufgesprüht wird. Fibrinkleber besteht aus zwei Komponenten, dem Fibrmogen sowie dem Thrombin, welches die enzymatische Aus- hartung des Fibrmogen bewirkt. Die applikationsfertige Zellsuspension wird dadurch hergestellt, daß zunächst die Zellen in der Fibrmogen Komponente suspendiert werden und unmittelbar vor der Applikation das Thrombin zugegeben wird. Diese Technologie fuhrt zwar zu einem verbesserten Anwachsen von intakten Zellen, weist jedoch andere Nachteile auf. Insbesondere nachteilig ist, daß die Zellen keinerlei Schutz gegen Scherbelastungen besitzen und bei der Applikation oder bei Bewegung im Wundenbereich mechanisch überbelastet werden können. Weiterhin ist der Pegel proliferations- fordernder Signalstoffe, insbesondere der Wachstumsfaktoren, im Bereich der aufgesprühten Zellen eher niedrig und die Wachstumsrate insofern verbesserungsfähig .
Partikulare Konstrukte des eingangs genannten Aufbaus sind anderen Zusammenhangen bekannt, nämlich der biotechnologischen Herstellung von Substanzen durch geeignete und immobilisierte Organismen. Die Litera- turstelle US-A-4 , 647 , 536 beschreibt die Vorteile der Verwendung solcher Konstrukte enthaltend tierische oder pflanzliche Zellen in biotechnologischen Saulen- reaktoren. Eine ausführlichere Darstellung dieser Technologie ist in der Literaturstelle Eur. J. Micro- biol. Biotechnol. (1983) 17:319-326 gegeben.
Aus der Literaturstelle W099/15637 sind partikuläre Konstrukte zur Verwendung u.a. in der Transplantationmedizin bekannt, welche aus einem massiven Fibrinkern und auf der Oberfläche des Kerns angeordneten humanen Zellen bestehen. Das Fibrin ist hochvernetzt. Nachteilig bei diesen Konstrukten ist, daß das Zellwachstum und folglich die Gewebebildung im wesentlichen zweidi- mensional erfolgt und der Pegel an Wachstumsfaktoren vergleichsweise niedrig ist. Zudem sind die Zellen nicht gegen Scherbelastungen geschützt aufgrund ihrer außenseitigen Anordnung. Dies ist - neben diesbezügli- eher Nachteile beim Einbringen in eine Wunde - bereits bei der Herstellung und Aufbereitung der Konstrukte nachteilig. Schließlich neigen solche Kostrukte zum Verklumpen.
Der Erfindung liegt das technische Problem zugrunde, Zellen enthaltende Konstrukte für die Transplantationsmedizin anzugeben, welche eine zugige und möglichst vollständige Rekonstruktion geschädigter Hautareale gewahrleisten und gleichzeitig in der Applikation ein- fach sind.
Zur Lösung dieses technischen Problems lehrt die Erfindung die Verwendung eines biologisch aktiven partikularen Konstrukts auf Basis einer raumlichen Trager- Struktur aus zumindest einem ausgeharteten biokompatiblen Polymeren, wobei in der Tragerstruktur eine Mehrzahl von Zellen zumindest eines (vorzugsweise humanen) Zelltyps eingebettet ist, der Transplantationsmedizin .
Mit der Erfindung werden mehrere Vorteile m Komb a- tion miteinander erzielt. Zum ersten ist die Konzentration von Wachstumsfaktoren innerhalb eines partikularen Konstrukts recht hoch aufgrund der erzielbaren hohen Zelldichte bei noch nicht eintretender Kontaktmhibierung. Die Zelldichte laßt sich insofern her- stellungstechnisch leicht optimieren. Zum zweiten sind die Zellen durch die umgebende Tragerstruktur gegen Scherbelastung gut geschützt. Zum dritten ist die Applikation sehr einfach, da eine Dispersion enthaltend die Konstrukte lediglich m eine Wunde eingebracht werden braucht, und zwar ohne unmittelbar vorherige
Mischung mit einem Reagenz. Schließlich erfolgt das
(ohnehin durch den hohen Pegel an Wachstumsfaktoren geforderte) Wachstum der Zellen dreidimensional und folglich ist die Bildungsrate von Gewebe beachtlich hoch gegenüber lediglich zweidimensionalen Gewebekonstrukten .
Im Rahmen dieser Beschreibung werden die folgenden Definitionen verwendet.
Der Ausdruck biologisch aktiv meint bezogen auf Zellen, daß zumindest 20%, vorzugsweise zumindest 50%, hochstvorzugsweise zumindest 80%, bezogen auf die Zellzahlen, der Zellen proliferationsfahig sind, ge- messen beispielsweise mittels des MTS proliferation assay (CellTitre 96 AQueous One Solution Cell Prolife- ration Assay, Promega) . Ein partikuläres Konstrukt hat eine ausgeprägte dreidimensionale Erstreckung im Gegensatz zu flächigen Konstrukten, welche sich im wesentlichen in zwei Raumdimensionen erstrecken. Es handelt sich, mit anderen Worten ausgedrückt, um ein Partikel, dessen maximale Erstreckungen in den 3 Raumdimensionen sich nicht beachtlich unterscheiden. Faktoren zwischen den maximalen Erstreckungen in 2 beliebigen der 3 Raumdimensionen liegen unter 10, vorzugsweise unter 5, hochstvor- zugsweise unter 2. Partikulare Konstrukte haben insbesondere eine im wesentlichen sphärische Außenform (Faktoren unter 1,2). Partikuläre Konstrukte können massiv, hohl oder porös sein. Massiv meint hierbei eine Porosität (offene + geschlossene Porosität) von weniger als 5 Vol.-%, gemessen beispielsweise durch Neutronenkleinwinkelstreuung.
Eine raumliche Tragerstruktur bezeichnet ein Tragge- rust aus einem festen Stoff, welches dem partikularen Konstrukt seine Gestalt gibt. Durch die Tragerstruktur sind die darin angeordneten Zellen fixiert und immobilisiert .
Biokompatibel sind Polymere, welche (human-) vertrag- lieh sind, also keine immunologischen Reaktionen eines (menschlichen) Korpers oder Vergiftungserscheinungen hervorrufen. Biokompatible Polymere sind weiterhin von einem (menschlichen) Organismus resorbierbar und/oder in Korperflussigkeiten auflösbar. Dabei sind die bio- kompatiblen Polymere so ausgewählt, daß die Tragerstruktur eines in ein humanes Hautzellysat eingebrachten Konstrukts mit einem Tragerstrukturgewicht von 0,1 mg innerhalb einer Zeitspanne von 0,1 bis 20 Tage, vorzugsweise 1 bis 10 Tage, hochstvorzugsweise 2 bis 5 Tage, vollständig abgebaut bzw. aufgelost ist.
Transplantationsmedizin meint insbesondere die Medizin des Hautersatzes durch künstliche Hautgewebe bildende Konstrukte. Hautersatz kann beispielsweise erforderlich werden bei Verbrennungswunden oder zum Schließen anderer Hautdefektwunden (beispielsweise angeborenen Hautdefekten und/oder Durchblutungsstörungen) , wobei die Defektwunden auch im Zuge einer medizinisch notwendigen Exzission entstanden sein können. Die Transplantationsmedizin im Sinne der Erfindung umfaßt aber auch den Ersatz und/oder die Ergänzung anderer Gewebearten durch geeignete Zellen. Dies kann insbesondere zweckmäßig sein, wenn em Gewebe Funktionsstörungen aufweist. Dann ist e Ersatz oder eine Ergänzung beispielsweise mit Zellen möglich, welche diese Funktionsstörung nicht aufweisen. Der Ausdruck der Transplantationsmedizin umfaßt aber auch vetermarmedizmi- sehe Applikationen.
Der Ausdruck "ausgehartet" umfaßt sowohl die Vernetzung von Polymermolekulen als auch die Trocknung. Trocknung ist die Solidiflzierung von Polymerzusa men- Setzungen aus einer die Zusammensetzung enthaltenden Losung oder Dispersion (wäßrig oder organisch) , beispielsweise durch Austreibung des Losungsmittels oder Entmischung der Zusammensetzung von dem Losungsmittel.
Em Vernetzungsgrad des Polymers ist durch den relativen Anteil an vernetzten Polymermolekulen zu der Gesamtzahl der Polymermolekule (vernetzt + unvernetzt) gegeben. Physiologisch aktive Wirkstoffe sind Stoffe, welche den Stoffwechsel beeinflussen, und zwar des Organismus und/oder der Zellen eines Konstrukts. Es versteht sich, daß solche Wirkstoffe m einer wirksamen Dosis eingesetzt werden.
Em Konstrukt weist nicht kontaktinhibierte Zellen auf, wenn zumindest 20%, vorzugsweise zumindest 50%, hochstvorzugsweise zumindest 70%, idealerweise 80% bis 100%, der Zellen in dem Konstrukt nicht kontaktinhibiert sind.
Autologe Zellen sind Zellen aus einem Organismus, wel- ehe dann diesem Organismus wieder implantiert werden.
Die Aushärtung eines Polymers kann auf verschiedene Weisen erfolgen. Zum ersten kann das Polymer geliert und so solidiflziert werden, beispielsweise durch Tem- peraturerniedrigung gegenüber der Temperatur des flussigen Polymers. Zum zweiten kann eine Solidiflzierung durch chemische Reaktion erfolgen. Zum Dritten kann die Solidiflzierung enzymatisch erfolgen. Für letzteres ist die Reaktion Fibrmogen/Thromb em Beispiel. Ein Aushartungsreagenz ist eine Substanz oder eine
Mischung von Substanzen, welche em ungehärtetes Polymer auf chemischem und/oder enzymatischem Wege solid - fiziert. Em ungehärtetes Polymer ist em fl ssiges Polymer. E gehärtetes Polymer ist e solidiflzier- tes Polymer.
Eine Dispergierlosung ist eine flussige Phase, in welcher eine zweite, nicht oder nur schwer mischbare Flüssigkeit oder eine feste Substanz dispergiert werden kann. Dispersion meint hierbei, daß die eindisper- gierte Phase praktisch nicht aggregiert . Eine Disper- gierlösung kann hierzu beispielsweise Emulgatoren, z.B. Lecithin oder Triton X100, enthalten.
Eine Zellsuspension besteht im wesentlichen aus vereinzelten Zellen in einer flüssigen Phase, beispielsweise in ungehärtetem Polymer und/oder in Medium.
Subkonfluenz liegt im Falle von Fibroblasten und/oder Keratinozyten typischerweise bei Zelldichten von unterhalb 1,5*105 Zellen / cm2, insbesondere von unterhalb 5*104 Zellen / cm2, vor.
Der Ausdruck des Eintropfens oder Vertropfens meint, daß oberhalb einer Dispergierlösung aus einer flussigen Phase Tropfen gebildet werden, welche praktisch ohne weiteren Zerfall in kleinere Tropfen in die Dis- pergierlosung fallen und auch innerhalb dieser praktisch nicht desintegriert, sondern intakt bleibend lediglich in der Schwebe gehalten werden.
Im folgenden werden bevorzugte Ausfuhrungsformen der Erfindung naher erläutert.
Die Tragerstruktur kann ein biokompatibles Polymer oder mehrere solcher Polymere aus der Gruppe bestehend "Fibrin, Collagen I, Hyaluronsaure, Collagen-Glycosa- minglycan und Chondroitin-β-Sulfat" enthalten, insbesondere hieraus bestehen. Diese Polymere zeichnen sich durch ausgezeichnete Humanvertraglichkeit und hinsichtlich der Resorptionskinetik gutes Verhalten (Resorption der Tragerstruktur eines Konstrukts m einer Hautwunde innerhalb von 1 bis 5 Tagen) aus. Zweckmaßigerweise weist das Polymer einen Vernetzungsgrad von weniger als 30%, vorzugsweise von weniger als 15%, auf.
Vorteilhaft kann es sein, wenn die Tragerstruktur einen physiologisch aktiven Wirkstoff oder mehrere solcher Wirkstoffe aus der Gruppe bestehend aus "thera- peutische Wirkstoffe, Vitamine, Vitaminderivate, Wachstumsfaktoren, Glycocorticosteroide, Steroide, Antibiotika, antibakterielle Substanzen, antivirale Substanzen, Fungizide, Cytostatika, Tumorhemmer, Enzyme, Enzyminhibitoren, Proteine, Peptide, Minerale, Neurotransmitter, Lipoproteme, Glycoproteme, Immunomodulatoren, Immunoglobulme und Fragmente hiervon, Fettsauredeπvate, Polysacchaπde, antunflamatorische Substanzen, Nuclemsauren, Polynucleotide und Anasthe- tica" enthalt. Mittels Anasthetika kann lokal eine Schmerzlmderung im Wundbereich erzielt werden. Andere Substanzen der Gruppe verhindern entzündliche Reaktionen. Wachstumsfaktoren fordern die Regeneration des neuen Gewebes zusätzlich. In jeden Fall ist es wesentlich, daß der Wirkstoff nicht die Proliferation des m dem Konstrukt eingesetzten Zelltyps hemmt oder gar Apoptose bewirkt.
Der humane Zelltyp ist ausgewählt aus der Gruppe "Fi- broplasten, Fettzellen, Keratmocyten, Chondrocyten, Osteoplasten, Endothelzellen, Nervenzellen, Leberzellen, Pankreaszellen, Milzzeilen, Nierenzellen und Muskelzellen", wobei vorzugsweise autologe Zellen eingesetzt werden. Fibroblasten, Keratmozyten und/oder Fettzellen sind insbesondere im Bereich der Hauttransplantation geeignet. Die weiteren Zelltypen eignen sich Fallen, in welchen das entsprechende Gewebe eines Patienten Funktionsstörungen aufweist. Lediglich als Beispiel sei genannt die Implantation intakter Pankreaszellen, mittels welcher eine mangelnde Insu- l produktion wiederhergestellt werden kann. Hierbei kann auch mit autologen Zellen gearbeitet werden, welche beispielsweise gentechnisch gleichsam repariert worden sind.
Em erfmdungsgemaß verwendbares Konstrukt ist beispielsweise dadurch erhaltlich, daß eine Suspension aus vereinzelten Zellen in einem biokompatiblen Poly- meren, optional mit einem eine Aushärtung des Polymeren bewirkenden Reagenz versetzt, ungehärtete partikulare Konstrukte bildend in eine Dispergierlosung hin- emdispergiert wird und diese Konstrukte in der Dispergierlosung gehartet werden. Mit der Eintropftechno- logie werden Konstrukte mit besonders gleichförmigen Dimensionen erhalten. Der Durchmesser erhaltener Konstrukte liegt typischerweise im Bereich von 0,05mm bis 5mm, vorzugsweise zwischen 0,1mm und 2mm, und ist im Rahmen der Eintropftechnologie wahlbar. Die Streung im Durchmesser ist besonders klein. Es ist erreichbar, daß zumindest 30%, vorzugsweise zumindest 50%, hochstvorzugswe se zumindest 80%, der erhaltenen Konstrukte, bezogen auf die Anzahl, innerhalb eines Durchmesserbereiches von -50% bis +50%, vorzugsweise von -20% bis +20%, hochstvorzugsweise von -10% bis +10%, eines vorgegebenen Durchmesserwertes liegen. Die Erfindung betrifft auch em besonders vorteilhaf- terweise einsetzbares Konstrukt, welches dadurch erhältlich ist, daß eine Zellsuspens on zusammen mit einem biokompatiblen Polymer in eine Dispergierlosung eingetropft und die entstehenden Tropfen in der Dispergierlosung gehartet werden. Dabei wird das Polymer vorzugsweise unmittelbar vor der Einbringung in die Dispergierlosung mit einem Aushartungsreagenz, vorzugsweise einem enzymatischen Aushartungsreagenz, bspw. Thrombin, versetzt. Die Dispergierlosung ist zweckmaßigerweise nicht wäßrig und weist vorteilhaf- terweise zwei (flussige) Phasen auf, wobei die Dichten der beiden Phasen so gewählt sind, daß die Konstrukte nicht weiter als bis zur Phasengrenze zwischen den beiden Phasen sedimentieren können. Hierdurch wird bewirkt, daß eingetropfte ungehärtete Konstrukte nicht bis zum Boden eines die Dispergierlosung enthaltenden Gefäßes absinken können, sondern jedenfalls im Bereich der Phasengrenze in der Schwebe gehalten werden. Hier- durch wird einerseits eine Desintegration der ungehärteten Konstrukte in der Dipergierlosung vermieden und andererseits kann beispielsweise em Magnetruhrer als Agitationselement verwendet werden, ohne daß das Agi- tationselement die Konstrukte mechanisch zu beschadi- gen vermag. Grundsatzlich kann auch noch mit einer dritten fl ssigen Phase gearbeitet werden, welche dann zuoberst angeordnet ist und eine geringere Dichte als die Konstrukte, ungehärtet oder gehartet, aufweist.
Nach der Hartung der Konstrukte ist es möglich, die Zellen vor der Transplantation in dem Konstrukt in fachublicher Weise zu kultiviert. Dies gelingt gut, da erfmdungsgemaße Konstrukte porös sind und beispielsweise Medium daher Zugang zum gesamten Konstruktvolumen hat. Die Kultivierung ist auch besonders unproblematisch, weil die Zellen mechanisch geschützt sind. Es können daher hocheffiziente Kultivierungs- techniken eingesetzt werden (beispielsweise m gerührten und/oder begasten Bioreaktoren bzw. Säulen) mit der Folge, daß die Dauer der Herstellung eines autologen Konstrukts beachtlich reduziert ist. Zudem können Konstrukte mit verschiedenen Zelltypen, beispielsweise Fibroblasten und Keratmozyten, in einem einzigen Reaktor, getrennt lediglich durch eine Membran, unter gleichen Bedingungen kultiviert werden. Vorteilhafter- weise wird eine Kultivierung nur solange durchgeführt, wie Subkonfluenz gewahrt ist. Hierdurch ist auch ge- wahrleistet, daß eine Differenzierung der Zellen nicht in vitro, sondern in vivo erfolgt, was zur Rekonstruktion beispielsweise von Hautgewebe besonders vorteil¬
Die Erfindung lehrt auch em Verfahren zur Herstellung eines biologisch aktiven partikularen Konstrukts, wobei eine Suspension aus einer Mehrzahl von vereinzelten humanen Zellen in einem biokompatiblen Polymer, ungehärtete partikulare Konstrukte bildend, in eine Dispergierlosung eingetropft wird, wobei die ungehärteten partikularen Konstrukte in der Dispergierlosung gehartet werden und wobei die geharteten partikularen Konstrukte der Dispergierlosung entnommen werden. Hierbei werden (poröse) Vollkugeln erhalten in dem Sinne, daß die Zellen im Konstruktvolumen im wesentlichen gleichförmig verteilt sind. Vorzugsweise werden die ungehärteten partikularen Konstrukte durch Vertropfung aus einer Kapillaren gebildet und danach n die Dispergierlosung eingebracht.
Anisotrope Konstrukte lassen sich erzielen, wenn unge- härtete partikulare Konstrukte dadurch erzeugt werden, daß eine Suspension enthaltend vereinzelte Zellen sowie e biokompatibles Polymer einer Vertropfungsein- richtung zugeführt werden, wobei die Vertropfungsem- richtung eine zentrale Zellsuspensionskapillaroffnung und eine koaxial hierzu, hierum angeordnete Polymerka- pillaroffnung aufweist, wobei die Suspension enthaltend vereinzelte Zellen sowie das Polymer gleichzeitig aus der Zellsuspensionskapillaroffnung sowie der Poly- merkapillaroffnung zu ungehärteten partikularen Kon- strukten vertropft und in die Dispergierlosung eingebracht werden, wobei die ungehärteten partikularen Konstrukte in der Dispergierlosung gehartet werden und wobei die geharteten partikularen Konstrukte der Dispergierlosung entnommen werden. Es werden dann Hohlku- geln in dem Sinne erhalten, daß das Polymer einen Kugelmantel bildet, in welchem die Zellen angeordnet sind, wobei die Zellen nicht in einer Polymermatrix eingebettet sind. Solche Konstrukte sind zellwachs- tumsmaßig vorteilhaft, da der Austausch von selbstge- bildeten Wachstumsfaktoren verbessert ist.
Im Rahmen der Vertropfungstechnologie kann es sich empfehlen, daß beim Vertropfen em Gasstrommantel erzeugt wird. Hierzu kann im Bereich einer Kapilaraus- laßoffnung eine zur Kapillarauslaßoffnung koaxiale ringförmige Gasauslaßoffnung vorgesehen sein. Der Gasstrommantel fordert eine gleichförmige Tropfenbildung und kann (anstatt oder zusatzlich zu dem Volumenstrom aus der Kapallarauslaßoffnung) auch zur Steuerung der Tropfengroße herangezogen und variiert werden.
Eine hinsichtlich der Tropfenbildung und -ausbildung vorteilhafte Vertropfungstechnologie besteht darin, daß beim Vertropfen in einer Kapillaren rotationssymmetrische Schwingungen m dem Flussigkeitsstrahl in der Kapilaren erzeugt und dem Flussigkeitsstrahl uber- lagert werden, wobei die Wellenlange der Schwingungen großer als der Umfang des Flussigkeitsstrahls ohne Überlagerung von Schwingungen ist.
ungehärtete und/oder gehartete Konstrukte, ggf. nach Kultivierung, enthalten vorzugsweise 104 bis 106 Zellen e ml Konstruktvolumen.
Im folgenden wird die Erfindung anhand von Ausfuh- rungsbeispielen naher erläutert.
Beispiel 1
V79 Firoblasten wurden in Kulturflaschen m Medium DMEM/F12 mit 3% FCS angezogen. Das Ablosen und Vereinzeln der Zellen erfolgte nach Entfernung des Mediums mit einer PBS/EDTA Losung. Anschließend wurden die abgelösten Zellen ein Zentrifugenrohrchen überfuhrt und 5 mm. bei 1000 rpm zentrifugiert . Der Überstand wurde verworfen und die Zellen in 200μl Medium DMEM/F12 mit HEPES und 3% FCS aufgenommen. Bei spiel 2
Die in Beispiel 1 erhaltenen Zellen (Einsaatdichte: 10" bis 106 Zellen e ml) wurden wie folgt verkapselt. 1ml Fibrinogen-Losung (TISSUCOL® -Kit 1,0 der Firma Immuno; 126-198mg Trockensubstanz enthalten 80-120mg Humanplasmaprotemfraktion mit 70-110mg Fibrinogen, 2-9mg Plasmafibronectin, 10-50 E [1E entspricht derjenigen Aktivität, die in 1ml frischem Normalplasma ent- halten ist] Blutgerinnungsfaktor XIII und 0,02-0, 08mg Plasminogen, Rest: HilfStoffe NaCl, Natriumeitrat, Aprotin, Glycin, Heparin, Triton, Human Albumin) wurde nach Beipackzettel (Produktfassung: 01.06.1999) hergestellt. 200μl der resuspendierten Zellen aus Beispiel 1 wurden in der Fibrmogenlosung aufgenommen, und gut darin vermischt (Gesamtvolumen: 1,2ml). 1ml Thrombin L-Losung (TISSUCOL0 Kit der Firma Immuno, Produktfassung: 01.06.1999) wurde nach Beipackzettel hergestellt und mit 200μl sterilem Injektionswasser versetzt (Ge- samtvolumen: 1,2ml). Beide Losungen wurden m verschiedenen Kammern einer Doppelspritze mit unmittelbar benachbarten Austrittsdusen der Kammern eingebracht. Durch Betätigung der beiden Spritzenkolben (gleiche Volumenstrome aus den Kammern erzeugend) wurden Trop- fen erzeugt, wobei sich beide Losungen im Bereich der Austrittsdusen vereinigten. Die Tropfen wurden eine Dispergierlosung fallen gelassen. Die Dispergierlosung bestand aus Fluorinert0 Dielektrika FC40 der Firma 3M (gemäß 3M Datenblatt in der Fassung vom 03.01.1998 eine primäre Perfluorverbmdung mit 12 Kohlenstoffato- men) sowie, dar ber geschichtet, Miglyol0 der Firma H ls AG (Tπglyceride von C8 bis C12 Fettsauren) . Die so erhaltene Diespergierlosung wurde vor dem Einsatz 20 mm. bei 121°C autoklaviert . Die Dispergierlosung befand sich in einem Becherglas mit randgangigem Ruhrfisch auf einem Magnetruhrer (200 - 500 rpm) und auf Raumtemperatur. Dann wurde lh bei Raumtemperatur aus- gehartet unter Ruhren. Danach erfolgte eine Separierung der erhaltenen Konstrukte von der Dispergierlosung gefolgt von dreimaligem Waschen mit Medium DMEM/F12. Anschließend wurde eine Kultivierung m einem 250ml Erlenmeyerkolben, enthaltend 50ml FC40, 75ml DMEM/F12 mit HEPES und 3% FCS, durchfuhrt unter Ruhren mit Magnetruhrer. Erhalten wurden Konstrukte mit einem mittleren Durchmesser von ca. 1mm.
Beispiel 3
Fibroblasten wurden in vorstehender Weise vereinzelt und einer Kollagen I Losung zugegeben. Die Losung wurde erhalten durch Losung des Kollagens m Medium mittels HC1 und anschließender Neutralisation mit NaCl . Die So erhaltene Zeilsuspension wurde aus einer einfachen Spritze in die vorstehend beschriebene Dispergierlosung eingetropft. Nach 16h bei 37 °C wurden im Wege des Gellierens solidiflzierte Konstrukte erhalten und wie vorstehend beschrieben weiter behandelt.

Claims

Patentansprüche
1. Verwendung eines biologisch aktiven partikularen Konstrukts auf Basis einer räumlichen Tragerstruktur aus zumindest einem ausgeharteten biokompatiblen Polymeren, wobei in der Tragerstruktur eine Mehrzahl von Zellen zumindest eines Zelltyps eingebettet ist, in der Transplantationsmedizin.
2. Verwendung nach Anspruch 1, wobei die Tragerstruktur em biokompatibles Polymer oder mehrere solcher Polymere aus der Gruppe bestehend "Fibrin, Collagen I, Hyaluronsaure, Collagen-Glycosammglycan und Chondroιtm-6-Sulfat" enthalt.
3. Verwendung nach Anspruch 1 oder 2, wobei das Polymer einen Vernetzungsgrad von weniger als 30% aufweist.
4. Verwendung nach einem der Ansprüche 1-3, wobei die Tragerstruktur einen physiologisch aktiven Wirkstoff oder mehrere solcher Wirkstoffe aus der Gruppe bestehend aus "therapeutische Wirkstoffe, Vitamine, Vitaminderivate, Wachstumsfaktoren, Glycocorticosteroide, Steroide, Antibiotika, antibakter elle Substanzen, antivirale Substanzen, Fungizide, Cytostatika, Tumor- hemmer, Enzyme, Enzyminhibitoren, Proteine, Peptide,
Minerale, Neurotransmitter, Lipoproteme, Glycoprotei- ne, Immunomodulatoren, Immunoglobuline und Fragmente hiervon, Fettsaurederivate, Polysaccharide, antunflamatorische Substanzen, Nuclemsauren, Po- lynucleotide und Anastetica" enthalt.
5. Verwendung nach einem der Ansprüche 1-4, wobei der humane Zelltyp ausgewählt ist aus der Gruppe "Fibro- plasten, Fettzellen, Keratmocyten, Chondrocyten, Osteoplasten, Endothelzellen, Nervenzellen, Leberzellen, Pancreaszellen, Milzzellen, Nierenzellen und Mus- kelzellen" und wobei vorzugsweise autologe Zellen eingesetzt werden.
6. Verwendung nach einem der Ansprüche 1-5, wobei das Konstrukt dadurch erhältlich ist, daß eine Suspension aus vereinzelten Zellen in einem biokompatiblen Polymeren, optional mit einem eine Aushärtung des Polymeren bewirkenden Reagenz versetzt, ungehärtete partikulare Konstrukte bildend in eine Dispergierlosung hin- emdispergiert wird und wobei diese Konstrukte in der Dispergierlosung gehartet werden.
7. Konstrukt nach einem der Ansprüche 1-6, dadurch er- haltlich, daß eine Zellsuspension zusammen mit einem biokompatiblen Polymer in eine Dispergierlosung eingetropft und die entstehenden Tropfen in der Dispergierlosung gehartet werden.
. Konstrukt nach einem der Ansprüche 6 oder 7, wobei das Polymer vorzugsweise unmittelbar vor der Einbringung in die Dispergierlosung mit einem Aushartungsreagenz, vorzugsweise einem enzymatischen Aushartungsreagenz, bspw. Thrombin, versetzt wird.
9. Konstrukt nach einem der Ansprüche 6-8, wobei die Dispergierlosung nicht wäßrig ist.
10. Konstrukt nach einem der Ansprüche 6-9, wobei die Dis- pergierlosung zwei Phasen aufweist, wobei die Dichten der beiden Phasen so gewählt sind, daß die Konstrukte nicht weiter als bis zur Phasengrenze zwischen den beiden Phasen sedimentleren können.
11. Konstrukt nach einem der Ansprüche 1-10, wobei die Zellen m dem Konstrukt kultiviert sind.
12. Konstrukt nach einem der Ansprüche 1-11, wobei die Zellen in dem Konstrukt subkonfluent sind.
13. Verfahren zur Herstellung eines biologisch aktiven partikularen Konstrukts, wobei eine Suspension aus einer Mehrzahl von vereinzelten humanen Zellen einem biokompatiblen Polymer, ungehärtete partikulare Konstrukte bildend, m eine Dispergierlosung eingetropft wird, wobei die ungehärteten partikularen Kon- strukte in der Dispergierlosung gehartet werden und wobei die geharteten partikularen Konstrukte der Dispergierlosung entnommen werden.
14. Verfahren nach Anspruch 13, wobei die ungehärteten partikularen Konstrukte durch Vertropfung aus einer
Kapillaren gebildet und danach in die Dispergierlosung eingebracht werden.
15. Verfahren zur Herstellung eines biologisch aktiven partikularen Konstrukts, wobei ungehärtete partikulare Konstrukte dadurch erzeugt werden, daß eine Suspension enthaltend vereinzelte Zellen sowie em biokompatibles Polymer einer Vertropfungsemrichtung zugeführt werden, wobei die Vertropfungsemrichtung eine zentrale Zellsuspensionskapillaroffnung und eine koaxial hier- zu, hierum angeordnete Polymerkapillaroffnung aufweist, wobei die Suspension enthaltend vereinzelte Zellen sowie das Polymer gleichzeitig aus der Zellsuspensionskapillaroffnung sowie der Polymerkapillaroff- nung zu ungehärteten partikularen Konstrukten ver- tropft und in die Dispergierlosung eingebracht werden, wobei die ungehärteten partikularen Konstrukte m der Dispergierlosung gehartet werden und wobei die geharteten partikularen Konstrukte der Dispergierlosung entnommen werden.
16. Verfahren nach Anspruch 14 oder 15, wobei beim Ver- tropfen em Gasstrommantel erzeugt wird.
17. Verfahren nach einem der Ansprüche 14-16, wobei beim Vertropfen in einer Kapillaren rotationssymmetrische Schwingungen dem Flussigkeitsstrahl m der Kapillaren erzeugt und dem Flussigkeitsstrahl überlagert werden, wobei die Wellenlange der Schwingungen großer als der Umfang des Flussigkeitsstrahls ohne Überlagerung von Schwingungen ist.
PCT/DE2000/003658 1999-10-12 2000-10-12 Partikuläres konstrukt zur verwendung in der transplantationsmedizin WO2001026701A2 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT00984834T ATE260681T1 (de) 1999-10-12 2000-10-12 Partikuläres konstrukt zur verwendung in der transplantationsmedizin
EP00984834A EP1231949B1 (de) 1999-10-12 2000-10-12 Partikuläres konstrukt zur verwendung in der transplantationsmedizin
AU21482/01A AU2148201A (en) 1999-10-12 2000-10-12 Particulate construct for use in the transplantation field
DE50005546T DE50005546D1 (de) 1999-10-12 2000-10-12 Partikuläres konstrukt zur verwendung in der transplantationsmedizin

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19949290A DE19949290A1 (de) 1999-10-12 1999-10-12 Partikuläres Konstrukt zur Verwendung in der Transplantationsmedizin
DE19949290.5 1999-10-12

Publications (2)

Publication Number Publication Date
WO2001026701A2 true WO2001026701A2 (de) 2001-04-19
WO2001026701A3 WO2001026701A3 (de) 2001-12-06

Family

ID=7925456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003658 WO2001026701A2 (de) 1999-10-12 2000-10-12 Partikuläres konstrukt zur verwendung in der transplantationsmedizin

Country Status (5)

Country Link
EP (1) EP1231949B1 (de)
AT (1) ATE260681T1 (de)
AU (1) AU2148201A (de)
DE (2) DE19949290A1 (de)
WO (1) WO2001026701A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144729B2 (en) * 2000-09-01 2006-12-05 Dfb Pharmaceuticals, Inc. Methods and compositions for tissue regeneration
KR100531922B1 (ko) * 2003-12-23 2005-11-29 주식회사 셀론텍 연골치료제 조성물 및 그 사용방법
KR100702250B1 (ko) * 2005-06-13 2007-04-03 세원셀론텍(주) 피브린 혼합형 골절 유합용 반고형성 뼈세포 조성물 및이의 제조방법
KR100751690B1 (ko) * 2005-06-13 2007-08-23 세원셀론텍(주) 조골 세포와 생체 기질 성분의 혼합물을 이용한 골 생성용조성물 및 그 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213908A2 (de) * 1985-08-26 1987-03-11 Hana Biologics, Inc. Transplantierbares Kunstgewebe und Verfahren
DE4438015A1 (de) * 1994-10-25 1996-05-02 Boehringer Mannheim Gmbh Epithelzellenhaltiges Biomaterial und dessen Verwendung als Transplantat
US5830507A (en) * 1992-05-18 1998-11-03 National Research Council Of Canada Biotherapeutic cell-coated microspheres
WO1999015637A1 (en) * 1997-09-19 1999-04-01 V.I. Technologies, Inc. Fibrin microbeads and uses thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK0707498T3 (da) * 1993-07-07 2003-10-20 Smith & Nephew Implanterbar protese, kit og indretning til fremstilling af samme
DE19612998A1 (de) * 1996-03-22 1997-09-25 Dizg Deutsches Inst Fuer Zell Zellschichten und Transportsystem für Zellschichten
DE19632404A1 (de) * 1996-08-02 1998-04-02 Michael Dr Sittinger Transplantierbare Knorpelgewebe mit immunsuppressiven Eigenschaften, Verahren zu ihrer Herstellung und Verwendung
IT1293484B1 (it) * 1997-06-11 1999-03-01 Fidia Advanced Biopolymers Srl Materiale biologico comprendente una efficiente coltura di cellule e una matrice tridimensionale biocompatibile e biodegradabile
ES2175753T3 (es) * 1997-06-27 2002-11-16 Augustinus Bader Injerto biosintetico y metodo para su produccion.
DE19805673C2 (de) * 1998-02-12 2002-09-26 Wolfgang Quante Verfahren und Kit zur Herstellung eines Knochenersatz- und Augmentationsmaterials
KR20010072553A (ko) * 1998-02-24 2001-07-31 나우톤 질 케이. 살아있는 키메릭 피부 대체물

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0213908A2 (de) * 1985-08-26 1987-03-11 Hana Biologics, Inc. Transplantierbares Kunstgewebe und Verfahren
US5830507A (en) * 1992-05-18 1998-11-03 National Research Council Of Canada Biotherapeutic cell-coated microspheres
DE4438015A1 (de) * 1994-10-25 1996-05-02 Boehringer Mannheim Gmbh Epithelzellenhaltiges Biomaterial und dessen Verwendung als Transplantat
WO1999015637A1 (en) * 1997-09-19 1999-04-01 V.I. Technologies, Inc. Fibrin microbeads and uses thereof

Also Published As

Publication number Publication date
EP1231949B1 (de) 2004-03-03
WO2001026701A3 (de) 2001-12-06
AU2148201A (en) 2001-04-23
DE19949290A1 (de) 2001-04-26
DE50005546D1 (de) 2004-04-08
ATE260681T1 (de) 2004-03-15
EP1231949A2 (de) 2002-08-21

Similar Documents

Publication Publication Date Title
DE69534083T2 (de) Brustgewebetechnologie
EP2273997B1 (de) Verfahren und zusammensetzung zur regeneration von gewebe mit hilfe von stamm- oder knochenmarkzellen
EP1633807B1 (de) Matrix, zellimplantat, verfahren zu deren herstellung und deren verwendung
EP0406375B1 (de) Alloplastisches implantat
DE69829662T2 (de) Vorrichtung und verfahren zur wundbehandlung
DE19953771C1 (de) Resorbierbares Knochen-Implantatmaterial sowie Verfahren zur Herstellung desselben
DE69531821T2 (de) Mehrlagige alginatbeschichtungen von biologischen geweben für die transplantation
DE60204352T2 (de) Haut/haar-äquivalent mit rekonstruierten papillen
CH657786A5 (de) Verfahren zum einkapseln eines kernmaterials innerhalb einer semipermeablen membran.
WO2003015803A1 (de) Zellzusammensetzungen zur behandlung von osteoarthrose, sowie verfahren zu deren herstellung
EP1289574B1 (de) Verfahren zur kultivierung von knorpelersatz und biomatrix nach diesem verfahren hergestellt
DE3936568C2 (de) Wirkstoffkomplex für die Herstellung von biologischen Teilen in Form von Organen für Lebewesen; Verfahren zum Herstellen desselben und seine Verwendung
EP3319652B1 (de) Verfahren zur herstellung eines bioartifiziellen, primär azellulären konstrukts auf fibrinbasis und dieses konstrukt selbst
EP1517988A2 (de) Verfahren und vorrichtung zur vermehrung und differenzierung von zellen in anwesenheit von wachstumsfaktoren und einer biologischen matrix oder trägerstruktur
WO2002048317A2 (de) Verfahren und vorrichtung zur herstellung von biologischem gewebe in einer wachstumskammer
DE60120127T2 (de) Injizierbare mikrokügelchen für den gewebeaufbau
EP1706157B1 (de) Verfahren zur herstellung von bandscheibenzelltransplantaten und deren anwendung als transplantationsmaterial
EP1231949B1 (de) Partikuläres konstrukt zur verwendung in der transplantationsmedizin
WO2004042038A1 (de) Verfahren zur behandlung von erkranktem,degeneriertem oder geschädigtem gewebe unter verwendung von in vitro hergestelltem dreidimensionalem gewebe in kombination mit gewebezellen und/oder exogenen faktoren
EP1184040A1 (de) Hautmatrix zur Abdeckung und Regenerierung verletzter Hautpartien sowie Verfahren zu ihrer Herstellung
EP0636033B1 (de) Verfahren zur herstellung von wirkstoffkomplexen
EP1518569A1 (de) Implantatmaterial für den Knochen-Knorpel-Ersatz
EP1905464B1 (de) Implantat und Verfahren zu seiner Herstellung
DE10327879A1 (de) Rekonstruierte dermale Papille
EP1338285A1 (de) Plasmagel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
AK Designated states

Kind code of ref document: A3

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A3

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2000984834

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000984834

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000984834

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP