WO2001022495A1 - Composant semi-conducteur photoemetteur a haute resistance esd et son procede de fabrication - Google Patents

Composant semi-conducteur photoemetteur a haute resistance esd et son procede de fabrication Download PDF

Info

Publication number
WO2001022495A1
WO2001022495A1 PCT/DE2000/003266 DE0003266W WO0122495A1 WO 2001022495 A1 WO2001022495 A1 WO 2001022495A1 DE 0003266 W DE0003266 W DE 0003266W WO 0122495 A1 WO0122495 A1 WO 0122495A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
section
junction
emitting
protective diode
Prior art date
Application number
PCT/DE2000/003266
Other languages
German (de)
English (en)
Inventor
Torsten Wipiejewski
Wolfgang Huber
Original Assignee
Osram Opto Semiconductors Gmbh & Co. Ohg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors Gmbh & Co. Ohg filed Critical Osram Opto Semiconductors Gmbh & Co. Ohg
Publication of WO2001022495A1 publication Critical patent/WO2001022495A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • H01S5/0261Non-optical elements, e.g. laser driver components, heaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S2301/00Functional characteristics
    • H01S2301/17Semiconductor lasers comprising special layers
    • H01S2301/176Specific passivation layers on surfaces other than the emission facet
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0425Electrodes, e.g. characterised by the structure
    • H01S5/04256Electrodes, e.g. characterised by the structure characterised by the configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/06825Protecting the laser, e.g. during switch-on/off, detection of malfunctioning or degradation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • H01S5/18311Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement using selective oxidation

Definitions

  • the invention relates to a light-emitting semiconductor component according to the preamble of patent claim 1 and a method for its production according to patent claim 10.
  • VCSELs vertical resonator laser diodes
  • ESD Electro Static Discharge
  • customers are demanding ESD-safe components, especially for applications in the commercial and industrial sectors, i.e. as a rule, the components must be able to withstand an ESD voltage of 2000V without damage.
  • human body model is used, in which a certain capacitance is charged with the corresponding voltage and the capacitance is discharged via the component to be tested.
  • VCSELs only have ESD strengths in the range of a few 100V. Loads in the reverse direction of the diode result in significantly lower ESD strengths than in the direction of flow. Therefore, the loads in the blocking direction are decisive for the ESD strength of VCSELs.
  • the present invention is therefore based on the object of specifying a light-emitting semiconductor component with high ESD strength and a method for its production, the other component properties not to be significantly impaired.
  • the invention describes a light-emitting semiconductor component with a semiconductor substrate and a semiconductor layer sequence applied to the semiconductor substrate, characterized in that the semiconductor layer sequence has a light-emitting section containing a light-emitting pn junction and a protective diode section containing a protective diode, which are formed contiguously next to one another, a first contact metallization is applied to the substrate surface and a second contact metallization is applied to the surface of the semiconductor layer sequence opposite the substrate surface, an electrically extending from the second contact metallization to a certain depth of the component, the light-emitting section and the protective diode section mutually insulating section is formed, and the protective diode section and the protective diode are formed such that the protective diode section has a higher forward voltage than the light-emitting section and, when the voltage applied to the component between the contact metallizations, which is higher than the forward voltage of the protective diode section, has a lower electrical resistance than the light-emitting section.
  • the protective diode of the protective diode section is thus connected in parallel to the pn junction of the light-emitting section and has a higher breakdown or kink voltage than the pn junction.
  • Protection diode section with the light-emitting section, the major part of the ESD load current flows through the parallel protection diode. This protects the actual light-emitting semiconductor component.
  • the characteristic curves have a crossover point above the kink or breakdown voltage of the protective diode.
  • the pn junction extends over the entire width of the semiconductor component and the protective diode is formed by the section of the pn junction located in the protective diode section and a further diode.
  • the further diode is preferably formed by a Schottky contact between the second electrical contact connection and the surface of the semiconductor layer structure of the protective diode section.
  • the light-emitting section and the protective diode section can be designed as free-standing or so-called mesa-shaped structures above the pn junction, and the sections adjacent to the side walls of the structures, in particular the insulating section between the light-emitting section and the protective diode section, can be provided with an insulating one Material to be filled.
  • the light-emitting section can be formed by a vertical resonator laser diode (VCSEL), in which the pn junction between a first Bragg reflector layer sequence and a second Bragg reflector layer sequence, each of which has a plurality of mirror pairs, the two Bragg reflector layer sequences are arranged one
  • VCSEL vertical resonator laser diode
  • Form the laser resonator and one of the two Bragg reflector layer sequences is partially transparent to the laser radiation generated in the light-emitting section of the pn junction. It can additionally be provided that in one of the two Bragg reflector layer sequences at least one current aperture to limit the pumped active region of the light-emitting section of the pn junction by bundling the vertical resonator laser diode during operation by the light-emitting section of the pn Transition flowing operating current is provided.
  • the current aperture can be produced in a known manner in the case of a semiconductor component based on the III-V material system by lateral oxidation of layers with a relatively high aluminum content with a VCSEL laser structure etched in the form of a mesa.
  • the present invention is not limited to VCSELs, but can also be applied to other surface-emitting laser diodes, edge-emitting laser diodes, as well as LEDs.
  • the invention also describes a method for producing a light-emitting semiconductor component, with the method steps
  • the Schottky contact in the protective diode section can be produced in particular in that an uppermost, relatively heavily doped semiconductor layer is applied in process step b), in process step f) the top layer in the region of the protective diode section is etched off before the second contact metallization is applied, so that between a Schottky contact is formed in the second contact metallization and the semiconductor layer located under the etched-off layer and an ohmic contact is formed in the region of the light-emitting section.
  • FIG. 1 shows an embodiment of the present invention in the form of a VCSEL semiconductor laser diode with a protective diode connected in parallel, consisting of the pn junction and a Schottky diode;
  • Fig. 2a is an electrical equivalent circuit diagram of the VCSEL semiconductor laser diode shown in Fig. 1 and
  • Fig. 2b is a schematic representation of the current-voltage characteristics of the VCSEL semiconductor laser diode shown in Fig. 1 and the protection diode.
  • the semiconductor component according to the invention is constructed from a light-emitting section 10 and a protective diode section 20. First, the light-emitting section 10 will be described below.
  • the VCSEL semiconductor laser diode shown in FIG. 1 with a protective diode connected in parallel is constructed on the basis of the III-V material system.
  • a GaAs substrate 6 On a GaAs substrate 6 there is a first, lower Bragg reflector layer sequence 2, which is made up of individual, identical pairs of mirrors. The mirror pairs each consist of two AlGaAs layers of different aluminum concentrations.
  • a second, upper Bragg reflector layer sequence 4 is constructed from corresponding mirror pairs.
  • An active layer sequence 3 forming the pn junction is embedded between the lower and the upper Bragg reflector layer sequence. This can either be from a simple pn junction from bulk material or a single quantum well structure or a multiple quantum well structure.
  • the material of the active layer sequence 3 or the layer thicknesses of quantum well structures can, for example, be chosen such that the emission wavelength of the laser diode is 850 nm.
  • a first metallization layer 7 which is used for the electrical connection of the p-doped side of the laser diode.
  • the first Metallization layer 7 has a central aperture or light exit opening 7a in the light-emitting section for the passage of the laser radiation.
  • the n-doped side of the component is usually electrically connected via a second metallization layer 8 contacted on the substrate 6.
  • the upper Bragg reflector layer sequence 4 contains a pair of mirrors which contains a so-called current aperture 41.
  • the current aperture 41 provides a lateral current limitation and thus defines the actual active pumped area in the light-emitting section of the pn junction 3.
  • the current flow is restricted to the opening area of the current aperture 41.
  • the active pumped area can thus be limited to a very small section 3a of the pn junction.
  • the pumped area is thus essentially directly below this opening area in the pn junction 3.
  • the current aperture 41 can be produced in a known manner by partial oxidation of the AlGaAs layers of the mirror pair in question or by ion or proton implantation. If desired, several current apertures can also be arranged.
  • the light-emitting section 10 of the component is in
  • the at least one current aperture 41 can be formed by oxidation of the AlGaAs layers.
  • the etched areas are then filled up by an insulator, such as a suitable passivation layer 11.
  • An insulating section 15 of this passivation layer 11 separates the light-emitting section 10 from the protective diode section 20 of the semiconductor component. This emerges from the same semiconductor layer structure as the light-emitting section 10.
  • the mesa structure of the protective diode section 20 has a significantly greater lateral extent than the mesa structure of the light-emitting section 10.
  • the protective diode section 20 also contains the pn junction 3, which extends over the entire width of the semiconductor component , However, this does not have the function of light emission in the protective diode section 20, but only an electrical function.
  • the protective diode section 20 also has a Schottky diode 71, which is produced by the contact between the upper metallization layer 7 and the uppermost semiconductor layer of the protective diode section 20.
  • the Schottky diode 71 is manufactured as follows. In which
  • the process of growing the semiconductor layer structure is the last layer to deposit a heavily p-doped GaAs layer so that the subsequent deposition of the upper metallization layer 7 in the light-emitting section 10 causes ohmic contact between the metallization and the semiconductor.
  • the highly doped GaAs layer is etched off in the protective diode section 20, so that in this region the metallization layer 7 forms a Schottky contact on the weakly doped semiconductor layers.
  • the Schottky contact has a diode-like characteristic. Only at a certain forward voltage does a significant current flow through this transition.
  • the insulating one Section can also be produced by an ion or proton implantation.
  • the protective diode section 20 can also be provided with a current aperture.
  • FIG. 2a shows an electrical equivalent circuit diagram of the semiconductor component in FIG. 1.
  • the Schottky diode 71 is connected in series with the section of the pn junction 3 located in the protective diode section 20, and both components mentioned are connected in parallel with the light-emitting section 10. The entire arrangement is connected to a voltage source 30.
  • the series connection of the pn junction 3 and the Schottky diode 71 in the protective diode section 20 should, if possible, result in an electrical current-voltage characteristic as shown in FIG. 2b as a protective diode characteristic.
  • the characteristic curve of the VCSEL semiconductor laser is also shown.
  • an operating point i.e.
  • a voltage of the voltage source 30 is set, which is below the breakdown voltage of the protective diode characteristic.
  • the protection diode section 20 only a very small current flows through the protection diode section 20 and the vast majority of the current flows through the VCSEL semiconductor laser diode and leads to the desired light emission.
  • the voltage can be increased beyond the normal operating point up to the breakdown voltage of the protective diode characteristic. If a voltage spike or an ESD voltage load now takes place which is far above the normal operating point, this leads to the fact that a large part of the electrical current flows through the protective diode section 20 and not via the VCSEL semiconductor laser diode.
  • the laser diode is thus effectively protected against high ESD voltage loads without having to accept losses in normal operation.
  • the semiconductor layer structure of the component shown can be varied in different ways.
  • the doping sequence of the semiconductor layers can be changed in order to produce a diode with an n-doped upper Bragg reflector.
  • the Schottky transition can also be designed differently.
  • the uppermost semiconductor layer can, for example, also be undoped or n-doped. In the area of the large-area protective diode, this results in an at least partially blocking transition with a diode characteristic, so that etching away of the uppermost semiconductor layer is not necessary.
  • an ohmic resistance is then either generated by etching off the uppermost semiconductor layers down to the p-doped layers, or a diffusion of a p-dopant, such as Zn, is carried out in order to bring the metal contact to the p- connect doped Bragg reflector layers.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

Composant semi-conducteur photoémetteur dans lequel une section à diode de protection (20) est montée en parallèle avec une section photoémettrice (10), en particulier avec une diode laser à semi-conducteur VCSEL. La diode de protection (3b, 71) est un circuit série d'un contact Schottky (71) et d'une partie (3b) de la jonction PN (3). Pour une charge de tension ESD élevée, la diode de protection (3b, 71) est connectée de telle façon que la plus grande partie du courant électrique s'écoule par la diode de protection (3b, 71), permettant ainsi de protéger la diode laser.
PCT/DE2000/003266 1999-09-21 2000-09-20 Composant semi-conducteur photoemetteur a haute resistance esd et son procede de fabrication WO2001022495A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19945134A DE19945134C2 (de) 1999-09-21 1999-09-21 Lichtemittierendes Halbleiterbauelement hoher ESD-Festigkeit und Verfahren zu seiner Herstellung
DE19945134.6 1999-09-21

Publications (1)

Publication Number Publication Date
WO2001022495A1 true WO2001022495A1 (fr) 2001-03-29

Family

ID=7922720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003266 WO2001022495A1 (fr) 1999-09-21 2000-09-20 Composant semi-conducteur photoemetteur a haute resistance esd et son procede de fabrication

Country Status (2)

Country Link
DE (1) DE19945134C2 (fr)
WO (1) WO2001022495A1 (fr)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6352718B1 (en) * 1999-09-27 2002-03-05 American Cyanamid Company Vasopressin antagonist formulation and process
US6451446B1 (en) 1998-05-21 2002-09-17 Dow Global Technologies Inc. Polypropylene/polystyrene multilayer film structures
JP2006066846A (ja) * 2004-07-29 2006-03-09 Seiko Epson Corp 面発光型装置及びその製造方法
US7173311B2 (en) * 2004-02-02 2007-02-06 Sanken Electric Co., Ltd. Light-emitting semiconductor device with a built-in overvoltage protector
JP2007150237A (ja) * 2005-10-26 2007-06-14 Seiko Epson Corp 光素子及びその製造方法
WO2007095325A2 (fr) * 2006-02-10 2007-08-23 Intel Corporation Protection d'un dispositif optoelectronique contre une decharge electrostatique
CN100459329C (zh) * 2003-11-28 2009-02-04 奥斯兰姆奥普托半导体有限责任公司 带有保护二极管的发光半导体器件
WO2010009690A1 (fr) * 2008-07-24 2010-01-28 Osram Opto Semiconductors Gmbh Puce semi-conductrice qui émet un rayonnement et est protégée contre les décharges électrostatiques et procédé de fabrication correspondant
US7851812B2 (en) 2006-02-24 2010-12-14 Osram Opto Semiconductors Gmbh Housed optoelectronic component
US7995636B2 (en) * 2004-06-08 2011-08-09 Fuji Xerox Co., Ltd. Semiconductor laser apparatus and manufacturing method thereof
US8319250B2 (en) 2008-05-09 2012-11-27 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1556904B1 (fr) 2002-10-30 2018-12-05 OSRAM Opto Semiconductors GmbH Procede pour produire une source lumineuse a diodes electroluminescentes comprenant un element de conversion de luminescence
TWI223900B (en) 2003-07-31 2004-11-11 United Epitaxy Co Ltd ESD protection configuration and method for light emitting diodes
CN100384040C (zh) * 2004-07-29 2008-04-23 精工爱普生株式会社 面发光型装置及其制造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163885A (en) * 1979-06-07 1980-12-20 Fujitsu Ltd Light emitting circuit
JPS5793591A (en) * 1980-12-03 1982-06-10 Hitachi Ltd Laser diode
JPS62299092A (ja) * 1986-06-18 1987-12-26 Fujitsu Ltd 発光ダイオ−ド
JPH0927657A (ja) * 1995-07-12 1997-01-28 Oki Electric Ind Co Ltd 半導体レーザの製造方法
US5764679A (en) * 1996-08-23 1998-06-09 Motorola, Inc. Mode locked laser with negative differential resistance diode
JPH10200159A (ja) * 1997-01-10 1998-07-31 Rohm Co Ltd 半導体発光素子
EP0933842A2 (fr) * 1998-01-30 1999-08-04 Motorola, Inc. Laser à semi-conducteur protégé contre des décharges électrostatiques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2319268A1 (fr) * 1973-07-03 1977-02-18 Radiotechnique Compelec Diode electroluminescente protegee

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55163885A (en) * 1979-06-07 1980-12-20 Fujitsu Ltd Light emitting circuit
JPS5793591A (en) * 1980-12-03 1982-06-10 Hitachi Ltd Laser diode
JPS62299092A (ja) * 1986-06-18 1987-12-26 Fujitsu Ltd 発光ダイオ−ド
JPH0927657A (ja) * 1995-07-12 1997-01-28 Oki Electric Ind Co Ltd 半導体レーザの製造方法
US5764679A (en) * 1996-08-23 1998-06-09 Motorola, Inc. Mode locked laser with negative differential resistance diode
JPH10200159A (ja) * 1997-01-10 1998-07-31 Rohm Co Ltd 半導体発光素子
EP0933842A2 (fr) * 1998-01-30 1999-08-04 Motorola, Inc. Laser à semi-conducteur protégé contre des décharges électrostatiques

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 005, no. 040 (E - 049) 17 March 1981 (1981-03-17) *
PATENT ABSTRACTS OF JAPAN vol. 006, no. 176 (E - 130) 10 September 1982 (1982-09-10) *
PATENT ABSTRACTS OF JAPAN vol. 012, no. 196 (E - 618) 7 June 1988 (1988-06-07) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 05 30 May 1997 (1997-05-30) *
PATENT ABSTRACTS OF JAPAN vol. 1998, no. 12 31 October 1998 (1998-10-31) *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6451446B1 (en) 1998-05-21 2002-09-17 Dow Global Technologies Inc. Polypropylene/polystyrene multilayer film structures
US6352718B1 (en) * 1999-09-27 2002-03-05 American Cyanamid Company Vasopressin antagonist formulation and process
CN100459329C (zh) * 2003-11-28 2009-02-04 奥斯兰姆奥普托半导体有限责任公司 带有保护二极管的发光半导体器件
US7173311B2 (en) * 2004-02-02 2007-02-06 Sanken Electric Co., Ltd. Light-emitting semiconductor device with a built-in overvoltage protector
US7995636B2 (en) * 2004-06-08 2011-08-09 Fuji Xerox Co., Ltd. Semiconductor laser apparatus and manufacturing method thereof
JP2006066846A (ja) * 2004-07-29 2006-03-09 Seiko Epson Corp 面発光型装置及びその製造方法
KR100742037B1 (ko) 2004-07-29 2007-07-23 세이코 엡슨 가부시키가이샤 면 발광형 장치 및 그 제조 방법
JP2007150237A (ja) * 2005-10-26 2007-06-14 Seiko Epson Corp 光素子及びその製造方法
WO2007095325A2 (fr) * 2006-02-10 2007-08-23 Intel Corporation Protection d'un dispositif optoelectronique contre une decharge electrostatique
WO2007095325A3 (fr) * 2006-02-10 2007-10-04 Intel Corp Protection d'un dispositif optoelectronique contre une decharge electrostatique
US7851812B2 (en) 2006-02-24 2010-12-14 Osram Opto Semiconductors Gmbh Housed optoelectronic component
US8319250B2 (en) 2008-05-09 2012-11-27 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip
WO2010009690A1 (fr) * 2008-07-24 2010-01-28 Osram Opto Semiconductors Gmbh Puce semi-conductrice qui émet un rayonnement et est protégée contre les décharges électrostatiques et procédé de fabrication correspondant
US8710537B2 (en) 2008-07-24 2014-04-29 Osram Opto Semiconductors Gmbh Radiation-emitting semiconductor chip and method for producing a radiation-emitting semiconductor chip

Also Published As

Publication number Publication date
DE19945134C2 (de) 2003-08-14
DE19945134A1 (de) 2001-05-31

Similar Documents

Publication Publication Date Title
EP1883140B1 (fr) LD ou DEL avec une couche de revêtment superréseau et dopage gradué
DE4135813C2 (de) Oberflächenemittierende Halbleiter-Laservorrichtung
DE112015005885B4 (de) Optoelektronisches Bauelement
DE19945134C2 (de) Lichtemittierendes Halbleiterbauelement hoher ESD-Festigkeit und Verfahren zu seiner Herstellung
WO2018050466A1 (fr) Série de couches semi-conductrices
DE60012592T2 (de) Halbleiterlaser und Verfahren zu dessen Herstellung
EP1366548B1 (fr) Laser semi-conducteur a emission par la surface
DE10252574A1 (de) Optoelektronische Vorrichtung unter Verwendung eines gesperrten Tunnelübergangs zur Strombegrenzung
EP1687879A1 (fr) Composant semi-conducteur electroluminescent muni d'une diode de protection
DE102005036820A1 (de) Strahlungsemittierender Halbleiterkörper für einen vertikal emittierenden Laser und Verfahren zu dessen Herstellung
WO2016156312A1 (fr) Puce semi-conductrice optoélectronique
DE102013017275B4 (de) Optoelektronisches Halbleiterbauelement
DE2312162A1 (de) Heterogenaufbau-injektionslaser und verfahren zu seiner herstellung
DE3435148A1 (de) Laserdiode mit vergrabener aktiver schicht und mit seitlicher strombegrezung durch selbstjustierten pn-uebergang sowie verfahren zur herstellung einer solchen laserdiode
EP1959507B1 (fr) Composant semi-conducteur émettant des rayonnements
DE10012869C2 (de) Vertikalresonator-Laserdiode mit koplanaren elektrischen Anschlußkontakten und Verfahren zu ihrer Herstellung
DE112016001301B4 (de) Laserdiode
EP1630914B1 (fr) Laser sémi-conducteur à émission verticale et à cavité externe et son procédé de fabrication
DE102023127789A1 (de) Oberflächenemittierende Laservorrichtung und Verfahren zu ihrer Herstellung
WO2023104668A1 (fr) Vcsel, émetteur pour transmettre des impulsions de signal optique, comprenant un vcsel, procédé de fonctionnement de vcsel, et procédé de production de vcsel
DE102023128322A1 (de) Oberflächenemittierende Laservorrichtung und Verfahren zu ihrer Herstellung
WO2023218005A1 (fr) Laser à diode à large zone avec jonction à effet tunnel p-n intégrée
WO2023104457A1 (fr) Composant de diode laser et procédé de fabrication d'au moins un composant de diode laser
WO2021116144A1 (fr) Dispositif optoélectronique à multiples couches épitaxiales, et procédé de production
EP1573829A2 (fr) Structure de couches sequentielles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase