WO2001022595A1 - Circuit numerique de conversion d'une valeur de capacite, d'une valeur de resistance et d'une valeur d'inductance en valeurs numeriques - Google Patents

Circuit numerique de conversion d'une valeur de capacite, d'une valeur de resistance et d'une valeur d'inductance en valeurs numeriques Download PDF

Info

Publication number
WO2001022595A1
WO2001022595A1 PCT/CN2000/000185 CN0000185W WO0122595A1 WO 2001022595 A1 WO2001022595 A1 WO 2001022595A1 CN 0000185 W CN0000185 W CN 0000185W WO 0122595 A1 WO0122595 A1 WO 0122595A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
resistance
value
capacitance
voltage
Prior art date
Application number
PCT/CN2000/000185
Other languages
English (en)
French (fr)
Inventor
Yun Rong
Original Assignee
Yun Rong
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yun Rong filed Critical Yun Rong
Priority to AU58010/00A priority Critical patent/AU5801000A/en
Publication of WO2001022595A1 publication Critical patent/WO2001022595A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/12Circuits for multi-testers, i.e. multimeters, e.g. for measuring voltage, current, or impedance at will
    • G01R15/125Circuits for multi-testers, i.e. multimeters, e.g. for measuring voltage, current, or impedance at will for digital multimeters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M1/00Analogue/digital conversion; Digital/analogue conversion
    • H03M1/12Analogue/digital converters
    • H03M1/50Analogue/digital converters with intermediate conversion to time interval

Definitions

  • the invention belongs to an electronic circuit, and in particular relates to a circuit for converting a capacitance value, a resistance value and an inductance value into numbers.
  • a simple digital circuit is used to convert the capacitance, resistance, and inductance values to digital, and the electronic components to be measured can be measured with only the increase of the measurement channel without adding the circuit. Background technique
  • An object of the present invention is to provide a circuit for converting a capacitance value, a resistance value, and an inductance value into numbers.
  • the circuit structure is simple and the cost is low.
  • the invention is implemented as follows:
  • a circuit that converts capacitance, resistance, and inductance values to digital The capacitance, inductance, and resistance to be measured or known, and a comparator or Schmitt circuit or a gate circuit with a fixed flip-over voltage, a counter,
  • the controller and the electric control gate are composed of each capacitor and resistor connected to the electric control switch controlled by the controller.
  • the controller can control the resistance-capacitance charge-discharge circuit composed of the capacitor gating resistor through the electric control switch to measure the resistance.
  • one end of the capacitor and resistor is connected to one input of the comparator, the external reference voltage is connected to the other input of the comparator, or one of the capacitor and resistor is connected to the Schmitt circuit or a fixed flip-over voltage
  • the input of the gate circuit is connected, and the output of the comparator or Schmitt circuit or the gate circuit of the fixed flip-over voltage is connected to the timer; the controller is connected to the timer that measures the charge and discharge time, and is fixed by measuring the resistance-capacity charge and discharge. Measure the capacitance or resistance with reference to the time of the voltage; the resistance can be replaced with an inductor, and the inductive capacitance composed of the capacitor and the inductor is charged and discharged Loop to measure inductance and capacitance.
  • the electronically controlled switch can measure sensors arranged in a matrix when multiple electronically controlled switches are connected in series.
  • the capacitor may be a capacitive sensor or a standard capacitor
  • the resistor may be a resistive sensor or a standard resistor
  • the inductor may be an inductive sensor or a standard inductor.
  • the invention converts the measurement of the data value of the component into the measurement of time by measuring the time when the capacitor-resistor or capacitor-inductor is charged (discharged) to reach a fixed voltage.
  • the invention includes a The capacitor-resistor or capacitor-inductor is connected through a controller-controlled electrical switch.
  • the voltage on the capacitor is compared with the reference voltage of the comparator (that is, the standard voltage).
  • the output voltage of the comparator is converted by the timer into time.
  • the capacitance, resistance, and inductance are proportional to time.
  • the value of capacitance, resistance, and inductance is measured by measuring the time from charging (discharging) to the reference voltage.
  • the present invention has the following advantages:
  • the total cost of this circuit is less than RMB 10, which is less than the price of AD0809 A / D chip. This circuit achieves a comprehensive accuracy better than 0.5%.
  • the capacitance, resistance, and inductance values are converted into voltages by converters and amplifiers, and then converted by A / D circuits to convert the capacitance, resistance, and inductance values to numbers. If multiple measurements are required, multiple measurements are required. Converter, amplifier, and corresponding circuit breaker, so the circuit is more complicated, there are more components, and the cost is higher.
  • the invention adopts a simple digital circuit to realize the conversion of capacitance, resistance, and inductance values into numbers, and can measure the electronic components to be tested with only the increase of the measurement channel without substantially adding the circuit.
  • the analog / digital circuit is usually outside the microprocessor, and an interface circuit is required to send the test data to the microprocessor.
  • the present invention can use a timer of the microprocessor, eliminating the interface circuit, thereby saving the limited processor External interfaces and leads can make the circuit more compact.
  • the invention can identify whether the sensor is short-circuited or looped.
  • circuits used in the present invention all adopt digital circuits, which avoids the use of analog and digital circuits, which leads to increased costs.
  • FIG. 1 is a schematic diagram of a principle of converting capacitance, resistance, and inductance values into numbers according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic circuit diagram of an integrated component for converting a capacitor, a resistance, and an inductance into digital applications according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic diagram of the principle of converting a capacitor value into a digital according to Embodiment 2 of the present invention
  • FIG. 4 is a schematic circuit diagram of an application integration component that converts the capacitor value into a digital according to Embodiment 2 of the present invention
  • FIG. 5 is a schematic diagram of the principle of converting a resistor value into a number according to Embodiment 3 of the present invention
  • FIG. 6 is a schematic circuit diagram of an application integration component that converts a resistor value to a number according to Embodiment 3 of the present invention
  • FIG. 7 is a schematic diagram of the principle of converting the inductance value into a number according to Embodiment 4 of the present invention
  • FIG. 8 is a schematic circuit diagram of an application integrated component that converts an inductance value into a digital embodiment 4;
  • FIG. 9 is a schematic diagram of the two-dimensional matrix circuit of the control switch according to Embodiment 5 of the present invention
  • FIG. 10 is a schematic diagram of the principle of converting the capacitance, resistance, and inductance values to digital using a gate circuit according to Embodiment 6 of the present invention
  • FIG. 11 is a schematic diagram of a monolithic integrated circuit composed of an application gate circuit according to Embodiment 6 of the present invention
  • FIG. 12 is a schematic diagram of the principle of converting capacitance, resistance, and inductance values into numbers by applying a Schmitt circuit according to Embodiment 7 of the present invention
  • FIG. 13 is a schematic diagram of a monolithic integrated circuit composed of a Schmitt circuit according to Embodiment 7 of the present invention.
  • FIG. 14 is a schematic diagram of a monolithic integrated circuit composed of a comparator circuit according to Embodiment 1 of the present invention. Specific embodiment
  • voltage 24 is not equal to voltage 17
  • reference voltage 25 standard voltage
  • Electric control switches 14, 15, 16 can change capacitors 1, 2 And 3 are connected to resistor 4 or voltage 17 to form a charging (discharging) circuit.
  • capacitors 1, 2, and 3 are connected to voltage 17.
  • the controller 27 controls the electric control switch 14 to turn on the resistance 4, the electric control switch 18 to turn on the resistance 4, the timer 12 turns on, and the voltage 24 passes through the electric control switch 18, the resistance 4, the electric control switch 14, the capacitor 1,
  • the voltage 13 forms a charging (discharging) electric circuit.
  • the voltage 10 on the capacitor 1 is compared with the reference voltage 25 of the comparator 26.
  • the controller 27 controls the timer 12 to turn off, and reads the capacitor-resistor charging (discharging) time from the timer 12
  • the electric control switch 18 is controlled to be turned off, and the electric control switch 14 is turned on to the voltage 17 to discharge (charge) the capacitor 1.
  • the charging-discharging time of the capacitor-resistor can be read from the timer 12.
  • the voltages 24, 25, 17, 13 should be guaranteed to be stable.
  • the capacitance value is proportional to the charging time
  • the resistance-capacitance oscillation formula is:
  • is the charging (discharging) time unit in seconds
  • C is the capacitance unit in Farads
  • R is the resistance unit in ohms
  • Vc is the reference voltage
  • VI is the voltage 24
  • V2 is the voltage 17 in volts, thereby charging
  • the non-linear relationship between voltage and time is transformed into capacitance and time in the process
  • voltages 25, 24, 17, and 13 the capacitor value can be obtained.
  • capacitors are known, other voltages are known, and resistance values can also be obtained.
  • the role of the inductor during charging (discharging) is equivalent to resistance. From the capacitor-inductance charging (discharging) formula, it can be seen that the inductance value is also proportional to the charging (discharging) time. Therefore, the capacitor-inductor charging can be
  • V1-V2] R is a constant. If some standard capacitors are used for the capacitors in the circuit, the values are known. By measuring the charging (or discharging) time of the standard capacitors, the corresponding relationship between different capacitor values and time is calculated. Then, The tested capacitor replaces the standard capacitor in the charging (discharging) charging circuit of the standard capacitor described above to measure the time from charging (discharging) to the reference voltage. The value of the tested capacitor can be calculated directly from the time output by the timer. In this way, it is not necessary to know the specific values of resistance 4, voltage 24, 25, 17, 13 as long as they are stable. Similarly, some standard resistors and some standard inductors can be used to obtain other measured resistance and inductance values.
  • the controller can control multiple sets of electronically controlled switches, which can form a test matrix for measuring more sensors. It should be noted that there may be several capacitors, resistors, and inductors mentioned above. In this embodiment, only three are drawn for each type. In addition, the matrix may be two-dimensional or more than two-dimensional.
  • FIG. 2 is a schematic diagram of an application integrated component of the present invention.
  • the voltage dividing resistors 32 and 33 provide a reference voltage 25
  • the MC4053 switching element 29 includes electronically controlled switches 14, 15, 16, and MC4051.
  • Switching element 30 includes electronically controlled switches 18, 19, 20, 21, 22, 23, AT89F2051 single-chip microcomputer 31 contains comparator 26, timer 12, controller 27, and single-chip microcomputer 31 controls switching elements 29 and 30 through connecting lines 28, 34 .
  • the drawing is a schematic diagram of a monolithic integrated circuit composed of an application comparator according to the present invention, where 37 is an input / output circuit, which can be used to drive other circuits such as a keyboard or a display, etc.
  • the electronic control gate 38 can be used to gate different reference voltages, Adapt to different requirements. Example 2.
  • the invention can constitute a circuit for converting the capacitor value into a digital.
  • the original state of the circuit The voltage 24 is not equal to the voltage 17, the reference voltage 25 is between the voltages 24 and 17, and is relatively stable.
  • the electronically controlled switches 14, 15, and 16 can connect the capacitors 1, 2, and 3 to the resistor 4 or the voltage 17.
  • Form a charging (discharging) circuit Before the measurement starts, capacitors 1, 2, and 3 are connected to voltage 17.
  • the controller 27 controls the electric control switch 14 to turn on the resistance 4, the timer 12 is turned on, and the voltage 24 is charged (discharged) to the capacitor 1 through the resistance 4, the electric control switch 14, the capacitor 1, and the voltage 13
  • the voltage 10 is compared with the reference voltage 25 of the comparator 26.
  • the timer 12 counts, and then, when the voltage 10 rises (or falls) When it is equal to the voltage 25, the output voltage 11 of the comparator 26 changes, and the controller 27 controls The timer 12 is turned off, the capacitor-resistor charging (discharging) time is read from the timer 12, the electric control switch 14 is turned on to the voltage 17, and the capacitor 1 is charged (charged). By analogy, the charging (discharging) time of the capacitor can be read from the timer 12. During the test, the voltages 24, 25, 17, 13 should be guaranteed to be stable. As described in Example 1, the capacitor value can be obtained.
  • FIG. 4 is a schematic diagram of an application integrated component for converting a capacitor value to a digital value according to the present invention.
  • the voltage dividing resistors 32 and 33 provide a reference voltage 25
  • the MC4053 switching element 29 includes electronically controlled switches 14, 15, 16, and an AT89F2051 microcontroller.
  • 31 includes a comparator 26, a timer 12, a controller 27, and a single-chip microcomputer 31 controls a switching element 29 through a connection line 28.
  • the invention can form a circuit that converts the resistor value into a digital. See Figure 5 for the working process.
  • the original state of the circuit The voltage 24 is not equal to the voltage 17, the reference voltage 25 (standard voltage) is between 24 and 17 and is relatively stable.
  • the electric control switch 14 can connect the capacitor 1 to the voltage 17 to form a charging (discharging) electric circuit. .
  • capacitors 1, 2, and 3 are connected to voltage 17.
  • the controller 27 controls the electric control switch 18 to turn on the resistance 4, the electric control switch 14 to turn off, the timer 12 turns on, and the voltage 24 is charged (discharged) through the electric control switch 18, resistance 4, capacitor 1, and voltage 13.
  • the voltage 10 on the capacitor 1 is compared with the reference voltage 25 of the comparator 26.
  • the output voltage 11 of the comparator 26 does not change, the timer 12 counts, and then, when the voltage When 10 liters (or drops) is equal to the voltage 25, the output voltage 11 of the comparator 26 changes, and the controller 27 controls the timer 12 to turn off.
  • the timer 12 can read the capacitor-resistor charging (discharging) charging time, and simultaneously control
  • the electric control switch 18 is turned off, and the electric control switch 14 is turned on to the voltage 17 to discharge (charge) the capacitor 1.
  • the charging-discharging time of the capacitor-resistor can be read from the timer 12.
  • the voltages 24, 25, 17, 13 should be guaranteed to be stable.
  • the resistor value can be obtained.
  • FIG. 6 is a schematic diagram of an application integrated component for converting a resistor value into a digital according to the present invention, in which a voltage-dividing resistor 32, 33 provides a reference voltage 25, and a MC4051 switching element 30 includes an electronically controlled switch 18, 19, 20, AT89F2051
  • the single-chip microcomputer 31 includes a comparator 26, a timer 12, and a controller 27.
  • the single-chip microcomputer 31 controls the switching element 30 through a connection line 34.
  • the invention can form a circuit for converting the inductor value into a digital.
  • the original state of the circuit The voltage 24 is not equal to the voltage 17, the reference voltage 25 (standard voltage) is between 24 and 17 and is relatively stable.
  • the electric control switch 14 can connect the capacitor 1 to the voltage 17 to form a charging (discharging) electric circuit. .
  • capacitors 1, 2, 3 are connected to voltage 17.
  • the controller 27 controls the electric control switch 14 to turn off, the electric control switch 21 to turn on the inductor 7, the timer 12 turns on, and the voltage 24 is charged (discharged) through the electric control switch 21, resistor 4, capacitor 1, and voltage 13.
  • Electrical circuit, voltage on capacitor 1 and comparator 26 The reference voltage 25 is compared.
  • the output voltage 11 of the comparator 26 does not change.
  • the timer 12 counts. Then, when the voltage 10 rises (or falls) to be equal to the voltage 25 The output voltage 11 of the comparator 26 changes.
  • the controller 27 controls the timer 12 to turn off.
  • the timer 12 can read the charging-discharging time of the capacitor-resistor.
  • the electric control switch 21 is turned off and the electric control switch 14 is connected. Pass voltage 17, discharge (charge) capacitor 1.
  • the charging-discharging time of the capacitor-resistor can be read from the timer 12. During the test, the voltages 24, 25, 17, 13 should be guaranteed to be stable. As described in Example 1, the inductor value can be obtained.
  • FIG. 8 is a schematic diagram of an application integrated component that converts an inductor value to a digital value according to the present invention.
  • the voltage dividing resistors 32 and 33 provide a reference voltage 25
  • the MC4051 switching element 30 includes electric control switches 21, 22, 23, and AT89F2051.
  • the single-chip microcomputer 31 includes a comparator 26, a timer 12, and a controller 27.
  • the single-chip microcomputer 31 controls the switching element 30 through a connection line 34.
  • switches in the above circuit diagrams can be replaced by equivalent circuits of switches, such as M0S switching devices, triode switching devices, and so on.
  • the above circuit can also be used to judge certain faults of the component. For example, when the time is 0, it can be judged that the capacitor under test has a circuit, or the measured resistance and inductance are short-circuited. When the timing is infinite, it can be judged that the capacitor under test is short-circuited or the measured resistance and inductance are open. Example 5.
  • this is a two-dimensional matrix. After four electrical control switches are connected in series, a horizontal switch and a vertical switch can be turned on at the same time to select a resistor. This matrix arranges the sensors. Example 6.
  • the original state of the circuit the voltage 24 is not equal to the voltage 17, the voltage of the gate circuit 35 is between the voltages 24 and 17 and is relatively stable.
  • the electric control switches 14, 15, and 16 can be used for capacitors 1, 2, and 16. 3 is connected to resistor 4 or voltage 17 to form a charging (discharging) electric circuit.
  • capacitors 1, 2, 3 are connected to voltage 17.
  • the controller 27 controls the electric control switch 14 to turn on the resistance 4, the electric control switch 18 to turn on the resistance 4, the timer 12 starts to count, and the voltage 24 passes through the electric control switch 18, the resistance 4, the electric control switch 14, the capacitor 1,
  • the voltage 13 forms a charging (discharging) electric circuit.
  • FIG. 11 is a schematic diagram of a monolithic integrated circuit composed of an application gate circuit according to the present invention, where 37 is an input / output circuit and can be used to drive other circuits such as a keyboard or a display.
  • Example 7
  • the original state of the circuit The voltage 24 is not equal to the voltage 17, the Schmitt circuit 36 flips the voltage between the voltages 24 and 17 and is relatively stable.
  • the electronically controlled switches 14, 15, and 16 can change the capacitors 1, 2 And 3 are connected to resistor 4 or voltage 17 to form a charging (discharging) circuit.
  • capacitors 1, 2, and 3 are connected to voltage 17.
  • the controller 27 controls the electric control switch 14 to turn on the resistance 4, the electric control switch 18 to turn on the resistance 4, the timer 12 starts to count, and the voltage 24 passes through the electric control switch 18, the resistance 4, the electric control switch 14, the capacitor 1,
  • the voltage 13 forms a charging (discharging) electric circuit.
  • the timer 12 counts, and then, when the voltage 10 rises (or drops) to the voltage
  • the Schmitt circuit 36 flips the voltage the output voltage 11 of the Schmitt circuit 36 flips, the timer 12 stops counting, and the capacitor-resistor charging (discharging) time is read from the timer 12, and the electric control switch 18 is turned off.
  • the electric control switch 14 turns on the voltage 17 to discharge (charge) the capacitor 1.
  • the charging-discharging time of the capacitor-resistor can be read from the timer 12.
  • the voltages 24, 25, 17, 13 should be guaranteed to be stable.
  • FIG. 13 is a schematic diagram of a monolithic integrated circuit composed of an application gate circuit according to the present invention, where 37 is an input / output circuit and can be used to drive other circuits such as a keyboard or a display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Description

将电容值、 电阻值及电感值转换为数字的电路 发明领域
本发明属于电子电路, 尤其涉及一种将电容值、 电阻值及电感值转 换为数字的电路。 采用简单的数字电路来实现将电容、 电阻和电感值转 换为数字, 在只增加测量通道而基本不增加电路的情况下即可对待测电 子元器件进行测量。 背景技术
在科技生产生活中, 经常需要对电子元件中的电容值、 电阻值、 电 感值进行测量, 并将所测量的各种数据值转换为数字信号。 如将温度传 感器, 湿度传感器, 压力传感器, 位置传感器等的数据值转换为数字信 号。 现有技术是通过变换电路和放大电路将其变换放大为电压值, 再由 模 /数电路变换成数字量, 如果需要多路同时测量, 则需要多个变换 器、 放大器和换路幵关, 这样电路就比较复杂, 元器件比较多, 成本也 较高。 发明的公开
本发明目的在于提供一种将电容值、 电阻值及电感值转换为数字的 电路, 其电路结构简单, 成本低。
本发明是这样实现的:
一种将电容值、 电阻值及电感值转换为数字的电路, 由待测或已知 的电容、 电感和电阻, 以及比较器或施密特电路或固定翻转电压的门电 路、 计吋器、 控制器和电控幵关组成, 其中每个电容、 电阻都与控制器 控制的电控开关相连, 控制器可通过电控开关控制电容选通电阻组成的 阻容充放电回路, 用来测量电阻值和电容值; 电容与电阻相连的一端与 比较器的一个输入端相连, 外部的参考电压与比较器的另一个输入端相 连, 或电容与电阻相连的一端与施密特电路或固定翻转电压的门电路的 输入端相连, 比较器或施密特电路或固定翻转电压的门电路的输出端与 计时器相连; 控制器与计量充放电时间的计时器相连, 通过计量阻容充 放电达到固定参考电压的时间来测量电容或电阻; 所述的电阻可换成电 感, 由电容和电感组成的感容充放电回路来测量电感和电容。
所述的电控开关, 其在电控开关多个串联下可测量按矩阵排列的传 感器。
所述的电容可以是电容式传感器或标准电容, 电阻可以是电阻式传 感器或标准电阻, 电感可以是电感式传感器或标准电感。
本发明是通过计量电容-电阻或电容-电感充 (放) 电达到固定电压 的时间, 将对元件的数据值的计量转换为对时间的计量。 本发明包括一 组电容 -电阻或电容 -电感通过控制器控制的电控开关连接起来的充
(放) 电回路, 电容器上电压与比较器参考电压 (即标准电压) 比较, 比较器输出电压由计时器转换为时间计时。 充 (放) 电过程 中, 电容 值、 电阻值、 电感值均与时间成正比, 通过计量充 (放) 电到参考电压 的时间来计量电容、 电阻、 电感的值。
本发明与现有技术比较具有以下优点:
该电路总成本小于人民币 10元, 小于 AD0809 A/D芯片的价格。 该电路实现综合精度优于 0. 5%。
现有技术是通过变换器及放大器将电容、 电阻和电感值变换放大为 电压, 再通过 A/D电路进行变换, 将电容、 电阻和电感值转换为数字; 如需要多路测量, 则需要多个变换器、 放大器及相应换路开关, 这样电 路就比较复杂, 元器件比较多, 成本也较高。 本发明采用简单的数字电 路来实现将电容、 电阻、 电感值转换为数字, 在只增加测量通道而基本 不增加电路的情况下即可对待测电子元器件进行测量。
现有技术对电容、 电阻和电感值进行测量时无法共用导线, 测试线 路至少需 2η条, 而本发明可共用一条线, 测试线路只须 η+1条, 从而 节省了线路费用。 (η为被测元件个数)
现有技术通常模 /数电路在微处理器外, 需要接口电路才能将测试 数据送入微处理器, 而本发明可以使用微处理器的计时器, 省去接口电 路, 从而节约了处理器有限的外部接口和引线, 可以使电路更加小巧。
本发明能识别传感器是否短路或幵路。
本发明所使用电路均采用数字电路,避免了采用模拟,数字两种电路 导致成本增加。 附图说明
下面结合附图及实例对本发明进一步详细说明。
附图 1为本发明实施例 1将电容、 电阻、 电感值转换为数字的原理 示意图;
附图 2为本发明实施例 1将电容、 电阻、 电感值转换为数字的应用 集成元件的电路示意图;
附图 3为本发明实施例 2将电容器值转换为数字的原理示意图; 附图 4为本发明实施例 2将电容器值转换为数字的应用集成元件的 电路示意图;
附图 5为本发明实施例 3将电阻器值转换为数字的原理示意图; 附图 6为本发明实施例 3将电阻器值转换为数字的应用集成元件的 电路示意图;
附图 7为本发明实施例 4将电感值转换为数字的原理示意图; 附图 8为本发明实施例 4将电感值转换为数字的应用集成元件的电 路示意图;
附图 9为本发明实施例 5的控制开关二维矩阵线路的原理示意图; 附图 10为本发明实施例 6应用门电路将电容、 电阻、 电感值转换 为数字的原理示意图;
附图 11 为本发明实施例 6应用门电路组成的单片集成电路的示意 图; 附图 12为本发明实施例 7应用施密特电路将电容、 电阻、 电感值 转换为数字的原理示意图;
附图 13为本发明实施例 7的应用施密特电路组成的单片集成电路 的示意图;
附图 14为本发明实施例 1 的应用比较器电路组成的单片集成电路 的示意图。 具体实施例
实施例 1.
请参见附图 1, 电路原始状态: 电压 24不等于电压 17, 参考电压 25 (标准电压) 值处于电压 24、 17 之间且相对稳定, 电控开关 14、 15、 16可将电容器 1、 2、 3接到电阻 4或电压 17上形成充 (放) 电回 路, 测量开始前, 电容器 1、 2、 3接到电压 17上。 开始测量, 控制器 27控制电控幵关 14接通电阻 4, 电控开关 18接通电阻 4, 计时器 12 打开, 电压 24通过电控开关 18、 电阻 4、 电控开关 14、 电容器 1、 电 压 13形成充 (放) 电回路, 电容器 1上电压 10与比较器 26参考电压 25进行比较, 电容器 1上电压 10未达到比较器 26参考电压 25时比较 器 26输出电压 11不变, 计时器 12计时。 然后, 当电压 10升 (或降) 到与电压 25相等时, 比较器 26输出电压 11变化, 控制器 27控制计时 器 12关闭, 从计时器 12读到电容-电阻的充 (放) 电时间, 同时控制 电控开关 18断开, 电控开关 14接通电压 17, 为电容 1放 (充) 电。 以此类推, 可从计时器 12读到电容-电阻的充 (放) 电时间。 测试过程 中应保证电压 24、 25、 17、 13稳定。
通过电阻-电容或电感-电容充 (放) 电公式可知: 电容值与充电时 间成正比, 电阻-电容震荡公式:
τ :-1η [1- Vc/ (VI- V2 ) ] RC
艮 O τ /- In [卜 Vc/ ( V1-V2 ) ] R
式中 τ为充 (放) 电时间单位为秒, C 为电容单位为法拉, R 为电 阻单位为欧姆, Vc为参考电压 25、 VI为电压 24、 V2为电压 17单位为 伏特, 从而将充电过程中电压与时间的非线性的关系变换为电容与时间 的线性关系, 在电阻 4、 电压 25、 24、 17、 13 己知的情况下, 电容器 值可以求出。 同理, 电容器己知, 其他电压已知, 电阻值也可以求出。 电感在充 (放) 电过程中作用等效为电阻, 由电容-电感充 (放) 电公 式可知, 电感值与充 (放) 电时间也成正比, 故此, 可将电容-电感充
(放) 电过程中电压与时间的非线性的关系变换为电感与时间的线性关 系, 通过已知各电容器值、 电压值, 可求出电感值, 已知电感值, 可求 出电容器值。 利用电阻和电感对不同大小的电容充 (放) 电效果有所不 同, 可求出大小不同的电阻、 电感值。 充 (放) 电公式中: ln [l-Vc/
( V1-V2 ) ] R 为常数, 如果电路中电容采用部分标准电容, 其数值已 知, 通过测量标准电容充电 (或放电) 时间, 计算出不同电容器值与时 间的对应关系式, 那么, 将被测电容器在上述应用标准电容的充 (放) 电回路中取代标准电容测量其充 (放) 电到参考电压的时间, 则可通过 计时器输出的时间直接计算出被测电容器值。 用这种方法不必知道电阻 4、 电压 24、 25、 17、 13具体数值, 只要它们稳定。 同理, 采用部分标 准电阻, 部分标准电感, 可求出其他被测电阻、 电感值。 测试中控制器 可控制多组电控开关, 从而可以组成测试矩阵用于测量更多传感器。 值 得说明的是上述的电容、 电阻、 电感均可有若干个, 此实施例仅对每种 画出三个, 另外矩阵可用二维的或二维以上的。
请再参见附图 2, 附图 2 为本发明的一种应用集成元件原理示意 图, 其中, 分压电阻 32、 33提供参考电压 25, MC4053开关元件 29包 含电控开关 14、 15、 16, MC4051 开关元件 30包含电控开关 18、 19、 20、 21、 22、 23, AT89F2051单片机 31 内含比较器 26、 计时器 12、 控 制器 27, 单片机 31通过连接线 28、 34控制开关元件 29和 30。
附图 为本发明应用比较器组成的单片集成电路的示意图, 其中 37 为输入 /输出电路, 可用于驱动其他电路如键盘或显示器等, 电控幵 关 38可用于选通不同参考电压, 以适应不同要求。 实施例 2.
本发明可以组成将电容器值转换为数字的电路, 工作过程请参见附 图 3。 电路原始状态: 电压 24不等于电压 17, 参考电压 25值处于电压 24、 17之间且相对稳定, 电控开关 14、 15、 16可将电容器 1、 2、 3接 到电阻 4或电压 17上形成充 (放) 电回路。 测量开始前, 电容器 1、 2、 3接到电压 17上。 开始测量, 控制器 27控制电控开关 14接通电阻 4, 计时器 12打开, 电压 24通过电阻 4、 电控幵关 14、 电容器 1、 电 压 13为电容器 1充 (放) 电, 电容器 1上电压 10与比较器 26参考电 压 25进行比较, 电容器 1上电压 10未达到比较器 26参考电压 25时比 较器 26输出电压 11 不变, 计时器 12计时, 然后, 当电压 10升 (或 降) 到与电压 25相等时, 比较器 26输出电压 11变化, 控制器 27控制 计时器 12关闭, 从计时器 12读到电容-电阻的充 (放) 电时间, 电控 幵关 14接通电压 17, 为电容 1放 (充) 电。 以此类推, 可从计时器 12 读到电容器的充 (放) 电时间。 测试过程中应保证电压 24、 25、 17、 13稳定。 如实施例 1所述, 可求得电容器值。
附图 4为本发明将电容器值转换为数字的一种应用集成元件原理示 意图, 其中, 分压电阻 32、 33提供参考电压 25, MC4053开关元件 29 包含电控开关 14、 15、 16, AT89F2051单片机 31 内含比较器 26、 计 时器 12、 控制器 27, 单片机 31通过连接线 28控制开关元件 29。 实施例 3.
本发明可以组成将电阻器值转换为数字的电路, 工作过程请参见附 图 5。 电路原始状态: 电压 24 不等于电压 17, 参考电压 25 (标准电 压) 值处于电压 24、 17之间且相对稳定, 电控开关 14可将电容器 1接 到电压 17上形成充 (放) 电回路。 测量开始前, 电容器 1、 2、 3接到 电压 17上。 开始测量, 控制器 27控制电控开关 18接通电阻 4、 电控 幵关 14断幵, 计时器 12打开, 电压 24通过电控开关 18、 电阻 4、 电 容器 1、 电压 13形成充 (放) 电回路, 电容器 1上电压 10与比较器 26 参考电压 25进行比较, 电容器 1上电压 10未达到比较器 26参考电压 25时比较器 26输出电压 11不变, 计时器 12计时, 然后, 当电压 10 升 (或降) 到与电压 25相等时, 比较器 26输出电压 11变化, 控制器 27控制计时器 12关闭, 可从计时器 12读到电容-电阻的充 (放) 电时 间, 同时控制电控开关 18断开, 电控开关 14接通电压 17, 为电容 1 放 (充) 电。 以此类推, 可从计时器 12读到电容-电阻的充 (放) 电时 间。 测试过程中应保证电压 24、 25、 17、 13稳定。 如实施例 1所述, 可求得电阻器值。
附图 6为本发明将电阻器值转换为数字的一种应用集成元件原理示 意图, 其中, 分压电阻 32、 33提供参考电压 25, MC4051 开关元件 30 包含电控开关 18、 19、 20, AT89F2051单片机 31内含比较器 26、 计时 器 12、 控制器 27, 单片机 31通过连接线 34控制开关元件 30。 实施例 4.
本发明可以组成将电感器值转换为数字的电路, 工作过程请参见附 图 7。 电路原始状态: 电压 24 不等于电压 17, 参考电压 25 (标准电 压) 值处于电压 24、 17之间且相对稳定, 电控开关 14可将电容 1接到 电压 17上形成充 (放) 电回路。 测量开始前, 电容器 1、 2, 3接到电 压 17上。 开始测量, 控制器 27控制电控开关 14断开, 电控幵关 21接 通电感 7, 计时器 12打开, 电压 24通过电控开关 21、 电阻 4、 电容器 1、 电压 13形成充 (放) 电回路, 电容器 1上电压电压 10与比较器 26 参考电压 25进行比较, 电容器 1上电压 10未达到比较器 26参考电压 25时比较器 26输出电压 11 不变, 计时器 12计时, 然后, 当电压 10 升 (或降) 到与电压 25相等时, 比较器 26输出电压 11变化, 控制器 27控制计时器 12关闭, 可从计时器 12读到电容-电阻的充 (放) 电时 间, 同时控制电控开关 21 断开, 电控开关 14接通电压 17, 为电容 1 放 (充) 电。 以此类推, 可从计时器 12读到电容-电阻的充 (放) 电时 间。 测试过程中应保证电压 24、 25、 17、 13稳定。 如实施例 1 所述, 可求得电感器值。
附图 8为本发明将电感器值转换为数字的一种应用集成元件原理示 意图, 其中, 分压电阻 32、 33提供参考电压 25, MC4051 开关元件 30 包含电控开关 21、 22、 23 , AT89F2051单片机 31内含比较器 26、 计时 器 12、 控制器 27, 单片机 31通过连接线 34控制开关元件 30。
以上各电路图中开关可由开关的等效电路代替, 如 M0S开关器件, 三极管幵关器件等。
利用以上电路还可以判断元件的某些故障, 例如, 当计时为 0时可 判断被测电容器幵路, 或被测电阻、 电感短路。 当计时为无穷大时, 可 判断被测电容器短路或被测电阻、 电感开路。 实施例 5.
如附图 9所示, 这是一个二维矩阵, 将四个电控开关串联后, 一个 横向开关和一个纵向开关同时打开可以选通一个电阻, 通过横向开关和 纵向幵关组合即可测量按此矩阵排列的传感器。 实施例 6.
请参见附图 10, 电路原始状态: 电压 24 不等于电压 17, 门电路 35翻转电压值处于电压 24、 17之间且相对稳定, 电控幵关 14、 15、 16 可将电容器 1、 2、 3接到电阻 4或电压 17上形成充 (放) 电回路, 测 量开始前, 电容器 1、 2、 3接到电压 17上。 开始测量, 控制器 27控制 电控开关 14接通电阻 4, 电控开关 18接通电阻 4, 计时器 12开始计 时, 电压 24通过电控开关 18、 电阻 4、 电控开关 14、 电容器 1、 电压 13形成充 (放) 电回路, 电容器 1上电压 10未达到门电路翻转电压时 门电路 35输出电压 11不变, 计时器 12计时, 然后, 当电压 10升 (或 降) 到门电路 35翻转电压时, 门电路 35输出电压 11翻转, 计时器 12 停止计时, 从计时器 12读到电容-电阻的充 (放) 电时间, 同时控制电 控开关 18断开, 电控开关 14接通电压 17, 为电容 1放 (充) 电。 以 此类推, 可从计时器 12读到电容-电阻的充 (放) 电时间。 测试过程中 应保证电压 24、 25、 17、 13稳定。 附图 11为本发明应用门电路组成的单片集成电路的示意图, 其中 37为输入 /输出电路, 可用于驱动其他电路如键盘或显示器等。 实施例 7.
请参见附图 12, 电路原始状态: 电压 24不等于电压 17, 施密特电 路 36 翻转电压值处于电压 24、 17 之间且相对稳定, 电控开关 14、 15、 16可将电容器 1、 2、 3接到电阻 4或电压 17上形成充 (放) 电回 路, 测量开始前, 电容器 1、 2、 3接到电压 17上。 开始测量, 控制器 27控制电控开关 14接通电阻 4, 电控开关 18接通电阻 4, 计时器 12 开始计时, 电压 24 通过电控开关 18、 电阻 4、 电控开关 14、 电容器 1、 电压 13形成充 (放) 电回路, 电容器 1上电压 10未达到门电路翻 转电压时施密特电路 36输出电压 11不变, 计时器 12计时, 然后, 当 电压 10升 (或降) 到施密特电路 36翻转电压时, 施密特电路 36输出 电压 11 翻转, 计时器 12停止计时, 从计时器 12读到电容-电阻的充 (放) 电时间, 同时控制电控开关 18 断开, 电控开关 14 接通电压 17 , 为电容 1放 (充) 电。 以此类推, 可从计时器 12读到电容-电阻的 充 (放) 电时间。 测试过程中应保证电压 24、 25、 17、 13稳定。
附图 13为本发明应用门电路组成的单片集成电路的示意图, 其中 37为输入 /输出电路, 可用于驱动其他电路如键盘或显示器等。

Claims

权 利 要 求
1.一种将电容值、 电阻值及电感值转换为数字的电路, 由电容、 电 感或电阻、 比较器或施密特电路或固定翻转电压的门电路、 计时器、 控 制器和电控开关组成, 其特征在于: 每个电容、 电阻都与控制器控制的 电控开关相连, 控制器通过电控幵关控制电容选通电阻组成的阻容充放 电回路, 用来测量电阻值和电容值; 电容与电阻相连的一端与比较器的 一个输入端相连, 外部的参考电压与比较器的另一个输入端相连, 或电 容与电阻相连的一端与施密特电路或固定翻转电压的门电路的输入端相 连, 比较器或施密特电路或固定翻转电压的门电路的输出端与计时器相 连; 控制器与计量充放电时间的计时器相连, 通过计量阻容充放电达到 固定参考电压的时间来测量电容或电阻; 所述的电阻可换成电感, 由电 容和电感组成的感容充放电回路来测量电感和电容。
2.根据权利要求 1 所述的一种将电容值、 电阻值及电感值转换为数 字的电路, 其特征在于: 所述的电控开关在多个串联下可测量按矩阵排 列的传感器。
3.根据权利要求 1 所述的一种将电容值、 电阻值及电感值转换为数 字的电路, 其特征在于: 所述的电容是电容式传感器或标准电容, 电阻 是电阻式传感器或标准电阻, 电感是电感式传感器或标准电感。
PCT/CN2000/000185 1999-09-21 2000-06-30 Circuit numerique de conversion d'une valeur de capacite, d'une valeur de resistance et d'une valeur d'inductance en valeurs numeriques WO2001022595A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU58010/00A AU5801000A (en) 1999-09-21 2000-06-30 A digital circuit for converting a capacitance value, a resistance value and an inductance value to digital values

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN99119404.7 1999-09-21
CN 99119404 CN1131436C (zh) 1999-09-21 1999-09-21 一种电容、电阻、电感-数字转换电路

Publications (1)

Publication Number Publication Date
WO2001022595A1 true WO2001022595A1 (fr) 2001-03-29

Family

ID=5280884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2000/000185 WO2001022595A1 (fr) 1999-09-21 2000-06-30 Circuit numerique de conversion d'une valeur de capacite, d'une valeur de resistance et d'une valeur d'inductance en valeurs numeriques

Country Status (3)

Country Link
CN (1) CN1131436C (zh)
AU (1) AU5801000A (zh)
WO (1) WO2001022595A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982972A (zh) * 2018-08-22 2018-12-11 西安飞芯电子科技有限公司 一种微电感测量方法和装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7460441B2 (en) * 2007-01-12 2008-12-02 Microchip Technology Incorporated Measuring a long time period
CN102253286A (zh) * 2011-06-27 2011-11-23 郑军 电阻电容测量方法及其装置
CN103308842A (zh) * 2012-03-07 2013-09-18 鸿富锦精密工业(深圳)有限公司 调试电路
CN102621399B (zh) * 2012-04-23 2014-07-02 欧阳斌林 基于开关电路的电感值测量方法
CN103513106A (zh) * 2012-06-26 2014-01-15 中兴通讯股份有限公司 一种测量方法、测量电路及监控装置
CN104730341A (zh) * 2015-03-10 2015-06-24 昆山龙腾光电有限公司 阻抗检测电路、显示器检测装置及方法
CN108627701A (zh) * 2017-03-15 2018-10-09 上海骐宏电驱动科技有限公司 电阻量测系统及电阻量测装置
CN109935181A (zh) * 2017-12-19 2019-06-25 上海和辉光电有限公司 一种驱动电路、检测连接部件阻抗的方法及显示器

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0053786A1 (fr) * 1980-12-05 1982-06-16 Société Anonyme dite SAFT Circuit de mesure de résistance
US4492916A (en) * 1979-07-20 1985-01-08 Johnson Benjamin A Digital meter using calculator components
US4841458A (en) * 1987-07-07 1989-06-20 Honeywell, Incorporated Analog to digital conversion by measuring the ratio of RC time constants
DE3900782A1 (de) * 1988-01-13 1989-07-27 Ciapem Vorrichtung zur eingabe von daten in einen mikroprozessor, insbesondere fuer die steuerung eines haushaltsgeraetes
US4864513A (en) * 1987-07-07 1989-09-05 Honeywell Incorporated Potentiometer setting detection by measuring the ratio of RC time constants
WO1990012459A1 (en) * 1989-03-31 1990-10-18 Digital Appliance Controls, Inc. Analog to digital converter
US4987372A (en) * 1989-08-01 1991-01-22 Lutron Electronics Co., Inc. Potentiometer state sensing circuit
CN1053718A (zh) * 1990-01-25 1991-08-07 三星电子株式会社 积分式模-数转换器的基准电压自动控制器
DE4020732A1 (de) * 1990-06-29 1992-01-09 Pilz Gmbh & Co Manuelle analogeingabe fuer mikroprozessoren
EP0524086A1 (fr) * 1991-07-18 1993-01-20 Societe D'applications Generales D'electricite Et De Mecanique Sagem Méthode de mesure d'une résistance par évaluation de temps de charge d'un condensateur
DE4230703A1 (de) * 1991-09-19 1993-03-25 Vaillant Joh Gmbh & Co Analog-digital-umsetzer
EP0675347A1 (fr) * 1994-04-01 1995-10-04 Schlumberger Industries S.A. Circuit de mesure d'une grandeur physique
US5479103A (en) * 1994-01-18 1995-12-26 Air Communications, Inc. Non-linear voltage measuring implementing capacitor charging time
CN1126514A (zh) * 1994-04-05 1996-07-10 菲利浦电子有限公司 电阻测量电路以及包含这种测量电路的电热装置、电温度计和致冷装置
CN1152376A (zh) * 1994-07-07 1997-06-18 罗伯特·博施有限公司 用于一个电信号模/数转换的方法及实施该方法的装置
JPH11153632A (ja) * 1997-11-20 1999-06-08 New Japan Radio Co Ltd 抵抗測定装置

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4492916A (en) * 1979-07-20 1985-01-08 Johnson Benjamin A Digital meter using calculator components
EP0053786A1 (fr) * 1980-12-05 1982-06-16 Société Anonyme dite SAFT Circuit de mesure de résistance
US4841458A (en) * 1987-07-07 1989-06-20 Honeywell, Incorporated Analog to digital conversion by measuring the ratio of RC time constants
US4864513A (en) * 1987-07-07 1989-09-05 Honeywell Incorporated Potentiometer setting detection by measuring the ratio of RC time constants
DE3900782A1 (de) * 1988-01-13 1989-07-27 Ciapem Vorrichtung zur eingabe von daten in einen mikroprozessor, insbesondere fuer die steuerung eines haushaltsgeraetes
WO1990012459A1 (en) * 1989-03-31 1990-10-18 Digital Appliance Controls, Inc. Analog to digital converter
US4987372A (en) * 1989-08-01 1991-01-22 Lutron Electronics Co., Inc. Potentiometer state sensing circuit
CN1053718A (zh) * 1990-01-25 1991-08-07 三星电子株式会社 积分式模-数转换器的基准电压自动控制器
DE4020732A1 (de) * 1990-06-29 1992-01-09 Pilz Gmbh & Co Manuelle analogeingabe fuer mikroprozessoren
EP0524086A1 (fr) * 1991-07-18 1993-01-20 Societe D'applications Generales D'electricite Et De Mecanique Sagem Méthode de mesure d'une résistance par évaluation de temps de charge d'un condensateur
DE4230703A1 (de) * 1991-09-19 1993-03-25 Vaillant Joh Gmbh & Co Analog-digital-umsetzer
US5479103A (en) * 1994-01-18 1995-12-26 Air Communications, Inc. Non-linear voltage measuring implementing capacitor charging time
EP0675347A1 (fr) * 1994-04-01 1995-10-04 Schlumberger Industries S.A. Circuit de mesure d'une grandeur physique
CN1126514A (zh) * 1994-04-05 1996-07-10 菲利浦电子有限公司 电阻测量电路以及包含这种测量电路的电热装置、电温度计和致冷装置
CN1152376A (zh) * 1994-07-07 1997-06-18 罗伯特·博施有限公司 用于一个电信号模/数转换的方法及实施该方法的装置
JPH11153632A (ja) * 1997-11-20 1999-06-08 New Japan Radio Co Ltd 抵抗測定装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108982972A (zh) * 2018-08-22 2018-12-11 西安飞芯电子科技有限公司 一种微电感测量方法和装置

Also Published As

Publication number Publication date
CN1131436C (zh) 2003-12-17
AU5801000A (en) 2001-04-24
CN1289048A (zh) 2001-03-28

Similar Documents

Publication Publication Date Title
US4039940A (en) Capacitance sensor
CN102200869B (zh) 电容式触控装置及其感测装置
CN105379120A (zh) 使用δ/σ转换的电容式接近检测
WO2001022595A1 (fr) Circuit numerique de conversion d'une valeur de capacite, d'une valeur de resistance et d'une valeur d'inductance en valeurs numeriques
CN100566164C (zh) 一种高精度电容触摸传感控制电路架构
WO2022033466A1 (zh) 一种电容测量电路
CN110161318B (zh) 一种电容检测电路及检测方法
TWI408593B (zh) 電容式觸控裝置及其感測裝置
GB2223589A (en) Measurement of capacitance and parameters related thereto
CN109282856A (zh) 一种同时检测温度/电压/电流信号的单芯片传感器
JPH073340B2 (ja) センサ信号を処理する装置
US4267468A (en) Temperature sensing circuit
CN111175687A (zh) 非线性负荷标准电能表
CN201788222U (zh) 一种交直流兼容的隔离型电压采样电路
CN2137363Y (zh) 直流电压隔离检测装置
CN2365677Y (zh) 利用单片机对电阻值进行测量的装置
George et al. Switched capacitor triple slope capacitance to digital converter
JP3544449B2 (ja) 低コストのポインティング・スティック回路
CN102012452A (zh) 一种交流电压检测方法、装置及其电路
CN219833791U (zh) 电源控制装置及充放电系统
JPH0122085Y2 (zh)
CN2380925Y (zh) 测量传感器阻值的装置
CN209656787U (zh) 一种新型感应电容检测电路系统
CN203250174U (zh) 电压测量电路及自动转换开关控制器
CN115951116A (zh) 一种峰值电流检测系统及测试方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP