WO2001022045A1 - Procede et dispositif de mesure de temperature de gaz par pyrometrie d'incandescence induite par laser - Google Patents

Procede et dispositif de mesure de temperature de gaz par pyrometrie d'incandescence induite par laser Download PDF

Info

Publication number
WO2001022045A1
WO2001022045A1 PCT/CH2000/000510 CH0000510W WO0122045A1 WO 2001022045 A1 WO2001022045 A1 WO 2001022045A1 CH 0000510 W CH0000510 W CH 0000510W WO 0122045 A1 WO0122045 A1 WO 0122045A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
particle
laser
gas
determined
Prior art date
Application number
PCT/CH2000/000510
Other languages
German (de)
English (en)
Inventor
Ken Haffner
Original Assignee
Abb Research Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Research Ltd. filed Critical Abb Research Ltd.
Priority to AU69777/00A priority Critical patent/AU6977700A/en
Priority to EP00958091A priority patent/EP1214571A1/fr
Publication of WO2001022045A1 publication Critical patent/WO2001022045A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/0014Radiation pyrometry, e.g. infrared or optical thermometry for sensing the radiation from gases, flames
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/60Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature
    • G01J5/602Radiation pyrometry, e.g. infrared or optical thermometry using determination of colour temperature using selective, monochromatic or bandpass filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited

Definitions

  • the present invention relates to the field of temperature measurement technology in gas turbines, engines and. a .. It is based on a method and a device for temperature measurement according to the preamble of claims 1, 9 and 11.
  • a temperature measurement method with laser-induced fluorescence is described in the article by KJ Rensberger et al., "Laser-induced fluorescence determination of temperatures in low pressure flames", Appl. Optics Vol 28 No. 17, pp. 3556-3566 (1989). Molecules in the flame are resonantly excited with a UV laser and the underlying flame temperature is calculated from their emission spectrum. It is disadvantageous that the laser wavelength has to be specifically adapted to the molecules and that long relaxation times can make measurement in a gas stream difficult or impossible. The molecular concentration outside the flame is often too low for the measurement of a gas temperature or a gas temperature profile.
  • the object of the invention is to provide an improved method and an improved device for gas temperature measurement. According to the invention, this object is achieved by the features of claims 1, 9 and 11.
  • the invention consists in a method and a device for temperature measurement in gaseous media, in which particles in the gas stream are heated by a laser pulse starting from a gas, flame or initial temperature T 0 , the induced continuum heat radiation of the particles is measured pyrometrically, and the particle temperature T is calculated and from the particle temperature T by a calculation Regulation the initial temperature T 0 is determined.
  • the particles therefore predominantly emit a continuous spectrum which, as a rule, can be described at least approximately or in a certain range as a blackbody radiation spectrum.
  • the calculation rule for determining the initial temperature T 0 can be derived from a theoretical model for particle heating and / or from a predetermined or experimentally determined standardization function. The calculation rules defined in this way can be used as an alternative or in addition to one another.
  • an average starting temperature T G can be determined from the model and the standardization.
  • the particle temperature T is normalized to the initial temperature T 0 by a multiplicative correction factor.
  • the temperature measurement method according to the invention is contact-free, avoids gas flow disturbances, is distinguished by a very high measurement sensitivity and is particularly suitable for gas or flame temperature measurement in gas turbines.
  • very high temperatures e.g. 4000 K
  • the heat radiation intensity can be massively increased compared to conventional pyrometry methods.
  • gas temperatures can be measured even with the smallest particle concentrations.
  • there is great freedom in the selection of the laser wavelength since it is not necessary to adjust to molecular resonances.
  • the underlying gas temperature T 0 is calculated from the decay behavior of the induced particle temperature T with the aid of a theoretical model for the power or energy balance of the heated particles.
  • the particle temperature is measured by a relative pyrometric measurement at at least two wavelengths and / or with different laser pulse energies, regardless of the emissivity of the particles.
  • An important exemplary embodiment relates to the measurement of a linear gas temperature profile over a cross section of a gas flow channel illuminated by the laser beam.
  • FIG. 1 shows a temperature measuring device according to the invention for a gas turbine.
  • the subject of the invention is a method for measuring the temperature of a gaseous medium 12 which is particularly suitable for measuring the gas temperature in a gas turbine.
  • a temperature is determined pyrometrically from an at least approximate black body radiation of particles 14 in the gaseous medium 12.
  • the particles 14 from a gas or outlet temperature T ⁇ by a laser pulse 7 is heated, as measured induced emission, pyrometrically determining a particle temperature T and out of the particle temperature T by a t computing rule, ie, by calculation and / or normalization, the outlet temperature T 0 determined.
  • a t computing rule ie, by calculation and / or normalization
  • the particles are typically soot particles 14. If the concentrations are too low, e.g. B. in extreme lean flames, oil droplets 14 or other particles 14 can be added to the hot gas stream 13 with a continuous heat radiation spectrum.
  • Laser pulse energy is also said to be E L > 10 mJ, preferably E> 30 mJ, particularly preferably E L > 50 mJ.
  • the LII light emission increases to a maximum within approx. 25 ns and then decays over a few 100 ns.
  • the time course, in particular the decay behavior, of the particle temperature T is preferably measured and the starting temperature T 0 is calculated therefrom.
  • a power balance equation for a particle 14 can be solved from the laser-induced temperature T. The relationship applies in particular
  • the pyrometric measurement can be carried out in a variety of ways: When using a constant laser pulse energy E L , an intensity ratio at two different wavelengths ⁇ a , ⁇ b becomes a particle temperature T is determined and / or a spectral position of the maximum radiation intensity and therefrom a particle temperature T is determined pyrometrically.
  • Wavelengths ⁇ a , ⁇ b should be in the vicinity of the maximum of the blackbody radiation with a spectral distance ⁇ a - ⁇ b ⁇ 100 nm, preferably ⁇ a - ⁇ b ⁇ 50 nm, and narrow-band, preferably ⁇ a « ⁇ b ⁇ 10 nm , be used.
  • At least two different laser pulse energies can also be used and a particle temperature T can be determined from at least one intensity ratio at the same wavelength ⁇ a . If exactly two laser pulse energies E L ⁇ , E 2 are used, they should be dimensioned such that the particles 14 are heated to 4000 K and 3800 K, for example. Then the power balance equation can be drawn up for both measurements and solved with a compensation calculation with improved accuracy. Alternatively, an additional parameter in the current account equation, e.g. B. the heat conduction constant K x can be determined by a fit or analytically. The pyrometric methods mentioned can also be used in combination.
  • an elongated or flat excitation area 8 in the gaseous medium 11 is irradiated with the laser pulse 7 and 10 pyrometric measurements are carried out point by point in the excitation area 8.
  • 1 shows an exemplary embodiment in which a laser beam 7 is sent transversely to a gas flow channel 3 of a turbine and pyrometrically points 10 linearly over a linear gas temperature profile under an observation direction 9 inclined to the laser beam 7 an illuminated cross section of the gas flow channel 3 is determined.
  • the soot particles 14 can be excited to white heat in an extended area 8 with a sheet-shaped laser beam and the light emitted by the area 8 can preferably be measured pyrometrically perpendicular to the area 8 at support points 10.
  • a high spatial resolution of up to approximately (0.5 mm) 3 can be achieved with the method according to the invention.
  • the measurements can also be carried out in turbulent flames.
  • a temperature profile at a particle temperature T is determined by laser-induced white-glow pyrometry, but then a gas or starting temperature T 0 is measured locally or averaged over the temperature profile without laser excitation, and finally the temperature profile is normalized to the starting temperature T 0 .
  • a gas temperature T 0 at a predeterminable point in the temperature profile, for. B. measured at the edge in the gas flow channel 3, without laser excitation and obtained by comparison with the laser-induced particle temperature T at this point a normalization function or a normalization factor for the temperature profile.
  • the temperature normalizing measurement can be performed with any temperature sensor, e.g. B.
  • thermocouple or pyrometric_ be carried out. It is particularly reliable to determine the original gas temperature T 0 by means of a pyrometric measurement spatially averaged over the temperature profile and to set the mean value of the particle temperature profile equal to T 0 .
  • 1 also relates to a device 1 for executing the temperature measurement method set out above.
  • the device 1 comprises a temperature sensor 1 a and a measuring device 1 b, which are designed to carry out the temperature measurement method set out above.
  • an optical channel 2 to a gas flow channel 3 is embedded in a gas turbine, the temperature sensor 1 a is mounted in the optical channel 2, which has a feed fiber 4 for the laser beam 7 and at least one return fiber
  • the return fiber is preferably an oriented fiber bundle 5 and at the end of the optical channel 2 there are laser optics 6; 6a, 6b for aligning the laser beam 7 transversely to the gas flow channel 3 and a receiving optics 11 for an observation direction 9 inclined to the laser beam 7 for pyrometric radiation.
  • the laser optics are preferably an oriented fiber bundle 5 and at the end of the optical channel 2 there are laser optics 6; 6a, 6b for aligning the laser beam 7 transversely to the gas flow channel 3 and a receiving optics 11 for an observation direction 9 inclined to the laser beam 7 for pyrometric radiation.
  • a gas turbine is also claimed which is designed to accommodate such a device and / or to carry out the temperature measurement method according to the invention.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Radiation Pyrometers (AREA)

Abstract

L'invention concerne un procédé et un détecteur (1; 1a, 1b) de mesure de température. On connaît des procédés pyrométriques de mesure de température de gaz. Selon l'invention, des particules (14) sont chauffées jusqu'à incandescence dans le gaz (12) ou la flamme par une impulsion laser (7). Le rayonnement thermique continu induit des particules (14) est mesuré par voie pyrométrique. On calcule la température T des particules et, sur la base de ce calcul et/ou de la normalisation, on détermine la température initiale T DEG du gaz. Le calcul peut être effectué par un modèle théorique du bilan de rendement des particules chauffées (14) et la normalisation peut être effectuée par une mesure de la température du gaz indépendante. Les mesures pyrométriques peuvent être évaluées de façon monochromatique, bichromatique ou à large bande et notamment indépendamment de l'émissivité des particules. Dans des modes de réalisation préférés, on détermine un profil de température de gaz à une ou deux dimensions. Ce procédé est sans contact et évite les perturbations du flux gazeux (13). Il se distingue par une très grande sensibilité de mesure et est particulièrement adapté à la mesure de la température du gaz ou de la flamme dans les turbines à gaz.
PCT/CH2000/000510 1999-09-23 2000-09-20 Procede et dispositif de mesure de temperature de gaz par pyrometrie d'incandescence induite par laser WO2001022045A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU69777/00A AU6977700A (en) 1999-09-23 2000-09-20 Method and device for measuring the temperature of a gas using laser-induced incandescence pyrometry
EP00958091A EP1214571A1 (fr) 1999-09-23 2000-09-20 Procede et dispositif de mesure de temperature de gaz par pyrometrie d'incandescence induite par laser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1999145640 DE19945640A1 (de) 1999-09-23 1999-09-23 Verfahren und Vorrichtung zur Gastemperaturmessung mit laserinduzierter Weissglut-Pyrometrie
DE19945640.2 1999-09-23

Publications (1)

Publication Number Publication Date
WO2001022045A1 true WO2001022045A1 (fr) 2001-03-29

Family

ID=7923061

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2000/000510 WO2001022045A1 (fr) 1999-09-23 2000-09-20 Procede et dispositif de mesure de temperature de gaz par pyrometrie d'incandescence induite par laser

Country Status (4)

Country Link
EP (1) EP1214571A1 (fr)
AU (1) AU6977700A (fr)
DE (1) DE19945640A1 (fr)
WO (1) WO2001022045A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8410946B2 (en) 2010-03-05 2013-04-02 General Electric Company Thermal measurement system and method for leak detection
US8469588B2 (en) * 2010-05-03 2013-06-25 General Electric Company System and method for compressor inlet temperature measurement
US8702372B2 (en) 2010-05-03 2014-04-22 Bha Altair, Llc System and method for adjusting compressor inlet fluid temperature
US9019108B2 (en) 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
US9097182B2 (en) 2010-08-05 2015-08-04 General Electric Company Thermal control system for fault detection and mitigation within a power generation system
RU2577793C1 (ru) * 2014-09-30 2016-03-20 Акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (АО "ОКБМ Африкантов") Способ тепловизионного определения характеристик турбулентности неизотермического потока
EP3462153A1 (fr) 2017-09-29 2019-04-03 General Electric Technology GmbH Procédé pour déterminer une température de gaz chauds locaux dans un conduit de gaz chaud et dispositifs permettant de mettre en uvre le procédé

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2945349B1 (fr) * 2009-05-05 2015-06-19 Univ Paris Ouest Nanterre La Defense Procede et systeme de determination de la distribution spatiale d'un parametre thermodynamique d'un milieu semi-transparent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605733A1 (fr) * 1986-10-24 1988-04-29 Siderurgie Fse Inst Rech Procede et dispositif de mesure par voie optique de la temperature d'un gaz
JPH0894526A (ja) * 1994-09-22 1996-04-12 Toyota Central Res & Dev Lab Inc すす濃度測定方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4081215A (en) * 1976-05-18 1978-03-28 General Electric Company Stable two-channel, single-filter spectrometer
SE453017B (sv) * 1985-06-13 1988-01-04 Opsis Ab Ideon Sett och anordning for bestemning av parametrar for gasformiga emnen som er nervarande vid forbrenningsprocesser och andra processer som sker vid hog temperatur
US4868768A (en) * 1986-09-17 1989-09-19 The United States Of America As Represented By The United States Department Of Energy Optical absorption measurement system
DE3709065A1 (de) * 1987-03-19 1988-09-29 Max Planck Gesellschaft Verfahren und einrichtung zur beruehrungsfreien messung der temperaturverteilung in einem messvolumen
DE3939876A1 (de) * 1989-12-01 1991-06-06 Siemens Ag Messanordnung zur beruehrungslosen bestimmung der dicke und/oder thermischen eigenschaften von folien und duennen oberflaechenbeschichtungen
GB9415869D0 (en) * 1994-08-05 1994-09-28 Univ Mcgill Substrate measurement by infrared spectroscopy
DE19809791C1 (de) * 1998-03-09 1999-07-15 Fraunhofer Ges Forschung Verfahren zum ortsaufgelösten Messen der Temperatur in einem Medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2605733A1 (fr) * 1986-10-24 1988-04-29 Siderurgie Fse Inst Rech Procede et dispositif de mesure par voie optique de la temperature d'un gaz
JPH0894526A (ja) * 1994-09-22 1996-04-12 Toyota Central Res & Dev Lab Inc すす濃度測定方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 08 30 August 1996 (1996-08-30) *
VANDER WAL R L: "LASER-INDUCED INCANDESCENCE: DETECTION ISSUES", APPLIED OPTICS,US,OPTICAL SOCIETY OF AMERICA,WASHINGTON, vol. 35, no. 33, 20 November 1996 (1996-11-20), pages 6548 - 6559, XP000642063, ISSN: 0003-6935 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8410946B2 (en) 2010-03-05 2013-04-02 General Electric Company Thermal measurement system and method for leak detection
US8469588B2 (en) * 2010-05-03 2013-06-25 General Electric Company System and method for compressor inlet temperature measurement
US8702372B2 (en) 2010-05-03 2014-04-22 Bha Altair, Llc System and method for adjusting compressor inlet fluid temperature
US9019108B2 (en) 2010-08-05 2015-04-28 General Electric Company Thermal measurement system for fault detection within a power generation system
US9097182B2 (en) 2010-08-05 2015-08-04 General Electric Company Thermal control system for fault detection and mitigation within a power generation system
RU2577793C1 (ru) * 2014-09-30 2016-03-20 Акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (АО "ОКБМ Африкантов") Способ тепловизионного определения характеристик турбулентности неизотермического потока
EP3462153A1 (fr) 2017-09-29 2019-04-03 General Electric Technology GmbH Procédé pour déterminer une température de gaz chauds locaux dans un conduit de gaz chaud et dispositifs permettant de mettre en uvre le procédé

Also Published As

Publication number Publication date
DE19945640A1 (de) 2001-04-05
AU6977700A (en) 2001-04-24
EP1214571A1 (fr) 2002-06-19

Similar Documents

Publication Publication Date Title
Tacke et al. A detailed investigation of the stabilization point of lifted turbulent diffusion flames
Perrin et al. Characterization of the evaporation of interacting droplets using combined optical techniques
US6181419B1 (en) Method and apparatus for applying laser induced incandescence for the determination of particulate measurements
Hofmann et al. Laser-induced incandescence for soot diagnostics at high pressures
Hartfield Jr et al. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence
Hult et al. Quantitative three-dimensional imaging of soot volume fraction in turbulent non-premixed flames
Cutler et al. Coherent anti-Stokes Raman spectroscopic thermometry in a supersonic combustor
Fuyuto et al. Temperature and species measurement in a quenching boundary layer on a flat-flame burner
Doll et al. Endoscopic filtered Rayleigh scattering for the analysis of ducted gas flows
Sankar et al. Rapid characterization of fuel atomizers using an optical patternator
Labergue et al. New insight into two-color LIF thermometry applied to temperature measurements of droplets
Bockhorn et al. Progress in characterization of soot formation by optical methods
DE2831404A1 (de) Optisches pyrometer und technik zur temperaturmessung
DE2609246A1 (de) Verfahren und anordnung zur messung der massendichte von in einem stroemenden medium suspendierten partikeln
Düwel et al. Experimental and numerical characterization of a turbulent spray flame
Michael et al. Effects of repetitive pulsing on multi-kHz planar laser-induced incandescence imaging in laminar and turbulent flames
EP1214571A1 (fr) Procede et dispositif de mesure de temperature de gaz par pyrometrie d'incandescence induite par laser
McDonell et al. Measurement of fuel mixing and transport processes in gas turbine combustion
Nair et al. Counter rotating vortex pair structure in a reacting jet in crossflow
Török et al. Laser-induced incandescence (2 λ and 2C) for estimating absorption efficiency of differently matured soot
Feroughi et al. Effect of fluctuations on time-averaged multi-line NO-LIF thermometry measurements of the gas-phase temperature
Schittkowski et al. Laser-induced incandescence and Raman measurements in sooting methane and ethylene flames
Leipertz et al. Characterization of Nano‐Particles Using Laser‐Induced Incandescence
Stepowski Laser measurements of scalars in turbulent diffusion flames
Bathel et al. Shockwave/boundary-layer interaction studies performed in the NASA Langley 20-Inch Mach 6 Air Tunnel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000958091

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2000958091

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWW Wipo information: withdrawn in national office

Ref document number: 2000958091

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP