EP1222642B1 - Systeme de signalisation routiere - Google Patents

Systeme de signalisation routiere Download PDF

Info

Publication number
EP1222642B1
EP1222642B1 EP00966216A EP00966216A EP1222642B1 EP 1222642 B1 EP1222642 B1 EP 1222642B1 EP 00966216 A EP00966216 A EP 00966216A EP 00966216 A EP00966216 A EP 00966216A EP 1222642 B1 EP1222642 B1 EP 1222642B1
Authority
EP
European Patent Office
Prior art keywords
beacon
road
microcontroller
signalling system
transmitter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00966216A
Other languages
German (de)
English (en)
Other versions
EP1222642A1 (fr
EP1222642B9 (fr
Inventor
Daniel Bemer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Holophane SAS
Original Assignee
Holophane SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Holophane SAS filed Critical Holophane SAS
Publication of EP1222642A1 publication Critical patent/EP1222642A1/fr
Publication of EP1222642B1 publication Critical patent/EP1222642B1/fr
Application granted granted Critical
Publication of EP1222642B9 publication Critical patent/EP1222642B9/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/164Centralised systems, e.g. external to vehicles
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/09Arrangements for giving variable traffic instructions
    • G08G1/0962Arrangements for giving variable traffic instructions having an indicator mounted inside the vehicle, e.g. giving voice messages
    • G08G1/0967Systems involving transmission of highway information, e.g. weather, speed limits
    • G08G1/096766Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission
    • G08G1/096783Systems involving transmission of highway information, e.g. weather, speed limits where the system is characterised by the origin of the information transmission where the origin of the information is a roadside individual element

Definitions

  • the present invention as defined in the claims relates to a road sign system intended to be along roads such as motorways, expressways or in risk sections.
  • a more recent technique consists in using so-called active signaling pads, that is to say integrating electronics and a light source.
  • the light source that can be formed by one or more light-emitting diodes is activated sequentially by example by issuing successive flashes to warn the motorist of imminent danger.
  • This electronics and this light source are integrated in a retroreflective pad which in the absence of light emissions becomes a passive stud simply reflecting the lights emitted by the headlights of vehicles.
  • These retro-reflective signaling pads are usually embedded in the roadway at the shoulder level.
  • the system also includes interfaces that allow you to the link between the beacons and a control center.
  • the interfaces as their name suggests, only serve as an intermediary between the control center and the beacon network. Interfaces and the control center have no function under normal operating conditions of the beacons of this system, since the beacons incorporate both the means of detection and the signaling means.
  • the interfaces serve only as intermediaries between the tags and the control center to route the information collected by the tags to the center of control, or intermediaries between the control center and the beacons to operate the electroluminescent diodes of beacons in a case other than an accident. So there is no communication between the interfaces and the beacons, since the interfaces can not generate information.
  • WO 89/02142 may also be mentioned which describes another system of traffic control in which traffic condition sensors as well as Weather conditions are installed along the roadway.
  • the information collected these sensors are sent to an information transmitter which sends them in turn under digital form at a control station.
  • the data thus collected are retransmitted to sources of information for the use of motorists, for example information centers roads or information panels installed on the road.
  • This system does not use therefore no pads dedicated to detectors to directly inform motorists of traffic conditions.
  • the information collected by the sensors transit first through the information transmitter and then through the control station to finally arrive at information centers or information panels. It is not therefore autonomous system since it requires the intervention of a team of people whose work is to collect and transcribe the information on the panels. Therefore, information is not given as real.
  • the present invention proposes to solve the aforementioned problem of the prior art by defining a road signal system that informs the user in real time about the actual traffic conditions on the traffic lane in a continuous manner.
  • the detection beacon detects in situ the conditions that can affect the safety driver and instantly sends a signal corresponding to the studs that activate their light source to warn motorists of imminent danger. With this system, there is no time lag between when the condition is detected critical and the moment when the motorist is warned.
  • the light sources of the elements may transmit in a certain color or according to a specific natural frequency.
  • the detection beacons may be installed on the median between the two channels, while the signaling elements can be integrated into the pavement, for example along the shoulders.
  • the present invention is therefore characterized by the combination a detection transmitter beacon to which is enslaved a group of receiving pins luminaires which receive detection signals directly from the beacon.
  • each element comprises an autonomous power supply either by batteries either by solar panel charged battery.
  • the light source comprises at least one LED light emitting diode.
  • the light source comprises at least one LED light emitting diode.
  • each element may comprise a retroreflective optical system reflecting light from the headlights of vehicles. So when the light-emitting diodes are not activated, the element becomes a simple passive element reflecting the lights of vehicles.
  • the retroreflective surfaces of the optical system contribute to a better diffusion of the light emitted by the light emitting diode (s).
  • a microcontroller for managing the duration and frequency of light emission from the source according to the signals emitted.
  • the microcontroller is therefore the true brain of the signaling element by decoding the signals emitted by the dedicated beacon and sending a command order to the source which is specific to the signals received.
  • the transmitter of the REV3 tag the microcontroller may include means for checking the state of charge of the power supply and then control the activation of the light source according to a code indicative of the state of charge of the power supply.
  • the microcontroller can include means to activate the light source in case of failure of the beacon.
  • the microcontroller may comprise means for activating the light source in case of failure of the stud receiver.
  • the microcontroller thus performs various functions of fault detection, order recognition, self-diagnosis, reception and processing of information in from the beacons as well as the control of the light-emitting diodes.
  • the beacon comprises a receiver able to receive signals transmitted by other beacons or an information centralization terminal.
  • a tag which detects a critical condition can thus send a signal to adjacent beacons that do not not detect this critical condition so that they activate their specific pads, so to warn motorists of the imminence of a critical condition.
  • Another possibility is the self-diagnosis of the pads dedicated to a beacon from a terminal which sends a signal of request for diagnostic tags.
  • the transmitter of the beacon is able to send a self-diagnostic signal to the associated signaling elements in response to a signal of diagnostic request captured by the beacon receiver, the respective microcontroller of each signaling element in recovery to the diagnostic request signal, proceeding to a diagnosis of the general state of said element and communicating the result of the diagnosis in activating the light source which can be decoded by eye or with an optical decoder.
  • the road signaling system essentially comprises two types of constituent elements, namely one or more detection tags and one or several series of signal element each dedicated to a detection tag.
  • Tags for example, they can be placed with an interval of 800 meters, for example in the call terminals, and each tag will be dedicated a series of elements for example to number of 20.
  • condition critical weather for example a portion of a track that is often prone to flooding, aquaplaning, ice or fog.
  • the detection tag or tags may for example be installed on the central reservation. a highway or expressway. These are independent detection beacons powered by batteries or solar panels and accumulators, and comprising a set of sensors allowing the detection of the risks related to bad weather or conditions of circulation.
  • Each detection beacon includes a transmitter capable of transmitting a signal state specific to each critical condition detected.
  • the tags include also a receiver, which in association with the transmitter, allows communication between them in order to circulate the information and thereby guarantee the risk signaling upstream of the concerned area allowing drivers to anticipate or inform in a timely manner a terminal for monitoring the critical climatic state of the road network and its evolution real time.
  • the set of sensors may for example comprise sensors of climatic conditions of fog, rain, snow, risk of aquaplaning, risks related the proximity of the following vehicles, the risk of ice, etc. as well as sensors from traffic conditions (accident, slowdown, traffic jam, etc.).
  • the list is not comprehensive.
  • Each detection tag is thus associated or dedicated to a series of elements of signaling. It is advantageous that each element in the series is identified independently so that a specific order signal can be sent to each element individual. This allows you to manage the synchronization of elements or any other mode of desired operation for example in chase mode.
  • each element comprises a receiver capable of receiving the signals transmitted by the beacon to which it is dedicated, and at least one light source, for example under LED light emitting diode shape.
  • Each element can thus understand by example four LEDs of different color; in short, each element dedicated to the same tag will activate one or more of these LEDs after receiving one or more command issued by the detection beacon which has detected one or more conditions weather or traffic criticism. This is where the spirit of the present invention lies.
  • each signaling element can be present in the form of an integral block in the roadway. He can for example understand a cover of glass inside which are assembled the various components. The cover serves as protection against mechanical shocks while ensuring internal sealing.
  • the plot may also include a passive reflector in the form of a retroreflective system to return the light emitted by the headlights of vehicles traveling on the roadway.
  • the retroreflective system may for example be made by a retroreflective film of type 3M (registered trademark) or by forming the glass cover during the pressing phase. Therefore, when the LEDs are not activated, the signaling pad is a single pad passive reflecting light from vehicle headlights. On the other hand, once one or several LEDs are activated, the retroreflection system is used for the widest light emitted by the LEDs.
  • Each element or stud also includes a power supply system autonomous, for example in the form of an accumulator / solar panel assembly, or still in the form of a battery, advantageously long-term. All accumulator / solar panel or the battery is integrated into the glass cover of the stud.
  • Each element or pad also includes a microcontroller which constitutes the true brain of the active block and which allows to realize the complete management of the system.
  • the microcontroller must indeed perform various functions, including fault detection, order recognition, self-diagnosis function, reception and processing of information from the beacons and the light emitting diode controls.
  • the microcontroller can for example detect a possible failure of its tag associated.
  • the beacon can for example be programmed to send a status signal to specific periods, for example every 10 minutes. If no status signal is transmitted to the plot after for example three periods, it means that the associated tag is in malfunction, and the microcontroller triggers the activation of one or more diodes electroluminescent in night operation. In this case, all the pins start to flash at night when there are no weather problems, which means that the beacon is in breakdown. Maintenance personnel can then easily identify the failure of a tag by noticing the specific blinking of the associated pads.
  • the microcontroller can also detect a failure of the receiver of its stud.
  • the microcontroller then has a self-checking protocol. In the case of the detection of failure on the pad, the light-emitting diode is lit at night. If a plot starts to flash at night, while there is no problem of bad weather, it is that the stud in question is out service.
  • the microcontroller also allows the recognition of orders from the tag. This requires the identification of each plot by a family number referenced to a tag and an individual order number in the series of plots dedicated to this tag. This makes it possible to operate the diodes of the pads at the same time or else in an off-set manner to create a chase-like blink.
  • the microcontroller can also be used to perform a self-diagnosis of food.
  • the microcontroller controls the level of the battery, ie its no-load voltage and its voltage of charge.
  • the microcontroller controls the current and maximum charging voltage of the battery during the day, it also controls the current and the charging voltage of the solar panel, and the no-load voltage as well as the charge of the accumulator. He can also control the supply current of the light emitting diode (s).
  • the microcontroller triggers the activation of the light-emitting diodes according to a Flash code allowing an operator to know what is the general state of the plot.
  • the light-emitting diodes can start flashing according to a Morse type code allowing the operation to visually recognize the state of the stud.
  • the flashes emitted by the light-emitting diodes can be detected at using a portable optical analyzer capable of reading the signal emitted by the LED in order to then allow to know the general state of the plot and to detail the different subsets.
  • the microcontroller allows above all information management, that is, signals from the beacons, and the processing of these signals to activate electroluminescent diodes according to the climatic critical conditions and / or traffic detected by the associated tag.
  • the microcontroller allows the activation electroluminescent diodes according to different specific codes depending on the different critical conditions detected. Activation of the flashes must allow the motorists to easily detect the nature of critical conditions that it will meet as well than the level of danger to which he will expose himself. We can imagine all kinds of codes different for example the color of the diodes and the frequency and duration of flashes.
  • the microcontroller controls the light-emitting diodes upon receipt of signals emitted by the terminal and according to the state of charge of the accumulators or the battery. Yes the signal corresponds to a diagnostic signal, the electroluminescent diodes are then activated to answer the diagnosis. If the order consists of a cycle of operation in normal operation, then the microprocessor controls color, flash or continuous mode and number of light-emitting diodes used. If the signal corresponds to a cycle of operation with a low charge level, then the microcontroller can decrease the intensity of the power supply of the light-emitting diodes, decrease the cycle time, activate the operation according to the level of circulation, for example according to data in a time slot, or a combination of one or more of the three possibilities above.
  • the microcontroller thus makes it possible to manage all the operation of a plot and the these functions should not be considered as the only ones possible. Indeed, we can imagine a microcontroller fulfilling yet other functions without leaving it of the scope of the invention. All orders or signals issued by the beacon or verification are therefore process by the microcontroller so as to activate the diodes electroluminescent according to a particular code.
  • a beacon when a beacon detects a critical condition, for example fog, it sends a signal corresponding to its series of dedicated pads that will be received by the receivers of pads and processed by the respective microcontrollers so as to trigger the diode (s) electroluminescent according to a particular code.
  • the beacon emits a signal direction of adjacent beacons to inform them that a critical condition is detected.
  • the adjacent beacons then emit a signal corresponding to the critical condition detected to activate their respective series of dedicated pads.
  • Each tag can then notify its adjacent beacon (s) that a critical condition is detected centralization of information so that the conditions are known in real time weather and traffic all along the taxiway equipped with a system according to the invention.
  • the system can also be used to signal an accident by activating example the studs of the three or four beacons installed upstream of the accident site.
  • the motorists are informed in real time and geographically very precisely climatic conditions and / or traffic they will encounter.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Traffic Control Systems (AREA)
  • Road Signs Or Road Markings (AREA)
  • Optical Communication System (AREA)
  • Radio Relay Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

La présente invention telle que définie dans les revendications concerne un système de signalisation routière destiné à être installé le long de voies de circulation telles que des autoroutes, des voies rapides ou encore dans des sections à risque.
Il existe déjà de nombreux systèmes et dispositifs permettant d'informer les automobilistes sur l'état, la configuration et les dangers de la route. La technique la plus simple consiste à poser des panneaux avertissant les automobilistes. D'autres techniques utilisent des sources lumineuses, particulièrement en pénode de travaux, pour signaler une perturbation de la voie, par exemple à l'aide d'un chenillard. On utilise également des plots rétrofléchissants intégrés dans la chaussée permettant aux automobilistes de visualiser aisément le profil de la chaussée. Une autre technique consiste à utiliser des panneaux d'information que l'automobiliste peut lire.
Une technique plus récente consiste à utiliser des plots de signalisation dits actifs, c'est-à-dire intégrants une électronique et une source lumineuse. La source lumineuse qui peut être constituée par une ou plusieurs diodes électroluminescentes est activée séquentiellement par exemple par émission de flashs successifs pour avertir l'automobiliste d'un danger imminent. Cette électronique et cette source lumineuse sont intégrées dans un plot rétroréfléchissant qui en l'absence d'émissions lumineuses devient un plot passif réfléchissant simplement les lumières émises par les phares des véhicules. Ces plots rétroréfléchissants de signalisation sont en général intégrés dans la chaussée au niveau de l'accotement.
Hormis le système de panneau d'information, les autres techniques n'informent pas l'automobiliste des conditions réelles actuelles de la chaussée km par km. Même dans le cas du système de panneau d'information, il y a tout de même un certain décalage dans le temps entre le moment où l'information est saisie par le terminal de centralisation des informations et le moment où l'information figure sur le panneau indicateur situé sur la voie de circulation. Il y a donc un véritable inconvénient avec tous ces systèmes résidant dans le fait que les conditions réelles de circulation ne sont pas communiquées en temps réel aux automobilistes.
Dans l'art antérieur, on peut par exemple citer le document WO 99/45520 qui décrit un système de balisage utilisant des balises de détection d'accidents. La détection des accidents est effectuée par la rupture d'un faisceau de lumière infrarouge émis entre chaque plot. Ainsi, lorsqu'un véhicule sort de la route, il coupe obligatoirement un des faisceaux de lumière infrarouge entre les balises de détection. En réponse à la rupture du faisceau de lumière infrarouge, les plots activent des diodes électroluminescentes pour signaler aux automobilistes le danger causé par l'accident. Il s'agit là d'un système de signalisation complètement autonome n'utilisant que des balises de signalisation et de détection. Le document ES-A-2 133 243 divulgue un dispositif similaire.
Outre ces balises, le système comprend également des interfaces qui permettent de faire la liaison entre les balises et un centre de contrôle. Les interfaces, comme leur nom l'indique, ne servent que d'intermédiaire entre le centre de contrôle et le réseau de balises. Les interfaces et le centre de contrôle n'ont aucune fonction en condition normale de fonctionnement des balises de ce système, puisque les balises incorporent à la fois les moyens de détection et les moyens de signalisation. Les interfaces ne servent que d'intermédiaires entre les balises et le centre de contrôle pour acheminer les informations recueillies par les balises vers le centre de contrôle, ou d'intermédiaires entre le centre de contrôle et les balises pour faire fonctionner les diodes électroluminescentes des balises dans un cas autre qu'un accident. Il n'y a donc aucune communication propre entre les interfaces et les balises, puisque les interfaces ne peuvent pas générer d'informations.
On peut également citer le document WO 89/02142 qui décrit un autre système de contrôle de trafic routier dans lequel des capteurs de conditions de trafics ainsi que de conditions météorologiques sont installés le long de la chaussée. Les informations recueillies par ces capteurs sont envoyées à un transmetteur d'informations qui les envoie à son tour sous forme numérique à une station de contrôle. Les données ainsi recueillies sont retransmises à des sources d'informations à l'usage des automobilistes par exemple des centres d'informations routiers ou encore des panneaux d'informations installés sur la chaussée. Ce système n'utilise donc pas de plots dédiés aux détecteurs pour informer directement les automobilistes des conditions de circulation. Au contraire, les informations recueillies par les capteurs doivent transiter tout d'abord par le transmetteur d'informations puis par la station de contrôle pour arriver enfin aux centres d'informations ou aux panneaux d'informations. Il ne s'agit donc pas d'un système autonome puisqu'il demande l'intervention d'une équipe de personnes dont le travail est de recueillir et retranscrire les informations sur les panneaux. Par conséquent, les informations ne sont pas données en tant réel.
La présente invention se propose de résoudre le problème précité de l'art antérieur en définissant un système de signalisation routière qui informe l'utilisateur en temps réel sur les conditions réelles de circulation sur la voie de circulation concernée de manière continue.
Pour ce faire, la présente invention propose un système de signalisation routière destiné à être installé le long de voies de circulation, caractérisé en ce qu'il comprend :
  • au moins une balise de détection munie de capteurs aptes à détecter des conditions critiques climatiques et/ou de circulation, et d'un émetteur,
  • plusieurs éléments de signalisation munis chacun d'un récepteur et d'au moins une source lumineuse activée en réponse à un signal émis par l'émetteur de la balise après détection d'une condition critique.
La balise de détection détecte donc in situ les conditions pouvant influer sur la sécurité de conduite des automobilistes et envoie instantanément un signal correspondant aux plots qui activeront leur source lumineuse pour avertir les automobilistes du danger imminent. Avec ce système, il n'y a aucun décalage dans le temps entre le moment où l'on détecte la condition critique et le moment où l'automobiliste en est averti. En fonction du type de conditions critiques climatiques (brouillard, pluie, neige, aquaplaning, verglas, etc.) ou de circulation (accident, ralentissement, bouchon, etc.), les sources lumineuses des éléments pourront émettre dans une couleur déterminée ou selon une fréquence propre déterminée. Par exemple dans le cas d'une autoroute, les balises de détection pourront être installées sur le terre-plein séparant les deux voies, alors que les éléments de signalisation pourront être intégrés dans la chaussée sous forme de plots, par exemple le long des accotements. Il est également à noter qu'il n'y a qu'une seule série de détecteurs logés dans une balise pour un nombre important de plots lumineux asservis à cette balise. Il est donc réalisé une économie de détecteurs en ce que les plots en sont dépourvus. La présente invention se caractérise donc bien par la combinaison d'une balise émettrice de détection à laquelle est asservi un groupe de plots récepteurs lumineux qui reçoivent des signaux de détection directement de la balise.
Avantageusement, chaque élément comprend une alimentation autonome soit par piles soit par accumulateur chargé par panneau solaire.
Selon un mode de réalisation pratique, la source lumineuse comprend au moins une diode électroluminescente LED. On peut par exemple prévoir une série de diodes électroluminescentes de couleurs différentes que l'on combinera en fonction de la condition critique détectée.
D'autre part, chaque élément peut comprendre un système optique de rétroréflexion réfléchissant la lumière des phares des véhicules. Ainsi, lorsque les diodes électroluminescentes ne sont pas activées, l'élément devient un simple élément passif réfléchissant les lumières des véhicules. En outre, les surfaces rétroréfléchissantes du système optique contribuent à une meilleure diffusion de la lumière émise par la ou les diodes électroluminescentes.
Pour la commande de chaque élément, il est prévu un microcontrôleur destiné à gérer la durée et la fréquence des émissions lumineuse de la source en fonction des signaux émis. Le microcontrôleur constitue donc le véritable cerveau de l'élément de signalisation en décodant les signaux émis par la balise dédiée et en envoyant un ordre de commande à la source lumineuse qui est spécifique aux signaux reçus. En outre, l'émetteur de la balise REV3. D'autre part, le microcontrôleur peut comprendre des moyens pour vérifier l'état de charge de l'alimentation et ensuite commander l'activation de la source lumineuse selon un code indicatif de l'état de charge de l'alimentation. D'autre part, le microcontrôleur peut comprendre des moyens pour activer la source lumineuse en cas de panne de la balise. Enfin, le microcontrôleur peut comprendre des moyens pour activer la source lumineuse en cas de panne du récepteur du plot.
Le microcontrôleur remplit donc différentes fonctions de détection de panne, de reconnaissance d'ordre, d'auto-diagnostique, de réception et de traitement des informations en provenance des balises ainsi que la commande des diodes électroluminescentes.
Selon une autre caractéristique, la balise comprend un récepteur apte à recevoir des signaux émis par d'autres balises ou un terminal de centralisation des informations. Une balise qui détecte une condition critique peut ainsi envoyer un signal aux balises adjacentes qui ne détectent pas cette condition critique pour qu'elles activent leurs plots spécifiques, de manière à avertir les automobilistes de l'imminence d'une condition critique. Une autre possibilité est l'auto-diagnostic des plots dédiés à une balise à partir d'un terminal qui envoie un signal de demande de diagnostic aux balises. Dans ce cas, l'émetteur de la balise est apte à envoyer un signal d'auto-diagnostic aux éléments de signalisation associés en réponse à un signal de demande de diagnostic capté par le récepteur de la balise, le microcontrôleur respectif de chaque élément de signalisation en reprise au signal de demande de diagnostic, procédant à un diagnostic de l'état général dudit élément et communiquant le résultat du diagnostic en activant la source lumineuse fréquencé décodable à l'oeil ou à l'aide d'un décodeur optique.
L'invention sera maintenant plus amplement décrite à partir d'un exemple de réalisation de l'invention. Le système de signalisation routière selon l'invention comprend essentiellement deux types d'éléments constitutifs, à savoir une ou plusieurs balises de détection et une ou plusieurs séries d'élément de signalisation chacune dédiée à une balise de détection. Les balises de détection pourront par exemple être placées avec un intervalle de 800 mètres par exemple dans les bornes d'appel, et à chaque balise sera dédiée une série d'éléments par exemple au nombre de 20. Dans certains cas d'applications, on peut imaginer l'installation d'une seule balise dans des secteurs bien particuliers connus pour l'apparition de condition météorologiques critiques, par exemple une portion de voie souvent sujette à l'inondation, à l'aquaplaning, au verglas ou au brouillard.
La ou les balises de détection peuvent par exemple être installées sur le terre-plein central d'une autoroute ou d'une voie expresse. Il s'agit de balises de détection indépendantes alimentées par piles ou panneaux solaires et accumulateurs, et comprenant un ensemble de capteurs permettant la détection des risques liés aux intempéries ou aux mauvaises conditions de circulation. Chaque balise de détection comprend un émetteur apte à émettre un signal d'état propre à chaque condition critique détectée. Avantageusement, les balises comprennent aussi un récepteur, qui en association avec l'émetteur, permet une communication entre elles afin de faire circuler l'information et ainsi garantir la signalisation des risques en amont de la zone concernée permettant aux conducteurs d'anticiper ou de renseigner en temps utile un terminal de surveillance de l'état climatique critique du réseau routier et de son évolution réelle dans le temps. L'ensemble de capteurs peut par exemple comprendre des capteurs de condition climatique de brouillard, de pluie, de neige, de risque d'aquaplaning, de risques liés à la proximité des véhicules suiveurs, de risque de verglas, etc. ainsi que des capteurs de conditions de circulation (accident, ralentissement, bouchon, etc.). La liste n'est pas exhaustive.
A chaque balise de détection est ainsi associée ou dédiée une série d'éléments de signalisation. Il est avantageusement que chaque élément dans la série soit identifié indépendamment de sorte qu'un signal d'ordre spécifique peut être envoyé à chaque élément individuel. Cela permet de gérer la synchronisation des éléments ou de tout autre mode de fonctionnement souhaité par exemple en mode chenillard.
Plus spécifiquement, chaque élément comprend un récepteur apte à recevoir les signaux émis par la balise à laquelle il est dédié, et au moins une source de lumière, par exemple sous la forme de diodes électroluminescentes LED. Chaque élément peut ainsi comprendre par exemple quatre LED de couleur différente ; en somme, chaque élément dédié à une même balise activera une ou plusieurs de ces LED après réception d'un ou plusieurs signaux de commande émis par la balise de détection qui vient de détecter une ou plusieurs conditions critiques climatiques ou de circulation. C'est là que réside l'esprit de la présente invention.
Selon une forme de réalisation pratique, chaque élément de signalisation peut se présenter sous la forme d'un plot intégral dans la chaussée. Il peut par exemple comprendre une housse de verre à l'intérieur de laquelle sont assemblés les différents composants. La housse sert de protection aux chocs mécaniques tout en assurant l'étanchéité interne. Le plot peut également comprendre un réflecteur passif sous la forme d'un système rétroréfléchissant permettant de renvoyer la lumière émise par les phares des véhicules circulant sur la chaussée. Le système rétroréfléchissant peut par exemple être réalisé par un film rétroréfléchissant du type 3M (marque déposée) soit par formage de la housse de verre lors de la phase de pressage. Par conséquent, lorsque les LED ne sont pas activées, le plot de signalisation est un simple plot passif réfléchissant la lumière des phares de véhicule. En revanche, dès lors qu'une ou plusieurs LED sont activées, le système de rétroréflexion sert à la diffusion la plus large de la lumière émise par les LED.
Chaque élément ou plot comprend également un système d'alimentation électrique autonome, par exemple sous la forme d'un ensemble accumulateur/panneau solaire, ou encore sous la forme d'une pile, avantageusement longue durée. L'ensemble accumulateur/panneau solaire ou la pile est intégré dans la housse de verre du plot.
Chaque élément ou plot comprend également un microcontrôleur qui constitue le véritable cerveau du plot actif et qui permet de réaliser la gestion complète du système. Le microcontrôleur doit en effet remplir différentes fonctions, entre autre la détection de pannes, la reconnaissance d'ordre, la fonction d'auto-diagnostic, la réception et le traitement des informations en provenance des balises et la commandes des diodes électroluminescentes.
Le microcontrôleur peut par exemple détecter une panne éventuelle de sa balise associée. La balise peut par exemple être programmée de manière à envoyer un signal d'état à des périodes déterminées, par exemple toutes les 10 minutes. Si aucun signal d'état n'est transmis au plot après par exemple trois périodes, cela signifie que la balise associée est en dysfonctionnement, et le microcontrôleur enclenche l'activation d'une ou plusieurs diodes électroluminescentes en fonctionnement de nuit. Dans ce cas, tous les plots se mettent à flasher de nuit alors qu'il n'y a pas de problèmes d'intempéries, ce qui signifie que la balise est en panne. Le personnel chargé de la maintenance peut alors aisément identifier la panne d'une balise en remarquant le clignotement spécifique des plots associés.
Le microcontrôleur peut également détecter une panne du récepteur de son plot. Le microcontrôleur possède alors un protocole d'auto-vérification. Dans le cas de la détection de panne sur le plot, la diode électroluminescente est allumée de nuit. Si un plot se met à flasher de nuit, alors qu'il n'y a pas de problème d'intempérie, c'est que le plot en question est hors service. Le microcontrôleur permet également la reconnaissance des ordres en provenance de la balise. Ceci nécessite l'identification de chaque plot par un numéro de famille référencée à une balise et un numéro individuel d'ordre dans la série de plots dédiés à cette balise. Ceci permet de faire fonctionner les diodes des plots en même temps ou encore de manière décalée pour créer un clignotement du type chenillard.
Le microcontrôleur peut également servir à effectuer un auto-diagnostic de l'alimentation. Dans le cas où l'on utilise une pile longue durée pour l'alimentation du plot, le microcontrôleur contrôle le niveau de la pile, c'est-à-dire sa tension à vide et sa tension de charge. Dans le cas où l'on utilise un accumulateur associé à un panneau solaire, le microcontrôleur contrôle le courant et la tension de charge maximal de l'accumulateur pendant la journée, il contrôle également le courant et la tension de charge du panneau solaire, et la tension à vide ainsi que la charge de l'accumulateur. Il peut contrôler également le courant d'alimentation de la ou des diodes électroluminescentes. En fonction des valeurs détectées, le microcontrôleur déclenche l'activation des diodes électroluminescentes selon un code de flashs permettant à un opérateur de savoir quel est l'état général du plot. Par exemple, les diodes électroluminescentes peuvent se mettre à flasher selon un code de type morse permettant à l'opération de reconnaítre visuellement l'état du plot. Selon une version un peu plus sophistiquée, les flashs émis par les diodes électroluminescentes peuvent être détectés à l'aide d'un analyseur optique portatif susceptible de lire le signal émis par la LED afin de permettre ensuite de connaítre l'état général du plot et de détailler les différents sous-ensembles.
Bien évidemment, le microcontrôleur permet avant tout la gestion des informations, c'est-à-dire des signaux en provenance des balises, et le traitement de ces signaux pour activer les diodes électroluminescentes en fonction des conditions critiques climatiques et/ou de circulation détectées par la balise associée. A cet effet, le microcontrôleur permet l'activation des diodes électroluminescentes selon des codes différents bien précis en fonction des différentes conditions critiques détectées. L'activation des flashs doit permettre aux automobilistes de détecter aisement la nature des conditions critiques qu'il va rencontrer ainsi que le niveau de danger auquel il va s'exposer. On peut imaginer toutes sortes de codes différents variant par exemple la couleur des diodes ainsi que la fréquence et la durée des flashs. Le microcontrôleur commande les diodes électroluminescentes à la réception de signaux émis par la borne et en fonction de l'état de charge des accumulateurs ou de la pile. Si le signal correspond à un signal de diagnostic, les diodes électroluminescentes sont alors activées pour répondre au diagnostic. Si l'ordre consiste en un cycle de fonctionnement en marche normal, alors le microprocesseur commande la couleur, le mode flash ou continu et le nombre de diodes électroluminescentes utilisées. Si le signal correspond à un cycle de fonctionnement avec un niveau de charge faible, alors le microcontrôleur peut diminuer l'intensité de l'alimentation des diodes électroluminescentes, diminuer le temps de cycle, activer le fonctionnement en fonction du niveau de circulation, par exemple selon des données en plage horaire, ou encore une combinaison d'une ou de plusieurs des trois possibilités précitées.
Le microcontrôleur permet donc de gérer tout le fonctionnement d'un plot et les fonctions précitées ne doivent pas être considérées comme les seules possibles. En effet, on peut imaginer un microcontrôleur remplissant encore d'autres fonctions sans pour cela sortir du cadre de l'invention. Tous les ordres ou signaux émis par la balise ou d'un appareil de vérification sont donc traiter par le microcontrôleur de manière à activer les diodes électroluminescentes selon un code bien particulier.
Ainsi, lorsqu'une balise détecte une condition critique, par exemple du brouillard, elle envoie un signal correspondant à sa série de plots dédiés qui va être reçu par les récepteurs des plots et traité par les microcontrôleurs respectifs de manière à déclencher la ou les diodes électroluminescentes selon un code bien particulier. D'autre part, la balise émet un signal en direction des balises adjacentes pour les informer qu'une condition critique est détectée. Les balises adjacentes émettent alors à leur tour un signal correspondant à la condition critique détectée de manière à activer leurs séries de plots dédiés respectifs. Chaque balise peut alors avertir sa ou ses balises adjacentes qu'une condition critique est détectée jusqu'au terminal de centralisation des informations de sorte que l'on connaít en temps réel les conditions d'intempéries et de circulation sur toute la voie de circulation équipée d'un système selon l'invention. Cela permet entre autres de déterminer l'évolution ou le déplacement de conditions climatiques ou de circulation en temps réel, ce qui permet de faire des prévisions très précises. Le système peut également servir à la signalisation d'un accident en activant par exemple les plots des trois ou quatre balises installées en amont de lieu de l'accident.
Grâce au système de signalisation actif selon l'invention, les automobilistes sont avertis en temps réel et géographiquement très précisément des conditions climatiques et /ou de circulation qu'ils vont rencontrer.

Claims (8)

  1. Système de signalisation routière destiné à être installé le long de voies de circulation, caractérisé en ce qu'il comprend :
    au moins une balise de détection munie de capteurs aptes à détecter des conditions critiques climatiques et/ou de circulation, et d'un émetteur,
    une série de plusieurs éléments de signalisation associée à ladite au moins une balise, chaque élément de signalisation étant muni d'un récepteur et d'au moins une source lumineuse activée en réponse à un signal émis par l'émetteur de la balise après détection d'une condition critique.
  2. Système de signalisation routière selon la revendication 1, dans lequel la balise comprend un récepteur apte à recevoir des signaux émis par d'autres balises et/ou un terminal de centralisation des informations.
  3. Système de signalisation routière selon la revendication 2, dans lequel l'émetteur est apte à envoyer des signaux aux autres balises et/ou au terminal de centralisation des informations.
  4. Système de signalisation routière selon l'une quelconque des revendications précédentes, dans lequel chaque élément de signalisation comprend un microcontrôleur destiné à gérer la durée et la fréquence des émissions lumineuses de la source en fonction des signaux émis.
  5. Système de signalisation routière selon l'une quelconque des revendications précédentes, dans lequel chaque élément de signalisation comprend une alimentation autonome.
  6. Système de signalisation routière selon les revendications 4 et 5, dans lequel le microcontrôleur comprend des moyens pour vérifier l'état de charge de l'alimentation.
  7. Système de signalisation routière selon la revendication 6, dans lequel le microcontrôleur comprend des moyens pour commander l'activation de la source lumineuse selon un code indicatif de l'état de charge de l'alimentation.
  8. Système de signalisation routière selon la revendication 4, dans lequel le microcontrôleur comprend des moyens pour activer la source lumineuse en cas de panne de la balise.
EP00966216A 1999-09-30 2000-09-28 Systeme de signalisation routiere Expired - Lifetime EP1222642B9 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9912196A FR2799295B1 (fr) 1999-09-30 1999-09-30 Systeme de signalisation routiere
FR9912196 1999-09-30
PCT/FR2000/002683 WO2001024132A1 (fr) 1999-09-30 2000-09-28 Systeme de signalisation routiere

Publications (3)

Publication Number Publication Date
EP1222642A1 EP1222642A1 (fr) 2002-07-17
EP1222642B1 true EP1222642B1 (fr) 2004-07-14
EP1222642B9 EP1222642B9 (fr) 2005-01-26

Family

ID=9550420

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00966216A Expired - Lifetime EP1222642B9 (fr) 1999-09-30 2000-09-28 Systeme de signalisation routiere

Country Status (5)

Country Link
EP (1) EP1222642B9 (fr)
AT (1) ATE271245T1 (fr)
DE (1) DE60012204T2 (fr)
FR (1) FR2799295B1 (fr)
WO (1) WO2001024132A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2930362A1 (fr) * 2008-04-18 2009-10-23 Peugeot Citroen Automobiles Sa Procede d'avertissement de conducteurs de vehicules automobiles d'evenements potentiellement dangereux, et systeme associe
ES2378103B1 (es) * 2010-09-10 2013-07-01 Fundación Para El Progreso Del Soft Computing Sistema de balizas luminosas para la gestión del tráfico en el caso de reducción del número de carriles.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4100529A (en) * 1976-09-13 1978-07-11 Mews, Inc. Road hazard warning system, indicating specific hazard
WO1989002142A1 (fr) * 1987-08-25 1989-03-09 Elin-Union Aktiengesellschaft Für Elektrische Indu Systeme permettant une utilisation amelioree de voies de transport existantes
FR2741738A1 (fr) * 1995-11-28 1997-05-30 Bou Maurice Controle visuel de vitesse
ES2133243B1 (es) * 1997-12-04 2000-03-16 Iberica Construcciones Electricas Sa Sice Sistema de balizamiento para autopistas y similares.
BR9815525A (pt) * 1998-03-06 2001-04-24 Iberica Construcciones Electricas Sa Sice Marcador ativo

Also Published As

Publication number Publication date
WO2001024132A1 (fr) 2001-04-05
DE60012204T2 (de) 2005-08-25
EP1222642A1 (fr) 2002-07-17
FR2799295A1 (fr) 2001-04-06
ATE271245T1 (de) 2004-07-15
DE60012204D1 (de) 2004-08-19
EP1222642B9 (fr) 2005-01-26
FR2799295B1 (fr) 2002-10-18

Similar Documents

Publication Publication Date Title
US5673039A (en) Method of monitoring vehicular traffic and of providing information to drivers and system for carring out the method
KR0156556B1 (ko) 신호수단
KR101793920B1 (ko) 비상알림 경고시스템
US20070223996A1 (en) Emissive road marker system
FR2591785A1 (fr) Installation d'avertissement et de commande de trafic routier par des vehicules de secours
US20170096095A1 (en) A warning system for a vehicle and a vehicle comprising such a warning system
JP2008097376A (ja) 安全運転診断装置及び安全運転診断システム
WO2009044003A1 (fr) Système de transport collectif automatisé
KR20070001862A (ko) 도로위험 사전 경보표시 장치
US20160221496A1 (en) Warning system for a turning vehicle and a vehicle comprising such a warning system
EP1222642B1 (fr) Systeme de signalisation routiere
EP0919815A1 (fr) Dispositif et système d'avertissement en réponse à un conducteur roulant contre la direction de circulation
CN113724515B (zh) 一种利用路灯传递紧急交通事件的系统
KR20110038438A (ko) 보행자 안전 관리 시스템 및 그 방법
EP1071059B1 (fr) Dispositif de signalisation, notamment routière
FR2544897A1 (fr) Ensemble avertisseur de donnees de circulation pour vehicules routiers
FR2599166A1 (fr) Installation de transmission de messages, notamment pour fournir une signalisation routiere renforcee, et procede de transmission correspondant
FR3096756A1 (fr) Procédé de commande d’un système de signalisation d’un véhicule automobile
KR100939578B1 (ko) 교통 정보 제공 시스템 및 방법
FR2723239A1 (fr) Dispositif de securite routiere pour arreter un vehicule s'engageant a contre sens sur une route a sens unique de circulation
FR3108762A1 (fr) Système et procede pour la detection et le signalement de l’engagement d’un passage pieton
KR100720061B1 (ko) 경고등
FR2896609A1 (fr) Dispositif et procede pour la reglementation d'emplacements de stationnement.
KR20240121400A (ko) 레이더 기술을 적용한 도로 역주행방지장치 및 역주행방지시스템
FR2851362A1 (fr) Dispositif pyrotechnique de prevention de l'acces a une voie routiere en contresens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020430

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17Q First examination report despatched

Effective date: 20020903

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040714

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 60012204

Country of ref document: DE

Date of ref document: 20040819

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040928

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041014

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041014

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20041025

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
LTIE Lt: invalidation of european patent or patent extension

Effective date: 20040714

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

NLR4 Nl: receipt of corrected translation in the netherlands language at the initiative of the proprietor of the patent
26N No opposition filed

Effective date: 20050415

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050919

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050926

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20050927

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051014

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060930

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060930

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070403

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060928

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060928

BERE Be: lapsed

Owner name: *HOLOPHANE

Effective date: 20060930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041214

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060927

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070928