WO2001024132A1 - Systeme de signalisation routiere - Google Patents

Systeme de signalisation routiere Download PDF

Info

Publication number
WO2001024132A1
WO2001024132A1 PCT/FR2000/002683 FR0002683W WO0124132A1 WO 2001024132 A1 WO2001024132 A1 WO 2001024132A1 FR 0002683 W FR0002683 W FR 0002683W WO 0124132 A1 WO0124132 A1 WO 0124132A1
Authority
WO
WIPO (PCT)
Prior art keywords
beacon
road
signaling system
microcontroller
signaling
Prior art date
Application number
PCT/FR2000/002683
Other languages
English (en)
Inventor
Daniel Bemer
Original Assignee
Holophane
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holophane filed Critical Holophane
Priority to EP00966216A priority Critical patent/EP1222642B9/fr
Priority to DE60012204T priority patent/DE60012204T2/de
Priority to AT00966216T priority patent/ATE271245T1/de
Publication of WO2001024132A1 publication Critical patent/WO2001024132A1/fr

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element

Definitions

  • the present invention relates to a road signaling system intended to be installed along traffic lanes such as motorways, expressways or in sections at risk
  • a more recent technique consists in using so-called active signaling pads, that is to say integrating electronics and a light source.
  • the light source which can be constituted by one or more light-emitting diodes is activated sequentially for example by emission of successive flashes to warn the motorist of an immediate danger
  • This electronics and this light source are integrated in a retroreflective block which in the absence of light emissions becomes a passive stud simply reflecting the lights emitted by the headlights of vehicles.
  • These retroreflective signaling studs are generally integrated into the roadway at the shoulder. Apart from the information panel system, the other techniques do not inform the motorist of the actual actual road conditions km by km.
  • the system also includes mterfaces which make it possible to make the connection between the beacons and a control center
  • the interfaces as their name suggests, only serve as an intermediary between the control center and the beacon network .
  • the mterfaces and the control center have no function under normal operating conditions for the beacons of this system, since the beacons incorporate both the detection means and the signaling means.
  • the mterfaces only serve as intermediaries between the beacons and the control center to route the information collected by the beacons to the control center, or as intermediaries between the control center and the beacons to operate the light emitting diodes of the beacons in a case other than an accident. There is therefore no specific communication between the mterfaces and the tags, since the mterfaces cannot generate information.
  • the present invention proposes to solve the aforementioned problem of the prior art by defining a road signaling system which informs the user in real time of the real traffic conditions on the traffic lane concerned continuously.
  • the present invention provides a road signaling system intended to be installed along traffic lanes, characterized in that it comprises. at least one detection beacon provided with sensors capable of detecting critical climatic and / or traffic conditions, and a transmitter, several signaling elements each provided with a receiver and at least one light source activated in response to a signal emitted by the transmitter of the beacon after detection of a critical condition.
  • the detection beacon therefore detects in situ the conditions which may influence the driving safety of motorists and instantly sends a signal corresponding to the studs which will activate their light source to warn motorists of the imminent danger.
  • This system there is no time lag between the moment when the critical condition is detected and the moment when the motorist is notified.
  • the light sources of the elements may emit in a specific color or according to a specific natural frequency.
  • the detection beacons could be installed on the median separating the two lanes, while the signaling elements could be integrated into the roadway in the form of studs, for example along the shoulders .
  • the signaling elements could be integrated into the roadway in the form of studs, for example along the shoulders .
  • the present invention is therefore well characterized by the combination of an emitting transmitter beacon to which is controlled a group of light receiving pads which receive detection signals directly from the beacon.
  • each element comprises an autonomous supply either by batteries or by accumulator charged by solar panel.
  • the light source comprises at least one LED light-emitting diode.
  • each element may include an optical retro-reflection system reflecting the light from the headlights of vehicles.
  • the retroreflective surfaces of the optical system contribute to a better diffusion of the light emitted by the light-emitting diode (s).
  • a microcontroller intended to manage the duration and the frequency of light emissions from the source as a function of the signals emitted.
  • the microcontroller therefore constitutes the real brain of the signaling element by decoding the signals emitted by the dedicated beacon and by sending a command order to the light source which is specific to the signals received.
  • the transmitter of the REV3 tag may include means for checking the state of charge of the power supply and then controlling the activation of the light source according to a code indicative of the state of charge of the power supply.
  • the microcontroller may include means for activating the light source in the event of a failure of the beacon.
  • the microcontroller can include means for activating the light source in the event of failure of the receiver of the pad.
  • the microcontroller therefore fulfills various functions of failure detection, order recognition, self-diagnosis, reception and processing of information coming from the beacons as well as the control of the light-emitting diodes.
  • the beacon comprises a receiver capable of receiving signals transmitted by other beacons or a terminal for centralizing information.
  • a beacon which detects a critical condition can thus send a signal to the adjacent beacons which do not detect this critical condition so that they activate their specific studs, so as to warn motorists of the impending critical condition.
  • Another possibility is the self-diagnosis of the pads dedicated to a beacon from a terminal which sends a diagnostic request signal to the beacons.
  • the transmitter of the beacon is able to send a self-diagnostic signal to the associated signaling elements in response to a diagnostic request signal picked up by the beacon receiver, the respective microcontroller of each element of signaling in response to the diagnostic request signal, making a diagnosis of the general state of said element and communicating the result of the diagnosis by activating the light source frequency decodable to the eye or using an optical decoder.
  • the road signaling system essentially comprises two types of constituent elements, namely one or more detection beacons and one or more series of signaling elements each dedicated to a detection beacon.
  • the detection beacons may for example be placed with an interval of 800 meters for example in the call terminals, and to each beacon will be dedicated a series of elements for example the number of 20
  • each beacon will be dedicated a series of elements for example the number of 20
  • the detection beacon can for example be installed on the central reservation of a motorway or expressway. These are independent detection beacons powered by batteries or solar panels and accumulators, and comprising a set of sensors allowing the detection of risks linked to bad weather or poor traffic conditions. Each detection beacon comprises a transmitter capable of transmitting a status signal specific to each critical condition detected.
  • the beacons also include a receiver, which in association with the transmitter, allows communication between them in order to circulate the information and thus guarantee the signaling of the risks upstream of the zone concerned allowing the drivers to anticipate or to inform a terminal in good time of monitoring the critical climatic condition of the road network and its actual development over time
  • the set of sensors may for example include sensors for climatic conditions of fog, rain, snow, risk aquaplanmg, risks related to the proximity of following vehicles, risk of ice, etc. as well as traffic condition sensors (accident, slowdown, traffic jam, etc.). The list is not exhaustive.
  • a series of signaling elements is thus associated or dedicated to each detection beacon. It is advantageously that each element in the series is identified independently so that a specific order signal can be sent to each individual element. This makes it possible to manage the synchronization of the elements or of any other desired operating mode, for example in chemllard mode.
  • each element comprises a receiver capable of receiving the signals emitted by the beacon to which it is dedicated, and at least one light source, for example under the shape of light-emitting diodes LED
  • Each element can thus include for example four LEDs of different color; in short, each dedicated element has the same beacon will activate one or more of these LEDs after reception of one or more control signals emitted by the detection beacon which has just detected one or more critical climatic or traffic conditions.
  • each signaling element can be in the form of an integral stud in the roadway. It may for example include a glass cover inside which the various components are assembled. The cover serves as protection against mechanical shock while ensuring internal sealing.
  • the stud may also include a passive reflector in the form of a retroreflective system making it possible to return the light emitted by the headlights of vehicles traveling on the roadway
  • the retroreflective system can for example be produced by a retroreflective film of the 3M type (registered trademark) either by forming the glass cover during the pressing phase. Consequently, when the LEDs are not activated, the signaling pad is a simple passive pad reflecting the light of the vehicle headlights. On the other hand, as soon as one or more LEDs are activated, the retroreflection system is used for the widest diffusion of the light emitted by the LEDs.
  • Each element or pad also comprises an autonomous electrical supply system, for example in the form of an accumulator / solar panel assembly, or even in the form of a battery, advantageously long-lasting.
  • the accumulator / solar panel or battery assembly is integrated in the glass cover of the pad.
  • Each element or block also includes a microcontroller which constitutes the real brain of the active block and which makes it possible to carry out the complete management of the system.
  • the microcontroller must in fact fulfill various functions, including fault detection, order recognition, self-diagnosis function, reception and processing of information from beacons and control of light-emitting diodes.
  • the microcontroller can for example detect a possible failure of its associated beacon.
  • the beacon can for example be programmed so as to send a status signal at determined periods, for example every 10 minutes. If no status signal is transmitted to the pad after, for example, three periods, this means that the associated beacon is malfunctioning, and the microcontroller triggers the activation of one or more light-emitting diodes in night operation. In this case, all the studs start to flash at night when there are no bad weather problems, which means that the beacon is broken. The personnel in charge of maintenance can then easily identify the failure of a beacon by noting the specific blinking of the associated studs.
  • the microcontroller can also detect a failure of the receiver on its pad.
  • the microcontroller then has a self-checking protocol. In the event of failure detection on the pad, the light-emitting diode is lit at night. If a stud starts to flash at night, when there is no bad weather problem, it is because the stud in question is out of service.
  • the microcontroller also allows recognition of orders from the beacon. This requires the identification of each stud by a family number referenced to a tag and an individual serial number in the series of studs dedicated to this tag. This makes it possible to operate the diodes of the pads at the same time or even in an offset manner to create a flashing of the chase type.
  • the microcontroller can also be used to perform a self-diagnosis of the power supply. In the case where a long-life battery is used to supply the pad, the microcontroller controls the level of the battery, that is to say its no-load voltage and its charge voltage. In the case where an accumulator associated with a solar panel is used, the microcontroller controls the maximum charging current and voltage of the accumulator during the day, it also controls the charging current and voltage of the solar panel, and the no-load voltage as well as the battery charge. It can also control the supply current of the light-emitting diode (s).
  • the microcontroller controls the level of the battery, that is to say its no-load voltage and its charge voltage. In the case where an accumulator associated with a solar panel is used, the microcontroller controls the maximum charging current and voltage of the accumulator during the day, it also controls the charging current and voltage of the solar panel, and the no-load voltage as well as the battery charge. It can also control the supply current of the light-emitting diode
  • the microcontroller triggers the activation of the light-emitting diodes according to a flash code allowing an operator to know what the general state of the pad is.
  • the light-emitting diodes may start to flash according to a Morse type code allowing the operation to visually recognize the state of the pad.
  • the flashes emitted by the light-emitting diodes can be detected using a portable optical analyzer capable of reading the signal emitted by the LED in order to then make it possible to know the general state of the pad and to detail the different sub-assemblies.
  • the microcontroller allows above all the management of information, that is to say signals from the beacons, and the processing of these signals to activate the light-emitting diodes according to the critical climatic and / or traffic conditions detected. by the associated tag.
  • the microcontroller allows activation light-emitting diodes according to different very specific codes according to the different critical conditions detected
  • the activation of the flashes must allow motorists to easily detect the nature of the critical conditions which it will meet as well as the level of danger to which it will be exposed
  • the microcontroller controls the light-emitting diodes upon reception of signals emitted by the terminal and according to the state of charge of the accumulators. or stack. If the signal corresponds to a diagnostic signal, the light-emitting diodes are then activated to respond to the diagnosis. If the order consists of a normal operating cycle, then the microprocessor controls the color, the flash or continuous mode and the number of light-emitting diodes used If the signal corresponds to an operating cycle with a low charge level, then the microcontroller can decrease the intensity of the power supply of the light-emitting diodes, decrease the cycle time, activate the operation according to the level of circulation, for example according to data in time range, or a combination of one or more of the above three possibilities.
  • the microcontroller therefore makes it possible to manage the entire operation of a pad and the aforementioned functions should not be considered as the only possible. Indeed, one can imagine a microcontroller performing other functions without going beyond the scope of the invention. All orders or signals emitted by the beacon or a verification device are therefore processed by the microcontroller so as to activate the light-emitting diodes according to a very specific code.
  • a beacon when a beacon detects a critical condition, for example fog, it sends a signal corresponding to its series of dedicated studs which will be received by the stud receivers and processed by the respective microcontrollers so as to trigger the diode (s) electroluminescent according to a very specific code.
  • the beacon emits a signal towards the adjacent beacons to inform them that a critical condition is detected.
  • the adjacent beacons then in turn send a signal corresponding to the critical condition detected so as to activate their series of dedicated pads respectively.
  • Each beacon can then warn its adjacent beacon (s) that a critical condition is detected up to the information centralization terminal so that weather and traffic conditions are known in real time on the entire equipped traffic lane. of a system according the invention.
  • the system can also be used to signal an accident by activating, for example, the studs of the three or four beacons installed upstream of the accident site.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Road Signs Or Road Markings (AREA)
  • Traffic Control Systems (AREA)
  • Optical Communication System (AREA)
  • Radio Relay Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

Système de signalisation routière destiné à être installé le long de voies de circulation, caractérisé en ce qu"il comprend: au moins une balise de détection munie de capteurs aptes à détecter des conditions critiques climatiques et/ou de circulation, et d"un émetteur, plusieurs éléments de signalisation munis chacun d"un récepteur et d"au moins une source lumineuse activée en réponse à un signal émis pas l"émetteur de la balise après détection d"une condition critique.

Description

Système de signalisation routière
La présente invention concerne un système de signalisation routière destine a être installé le long de voies de circulation telles que des autoroutes, des voies rapides ou encore dans des sections à risque
Il existe déjà de nombreux systèmes et dispositifs permettant d'informer les automobilistes sur l'état, la configuration et les dangers de la route. La technique la plus simple consiste à poser des panneaux avertissant les automobilistes. D'autres techniques utilisent des sources lumineuses, particulièrement en période de travaux, pour signaler une perturbation de la voie, par exemple à l'aide d'un chenillard. On utilise également des plots rétrofléchissants mtégrés dans la chaussée permettant aux automobilistes de visualiser aisément le profil de la chaussée. Une autre technique consiste à utiliser des panneaux d'information que l'automobiliste peut lire.
Une technique plus récente consiste à utiliser des plots de signalisation dits actifs, c'est-à- dire mtégrants une électronique et une source lummeuse. La source lummeuse qui peut être constituée par une ou plusieurs diodes électroluminescentes est activée séquentiellement par exemple par émission de flashs successifs pour avertir l'automobiliste d'un danger immment Cette électronique et cette source lummeuse sont intégrées dans un plot rétroréfléchissant qui en l'absence d'émissions lumineuses devient un plot passif réfléchissant simplement les lumières émises par les phares des véhicules. Ces plots retroréfléchissants de signalisation sont en général intégrés dans la chaussée au niveau de l'accotement. Hormis le système de panneau d'information, les autres techniques n'informent pas l'automobiliste des conditions réelles actuelles de la chaussée km par km. Même dans le cas du système de panneau d'information, il y a tout de même un certain décalage dans le temps entre le moment où l'information est saisie par le termmal de centralisation des informations et le moment où l'information figure sur le panneau indicateur situé sur la voie de circulation II y a donc un véritable inconvénient avec tous ces systèmes résidant dans le fait que les conditions réelles de circulation ne sont pas communiquées en temps réel aux automobilistes
Dans l'art antérieur, on peut par exemple citer le document WO 99/45520 qui décrit un système de balisage utilisant des balises de détection d'accidents. La détection des accidents est effectuée par la rupture d'un faisceau de lumière infrarouge émis entre chaque plot. Ainsi, lorsqu'un véhicule sort de la route, il coupe obligatoirement un des faisceaux de lumière infrarouge entre les balises de détection. En réponse à la rupture du faisceau de lumière infrarouge, les plots activent des diodes électroluminescentes pour signaler aux automobilistes le danger causé par l'accident. Il s'agit là d'un système de signalisation complètement autonome n'utilisant que des balises de signalisation et de détection
Outre ces balises, le système comprend également des mterfaces qui permettent de faire la liaison entre les balises et un centre de contrôle Les interfaces, comme leur nom l'indique, ne servent que d'intermédiaire entre le centre de contrôle et le réseau de balises. Les mterfaces et le centre de contrôle n'ont aucune fonction en condition normale de fonctionnement des balises de ce système, puisque les balises incorporent à la fois les moyens de détection et les moyens de signalisation. Les mterfaces ne servent que d'intermédiaires entre les balises et le centre de contrôle pour achemmer les informations recueillies par les balises vers le centre de contrôle, ou d'intermédiaires entre le centre de contrôle et les balises pour faire fonctionner les diodes électroluminescentes des balises dans un cas autre qu'un accident. Il n'y a donc aucune communication propre entre les mterfaces et les balises, puisque les mterfaces ne peuvent pas générer d'informations.
On peut également citer le document WO 89/02142 qui décrit un autre système de contrôle de trafic routier dans lequel des capteurs de conditions de trafics amsi que de conditions météorologiques sont installés le long de la chaussée. Les informations recueillies par ces capteurs sont envoyées à un transmetteur d'informations qui les envoie a son tour sous forme numérique à une station de contrôle Les données ainsi recueillies sont retransmises à des sources d'informations à l'usage des automobilistes par exemple des centres d'informations routiers ou encore des panneaux d'informations installés sur la chaussée. Ce système n'utilise donc pas de plots dédiés aux détecteurs pour informer directement les automobilistes des conditions de circulation. Au contraire, les informations recueillies par les capteurs doivent transiter tout d'abord par le transmetteur d'informations puis par la station de contrôle pour arriver enfin aux centres d'informations ou aux panneaux d'informations. Il ne s'agit donc pas d'un système autonome puisqu'il demande l'intervention d'une équipe de personnes dont le travail est de recueillir et retranscrire les informations sur les panneaux Par conséquent, les informations ne sont pas données en tant réel. La présente invention se propose de résoudre le problème précité de l'art antérieur en définissant un système de signalisation routière qui informe l'utilisateur en temps réel sur les conditions réelles de circulation sur la voie de circulation concernée de manière continue
Pour ce faire, la présente invention propose un système de signalisation routière destiné à être installé le long de voies de circulation, caractérisé en ce qu'il comprend . au moins une balise de détection munie de capteurs aptes à détecter des conditions critiques climatiques et/ou de circulation, et d'un émetteur, plusieurs éléments de signalisation munis chacun d'un récepteur et d'au moins une source lummeuse activée en réponse à un signal émis par l'émetteur de la balise après détection d'une condition critique.
La balise de détection détecte donc m situ les conditions pouvant influer sur la sécurité de conduite des automobilistes et envoie instantanément un signal correspondant aux plots qui activeront leur source lummeuse pour avertir les automobilistes du danger imminent. Avec ce système, il n'y a aucun décalage dans le temps entre le moment où l'on détecte la condition critique et le moment où l'automobiliste en est averti. En fonction du type de conditions critiques climatiques (brouillard, pluie, neige, aquaplanmg, verglas, etc.) ou de circulation (accident, ralentissement, bouchon, etc.), les sources lumineuses des éléments pourront émettre dans une couleur déterminée ou selon une fréquence propre déterminée. Par exemple dans le cas d'une autoroute, les balises de détection pourront être installées sur le terre-plein séparant les deux voies, alors que les éléments de signalisation pourront être mtégrés dans la chaussée sous forme de plots, par exemple le long des accotements. Il est également à noter qu'il n'y a qu'une seule série de détecteurs logés dans une balise pour un nombre important de plots lummeux asservis a cette balise. Il est donc réalisé une économie de détecteurs en ce que les plots en sont dépourvus. La présente invention se caractérise donc bien par la combinaison d'une balise émettπce de détection à laquelle est asservi un groupe de plots récepteurs lumineux qui reçoivent des signaux de détection directement de la balise.
Avantageusement, chaque élément comprend une alimentation autonome soit par piles soit par accumulateur charge par panneau solaire.
Selon un mode de réalisation pratique, la source lumineuse comprend au moins une diode électroluminescente LED On peut par exemple prévoir une série de diodes électroluminescentes de couleurs différentes que l'on combinera en fonction de la condition critique détectée. D'autre part, chaque élément peut comprendre un système optique de rétroréflexion réfléchissant la lumière des phares des véhicules. Ainsi, lorsque les diodes électroluminescentes ne sont pas activées, l'élément devient un simple élément passif réfléchissant les lumières des véhicules. En outre, les surfaces rétroréfléchissantes du système optique contribuent à une meilleure diffusion de la lumière émise par la ou les diodes électroluminescentes.
Pour la commande de chaque élément, il est prévu un microcontrôleur destiné à gérer la durée et la fréquence des émissions lumineuse de la source en fonction des signaux émis. Le microcontrôleur constitue donc le véritable cerveau de l'élément de signalisation en décodant les signaux émis par la balise dédiée et en envoyant un ordre de commande à la source lumineuse qui est spécifique aux signaux reçus. En outre, l'émetteur de la balise REV3. D'autre part, le microcontrôleur peut comprendre des moyens pour vérifier l'état de charge de l'alimentation et ensuite commander l'activation de la source lumineuse selon un code indicatif de l'état de charge de l'alimentation. D'autre part, le microcontrôleur peut comprendre des moyens pour activer la source lumineuse en cas de panne de la balise. Enfin, le microcontrôleur peut comprendre des moyens pour activer la source lumineuse en cas de panne du récepteur du plot.
Le microcontrôleur remplit donc différentes fonctions de détection de panne, de reconnaissance d'ordre, d'auto-diagnostique, de réception et de traitement des informations en provenance des balises ainsi que la commande des diodes électroluminescentes. Selon une autre caractéristique, la balise comprend un récepteur apte à recevoir des signaux émis par d'autres balises ou un terminal de centralisation des informations. Une balise qui détecte une condition critique peut ainsi envoyer un signal aux balises adjacentes qui ne détectent pas cette condition critique pour qu'elles activent leurs plots spécifiques, de manière à avertir les automobilistes de l'imminence d'une condition critique. Une autre possibilité est l'auto-diagnostic des plots dédiés à une balise à partir d'un terminal qui envoie un signal de demande de diagnostic aux balises. Dans ce cas, l'émetteur de la balise est apte à envoyer un signal d'auto-diagnostic aux éléments de signalisation associés en réponse à un signal de demande de diagnostic capté par le récepteur de la balise, le microcontrôleur respectif de chaque élément de signalisation en reprise au signal de demande de diagnostic, procédant à un diagnostic de l'état général dudit élément et communiquant le résultat du diagnostic en activant la source lumineuse fréquence décodable à l'œil ou à l'aide d'un décodeur optique. L'invention sera maintenant plus amplement décrite à partir d'un exemple de réalisation de l'invention. Le système de signalisation routière selon l'invention comprend essentiellement deux types d'éléments constitutifs, à savoir une ou plusieurs balises de détection et une ou plusieurs séries d'élément de signalisation chacune dédiée à une balise de détection Les balises de détection pourront par exemple être placées avec un intervalle de 800 mètres par exemple dans les bornes d'appel, et à chaque balise sera dédiée une série d'éléments par exemple au nombre de 20 Dans certains cas d'applications, on peut imaginer l'installation d'une seule balise dans des secteurs bien particuliers connus pour l'apparition de condition météorologiques critiques, par exemple une portion de voie souvent sujette à l'inondation, à l'aquaplaning, au verglas ou au brouillard
La ou les balises de détection peuvent par exemple être installées sur le terre-plein central d'une autoroute ou d'une voie expresse II s'agit de balises de détection indépendantes alimentées par piles ou panneaux solaires et accumulateurs, et comprenant un ensemble de capteurs permettant la détection des risques liés aux intempéries ou aux mauvaises conditions de circulation. Chaque balise de détection comprend un émetteur apte à émettre un signal d'état propre à chaque condition critique détectée. Avantageusement, les balises comprennent aussi un récepteur, qui en association avec l'émetteur, permet une communication entre elles afin de faire circuler l'information et ainsi garantir la signalisation des risques en amont de la zone concernée permettant aux conducteurs d'anticiper ou de renseigner en temps utile un terminal de surveillance de l'état climatique critique du réseau routier et de son évolution réelle dans le temps L'ensemble de capteurs peut par exemple comprendre des capteurs de condition climatique de brouillard, de pluie, de neige, de risque d'aquaplanmg, de risques liés à la proximité des véhicules suiveurs, de risque de verglas, etc. ainsi que des capteurs de conditions de circulation (accident, ralentissement, bouchon, etc ). La liste n'est pas exhaustive.
A chaque balise de détection est ainsi associée ou dédiée une série d'éléments de signalisation. Il est avantageusement que chaque élément dans la série soit identifie indépendamment de sorte qu'un signal d'ordre spécifique peut être envoyé a chaque élément individuel. Cela permet de gérer la synchronisation des éléments ou de tout autre mode de fonctionnement souhaité par exemple en mode chemllard.
Plus spécifiquement, chaque élément comprend un récepteur apte a recevoir les signaux émis par la balise à laquelle il est dédié, et au moins une source de lumière, par exemple sous la forme de diodes électroluminescentes LED Chaque élément peut ainsi comprendre par exemple quatre LED de couleur différente ; en somme, chaque élément dédié a une même balise activera une ou plusieurs de ces LED après réception d'un ou plusieurs signaux de commande émis par la balise de détection qui vient de détecter une ou plusieurs conditions critiques climatiques ou de circulation. C'est là que réside l'esprit de la présente invention.
Selon une forme de réalisation pratique, chaque élément de signalisation peut se présenter sous la forme d'un plot intégral dans la chaussée. Il peut par exemple comprendre une housse de verre à l'intérieur de laquelle sont assemblés les différents composants. La housse sert de protection aux chocs mécaniques tout en assurant l'étanchéité interne. Le plot peut également comprendre un réflecteur passif sous la forme d'un système rétroréfléchissant permettant de renvoyer la lumière émise par les phares des véhicules circulant sur la chaussée Le système rétroréfléchissant peut par exemple être réalisé par un film rétroréfléchissant du type 3M (marque déposée) soit par formage de la housse de verre lors de la phase de pressage. Par conséquent, lorsque les LED ne sont pas activées, le plot de signalisation est un simple plot passif réfléchissant la lumière des phares de véhicule. En revanche, dès lors qu'une ou plusieurs LED sont activées, le système de rétroréflexion sert à la diffusion la plus large de la lumière émise par les LED.
Chaque élément ou plot comprend également un système d'alimentation électrique autonome, par exemple sous la forme d'un ensemble accumulateur/panneau solaire, ou encore sous la forme d'une pile, avantageusement longue durée. L'ensemble accumulateur/panneau solaire ou la pile est intègre dans la housse de verre du plot.
Chaque élément ou plot comprend également un microcontrôleur qui constitue le véritable cerveau du plot actif et qui permet de réaliser la gestion complète du système. Le microcontrôleur doit en effet remplir différentes fonctions, entre autre la détection de pannes, la reconnaissance d'ordre, la fonction d'auto-diagnostic, la réception et le traitement des informations en provenance des balises et la commandes des diodes électroluminescentes.
Le microcontrôleur peut par exemple détecter une panne éventuelle de sa balise associée. La balise peut par exemple être programmée de manière à envoyer un signal d'état a des périodes déterminées, par exemple toutes les 10 minutes. Si aucun signal d'état n'est transmis au plot après par exemple trois périodes, cela signifie que la balise associée est en dysfonctionnement, et le microcontrôleur enclenche l'activation d'une ou plusieurs diodes électroluminescentes en fonctionnement de nuit. Dans ce cas, tous les plots se mettent à flasher de nuit alors qu'il n'y a pas de problèmes d'intempéries, ce qui signifie que la balise est en panne. Le personnel chargé de la maintenance peut alors aisément identifier la panne d'une balise en remarquant le clignotement spécifique des plots associés.
Le microcontrôleur peut également détecter une panne du récepteur de son plot. Le microcontrôleur possède alors un protocole d'auto-vérification. Dans le cas de la détection de panne sur le plot, la diode électroluminescente est allumée de nuit. Si un plot se met à flasher de nuit, alors qu'il n'y a pas de problème d'intempérie, c'est que le plot en question est hors service. Le microcontrôleur permet également la reconnaissance des ordres en provenance de la balise. Ceci nécessite l'identification de chaque plot par un numéro de famille référencée à une balise et un numéro individuel d'ordre dans la série de plots dédiés à cette balise. Ceci permet de faire fonctionner les diodes des plots en même temps ou encore de manière décalée pour créer un clignotement du type chenillard.
Le microcontrôleur peut également servir à effectuer un auto-diagnostic de l'alimentation. Dans le cas où l'on utilise une pile longue durée pour l'alimentation du plot, le microcontrôleur contrôle le niveau de la pile, c'est-à-dire sa tension à vide et sa tension de charge. Dans le cas où l'on utilise un accumulateur associé à un panneau solaire, le microcontrôleur contrôle le courant et la tension de charge maximal de l'accumulateur pendant la journée, il contrôle également le courant et la tension de charge du panneau solaire, et la tension à vide ainsi que la charge de l'accumulateur. Il peut contrôler également le courant d'alimentation de la ou des diodes électroluminescentes. En fonction des valeurs détectées, le microcontrôleur déclenche l'activation des diodes électroluminescentes selon un code de flashs permettant à un opérateur de savoir quel est l'état général du plot. Par exemple, les diodes électroluminescentes peuvent se mettre à flasher selon un code de type morse permettant à l'opération de reconnaître visuellement l'état du plot. Selon une version un peu plus sophistiquée, les flashs émis par les diodes électroluminescentes peuvent être détectés à l'aide d'un analyseur optique portatif susceptible de lire le signal émis par la LED afin de permettre ensuite de connaître l'état général du plot et de détailler les différents sous- ensembles.
Bien évidemment, le microcontrôleur permet avant tout la gestion des informations, c'est-à-dire des signaux en provenance des balises, et le traitement de ces signaux pour activer les diodes électroluminescentes en fonction des conditions critiques climatiques et/ou de circulation détectées par la balise associée. A cet effet, le microcontrôleur permet l'activation des diodes électroluminescentes selon des codes différents bien précis en fonction des différentes conditions critiques détectées L'activation des flashs doit permettre aux automobilistes de détecter aisément la nature des conditions critiques qu'il va rencontrer ainsi que le niveau de danger auquel il va s'exposer On peut imaginer toutes sortes de codes différents variant par exemple la couleur des diodes ainsi que la fréquence et la durée des flashs Le microcontrôleur commande les diodes électroluminescentes à la réception de signaux émis par la borne et en fonction de l'état de charge des accumulateurs ou de la pile. Si le signal correspond a un signal de diagnostic, les diodes électroluminescentes sont alors activées pour répondre au diagnostic. Si l'ordre consiste en un cycle de fonctionnement en marche normal, alors le microprocesseur commande la couleur, le mode flash ou continu et le nombre de diodes électroluminescentes utilisées Si le signal correspond à un cycle de fonctionnement avec un niveau de charge faible, alors le microcontrôleur peut diminuer l'intensité de l'alimentation des diodes électroluminescentes, diminuer le temps de cycle, activer le fonctionnement en fonction du niveau de circulation, par exemple selon des données en plage horaire, ou encore une combmaison d'une ou de plusieurs des trois possibilités précitées.
Le microcontrôleur permet donc de gérer tout le fonctionnement d'un plot et les fonctions précitées ne doivent pas être considérées comme les seules possibles. En effet, on peut imaginer un microcontrôleur remplissant encore d'autres fonctions sans pour cela sortir du cadre de l'mvention. Tous les ordres ou signaux émis par la balise ou d'un appareil de vérification sont donc traiter par le microcontrôleur de manière a activer les diodes électroluminescentes selon un code bien particulier
Ainsi, lorsqu'une balise détecte une condition critique, par exemple du brouillard, elle envoie un signal correspondant a sa série de plots dédies qui va être reçu par les récepteurs des plots et traité par les microcontrôleurs respectifs de manière à déclencher la ou les diodes électroluminescentes selon un code bien particulier. D'autre part, la balise émet un signal en direction des balises adjacentes pour les informer qu'une condition critique est détectée Les balises adjacentes émettent alors a leur tour un signal correspondant à la condition critique détectée de manière a activer leurs séries de plots dédiés respectifs. Chaque balise peut alors avertir sa ou ses balises adjacentes qu'une condition critique est détectée jusqu'au terminal de centralisation des informations de sorte que l'on connaît en temps réel les conditions d'intempéries et de circulation sur toute la voie de circulation équipée d'un système selon l'invention. Cela permet entre autres de déterminer l'évolution ou le déplacement de conditions climatiques ou de circulation en temps réel, ce qui permet de faire des prévisions très précises. Le système peut également servir à la signalisation d'un accident en activant par exemple les plots des trois ou quatre balises installées en amont de lieu de l'accident.
Grâce au système de signalisation actif selon l'invention, les automobilistes sont avertis en temps réel et geographiquement très précisément des conditions climatiques et /ou de circulation qu'ils vont rencontrer.

Claims

Revendications
1 - Système de signalisation routière destiné à être installe le long de voies de circulation, caractérise en ce qu'il comprend au moins une balise de détection munie de capteurs aptes a détecter des conditions critiques climatiques et/ou de circulation, et d'un émetteur, - plusieurs éléments de signalisation munis chacun d'un récepteur et d'au moins une source lummeuse activée en réponse à un signal émis par l'émetteur de la balise après détection d'une condition critique.
2 - Système de signalisation routière selon la revendication 1, dans lequel la balise comprend un récepteur apte a recevoir des signaux émis par d'autres balises et/ou un termmal de centralisation des mformations
3 - Système de signalisation routière selon la revendication 2, dans lequel l'émetteur est apte à envoyer des signaux aux autres balises et/ou au termmal de centralisation des informations.
4.- Système de signalisation routière selon l'une quelconque des revendications précédentes, dans lequel chaque élément de signalisation comprend un microcontrôleur destmé à gérer la durée et la fréquence des émissions lumineuses de la source en fonction des signaux émis.
5 - Système de signalisation routière selon l'une quelconque des revendications précédentes, dans lequel chaque élément de signalisation comprend une alimentation autonome.
6 - Système de signalisation routière selon les revendications 4 et 5, dans lequel le microcontrôleur comprend des moyens pour vérifier l'état de charge de l'alimentation.
7.- Système de signalisation routière selon la revendication 6, dans lequel le microcontrôleur comprend des moyens pour commander l'activation de la source lumineuse selon un code indicatif de l'état de charge de l'alimentation.
8.- Système de signalisation routière selon la revendication 4, dans lequel le microcontrôleur comprend des moyens pour activer la source lumineuse en cas de panne de la balise.
9 - Système de signalisation routière selon la revendication 4, dans lequel le microcontrôleur comprend des moyens pour activer la source lummeuse en cas de panne du récepteur de l'élément de signalisation.
10 - Système de signalisation routière selon la revendication 2, dans lequel l'émetteur de la balise est apte à envoyer un signal d'auto-diagnostic aux éléments de signalisation associés en réponse à un signal de demande de diagnostic capté par le récepteur de la balise, le microcontrôleur respectif de chaque élément de signalisation en reprise au signal de demande de diagnostic, procédant à un diagnostic de l'état général dudit élément et communiquant le résultat du diagnostic en activant la source lumineuse fréquence décodable à l'œil ou à l'aide d'un décodeur optique.
11 - Système de signalisation routière selon la revendication 1, dans lequel les éléments de signalisation sont intégrés dans la chaussée, avantageusement sous la forme de plots.
12 - Système de signalisation routière selon l'une quelconque des revendications précédentes, dans lequel la source lummeuse comprend au moms une diode électroluminescente LED
13.- Système de signalisation routière selon l'une quelconque des revendications précédentes, dans lequel chaque élément de signalisation comprend un système optique de rétroréflexion réfléchissant la lumière des phares des véhicules.
PCT/FR2000/002683 1999-09-30 2000-09-28 Systeme de signalisation routiere WO2001024132A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP00966216A EP1222642B9 (fr) 1999-09-30 2000-09-28 Systeme de signalisation routiere
DE60012204T DE60012204T2 (de) 1999-09-30 2000-09-28 Verkehrszeichensystem
AT00966216T ATE271245T1 (de) 1999-09-30 2000-09-28 Verkehrszeichensystem

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/12196 1999-09-30
FR9912196A FR2799295B1 (fr) 1999-09-30 1999-09-30 Systeme de signalisation routiere

Publications (1)

Publication Number Publication Date
WO2001024132A1 true WO2001024132A1 (fr) 2001-04-05

Family

ID=9550420

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/002683 WO2001024132A1 (fr) 1999-09-30 2000-09-28 Systeme de signalisation routiere

Country Status (5)

Country Link
EP (1) EP1222642B9 (fr)
AT (1) ATE271245T1 (fr)
DE (1) DE60012204T2 (fr)
FR (1) FR2799295B1 (fr)
WO (1) WO2001024132A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2378103A1 (es) * 2010-09-10 2012-04-09 Fundación Para El Progreso Del Soft Computing Sistema de balizas luminosas para la gestión del tráfico en el caso de reducción del número de carriles.

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930362A1 (fr) * 2008-04-18 2009-10-23 Peugeot Citroen Automobiles Sa Procede d'avertissement de conducteurs de vehicules automobiles d'evenements potentiellement dangereux, et systeme associe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100529A (en) * 1976-09-13 1978-07-11 Mews, Inc. Road hazard warning system, indicating specific hazard
WO1989002142A1 (fr) * 1987-08-25 1989-03-09 Elin-Union Aktiengesellschaft Für Elektrische Indu Systeme permettant une utilisation amelioree de voies de transport existantes
FR2741738A1 (fr) * 1995-11-28 1997-05-30 Bou Maurice Controle visuel de vitesse
ES2133243A1 (es) * 1997-12-04 1999-09-01 Iberica Construcciones Electricas Sa Sice Sistema de balizamiento para autopistas y similares.
WO1999045520A1 (fr) * 1998-03-06 1999-09-10 Sociedad Iberica De Construcciones Electricas, S.A. Balise active

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100529A (en) * 1976-09-13 1978-07-11 Mews, Inc. Road hazard warning system, indicating specific hazard
WO1989002142A1 (fr) * 1987-08-25 1989-03-09 Elin-Union Aktiengesellschaft Für Elektrische Indu Systeme permettant une utilisation amelioree de voies de transport existantes
FR2741738A1 (fr) * 1995-11-28 1997-05-30 Bou Maurice Controle visuel de vitesse
ES2133243A1 (es) * 1997-12-04 1999-09-01 Iberica Construcciones Electricas Sa Sice Sistema de balizamiento para autopistas y similares.
WO1999045520A1 (fr) * 1998-03-06 1999-09-10 Sociedad Iberica De Construcciones Electricas, S.A. Balise active

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2378103A1 (es) * 2010-09-10 2012-04-09 Fundación Para El Progreso Del Soft Computing Sistema de balizas luminosas para la gestión del tráfico en el caso de reducción del número de carriles.

Also Published As

Publication number Publication date
DE60012204D1 (de) 2004-08-19
EP1222642B9 (fr) 2005-01-26
ATE271245T1 (de) 2004-07-15
EP1222642B1 (fr) 2004-07-14
EP1222642A1 (fr) 2002-07-17
DE60012204T2 (de) 2005-08-25
FR2799295A1 (fr) 2001-04-06
FR2799295B1 (fr) 2002-10-18

Similar Documents

Publication Publication Date Title
US5673039A (en) Method of monitoring vehicular traffic and of providing information to drivers and system for carring out the method
KR0156556B1 (ko) 신호수단
KR101793920B1 (ko) 비상알림 경고시스템
CN201594319U (zh) 高清抓拍多功能电子警察系统
EP2310924B1 (fr) Système de transport collectif automatisé
US20070223996A1 (en) Emissive road marker system
FR2591785A1 (fr) Installation d'avertissement et de commande de trafic routier par des vehicules de secours
CN111566405A (zh) 低高度安装型低功耗智能路灯系统
US20160221496A1 (en) Warning system for a turning vehicle and a vehicle comprising such a warning system
EP1222642B1 (fr) Systeme de signalisation routiere
CN113724515B (zh) 一种利用路灯传递紧急交通事件的系统
KR20110038438A (ko) 보행자 안전 관리 시스템 및 그 방법
CN105100288B (zh) 应用信息技术的车辆车灯使用管控系统
FR2772960A1 (fr) Installation d'eclairage
CN105162872B (zh) 应用新一代信息技术对车辆车灯使用进行管控的方法
EP1071059B1 (fr) Dispositif de signalisation, notamment routière
FR2599166A1 (fr) Installation de transmission de messages, notamment pour fournir une signalisation routiere renforcee, et procede de transmission correspondant
FR3096756A1 (fr) Procédé de commande d’un système de signalisation d’un véhicule automobile
WO1998009264A1 (fr) Systeme de transmission de signal de danger pour vehicules routiers
KR100939578B1 (ko) 교통 정보 제공 시스템 및 방법
FR2793056A1 (fr) Procede et dispositif de communication d'informations d'alarme entre vehicules
EP3886077A1 (fr) Système et procédé pour la détection et le signalement de l'engagement d'un passage piéton
WO2011028145A1 (fr) Système de marquage du bord de route dans des conditions de faible visibilité à l'aide d'un réseau sans fil de dispositifs de signalisation
FR2896609A1 (fr) Dispositif et procede pour la reglementation d'emplacements de stationnement.
FR3071519A1 (fr) Avertisseur automatique autonome

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000966216

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000966216

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 2000966216

Country of ref document: EP