WO2001022574A1 - Amplificateur d'energie multiterminal par synthese, a correction aval - Google Patents

Amplificateur d'energie multiterminal par synthese, a correction aval Download PDF

Info

Publication number
WO2001022574A1
WO2001022574A1 PCT/JP2000/006316 JP0006316W WO0122574A1 WO 2001022574 A1 WO2001022574 A1 WO 2001022574A1 JP 0006316 W JP0006316 W JP 0006316W WO 0122574 A1 WO0122574 A1 WO 0122574A1
Authority
WO
WIPO (PCT)
Prior art keywords
amplifier
power
pilot signal
signal
output
Prior art date
Application number
PCT/JP2000/006316
Other languages
English (en)
French (fr)
Inventor
Yasunori Suzuki
Tetsuo Hirota
Toshio Nojima
Original Assignee
Ntt Docomo, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntt Docomo, Inc. filed Critical Ntt Docomo, Inc.
Priority to JP2001525835A priority Critical patent/JP3989731B2/ja
Priority to EP00961026A priority patent/EP1152523B1/en
Priority to US09/850,733 priority patent/US6515544B1/en
Publication of WO2001022574A1 publication Critical patent/WO2001022574A1/ja

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/34Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means
    • H01Q3/40Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by electrical means with phasing matrix
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion
    • H03F1/3223Modifications of amplifiers to reduce non-linear distortion using feed-forward
    • H03F1/3229Modifications of amplifiers to reduce non-linear distortion using feed-forward using a loop for error extraction and another loop for error subtraction
    • H03F1/3235Modifications of amplifiers to reduce non-linear distortion using feed-forward using a loop for error extraction and another loop for error subtraction using a pilot signal
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/60Amplifiers in which coupling networks have distributed constants, e.g. with waveguide resonators
    • H03F3/602Combinations of several amplifiers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits

Definitions

  • the present invention relates to a multi-terminal power combining power amplifier that amplifies a plurality of transmission signals, and more particularly to a multi-terminal power combining power amplifier suitable for use in an array antenna.
  • FIG. 1 shows a basic configuration of a multi-terminal power combining type power amplifier 10 which is a so-called multi-port amplifier.
  • the multi-terminal power combining type power amplifier 10 includes an input-side multi-terminal power combiner 3 composed of a plurality of hybrids, a plurality of main amplifiers 4M, and an output-side multi-terminal power combiner corresponding to the input-side multi-terminal power combiner. It is composed of a terminal power combiner 5.
  • the input-side multi-terminal power combiner 3 is configured by combining a plurality of ⁇ / 2 hybrid HBs as shown in FIG.
  • the output-side multi-terminal power combiner 5 has the same configuration.
  • the multi-terminal power combining power amplifier 10 is used in combination with an array antenna such as a multi-beam, adaptive array.
  • an array antenna such as a multi-beam, adaptive array.
  • the power of the beam of each antenna element increases or decreases according to the traffic fluctuation.
  • the maximum transmission power of the beam is at the time of full traffic, and there is a possibility that transmission power of up to several times the number of antenna elements is concentrated on one antenna element. For example, if the maximum transmission power of one element is 1 W and the number of elements is 8, the maximum power of 8 W may be supplied to one element. Therefore, the amplifier of each element of the array antenna must be designed to have a saturated output assuming full traffic. For this reason, an array antenna using individual amplifiers becomes a large-scale device.
  • the input-side multi-terminal power combiner 3 will produce multiple signals, for example, at the input terminal IP, even if there is traffic fluctuation between beams.
  • the terminal power combiner 3 distributes the power evenly to all the output terminals, and the output multi-terminal power combiner 5 passes through each main amplifier 4M. Since power is output to the same output terminal OP i as the original system, the power input to each main amplifier 4M is ideally always equal to each other. For this reason, the saturation power of each individual amplifier can be designed with the saturation power assuming the time of full traffic reduced to the number of terminals.
  • the multi-terminal power combining type power amplifier 10 has an advantage that the saturation power of the amplifier can be reduced as compared with the case where an individual amplifier is provided for each element of the array antenna.
  • the application of the multi-terminal power combining type power amplifier to the array antenna is effective.
  • multi-terminal power combining type power amplifiers include Egami and Kawai's paper “Multi-terminal power combining type multi-beam transmission system”, IEICE Transactions B, Vol. J69-B, No. 2, 1986, As stated in February, the following characteristics are required. First, the electrical characteristics of the 7 ⁇ / 2 hybrid of the multi-terminal power combiner are uniform and low loss, and second, the electrical characteristics of the main amplifier are uniform.
  • the ⁇ / 2 hybrid has a small variation in characteristics and is relatively easy to configure with high accuracy, but it is quite difficult to make the electrical characteristics of the main amplifier uniform. It is.
  • the standard deviation of the gain of the main power amplifier is 0.7 dB.
  • the standard deviation of the phase amount must be 5 deg or less. It is difficult to manufacture and adjust a large number of main amplifiers to satisfy such a standard deviation condition in consideration of changes in the device temperature, aging, and the like.
  • An object of the present invention is to provide a multi-terminal power combining type power amplifier capable of realizing a high port-to-port isolation regardless of changes in the device temperature and aging.
  • a feedforward multi-terminal power combining type power amplifier is provided with a plurality of input / output ports, a multi-terminal power combining type power amplifier having a main amplifier that amplifies a transmission signal in each system and outputs the amplified signal as a main signal.
  • An amplifier, and a feed-forward amplifier circuit configured to include the main amplifier corresponding to the input / output port of each system and removing a distortion component in the main signal output by the main amplifier. Structure And removes distortion components in the main signal output by the main amplifier.
  • Figure 1 shows the configuration of a multi-terminal power combining type power amplifier.
  • FIG. 2 is a diagram illustrating an example of a multi-terminal power combining circuit using a hybrid.
  • FIG. 3 is a diagram showing a basic configuration of a multi-terminal power combining type power amplifier according to the present invention.
  • FIG. 4 is a diagram showing a first embodiment of the present invention.
  • FIG. 5 is a diagram showing a second embodiment of the present invention.
  • FIG. 6 is a diagram showing a third embodiment of the present invention.
  • FIG. 7 is a diagram showing a fourth embodiment of the present invention.
  • FIG. 8 is a diagram showing a fifth embodiment of the present invention.
  • FIG. 9 is a diagram showing a sixth embodiment of the present invention.
  • FIG. 10 is a view showing a seventh embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 3 shows the basic configuration of the feedforward multi-terminal power combining power amplifier according to the present invention.
  • each of the input-side multi-terminal power combiner 3 and the conventional multi-terminal power combiner-type power amplifier composed of the main amplifier 4M and the output-side multi-terminal power combiner 5 shown in FIG. Fi constituting an feedforward amplifier circuit 40 n, which includes a main amplifier 4M in between the input and output ports IP n -0P n lines.
  • a multi-terminal power combining type power amplifier In a multi-terminal power combining type power amplifier, power leakage occurs between ports due to variations in the electrical characteristics of the hybrid and the electrical characteristics of the main amplifier. As a result, interference occurs between ports, and the beam directivity formed by the array antenna does not conform to a predetermined design. In order to design the beam directivity formed by the array antenna, it is necessary to minimize the port-to-port isolation. To achieve this, the characteristics of the 7 ⁇ / 2 hybrid that constitute the main amplifier and the input and output multi-terminal power combiners Needs to be reduced. The characteristics of the 7 ⁇ / 2 hybrid can be configured relatively easily with high accuracy.
  • a variation in the electrical characteristics of the main amplifier is reduced by configuring a feedforward amplifier circuit for the main amplifier for each system.
  • power leakage to other ports can be reduced, and therefore, isolation between ports can be increased.
  • FIG. 4 shows a first embodiment of the present invention.
  • each port between the input-side multi-terminal power combiner 3 and the output-side multi-terminal power combiner 5 to each feed-forward amplifier circuit 40 n in principle configuration of the present invention shown in FIG. 3 It is configured correspondingly. That is, in this first embodiment, New system of the input terminals Iotaro 1 ⁇ ⁇ , have Iotaro New, an input-side multi-terminal power combiner 3 to input power combining and distribution of New strains input multi-terminal power each connection combiner 3 New number of output terminals to which it connected New strains independent feedforward amplifier circuit 40 ..., and 40 New, New strains of Fidofowa one de amplifier ⁇ ...,! ⁇ to the output terminal
  • the output-side multi-terminal power combiner 5 having the input terminal thus formed constitutes a feedforward multi-terminal power combining type power amplifier.
  • the second variable phase shifter 4 ⁇ 2, the second variable attenuator 4 ⁇ 2, and the auxiliary amplifier 4 ⁇ inserted in series with the injection path 4DL, the power of the output of the main signal transmission path 4 ⁇ and the output of the distortion injection path 4DL are combined, and the main amplifier And 4) a power combiner 43 that cancels the generated distortion.
  • the loop from the power divider 41 to the power distribution / combiner 42 of the feedforward amplifier 40 ⁇ is called a distortion detection circuit 40 ⁇
  • the loop from the power distribution / combiner 42 to the power combiner 43 is called a distortion removal circuit 40 ⁇ ⁇ . .
  • the linear signal transmission path 4AL and the main signal transmission path 4 ⁇ are simply delay lines composed of cables, and the power splitter 41, power splitter / combiner 42, power combiner 43, etc. are composed of, for example, directional couplers or hybrids.
  • Distortion detection circuit 40 ⁇ linear signal transmission By adjusting the first variable attenuator 4A1 and first variable phase shifter 4P1 for the path 4AL, the main signal component is canceled at the output side of the power divider 42 to the distortion injection path 4DL, and the nonlinear distortion component due to the main amplifier 4M By keeping only the (difference component), the distortion detection circuit 40A loop is balanced.
  • the second variable attenuator 4A2 and the second variable phase shifter 4P2 are adjusted for the signal of the main signal transmission path 4BM of the distortion removal circuit 40B to adjust the nonlinear distortion component of the main amplifier 4M at the output side of the power combiner 43. Is canceled and only the main signal component remains, thereby balancing the loop of the distortion removal circuit 40B.
  • Such a feedforward amplifier circuit itself for removing the nonlinear distortion of the main amplifier 4M is a well-known technique.
  • Each feed forward amplifier 40 n shown in FIG. 4 has a delay line 40D1, 40D2 to the distortion detection circuit 40A and the distortion elimination circuit 40B.
  • the distortion detection circuit 40A and the distortion elimination circuit 40B are a power distribution / combiner 42 and a power combiner 43, so that the signals from the respective paths 4AM and 4AL and 4BM and 4DL have equal amplitude, equal delay, and opposite phase. Then, the amplitude and phase are adjusted in one path and the signals in the two paths are combined. At this time, the loop equilibrium of the distortion detection circuit 40A and the distortion removal circuit 40B is determined by the amplitude and phase adjustment accuracy. As shown in Japanese Patent Application Publication No.
  • the delay line that constitutes the linear signal transmission path 4AL is a cable that connects the power distributor 41 and the power distributor / combiner 42.
  • the length of the delay line determines the amount of delay. Variations can be very small. Since the first variable phase shifter 4P1 may be adjusted with reference to the delay line 4AL, this can also be determined with high accuracy. In the actual loop balance adjustment, as will be described later with reference to the embodiment of FIG. 5, by performing the phase and amplitude adjustment using the first pilot signal, the loop balance can be adjusted with high accuracy. It is relatively easy to keep the loop phase deviation within ⁇ 2 deg and the amplitude deviation within ⁇ 0.3 dB.
  • the loop balance adjustment of the distortion removal circuit 40B is performed based on the main signal transmission path 4BM composed of delay lines.
  • the variable phase shifter 4P2 can be adjusted together with the second variable attenuator 4A2, the phase deviation is within ⁇ 2deg and the amplitude deviation is ⁇ 0.3dB using the second pilot signal as described later with reference to the embodiment of FIG. High-precision loop balance adjustment within
  • the phase characteristic of the feedforward amplifier is determined by the processing accuracy of the delay lines 4D1 and 4D2 of the distortion detection circuit 40A and the distortion removal circuit 40B from the configuration of the feedforward amplifier in FIG.
  • the main signal is canceled by the distortion detection circuit 40A based on the transmission signal from the delay line 4D1 and the distortion component is detected. It can easily be seen that when the values are equal, uniform gain characteristics can be obtained.
  • the present invention makes it possible to realize a multi-terminal power combining type power amplifier having high port-to-port isolation, which has been conventionally difficult, by utilizing this for a multi-terminal power combining type power amplifier. This means that it is possible to realize a so-called ideal multi-terminal power combining type power amplifier without uneven electrical characteristics of the elements.
  • FIG. 5 shows a second embodiment of the present invention.
  • Loop equilibrium of the distortion detecting circuit 40 ⁇ and the distortion elimination circuit 40 ⁇ in the feed forward amplifying circuit 40 n varies. This is because the loop equilibrium conditions easily change due to circuit load fluctuations, temperature changes, and aging.
  • an automatic gain adjustment circuit Japanese Patent Application Publication No. 1-198809 which achieves the balance of a loop of a feed-forward configuration using a pilot signal is disclosed. Automatic adjustment circuit). According to this, a pilot signal is injected into each loop, detected, and a variable phase shifter and a variable attenuator are adjusted so as to minimize the level of the detected pilot signal, thereby achieving loop balance.
  • Base station power amplifier for mobile communication constructed using this method (Shoichi Gonbashi, Toshio Nojima, Ultra-low distortion multi-frequency common for mobile communication Amplifiers, IEICE Technical Report RCS90-4, 1990) have been put to practical use.
  • a pilot signal is used to easily achieve the balance of the loop of the feedforward configuration.
  • the second embodiment uses the first and second pilot signals in the feedforward amplification circuit 40 ⁇ in the embodiment of FIG. 4 to correct the deterioration due to the change over time of the loop balance characteristic of the feedforward configuration.
  • the configuration is such that the loop balance of the detection circuit 40 ° and the distortion removal circuit 40 ° can be easily corrected.
  • a method of achieving loop balance using a pilot signal is described in the aforementioned Japanese Patent Application Publication No. 1-198809 or US Pat. No. 5,166,634. In the present invention, loop balance is achieved by a control method similar to that shown above.
  • Feedforward amplifier 40 n first pilot signal combiner 451 that by the Haipuriddo or directional coupler to the input of the provided first pilot signal PS1 of the first pilot signal combiner which is generated by the first pilot signal generator 441 Input from 451 to feed forward amplifier 40.
  • first and second pilot signal generators 441 and 442 for example, a method using CW shown in US Pat. No. 5,166,634 (Japanese Patent Application No. 63-23574, “Automatic gain of feedforward amplifier”). Adjustment circuit), Method using low-frequency modulated wave (Japanese Patent Application No. 3-249440, “Feedforward interference circuit”), Method using frequency spread wave (Japanese Patent Application No.
  • the second pilot signal combiner 452 is inserted between the stages of the main amplifier 4M by a hybrid or directional coupler similarly to the first pilot signal combiner 451.
  • First pilot signal extractor 461 is realized by a hybrid or directional coupler, and inserted into distortion amplifier circuit 4DL.
  • the second pilot signal extractor 462 is realized by a hybrid or directional coupler, and is inserted on the output side of the power combiner 43.
  • the level of the first pilot signal PS1 detected by the first pilot signal extractor 461 is detected by the level detector 471 and input to the first controller 481.
  • the first controller 481 adjusts the first variable phase shifter 4P1 and the first variable attenuator 4A1 of the main signal transmission path 4AM stepwise so as to minimize the level of the first pilot signal PS1. This allows The loop balance of the distortion detection circuit 40A can be achieved.
  • the level of the second pilot signal PS2 detected by the second pilot signal extractor 462 is detected by the level detector 472 and is input to the second controller 482.
  • the second controller 482 adjusts the second variable phase shifter 4P2 and the second variable attenuator 4A2 of the distortion amplification path 4DL stepwise so as to minimize the level of the second pilot signal PS2.
  • the loop balance of the distortion removing circuit 40B can be achieved.
  • Such loop balance adjustment may be performed periodically or as needed.
  • the first and second controllers 481 and 482 respectively perform loop balance control of the distortion detection circuit 40A and the distortion removal circuit 40B, but one controller performs both loop balance controls. Is also good.
  • the first and second pilot signal generators 441 and 442, the first and second level detectors 471 and 472, and the first and second controllers 481 and 482 are provided for each system. shows the case of providing a dedicated feedforward amplifier circuit 40 n, as described later in the embodiment of FIG. 7, the first and second pilot signal generators 441, 442, first ⁇ beauty second One level detector 471 and 472 is provided in common for all systems, and the first and second pilot signal generators 481 and 482 and the first and second level detectors 471 and 472 are respectively provided.
  • the switching unit may be configured to connect to the first and second pilot signal combiners 451 and 452 and the first and second pilot signal extractors 461 and 462 of a desired system.
  • the first and second controllers 481 and 482 include first and second variable attenuators 4A1 and 4A2 of the entire system based on the detection levels of the first and second level detectors 471 and 472, and the first and second variable attenuators. Controls phase shifters 4P1 and 4P2.
  • the present invention is intended to simplify the adjustment of a feed-forward multi-terminal power combining type power amplifier, prevent bias of electrical characteristics due to aging, temperature change, etc., and provide an array antenna. This has the advantage that it does not affect the beamforming of the sphere.
  • FIG. 6 shows a third embodiment of the present invention.
  • a feedforward amplification circuit 40 including a main amplifier 4M corresponding to each port between the input-side multi-terminal power combiner 3 and the output-side multi-terminal power combiner 5 in FIG. If shows the case that constitutes the, in the embodiment of FIG. 6, which is configured in FIG. 3, from each input port IP n, a feed-forward amplifying circuit 40 ⁇ across each line leading to the output port OPn through the main amplifier 4M Specifically, in the embodiment of Fig. 6, in the embodiment of Fig.
  • the input-side multi-terminal power combiner 3 is moved to the input side of the main amplifier 4 ⁇ of the entire system, and the output-side multi-terminal power combiner is combined.
  • the vessel 5 has a configuration which were transferred to the output side of the main amplifier 4 ⁇ of all channels, other configurations are the same as those in FIG. Therefore, the input signals from each input port IPn the corresponding feed-forward amplifying circuit 40 n of The power is supplied to the power Signals of each line are outputted to the output port OPn from the output of the feedforward amplifier circuit 40 n of the power combiner 43.
  • Transmitting signal of each input port IPn is input to the power divider 41 of the feed forward amplifying circuit 40 n.
  • the first variable attenuator 4A1, the first variable phase shifter 4P1, the input-side multi-terminal power combiner 3, the main power amplifier 4M, and the output Distortion is caused by the main amplifier path 4AM leading to the power divider / combiner 42 via the multi-side power combiner 5 on the side and the linear signal transmission path 4D1 leading to the power divider / combiner 42 from the power divider 41 via the delay line 4D1.
  • Construct detection circuit 40A Construct detection circuit 40A.
  • Power distributionCombiner 42 distributes the output signal of main amplifier path 4MA and the output signal of delay line 4D1combines and outputs the sum component to main signal transmission path 4BM of distortion removal circuit 40B, and outputs the sum component to distortion injection path 4DL.
  • a non-linear distortion component of the main amplifier which is a difference component, is output.
  • Main signal transmission path 4D2 composed of delay lines from combiner 42 to power combiner 43, power distributor2nd variable attenuator 4A2, second variable phase shifter 4P2, and auxiliary from combiner 42
  • the distortion injecting path 4DL reaching the power combiner 43 via the amplifier 4X and the power combiner 43 constitute a distortion removing circuit 40B.
  • the output of the main signal transmission path 4BM and the output of the distortion injection path 4DL are power-combined by the power combiner 43, whereby the distortion component in the output signal of the main signal transmission path 4BM is converted to the output signal of the main signal transmission path 4BM. It is removed by combining the distortion component with the equal amplitude, equal delay, and opposite phase distortion injection path output signal.
  • What is characteristic in this embodiment is that the main signal of the main amplifier path of each system is distributed to the main amplifiers 4M of all systems by the input-side multi-terminal power combiner 3 provided on the input side of the main amplifier 4M.
  • the output from the main amplifier 4M is combined by the output-side multi-terminal power combiner 5, and most of the power is supplied to the corresponding power distribution / combiner 42 in one system, and the remaining power is used in the other system.
  • the power distributor-synthesizer 42 of the one system integration but also leakage power from other strains is input, as a distortion by the distortion detection circuit 40A that leakage power constituting the feed-forward amplifying circuit 40 n It is detected together with the non-linear distortion by the main amplifier 4M, and is canceled by the power combiner 43 of the distortion removing circuit 40B.
  • leakage of power between ports due to variations in the characteristics of the power combiners 3 and 5 and the main amplifier 4M in all systems is also detected as distortion by the respective distortion detection circuits 40A, and the distortion is canceled by the power combiner 43. Is done.
  • an inexpensive amplifier can be used.
  • FIG. 7 is different from the embodiment of FIG. 6 in that a configuration for performing the loop balance of the distortion detection circuit 40A and the distortion removal circuit 40B using the first and second pilot signals similar to the embodiment of FIG. It is added.
  • a first pilot signal combiner 451 is provided between the input port IP n of each system and the input side of the power divider 41, and each output of the output-side multi-terminal power combiner 5 is connected to the power divider / combiner.
  • a second pilot signal combiner 452 is provided between the input of the first pilot extractor 461 in the distortion injection path 4DL between the combiner 42 and the auxiliary amplifier 4X.
  • a second pilot signal extractor 462 is provided on the output side of the power combiner 43.
  • the first and second level detectors 471 and 472 from first and second pilot signal generators 441 and 442 and the desired system selected by switches 8 and 9
  • the first and second extracted from the pilot signal extractors 461 and 462 of The level of the second pilot signal is detected by the level detectors 471 and 472.
  • the detection levels of the level detectors 471 and 472 are given to the first and second controllers 481 and 482, and based on these, the first variable attenuator 4A1, the first variable phase shifter 4AB, and the second variable attenuator 4A2 ,
  • the second variable phase shifter 4P2 is controlled.
  • Switches 6 and 8 are controlled by the first controller 481 so as to interlock and select the same system
  • switches 7 and 9 are controlled by the second controller 482 so as to interlock and select the same system. You.
  • the transmission signal of input terminal IPn is input to first pilot signal combiner 451.
  • First pilot signal combiner 451 couples first pilot signal PS1 to system n.
  • the output of the first pilot signal combiner 451 is input to the power distributor 41 of feed-forward amplifying circuit 40 n.
  • Power distributionCombiner 42 distributes the output signal of main amplifier path 4MA and the output signal of delay line 4D1Synthesizes and outputs the sum component to main signal transmission path 4BM of distortion elimination circuit 40B, and distortion injection path
  • the non-linear distortion component of the main amplifier and the leakage power between ports, which are the difference components, are output to 4DL as distortion.
  • Second pilot signal combiner 452 injects second pilot signal PS2 into amplified transmission signal system 1.
  • the sum component output of the combiner 42 is supplied to the main signal transmission path 4D2 composed of a delay line, and the difference component output of the power distribution combiner 42 is a first pilot signal extractor 461, a second variable
  • the signal is supplied to a distortion injection path 4DL composed of the attenuator 4A2, the second variable phase shifter 4P2, and the auxiliary amplifier 4X.
  • the output of the main signal transmission path 4D2 and the output of the distortion injection path 4DL are power-combined by the power combiner 43. That is, the distortion component in the output signal of the main signal transmission path 4D2 is removed by synthesizing the distortion injection path output signal of equal amplitude, equal delay, and opposite phase with the distortion component output signal of the main signal transmission path 4DL. Is done.
  • the first pilot signal PS1 is generated by a first pilot signal generator 441 including a signal generator for generating a tone or a modulated wave and a frequency converter for converting the signal to a predetermined frequency.
  • the first controller 481 controls the switches 6 and 8 to select a desired transmission system, thereby injecting the first pilot signal PS1 into the first pilot signal combiner 451 of the selected transmission system.
  • the first pilot signal PS1 is extracted from the distortion injection path 4DL by the first pilot signal extractor 46 1 of the transmission system.
  • the first pilot signal PS1 extracted by the first pilot signal extractor 461 is The level is supplied to a first level detector 471, and the level is detected.
  • the first level detector 471 includes a narrow band filter, a frequency converter, and a level detector.
  • the first pilot signal PS1 is a modulated wave, it is composed of a band filter, a frequency converter, a detector, a decision unit, a carrier synchronization circuit, and the like.
  • the level of the first pilot signal detected by the first level detector 471 is input to the first controller 481, and the first controller 481 minimizes the detection level of the input first pilot signal.
  • the first variable attenuator 4A1 and the first variable phase shifter 4P1 are controlled stepwise.
  • the first controller 481 controls the switches 6 and 8 that switch the system to which the first pilot signal PS1 is injected, and controls the variable attenuation of another system. Adjust the phase shifter 4A1 and the variable phase shifter 4P1.
  • the control procedure of the first controller 481 is to instruct the switches 6 and 8 to select the systems in a predetermined order, and to use the variable attenuator 4A1 of the system selected to minimize the detection level of the first pilot signal.
  • the variable phase shifter 4P1 are controlled by one step or several steps, and a signal for selecting another system is sent to the switches 6 and 8. In this way, the N systems are sequentially controlled.
  • the switches 7 and 9 select a predetermined transmission system, and the second pilot signal combiner 452 of the selected transmission system outputs the second pilot signal generated from the second pilot signal generator 44.
  • 2 Pilot signal PS2 is injected.
  • the second pilot signal PS2 extracted by the second pilot signal extractor 462 is provided to the second level detector 472, the level of the second pilot signal is detected, and provided to the second controller 482.
  • the second level detector 472 includes a narrow band filter, a frequency converter, and a level detector.
  • the second pilot signal PS 2 is a modulated wave, it is composed of a bandpass filter, a frequency converter, a detector, a determiner, a carrier synchronization circuit, and the like.
  • the second controller 482 controls the second variable attenuator 4A2 and the second variable phase shifter 4P2 stepwise so as to minimize the level of the input second pilot signal. These control algorithms are realized by the perturbation method, the steepest descent method, or various adaptive algorithms that have been put to practical use.
  • the second controller 482 is After adjusting the variable attenuator 4A2 and variable phase shifter 4P2 of the selected system in the same way as the case of the first controller 481, control the switches 7 and 9 to switch to select another system and change the variable attenuator 4A2 to the variable Adjust the phase shifter 4P2.
  • the balance of the distortion detection circuit 40A having the feedforward configuration is achieved using the first pilot signal PS1, and the balance of the distortion removal circuit 40B is achieved using the second pilot signal PS2.
  • Controllers 481 and 482 switch the transmission system to achieve the balance of the loop of the feedforward amplifier circuit sequentially.
  • the first and second pilot signals used in the power amplifier of the present invention may be frequency-spread with a spreading code.
  • FIG. 8 shows a fifth embodiment of the present invention.
  • the embodiment shown in FIG. 8 is different from the fourth embodiment shown in FIG. 6 in that the first and second pilot signal generators (44h to and 441 NS 442! ⁇ 442, was the first and second level detector, (471! ⁇ 471 N, 472 i ⁇ 472 N), first and second controller (481 1 ⁇ 481 ⁇ , the ⁇ ⁇ ⁇ provided As a result, the balance of all the loops of the feedforward amplifier circuits ⁇ ! To ⁇ !
  • the frequencies of the first pilot signal PS1 and the second pilot signal PS2 are The frequency is set to a frequency that avoids cross-modulation due to the intermodulation distortion of the amplifier, thereby achieving the balance of all the loops of the power amplifier, and the electrical characteristics of all transmission systems in the power amplifier. Achieving the balance of all the loops of the power amplifier Thus, the electrical characteristics of all transmission systems in the power amplifier can be made uniform.
  • FIG. 9 shows a sixth embodiment of the present invention.
  • FIG. 9 shows an embodiment in which the feedforward multi-terminal power combining type power amplifier 100 according to the present invention is applied to an array antenna, uses FDD (frequency division duplex), and uses different carrier frequencies for transmission signals and reception signals.
  • a is the Fidofowa once multi-terminal output system 0 ⁇ ⁇ 0 ⁇ of the power combiner type power amplifier 100 New according to the present invention shown in either C Figure 3-8 when it it duplexer (duplexer) 7h ⁇ 71N.
  • Duplexer 7H ⁇ 71 N distributes the antenna 7 (signal different received frequencies in ⁇ 70N 'and the transmission signal.
  • Antenna 70 1-7 (signal received by ⁇ undergoes a shared Utsuwaa ⁇ ⁇ receiver (performing ⁇ nowadays ⁇ ⁇ ? ⁇ is input to. receiver 72 i ⁇ 72 N at predetermined signal processing.
  • the feed-forward multi-terminal power combining type power amplifier 100 of the present invention, Array antenna 7 (up to 70 N can be combined.
  • the feedforward multi-terminal power combining type power amplifier of FIG. 9 may have any of the amplifier configurations of FIGS. 3 to 8 described above.
  • FIG. 10 shows a sixth embodiment of the present invention.
  • FIG. 10 shows another embodiment in which the feedforward multi-terminal power combining type power amplifier 100 according to the present invention is applied to an array antenna.
  • duplexer ⁇ ⁇ ⁇ 9 has become replaced et the configuration in RF Suitsuchi SW 1 to SW N.
  • RF Suitsuchi SW 1 to SW N is feedforward multiterminal power combining type power amplifier is connected to the 100 side 70 a transmission signal amplified by the amplifier 100 antenna 7 (with N.
  • RF Suitsuchi SW to SW N are connected to the receiver 72! to 72 N side, supplies a received signal from the antenna 70 1 to 70 N to the receiver ⁇ ⁇ ⁇ .
  • the power amplifier according to the invention The present invention can be applied as a transmission amplifier for a multi-beam and adaptive array antenna regardless of a wireless communication system.
  • the present invention has the following effects by providing the above configuration.
  • the electrical characteristics of a plurality of independent main amplifiers can be made uniform.
  • Stable electrical characteristics can be obtained against changes in the temperature and aging of the device.
  • a power amplifier that does not affect the beam formation of the array antenna can be provided.
  • Power amplifiers for array antennas can be made smaller, more economical, and consume less power.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Amplifiers (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transceivers (AREA)

Description

明細書
フィードフォワード多端子電力合成形電力増幅器
技術分野
本発明は、 複数の送信信号を増幅する多端子電力合成形電力増幅器に関し、 特 に、 アレーアンテナに用いて好適な多端子電力合成形電力増幅器に関する。
従来の技術
マルチビーム通信を行う衛星搭載用電力増幅器として、 多端子電力合成形電力 増幅器が例えば米国特許 No.4, 618,831に示されている。 図 1に、 いわゆるマルチ ポートアンプである多端子電力合成形電力増幅器 1 0の基本構成を示す。
多端子電力合成形電力増幅器 1 0は、 複数のハイブリツドにより構成される入 力側多端子電力合成器 3と、 複数の主増幅器 4Mと、 入力側多端子電力合成器に対 応する出力側多端子電力合成器 5により構成される。 入力側多端子電力合成器 3 は、 4入力 4出力の場合を例に図 2に示すように、 Γ/2ハイブリッド H Bを複数 組み合わせ構成される。 出力側多端子電力合成器 5も同様の構成である。 一般に ポート数 Pとハイプリッドの段数 mの関係は、 P = m2となる。
多端子電力合成形電力増幅器 1 0はマルチビーム、 ァダプティブアレーなどの アレーアンテナと組み合わせて使用される。 マルチビ一ムアンテナ及びァダブテ ィブアレーアンテナでは、 トラフィヅクの変動に応じて各アンテナエレメン卜の ビームの電力が増減する。 このとき、 ビームの最大送信電力は、 フルトラフイツ ク時であり、 1つのアンテナエレメン卜に最大でアンテナのエレメント数倍の送 信電力が集中する可能性がある。 例えば、 1エレメントの最大送信電力を 1 Wと し、 エレメント数を 8とすれば、 最大 8 Wの電力が 1エレメントに給電される可 能性がある。 従って、 アレーアンテナの各エレメントの増幅器は、 フルトラフィ ック時を想定して飽和出力を設計する必要がある。 このため、 個別増幅器による アレーアンテナは、 大規模な装置となる。
これに対して、 多端子電力合成形電力増幅器 1 0をアレーアンテナに用いると、 ビーム間のトラフィック変動があつても入力側多端子電力合成器 3により、 例え ば入力端子 IP の入力信号は多端子電力合成器 3によりその全ての出力端子に電 力を均等に分配し、 それぞれの主増幅器 4Mを経て出力側多端子電力合成器 5によ りもとの系統と同じ出力端子 OP i に出力するので、 それぞれの主増幅器 4Mに入力 される電力は理想的には常に互いに等しい。 このため、 フルトラフィック時を想 定した飽和電力を端子数分の 1にして各個別増幅器の飽和電力を設計できる。 従 つて、 多端子電力合成形電力増幅器 1 0は、 アレーアンテナの各エレメントに個 別増幅器を設ける場合と比べて、 増幅器の飽和電力を低減できる利点がある。 こ のように、 多端子電力合成形電力増幅器のアレーアンテナへの適用は効果がある。 しかしながら、 多端子電力合成形電力増幅器には、 江上、 川合らの論文「多端 子電力合成形マルチビーム送信系」 、 電子情報通信学会論文誌 B、 Vol . J69-B , No. 2,1986, 2月で述べられているように、 次のような特性が要求される。 第 1に、 多端子電力合成器の 7Γ/2ハイプリッドの電気的特性が均一で低損失であること、 第 2に、 主増幅器の電気的特性が均一であることである。 これらの特性のばらつ きは、 電力増幅器 1 0の出力ポート間に電力洩れを生じさせる。 これらの技術的 課題のうち、 Γ/2ハイブリッドは特性のばらつきを小さく、 高精度に構成するこ とが比較的に容易であるが、 主増幅器の電気的特性を均一にすることはかなり困 難である。
江上らの論文で述べられているように、 多端子電力合成形電力増幅器のポ一ト 間のアイソレーションを 30dB、 ポート数を 8とすれば、 主電力増幅器の利得の標 準偏差は 0.7dB以下、 位相量の標準偏差は 5 deg以下とする必要がある。 このよう な標準偏差の条件を満たすように主増幅器を、 装置温度等の変化、 経年変化など を考慮して多数製造、 調整することは困難である。
この発明の目的は、 装置温度の変化、 経年変化などによらず高いポート間アイ ソレーシヨンの実現が可能な多端子電力合成形電力増幅器を提供することにある c 発明の開示
この発明によれば、 フィードフォワード多端子電力合成形電力増幅器を、 複数 系統の入出力ポートを備え、 各系統に送信信号を増幅し、 主信号として出力する 主増幅器を有する多端子電力合成形電力増幅器と、 各系統の上記入出力ポート間 において対応する上記主増幅器を含んで構成され、 その主増幅器が出力する上記 主信号中の歪み成分を除去するフイードフォヮ一ド増幅回路、 とを含むように構 成し、 その主増幅器が出力する上記主信号中の歪み成分を除去する。
フィードフォヮ一ド増幅器の特性により各系統の主増幅器の歪みが除去され、 特性が均一化されるので、 ポート間の洩れ電力を小さくすることができる。 図面の簡単な説明
図 1は多端子電力合成形電力増幅器の構成を示す図。
図 2はハイプリッドを用いた多端子電力合成回路の一例を示す図。
図 3はこの発明による多端子電力合成形電力増幅器の原理的構成を示す図。 図 4は本発明の第 1実施例を示す図。
図 5は本発明の第 2実施例を示す図。
図 6は本発明の第 3実施例を示す図。
図 7は本発明の第 4実施例を示す図。
図 8は本発明の第 5実施例を示す図。
図 9は本発明の第 6実施例を示す図。
図 1 0は本発明の第 7実施例を示す図。 発明を実施するための最良の形態
原理的構成
この発明によるフィードフォワード多端子電力合成形電力増幅器の原理的構成 を図 3に示す。 この発明によれば、 図 1に示した入力側多端子電力合成器 3と、 主増幅器 4Mと出力側多端子電力合成器 5から成る従来の多端子電力合成形電力増 幅器に対し、 各系統の入出力ポート IPn-0Pn 間において主増幅器 4Mを含むフィ一 ドフォワード増幅回路 40n を構成する。
多端子電力合成形電力増幅器では、 ハイブリツドの電気的特性と主増幅器の電 気的特性のばらつきにより、 ポート間に電力漏洩を生じる。 そのため、 ポート間 で干渉が生じ、 アレーアンテナで形成されるビーム指向性が所定の設計通りにな らない。 アレーアンテナで形成されるビーム指向性を設計どうりにするには、 ポ —ト間アイソレーションをなるベく小さくする必要がある。 そのためには、 主増 幅器及び入力側及び出力側多端子電力合成器を構成する 7Γ/2ハイプリッドの特性 のばらつきを小さくする必要がある。 7Γ/2ハイプリッドの特性は比較的に容易に 高い精度で構成できる。 そこで、 この発明の原理によれば、 各系統ごとに主増幅 器に対しフィードフォヮ一ド増幅回路を構成することで、 主増幅器の電気的特性 のばらつきを小さくする。 その結果、 他ポートへの電力漏洩を小さくでき、 従つ て、 ポート間アイソレーションを大きくできる。
第 1実施例
図 4に本発明の第 1実施例を示す。 この実施例は、 図 3に示したこの発明の原 理的構成における各フィードフォワード増幅回路 40n を入力側多端子電力合成器 3と出力側多端子電力合成器 5との間に各ポートに対応して構成したものである。 即ち、 この第 1実施例では、 Ν系統の入力端子 ΙΡ 1 ·· , ΙΡΝを有し、 Ν系統の入力 電力合成及び分配を行う入力側多端子電力合成器 3と、 入力側多端子電力合成器 3の Ν個の出力端子にそれそれ接続された Ν系統の独立したフィードフォワード 増幅回路 40 …, 40Νと、 Ν系統のフィードフォヮ一ド増幅回路 ^ …, !^の出力 端子 にそれぞれ接続された入力端子を持つ出力側多端子電力合成器 5 とからフィードフォワード多端子電力合成形電力増幅器が構成される。
各フィードフォワード増幅回路 40η は入力信号を主増幅器経路 4ΑΜ と線形信号 伝達経路 4AL に分配する電力分配器 41と、 主増幅器経路 4ΑΜ に直列に挿入された 第 1可変位相器 4P1 、 第 1可変減衰器 4A1 及び主増幅器 4Μと、 主増幅器経路 4ΑΜ の出力と線形信号伝達経路 4AL の出力を分配合成し、 主信号伝達経路 4ΒΜ と歪み 注入経路 4DL に出力する電力分配 ·合成器 42と、 歪み注入経路 4DL に直列に挿入 された第 2可変位相器 4Ρ2、 第 2可変減衰器 4Α2 及び補助増幅器 4Χと、 主信号伝 達経路 4ΒΜの出力と歪み注入経路 4DL の出力を電力合成し、 主増幅器 4Μの生成し た歪みをキャンセルする電力合成器 43とから構成される。 フィードフォワード増 幅回路 40η の電力分配器 41から電力分配 ·合成器 42までのループを歪み検出回路 40Α と呼び、 電力分配 ·合成器 42から電力合成器 43までのループを歪み除去回路 40Β と呼ぶ。
線形信号伝達経路 4AL と主信号伝達経路 4ΒΜ は単にケーブルから成る遅延線路 であり、 電力分配器 41、 電力分配 ·合成器 42、 電力合成器 43などは、 例えば方向 性結合器あるいはハイプリッドで構成される。 歪み検出回路 40Α の線形信号伝達 経路 4AL に対し、 第 1可変減衰器 4A1 と第 1可変位相器 4P1 を調整して電力分配 器 42の歪み注入経路 4DLへの出力側で主信号成分がキャンセルされ、 主増幅器 4M による非線形歪み成分 (差成分) だけが残るようにすることにより、 歪み検出回 路 40Aのループを平衡させる。 同様に、 歪み除去回路 40B の主信号伝達経路 4BM の信号に対し、 第 2可変減衰器 4A2 及び第 2可変位相器 4P2 を調整して電力合成 器 43の出力側で主増幅器 4Mの非線形歪み成分がキャンセルされ主信号成分だけが 残るようにすることにより、 歪み除去回路 40B のループを平衡させる。 主増幅器 4Mの非線形歪みを除去するためのこの様なフィードフォワード増幅回路自体はよ く知られている技術である。
次に本発明によるフィードフォヮ一ド多端子電力合成形電力増幅器の電気的特 性の均一性について説明する。
図 4に示す各フィードフォワード増幅器 40n は、 歪検出回路 40A と歪除去回路 40B に遅延線路 40D1, 40D2を持つ。 歪検出回路 40A及び歪除去回路 40B は、 電力 分配 ·合成器 42及び電力合成器 43で、 それそれの経路 4AMと 4AL及び 4BMと 4DLから の信号を等振幅、 等遅延、 逆位相になるように片方の経路で振幅と位相を調整し て二経路の信号を合成する。 このとき振幅と位相の調整精度により、 歪検出回路 40A及び歪除去回路 40B のループ平衡性がきまる。 日本国特許出願公開 No. 1-198 809号 「フィードフォワード増幅器の自動利得調整回路」 に示されているように、 例えば、 30dB以上の歪抑圧量を得るためには振幅偏差及び位相偏差がそれそれ士 0.3dB及び ± 2deg以内のループ平衡性を達成する必要がある。
線形信号伝達経路 4AL を構成する遅延線路は電力分配器 41と電力分配 ·合成器 42間を接続するケーブルであり、 その長さにより遅延量が決まるので、 この遅延 量のばらつき、 即ち長さのばらつきは非常に小さくできる。 第 1可変位相器 4P1 はこの遅延線路 4AL を基準として調整すればよいので、 これも精度高く決めるこ とができる。 実際のループの平衡調整においては図 5の実施例を参照して後述す るように、 第 1パイロット信号を使って位相及び振幅調整を行うことにより、 高 精度にループ平衡調整ができ、 その結果、 ループの位相偏差を ± 2deg以内、 振幅 偏差を ± 0.3dB 以内とすることが比較的容易に可能である。 歪み除去回路 40B の ループ平衡調整も同様に遅延線で構成された主信号伝達経路 4BM を基準として第 2可変位相器 4P2 を第 2可変減衰器 4A2 と共に調整すればよいので、 図 5の実施 例を参照して後述するように第 2パイロット信号を使って位相偏差 ±2deg以内、 振幅偏差 ± 0.3dB 以内の高精度のループ平衡調整ができる。
このように、 多端子電力合成形電力増幅器における複数の主増幅器の均一な電 気的特性を実現する方法として、 それぞれの主増幅器をフィードフォヮ一ド構成 化することが有効である。
フィードフォヮ一ド増幅器の位相特性は、 図 4のフィードフォヮ一ド増幅器の 構成より、 歪検出回路 40A と歪除去回路 40B の遅延線路 4D1 , 4D2の加工精度で決 まることが容易に分かる。 また、 複数のフィードフォワード増幅器の利得特性に ついては、 歪検出回路 40A にて主信号を遅延線路 4D1 から送信信号を基準として 相殺し、 歪み成分を検出することから、 フィードフォワード増幅器入力信号のレ ベルが等しい場合において、 均一な利得特性にできることが容易に分かる。
このようにして、 複数の独立した主増幅器の電気的特性を均一化するには、 そ れそれの主増幅器をフィードフォヮ一ド構成にすることで達成できる。
この発明はこのことを多端子電力合成形電力増幅器に利用することにより、 従 来困難であつたポ一ト間アイソレーションの高い多端子電力合成形電力増幅器を 実現可能にするものである。 これは、 素子の不均一な電気的特性のない、 いわゆ る理想的な多端子電力合成形電力増幅器を実現できることを意味する。
第 2実施例
図 5に本発明の第 2実施例を示す。
フィードフォワード増幅回路 40n における歪検出回路 40Α と歪除去回路 40Β の ループの平衡性は変動する。 これは回路の負荷変動、 温度変化、 経年変化などで 容易にループの平衡条件が変化するためである。 この問題を解決する方法として、 パイ口ット信号を用いたフィ一ドフォヮ一ド構成のループの平衡性を達成する自 動利得調整回路 (日本国特許出願公開 1-198809号、 フィードフォワード増幅器の 自動調整回路) がある。 これによると、 パイロット信号を各ループに注入し、 検 出し、 検出されたパイロット信号のレベルを最小にするように、 可変位相器と可 変減衰器を調整してループの平衡性を達成する。 この方法を用いて構成された移 動通信用基地局電力増幅器 (權橋祥一、 野島俊雄、 移動通信用超低歪多周波共通 増幅器、 電子情報通信学会無線通信システム研究会技術報告 RCS90-4, 1990) が実 用化されている。
この第 2実施例においてもフィードフォヮ一ド構成のループの平衡性を容易に 達成するためにパイロヅト信号を用いる。 第 2実施例は、 フィードフォワード構 成特有のループ平衡性の経時変化による劣化を修正するために、 図 4の実施例に おけるフィードフォワード増幅回路 40η に第 1及び第 2パイロット信号を用いて 歪検出回路 40Α及び歪除去回路 40Β のループ平衡性を容易に修正できるように構 成したものである。 パイロット信号を用いたループ平衡性の達成方法については、 前述の日本国特許出願公開 1-198809あるいは米国特許 No.5, 166, 634に示されてい る。 本発明では、 これらに示されているのと同様の制御方法によりループの平衡 性を達成する。
フィードフォワード増幅器 40n の入力にハイプリッドまたは方向性結合器によ る第 1パイロット信号結合器 451 を設け、 第 1パイロット信号発生器 441 で発生 された第 1パイロット信号 PS1 を第 1パイロット信号結合器 451 からフィードフ ォワード増幅器 40に入力する。 第 1及び第 2パイロット信号発生器 441, 442とし ては、 例えば米国特許 No.5 , 166, 634に示されている C Wを用いる方法 (特願昭 63 -23574号 「フィードフォワード増幅器の自動 利得調整回路」 ) 、 低周波の変調 波を用いる方法 (特願平 3-249440号 「フィードフォワード干渉回路」 ) 、 周波数 拡散波を用いる方法 (特願平 3-140349号 「フィードフォワード干渉回路」 ) など を使用した発振器を用いる。 第 2パイロット信号結合器 452 は、 第 1パイロット 信号結合器 451 と同様にハイプリッドまたは方向性結合器にて主増幅器 4Mの段間 に挿入される。 第 1パイロット信号抽出器 461 は、 ハイブリッドまたは方向性結 合器にて実現され、 歪増幅回路 4DL に挿入される。 第 2パイロット信号抽出器 46 2 は、 ハイブリッドまたは方向性結合器にて実現され、 電力合成器 4 3の出力側 に挿入される。
第 1パイロット信号抽出器 461 で検出された第 1パイロット信号 PS1 のレベル がレベル検出器 471 で検出され、 第 1制御器 481 に入力される。 第 1制御器 481 は、 第 1パイロット信号 PS1 のレベルを最小にするように、 主信号の伝達経路 4A Mの第 1可変位相器 4P1 と第 1可変減衰器 4A1 を段階的に調整する。 これにより、 歪検出回路 40Aのループ平衡性を達成することができる。 第 2パイロット信号抽 出器 462 で検出された第 2パイロット信号 PS2 のレベルがレベル検出器 472 で検 出され、 第 2制御器 482 に入力される。 第 2制御器 482 は、 第 2パイロット信号 PS2 のレベルを最小にするように、 歪増幅経路 4DL の第 2可変位相器 4P2 と第 2 可変減衰器 4A2 を段階的に調整する。 これにより、 歪除去回路 40B のループ平衡 性を達成することができる。 この様なループ平衡調整は定期的に行っても、 ある いは必要に応じて行ってもよい。 また、 第 1及び第 2制御器 481 , 482によりそれ それ歪み検出回路 40A と歪み除去回路 40B のループの平衡制御を行う例を示した が、 1つの制御器で両方のループ平衡制御を行ってもよい。
なお、 図 5の実施例では第 1及び第 2パイロット信号発生器 441, 442と, 第 1 及び第 2レベル検出器 471, 472と, 第 1及び第 2制御器 481, 482とを各系統のフ イードフォワード増幅回路 40n に専用に設けた場合を示したが、 図 7の実施例で 後述するように、 これら第 1及び第 2パイロット信号発生器 441 , 442と, 第 1及 び第 2レベル検出器 471, 472とを全系統に対し共通に 1つずつ設け、 それそれ第 1及び第 2パイロット信号発生器 481, 482と、 第 1及び第 2レベル検出器 471, 4 72とをそれそれ切替器により所望の系統の第 1及び第 2パイロット信号結合器 45 1, 452及び第 1及び第 2パイロット信号抽出器 461, 462に接続するように構成し てもよい。 第 1及び第 2制御器 481 , 482は第 1及び第 2レベル検出器 471, 472の 検出レベルに基づいて全系統の第 1及び第 2可変減衰器 4A1 , 4A2と、 第 1及び第 2可変位相器 4P1, 4P2を制御する。
このようにして、 フィードフォワード増幅器 40n の歪抑圧特性を安定的に得る ことができる。 また、 独立した複数の主増幅器 4Mの電気的特性のばらつきを容易 に小さくすることができる。 また、 フィードフォワード増幅器に関する各種の歪 補償技術、 パイロット信号の高感度化技術、 などを本発明に適用しても同様な効 果があることは容易に類推できる。
以上の第 1実施例及び第 2実施例により本発明は、 フィードフォヮ一ド多端子 電力合成形電力増幅器の調整の簡易化、 経年変化、 温度変化などによる電気的特 性の偏りの防止、 アレーアンテナのビーム形成に対して影響を与えないなどの利 点がある。 第 3実施例
図 6に本発明の第 3実施例を示す。 第 1及び第 2実施例では図 3における入力 側多端子電力合成器 3と出力側多端子電力合成器 5の間に各ポ一トに対応して主 増幅器 4Mを含むフィードフォワード増幅回路 40„ を構成する場合を示したが、 図 6の実施例では、 図 3において、 各入力ポート IPn から、 主増幅器 4Mを経て出力 ポート OPn に至る各系統全体でフィードフォワード増幅回路 40η を構成した場合 である。 具体的には、 図 6の実施例は、 図 4の実施例において、 入力側多端子電 力合成器 3を全系統の主増幅器 4Μの入力側に移し、 出力側多端子電力合成器 5を 全系統の主増幅器 4Μの出力側に移した構成であり、 その他の構成は図 4と同様で ある。 従って、 各入力ポート IPn からの入力信号は対応するフィードフォワード 増幅回路 40n の電力分配器 4 1に供給され、 そのフィードフォワード増幅回路 40 n の電力合成器 43の出力から出力ポート OPn に各系統の信号が出力される。
各入力ポート IPn の送信信号は、 フィードフォワード増幅回路 40n の電力分配 器 41に入力される。 電力分配器 41と、 電力分配 ·合成器 42と、 電力分配器 41から、 第 1可変減衰器 4A1 、 第 1可変位相器 4P1 、 入力側多端子電力合成器 3、 主電力 増幅器 4M、 及び出力側多端子電力合成器 5を経て電力分配 ·合成器 4 2に至る主 増幅器経路 4AM と、 電力分配器 41から遅延線路 4D1 を経て電力分配 ·合成器 42に 至る線形信号伝達経路 4D1 とにより歪検出回路 40A を構成する。
電力分配 ·合成器 42は主増幅器経路 4MA の出力信号と遅延線路 4D1 の出力信号 とを分配 ·合成して歪み除去回路 40B の主信号伝達経路 4BM に和成分を出力し、 歪み注入経路 4DL に差成分である主増幅器の非線形歪成分を出力する。 電力分配 •合成器 42から電力合成器 43に至る遅延線路により構成される主信号伝達経路 4D 2 と、 電力分配 ·合成器 42から第 2可変減衰器 4A2 、 第 2可変位相器 4P2及び補 助増幅器 4Xを経て電力合成器 43に至る歪注入経路 4DL と、 電力合成器 43は歪み除 去回路 40B を構成している。
主信号伝達経路 4BM の出力と歪注入経路 4DL の出力は、 電力合成器 43にて電力 合成され、 それにより主信号伝達経路 4BM の出力信号中の歪成分は、 主信号伝達 経路 4BMの出力信号の歪成分と等振幅、 等遅延、 逆位相の歪注入経路出力信号を 合成することにより除去される。 この実施例で特徴的なことは、 各系統の主増幅器経路の主信号は主増幅器 4Mの 入力側に設けられた入力側多端子電力合成器 3により全系統の主増幅器 4Mに分配 され、 それら主増幅器 4Mからの出力が出力側多端子電力合成器 5により合成され てその大部分の電力が対応する 1つの系統の電力分配 ·合成器 42に供給され、 残 りの電力が他の系統の電力分配 ·合成器 42に分配される。 この時、 上記 1つの系 統の電力分配 ·合成器 42には他の系統からの洩れ電力も入力されるが、 その洩れ 電力はフィードフォワード増幅回路 40n を構成する歪み検出回路 40A により歪み として主増幅器 4Mによる非線形歪みと共に検出され、 歪み除去回路 40B の電力合 成器 43でキャンセルされる。
即ち、 全系統の電力合成器 3、 5及び主増幅器 4Mの特性のばらつきに起因する ポート間の電力の洩れも歪みとしてそれぞれの歪み検出回路 40A により検出され、 その歪みは電力合成器 43においてキャンセルされる。 このことは、 構成部品の電 気的特性にばらつきが非常に小さい、 従ってポート間アイソレーションが非常に 高い理想的なフィードフォワード多端子電力合成形電力増幅器を実現できること と等価であることを意味している。 また、 この構成によれば、 主増幅器 4Mの特性 のばらつきについて要求される条件はないので、 それだけ安価な増幅器を使用す ることができる。
第 4実施例
図 7の実施例は図 6の実施例に対し、 図 5の実施例で示したと同様な第 1及び 第 2パイロット信号による歪み検出回路 40A と歪み除去回路 40B のループ平衡を 行うための構成を付加したものである。 ここでは、 各系統の入力ポート IPn と電 力分配器 41の入力側との間に第 1パイロット信号結合器 451 を設け、 出力側多端 子電力合成器 5の各出力と電力分配 ·合成器 42の入力との間に第 2パイロット信 号結合器 452 を設け、 各歪み除去回路 40B の電力分配 ·合成器 42と補助増幅器 4X との間の歪み注入経路 4DL に第 1パイロット抽出器 461 が設けられ、 電力合成器 43の出力側に第 2パイロット信号抽出器 462 が設けられる。
切り替え器 6及び 7により選択した系統に対し第 1及び第 2パイロット信号発 生器 441, 442からの第 1及び第 2レベル検出器 471 , 472と切り替え器 8及び 9に より選択した所望の系統のパイ口ット信号抽出器 461 , 462から抽出した第 1及び 第 2パイロット信号のレベルをレベル検出器 471, 472により検出する。 レベル検 出器 471, 472の検出レベルは第 1及び第 2制御器 481 , 482に与えられ、 これらに 基づいて第 1可変減衰器 4A1 , 第 1可変位相器 4AB, 及び第 2可変減衰器 4A2 , 第 2可変位相器 4P2 が制御される。 切り替え器 6と 8は連動して同じ系統を選択す るように第 1制御器 481 により制御され、 切り替え器 7と 9は連動して同じ系統 を選択するように第 2制御器 482 により制御される。
入力端子 IPn の送信信号は、 第 1パイロット信号結合器 451 に入力される。 第 1パイロット信号結合器 451 は、 第 1パイロット信号 PS1 を系統 nに結合する。 第 1パイロット信号結合器 451 の出力は、 フィードフォワード増幅回路 40n の電 力分配器 41に入力される。
電力分配 ·合成器 4 2は主増幅器経路 4MA の出力信号と遅延線路 4D1 の出力信 号とを分配 ·合成して歪み除去回路 40B の主信号伝達経路 4BM に和成分を出力し、 歪み注入経路 4DL に差成分である主増幅器の非線形歪成分とポート間洩れ電力を 歪みとして出力する。 第 2パイロット信号結合器 452 は、 増幅された送信信号系 統 1に第 2パイロット信号 PS2 を注入する。 電力分配 ·合成器 42の和成分出力は 遅延線路にて構成される主信号伝達経路 4D2 に供給され、 電力分配 ·合成器 42の 差成分出力は、 第 1パイロット信号抽出器 461 、 第 2可変減衰器 4A2 、 第 2可変 位相器 4P2及び補助増幅器 4Xにより構成される歪注入経路 4DL に供給される。 主信号伝達経路 4D2 の出力と歪注入経路 4DL の出力は、 電力合成器 4 3にて電 力合成される。 即ち、 主信号伝達経路 4D2 の出力信号中の歪成分は、 主信号伝達 経路 4DL の出力信号である歪成分と等振幅、 等遅延、 逆位相の歪注入経路出力信 号を合成することにより除去される。
第 1パイロット信号 PS1 は、 トーンまたは変調波を発生する信号発生器と所定 の周波数に変換する周波数変換器にて構成される第 1パイ口ット信号発生器 441 にて生成する。 第 1制御器 481 は切替器 6と 8に所望の送信系統を選択するよう 制御し、 それによつて、 第 1パイロット信号 PS1 を選択された送信系統の第 1パ ィロット信号結合器 451 に注入し、 その送信系統の第 1パイロット信号抽出器 46 1 により歪み注入経路 4DL から第 1パイロット信号 PS1 を抽出する。
第 1パイロット信号抽出器 461 により抽出された第 1パイロット信号 PS1 は、 第 1レベル検出器 471 に与えられ、 そのレベルが検出される。 第 1レベル検出器 471 は、 第 1パイロット信号 PS1 がトーンの場合、 狭帯域フィルタ、 周波数変換 器とレベル検出器にて構成される。 第 1パイロット信号 PS1 が変調波の場合、 帯 域フィル夕、 周波数変換器、 検波器、 判定器、 搬送波同期回路等により構成され る。 第 1レベル検出器 471 にて検出された第 1パイロット信号のレベルは、 第 1 制御器 481 に入力され、 第 1制御器 481 は、 入力された第 1パイロット信号の検 出レベルを最小にするように第 1可変減衰器 4A1 と第 1可変位相器 4P1 を段階的 に制御する。
これらの制御アルゴリズムは、 従来から実用化されている摂動法、 最急降下法、 または各種の適応アルゴリズムなどで実現される。 第 1制御器 481 は、 選択した 系統の可変減衰器 4A1 と可変位相器 4P1 を調整後に、 第 1パイロット信号 PS1 注 入する系統を切り替える切替器 6、 8を制御して別の系統の可変減衰器 4A1 と可 変位相器 4P1 を調整する。 第 1制御器 481 の制御手順は、 予め決めた順に系統を 選択することを切替器 6、 8に指示し、 第 1パイロット信号の検出レベルを最小 にするように選択した系統の可変減衰器 4A1 と可変位相器 4P1 を 1ステップまた は数ステップ制御し、 切替器 6、 8に別の系統を選択する信号を送出する。 この ようにして、 N系統を順次制御する。
第 2制御器 482 により制御されて切替器 7、 9は所定の送信系統を選択し、 選 択された送信系統の第 2パイロット信号結合器 452 に第 2パイロット信号発生器 44 から発生された第 2パイロット信号 PS2 が注入される。 第 2パイロット信号 抽出器 462 により抽出された第 2パイロヅト信号 PS2 が第 2レベル検出器 472 に 与えられ、 第 2パイロット信号のレベルが検出され、 第 2制御器 482 に与えられ る。 第 2レベル検出器 472 は、 第 2パイロット信号 PS2 がトーンの場合、 狭帯域 フィルタ、 周波数変換器とレベル検出器にて構成される。 第 2パイロット信号 PS 2 が変調波の場合、 帯域フィルタ、 周波数変換器、 検波器、 判定器、 搬送波同期 回路等により構成される。 第 2制御器 482 は、 入力された第 2パイロット信号の レベルを最小にするように第 2可変減衰器 4A2 と第 2可変位相器 4P2 を段階的に 制御する。 これらの制御アルゴリズムは、 従来から実用化されている摂動法、 最 急降下法、 または各種の適応アルゴリズムなどで実現される。 第 2制御器 482 は、 第 1制御器 481 の場合と同様に選択した系統の可変減衰器 4A2 と可変位相器 4P2 を調整後に、 切り替える切替器 7 , 9を制御して別の系統を選択し、 可変減衰器 4A2 と可変位相器 4P2 を調整する。
上記構成により、 第 1パイロヅト信号 PS1 を用いてフィードフォワード構成の 歪検出回路 40Aの平衡性を達成し、 かつ、 第 2パイロット信号 PS2 を用いて歪除 去回路 40B の平衡性を達成する。 また、 制御器 481 , 482により、 送信系統を切り 換えてフィードフォヮ一ド増幅回路のループの平衡性を順次達成する。 電力増幅 器のすべてのフィードフォヮ一ド増幅回路のループの平衡性を達成することで、 電力増幅器におけるすべての送信系統の電気的特性を均一化できる。 本発明の電 力増幅器に使用される第 1及び第 2パイロット信号については、 拡散符号で周波 数拡散されていてもよい。
図 8に本発明の第 5実施例を示す。
図 8の実施例は、 図 6の第 4実施例において切り替え器 6、 7、 8、 9を用い ず、 それぞれの系統に対し専用の第 1及び第 2パイ口ット信号発生器 (44h〜441 NS 442 !〜442 と、 第 1及び第 2レベル検出器(471 !〜471N、 472 i〜472N) と、 第 1及び第 2制御器 (481 1〜481Ν、 ΑδΖ ϊ ΑδΖ を設けたものである。 これによ り、 全送信系統のフィ一ドフォヮード増幅回路 ^!〜^!^の全ループの平衡性を同 時に達成する。 第 1パイロット信号 PS1 及び第 2パイロット信号 PS2 の周波数は、 増幅器の相互変調歪みによる混変調を回避する周波数にそれそれ設定される。 こ れにより、 電力増幅器のすべてのループの平衡性を達成することで、 電力増幅器 におけるすべての送信系統の電気的特性を均一化できる。 電力増幅器のすべての ループの平衡性を達成することで、 電力増幅器におけるすべての送信系統の電気 的特性を均一化できる。
図 9に本発明の第 6実施例を示す。
図 9は、 本発明によるフィードフォワード多端子電力合成形電力増幅器 100 を アレーアンテナに応用した実施例であり、 F D D (frequency division duplex) を使用し、 送信信号と受信信号では異なるキヤリァ周波数を使用する場合である C 図 3〜 8のいずれかで示した本発明によるフィードフォヮ一ド多端子電力合成形 電力増幅器 100 の出力系統 0Ρ 〜0ΡΝは、 それそれ共用器 (デュープレクサ) 7h 〜71Nに入力される。 共用器 7h〜71Nは、 アンテナ 7( 〜70N'で周波数の異なる受 信した信号と送信信号を分配する。 アンテナ 701〜7(^で受信された信号は、 共用 器ァ 〜ァ を経て受信機 (ァ?!〜ァ?^に入力される。 受信機 72 i〜72Nでは所定の信 号処理を行う。 このように、 本発明のフィードフォワード多端子電力合成形電力 増幅器 100 は、 アレーアンテナ 7( 〜70Nと組み合わせることができる。
図 9のフィードフォワード多端子電力合成形電力増幅器は、 これまで述べてき た図 3から図 8のいずれの増幅器構成であってもよい。
図 1 0にこの発明の第 6実施例を示す。
図 1 0はこの発明によるフィードフォワード多端子電力合成形電力増幅器 100 をアレーアンテナに応用した他の実施例である。 ここでは T D D (time division duplex)を使用し、 図 9の共用器ァ 〜ァ が R Fスィツチ SW1〜SWNに置き換えら れた構成となっている。 送信タイムスロヅトでは R Fスィツチ SW1〜SWNはフィー ドフォワード多端子電力合成形電力増幅器 100側に接続されて増幅器 100 により 増幅された送信信号をアンテナ 7( から 70Nから送出する。 受信タイムスロットで は R Fスィツチ SW 〜SWNは受信機 72!〜72N側に接続され、 アンテナ 701〜70Nから の受信信号を受信機ァ? 〜ァ に供給する。 この様に、 この発明による電力増幅器 は、 無線通信方式によらず、 マルチビーム及びァダプティブアレーアンテナのた めの送信増幅器として適用できる。 発明の効果
本発明は上記構成を備えることにより、 以下の効果を奏するものである。
( 1 ) 独立した複数の主増幅器の電気的特性を均一化することができる。
( 2 ) 装置の温度変化、 経年変化等に対して十分安定した電気的特性を得るこ とができる。
( 3 ) 製造における調整が簡易となる。
( 4 ) 各ポートごとにフィードフォワード構成化することで、 多端子電力合成 器の電気的特性と各電力増幅器の電気的特性の不均一による他ポートへ の電力漏洩を各電力増幅器の非線形歪と合わせて検出し、 除去できる。
( 5 ) アレーアンテナのビーム形成に影響を与えない電力増幅器が提供できる。 (6) アレーアンテナ用電力増幅器の小型化、 経済化、 低消費電力化ができる,

Claims

請求の範囲
1 . 複数系統の入出力ポートを備え、 各系統に送信信号を増幅し、 主信号として 出力する主増幅器を有する多端子電力合成形電力増幅器と、
各系統の上記入出力ポート間において対応する上記主増幅器を含んで構成され、 その主増幅器が出力する上記主信号中の歪み成分を除去するフイードフォワード 増幅回路、
とを含むフィードフォヮ一ド多端子電力合成形電力増幅器。
2 . 請求項 1に記載のフィ一ドフォヮ一ド多端子電力合成形電力増幅器において、 各系統の上記フイードフォヮ一ド増幅回路は、
その系統の上記主増幅器を有し、 上記歪み成分を検出し、 上記主増幅器からの 主信号成分と共にそれぞれ出力する歪み検出回路と、
検出された上記歪み成分を増幅する補助増幅器を有し、 増幅された上記歪み成 分により上記主信号中の歪み成分をキャンセルする歪み除去回路、
とを含む。
3 . 請求項 2に記載のフィ一ドフォヮ一ド多端子電力合成形電力増幅器において、 上記多端子電力合成形電力増幅器は、
上記複数の系統の入力ポートから送信信号が入力され、 それらを電力分配及び 合成してそれぞれ上記複数系統の上記フィードフォワード増幅回路に入力する入 力側多端子電力合成器と、
上記複数の系統の上記フイードフォヮ一ド増幅器からの出力が入力され、 それ らを電力分配及び合成して上記複数の系統の上記出力ポートに出力する出力側多 端子電力合成器、
とを含む。
4 . 請求項 3に記載のフィードフォヮ一ド多端子電力合成形電力増幅器において、 各上記系統の上記フイードフォヮ一ド増幅回路の上記歪み検出回路は、
上記入力側多端子電力合成器の対応する出力を線形信号伝達経路と、 主増幅器 経路に電力分配する電力分配器と、
上記主増幅器経路に直列に挿入された第 1可変減衰器、 第 1可変位相器、 及び 上記主増幅器と、
上記主増幅器経路の出力と上記線形信号伝達経路の出力が与えられ、 それらを 電力分配合成し和成分と差成分をそれそれ上記主信号成分と上記歪み成分として 出力する電力分配 ·合成器、
とを含み、 上記歪み除去回路は、
上記主信号成分を伝達する主信号伝達経路と、
上記歪み成分を伝達する歪み注入経路と、
上記歪み注入経路に直列に挿入された第 2可変減衰器、 第 2可変位相器、 及び 上記補助増幅器と、
上記主信号伝達経路の出力と、 上記歪み注入経路の出力を電力合成することに より上記主信号成分に含まれる歪み成分を上記補助増幅器により増幅された歪み 成分によりキャンセルし、 上記主信号成分に含まれる増幅された送信信号を出力 する電力合成器、
とを含む。
5 . 請求項 4に記載のフィードフォヮ一ド多端子電力合成形電力増幅器において、 更に、 第 1及び第 2パイロット信号を発生する第 1及び第 2パイロット信号発生 手段と、 各系統において上記電力分配器の入力側に挿入され、 上記第 1パイロッ ト信号を結合する第 1パイ口ット信号結合器と、 上記主増幅器経路に挿入され上 記第 2パイロット信号を結合する第 2パイロット信号結合器と、 上記歪み注入経 路に挿入された第 1パイロット信号抽出器と、 上記電力合成器の出力側に挿入さ れた第 2パイロット信号抽出器と、 上記第 1及び第 2パイロット信号抽出器によ り抽出された上記第 1及び第 2パイロット信号のレベルを検出する第 1及び第 2 レベル検出手段と、 上記第 1パイロット信号の検出レベルが最小となるように上 記第 1可変減衰器と上記第 1可変位相器を制御し、 上記第 2パイ口ット信号の検 出レベルが最小となるように上記第 2可変減衰器と上記第 2可変位相器を制御す る制御手段、 とを含む。
6 . 請求項 2に記載のフィードフォヮ一ド多端子電力合成形電力増幅器において、 上記多端子電力合成形電力増幅器は、
上記複数の系統の送信信号が入力され、 それらを電力分配及び合成して上記複 数系統に出力する入力側多端子電力合成器と、
上記入力側多端子電力合成器の上記複数の系統の送信信号がそれぞれ入力され、 それらを増幅する上記主増幅器と、
上記主増幅器のそれそれの出力が入力され、 それらを電力分配及び合成して上 記複数の系統に出力する出力側多端子電力合成器、
とを含む。
7 . 請求項 6に記載のフィードフォヮ一ド多端子電力合成形電力増幅器において、 各上記系統の上記フイードフォヮ一ド増幅回路の上記歪み検出回路は、
対応する上記入力端子からの送信信号を線形信号伝達経路と、 主増幅器経路に 電力分配する電力分配器と、
上記主増幅器経路に直列に挿入された第 1可変減衰器、 第 1可変位相器、 上記 入力側多端子電力合成器の対応する入出力系統、 上記主増幅器、 及び上記出力側 多端子電力合成器の対応する入出力系統と、
上記主増幅器経路の出力と上記線形信号伝達経路の出力が与えられ、 それらを 電力分配合成し和成分と差成分をそれそれ上記主信号成分と上記歪み成分として 出力する電力分配 ·合成器、
とを含み、 上記歪み除去回路は、
上記主信号成分を伝達する主信号伝達経路と、
上記歪み成分を伝達する歪み注入経路と、
上記歪み注入経路に直列に挿入された第 2可変減衰器、 第 2可変位相器、 及び 上記補助増幅器と、
上記主信号伝達経路の出力と、 上記歪み注入経路の出力を電力合成することに より上記主信号成分に含まれる歪み成分を上記補助増幅器により増幅された歪み 成分によりキャンセルし、 上記主信号成分に含まれる増幅された送信信号を出力 する電力合成器、
とを含む。
8 . 請求項 7に記載のフィードフォヮ一ド多端子電力合成形電力増幅器において、 更に、 第 1及び第 2パイロット信号を発生する第 1及び第 2パイロット信号発生 手段と、 各系統において上記電力分配器の入力側に挿入され、 上記第 1パイロッ ト信号を結合する第 1パイロット信号結合器と、 上記出力側多端子電力合成器の 出力側において上記主増幅器経路に挿入され上記第 2パイロット信号を結合する 第 2パイロット信号結合器と、 上記歪み注入経路に挿入された第 1パイロット信 号抽出器と、 上記電力合成器の出力側に挿入された第 2パイロット信号抽出器と、 上記第 1及び第 2パイロット信号抽出器により抽出された上記第 1及び第 2パイ ロット信号のレベルを検出する第 1及び第 2レベル検出手段と、 上記第 1パイ口 ット信号の検出レベルが最小となるように上記第 1可変減衰器と上記第 1可変位 相器を制御し、 上記第 2パイロット信号の検出レベルが最小となるように上記第 2可変減衰器と上記第 2可変位相器を制御する制御手段、 とを含む。
9 . 請求項 5又は 8に記載のフィ一ドフォヮ一ド多端子電力合成形電力増幅器に おいて、 上記第 1及び第 2パイロット信号発生手段は、 各系統ごとに設けられた、 上記第 1及び第 2パイロット信号を発生して対応する系統の上記第 1及び第 2パ イロット信号結合器に供給する第 1及び第 2パイロット信号発生器を含み、 上記 第 1及び第 2レベル検出手段は、 各系統ごとに設けられた、 上記第 1及び第 2パ イロット信号のレベルを検出する第 1及び第 2レベル検出器を含む。
1 0 . 請求項 5又は 8に記載のフイードフォヮ一ド多端子電力合成形電力増幅器 において、 上記第 1及び第 2パイロット信号発生手段は、 全系統に対し共通に設 けられた、 上記第 1及び第 2パイロット信号を発生する第 1及び第 2パイロット 信号発生器と、 所望の系統の上記第 1及び第 2パイロット信号結合器を選択し、 上記第 1及び第 2パイロット信号を供給する第 1及び第 2切替器とを含み、 上記 第 1及び第 2レベル検出手段は、 所望の系統の上記第 1及び第 2パイロット信号 抽出器を選択する第 3及び第 4切替器と、 全系統に対し共通に設けられ、 上記第 3及び第 4切替器により選択された系統の上記第 1及び第 2パイロット信号抽出 器からの上記第 1及び第 2パイロット信号のレベルを検出する第 1及び第 2レべ ル検出器を含む。
1 1 . 請求項 1乃至 9のいずれかに記載のフィードフォワード多端子電力合成形 電力増幅器において、 それぞれの系統の上記出力ポートはアレーアンテナを構成 する複数のアンテナ素子に接続されている。
1 2 . 請求項 1 1に記載のフィードフォワード多端子電力合成形電力増幅器にお いて、 上記送信信号は周波数多重信号であり、 それそれの系統の上記出力ポート と上記アレーアンテナ素子との間にそれそれ共用器が挿入して設けられ、 それそ れのアンテナ素子は上記共用器を介して複数の受信機に接続されている。
1 3 . 請求項 1 1に記載のフィードフォワード多端子電力合成形電力増幅器にお いて、 上記送信信号は時間多重信号であり、 それそれの系統の上記出力ポートと 上記アレーアンテナ素子との間にそれぞれ切替スィツチが挿入して設けられ、 そ れそれのアンテナ素子は上記切替スィツチを介して複数の受信機に接続されてい
PCT/JP2000/006316 1999-09-17 2000-09-14 Amplificateur d'energie multiterminal par synthese, a correction aval WO2001022574A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2001525835A JP3989731B2 (ja) 1999-09-17 2000-09-14 フィードフォワード多端子電力合成形電力増幅器
EP00961026A EP1152523B1 (en) 1999-09-17 2000-09-14 Feedforward multi-terminal power-synthesizing power amplifier
US09/850,733 US6515544B1 (en) 1999-09-17 2000-09-14 Multi-terminal power combining feed-forward amplifier

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP26352899 1999-09-17
JP11/263528 1999-09-17

Publications (1)

Publication Number Publication Date
WO2001022574A1 true WO2001022574A1 (fr) 2001-03-29

Family

ID=17390797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/006316 WO2001022574A1 (fr) 1999-09-17 2000-09-14 Amplificateur d'energie multiterminal par synthese, a correction aval

Country Status (4)

Country Link
US (1) US6515544B1 (ja)
EP (1) EP1152523B1 (ja)
JP (1) JP3989731B2 (ja)
WO (1) WO2001022574A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194808A (ja) * 2008-02-18 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> 偏波面制御アンテナ及び偏波面制御アンテナの校正方法
JP2013110638A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp マルチポートフィードフォワード増幅器

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6734726B2 (en) * 2001-06-29 2004-05-11 Remec, Inc. Balanced distortion reduction circuit
JP3910167B2 (ja) * 2003-09-25 2007-04-25 松下電器産業株式会社 増幅回路
JP4598414B2 (ja) * 2004-02-27 2010-12-15 株式会社エヌ・ティ・ティ・ドコモ べき級数型プリディストータの制御方法及び装置
US7157967B2 (en) * 2004-03-11 2007-01-02 Powerwave Technologies Inc. System and method for control of loop alignment in adaptive feed forward amplifiers
EP1732206B1 (en) * 2005-06-03 2007-09-26 NTT DoCoMo INC. Band selection type feed forward amplifier
CN100576767C (zh) * 2005-06-03 2009-12-30 株式会社Ntt都科摩 多频带用前馈放大器
US7656964B1 (en) * 2007-01-24 2010-02-02 Rf Micro Devices, Inc. Forward and reverse VSWR insensitive power detection using phase shifting and harmonic filtering
US8103225B2 (en) 2007-05-04 2012-01-24 Astrium Limited Multiport amplifiers in communications satellites
GB0822659D0 (en) * 2008-12-12 2009-01-21 Astrium Ltd Multiport amplifier adjustment
US7928801B1 (en) * 2009-05-06 2011-04-19 Lockheed Martin Corporation Systems and methods of amplification based on array processed intermodulation suppression
FR2953341B1 (fr) * 2009-12-02 2011-12-09 Centre Nat Etd Spatiales Dispositif d'amplification de puissance de charge utile d'un satellite multifaisceaux de diffusion de donnees
US8761694B2 (en) * 2010-01-18 2014-06-24 Broadcom Corporation Multiple antenna transceiver
US8514007B1 (en) 2012-01-27 2013-08-20 Freescale Semiconductor, Inc. Adjustable power splitter and corresponding methods and apparatus
US9203348B2 (en) 2012-01-27 2015-12-01 Freescale Semiconductor, Inc. Adjustable power splitters and corresponding methods and apparatus
WO2014093916A1 (en) * 2012-12-13 2014-06-19 Kumu Networks Feed forward signal cancellation
US9319000B2 (en) * 2013-07-31 2016-04-19 The Boeing Company Method and apparatus for improving leakage performance of a multi-port amplifier
US9225291B2 (en) 2013-10-29 2015-12-29 Freescale Semiconductor, Inc. Adaptive adjustment of power splitter
JP2016538822A (ja) 2013-11-18 2016-12-08 レンセラール ポリテクニック インスティテュートRensselaer Polytechnic Institute 多端末電力システムを形成および作動させる方法
US9774299B2 (en) 2014-09-29 2017-09-26 Nxp Usa, Inc. Modifiable signal adjustment devices for power amplifiers and corresponding methods and apparatus
US9647611B1 (en) 2015-10-28 2017-05-09 Nxp Usa, Inc. Reconfigurable power splitters and amplifiers, and corresponding methods
US10218318B2 (en) * 2017-07-20 2019-02-26 Arris Enterprises Llc Amplifier with digital linearization and multiple output stages
US11742807B1 (en) * 2023-02-14 2023-08-29 Guangdong University Of Technology Dual-band coupling low-noise amplifying circuit and amplifier

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618831A (en) * 1984-09-25 1986-10-21 Nippon Telegraph & Telephone Corporation Power amplifying apparatus
JPH01198809A (ja) * 1988-02-03 1989-08-10 Nippon Telegr & Teleph Corp <Ntt> フィードフォワード増幅器の自動調整回路
EP0405372A1 (en) * 1989-06-29 1991-01-02 Ball Corporation Multiple-beam array antenna
US5055798A (en) * 1990-10-09 1991-10-08 Hughes Aircraft Company Hybrid matrix amplifier systems, and methods for making thermally-balanced hybrid matrix amplifier systems
EP0466123A1 (en) * 1990-07-11 1992-01-15 Nippon Telegraph And Telephone Corporation Feed-forward amplifier
JPH04274619A (ja) * 1991-03-01 1992-09-30 Mitsubishi Electric Corp 無線通信装置
EP0552059A1 (en) * 1992-01-16 1993-07-21 Japan Radio Co., Ltd Power amplifier device
JPH10209777A (ja) * 1997-01-21 1998-08-07 Nippon Telegr & Teleph Corp <Ntt> 増幅装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5862459A (en) * 1996-08-27 1999-01-19 Telefonaktiebolaget Lm Ericsson Method of and apparatus for filtering intermodulation products in a radiocommunication system
JP3106996B2 (ja) * 1997-04-02 2000-11-06 日本電気株式会社 フィードフォワード増幅回路

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4618831A (en) * 1984-09-25 1986-10-21 Nippon Telegraph & Telephone Corporation Power amplifying apparatus
US4618831B1 (en) * 1984-09-25 1997-01-07 Nippon Telegraph & Telephone Power amplifying apparatus
JPH01198809A (ja) * 1988-02-03 1989-08-10 Nippon Telegr & Teleph Corp <Ntt> フィードフォワード増幅器の自動調整回路
EP0405372A1 (en) * 1989-06-29 1991-01-02 Ball Corporation Multiple-beam array antenna
EP0466123A1 (en) * 1990-07-11 1992-01-15 Nippon Telegraph And Telephone Corporation Feed-forward amplifier
US5055798A (en) * 1990-10-09 1991-10-08 Hughes Aircraft Company Hybrid matrix amplifier systems, and methods for making thermally-balanced hybrid matrix amplifier systems
JPH04274619A (ja) * 1991-03-01 1992-09-30 Mitsubishi Electric Corp 無線通信装置
EP0552059A1 (en) * 1992-01-16 1993-07-21 Japan Radio Co., Ltd Power amplifier device
JPH10209777A (ja) * 1997-01-21 1998-08-07 Nippon Telegr & Teleph Corp <Ntt> 増幅装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1152523A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009194808A (ja) * 2008-02-18 2009-08-27 Nippon Telegr & Teleph Corp <Ntt> 偏波面制御アンテナ及び偏波面制御アンテナの校正方法
JP4504436B2 (ja) * 2008-02-18 2010-07-14 日本電信電話株式会社 偏波面制御アンテナ及び偏波面制御アンテナの校正方法
JP2013110638A (ja) * 2011-11-22 2013-06-06 Mitsubishi Electric Corp マルチポートフィードフォワード増幅器

Also Published As

Publication number Publication date
EP1152523A4 (en) 2002-10-23
EP1152523A1 (en) 2001-11-07
US6515544B1 (en) 2003-02-04
EP1152523B1 (en) 2013-03-27
JP3989731B2 (ja) 2007-10-10

Similar Documents

Publication Publication Date Title
WO2001022574A1 (fr) Amplificateur d&#39;energie multiterminal par synthese, a correction aval
US8400235B2 (en) Active hybrids for antenna systems
US9020069B2 (en) Active general purpose hybrid
RU2470456C2 (ru) Многопортовые усилители в спутниках связи
CN1307790C (zh) 在混合矩阵放大系统中用于误差补偿的方法和设备
KR20050083785A (ko) 모바일 무선 기지국
US10027296B2 (en) Architecture of a wideband distributed amplification device
US5884143A (en) Spacecraft with paralleled amplifiers and redundancy
US6243038B1 (en) System and method providing amplification of narrow band signals with multi-channel amplifiers
JP5007005B2 (ja) 広い地上エリアをカバーする通信アンテナ
US5258722A (en) Amplifier circuit with distortion cancellation
WO2001024359A1 (en) Broadband feedforward predistortion
US6392481B1 (en) Method and apparatus for improved fed forward amplification
US10797772B2 (en) Phase shifter, communication device, and phase shifting method
JP2003244051A (ja) 無線基地局用装置
JP2003142923A (ja) フェーズドアレイアンテナ
KR200277318Y1 (ko) 다이버시티 신호 합성/분배기
JP2000349566A (ja) 送信電力増幅器
JPH0828619B2 (ja) フィードフォワード増幅器
JPS61172443A (ja) 増幅回路
KR20030075381A (ko) 다이버시티 신호 합성/분배기

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): DE GB IT

WWE Wipo information: entry into national phase

Ref document number: 2000961026

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 525835

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 09850733

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2000961026

Country of ref document: EP