WO2001020089A1 - Concrete structure and method of constructing the same - Google Patents

Concrete structure and method of constructing the same Download PDF

Info

Publication number
WO2001020089A1
WO2001020089A1 PCT/JP1999/004954 JP9904954W WO0120089A1 WO 2001020089 A1 WO2001020089 A1 WO 2001020089A1 JP 9904954 W JP9904954 W JP 9904954W WO 0120089 A1 WO0120089 A1 WO 0120089A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing bar
steel
frame
precast
concrete
Prior art date
Application number
PCT/JP1999/004954
Other languages
French (fr)
Japanese (ja)
Inventor
Kazunori Kono
Hidekimi Imanishi
Minoru Tabata
Tatsuya Ueda
Original Assignee
Maeda Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maeda Corporation filed Critical Maeda Corporation
Priority to PCT/JP1999/004954 priority Critical patent/WO2001020089A1/en
Publication of WO2001020089A1 publication Critical patent/WO2001020089A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/28Chimney stacks, e.g. free-standing, or similar ducts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/30Columns; Pillars; Struts
    • E04C3/34Columns; Pillars; Struts of concrete other stone-like material, with or without permanent form elements, with or without internal or external reinforcement, e.g. metal coverings

Definitions

  • the present invention relates to a steel-frame concrete structure, and more particularly to a concrete structure excellent in quickness and safety of construction and a method of constructing the same. Background technology
  • the conventional construction method is as follows. First, a number of main reinforcing bars are erected from the foundation, and the belt reinforcing bars are fixed so as to surround the main reinforcing bars. When fixing the belt reinforcing bar, it is fixed to the main reinforcing bar manually using a binding wire or the like.
  • a concrete formwork is set up around the rebar by attaching supports. After completion of the formwork, concrete is poured into the formwork, and after curing, the formwork and support are dismantled and removed. A series of operations consisting of such steps are repeatedly performed as many times as necessary.
  • assembling the rebar may be a work at height, which reduces safety and workability.
  • An object of the present invention is to solve such a problem, and an object of the present invention is to provide a concrete structure and a method of constructing a concrete structure that can easily assemble a reinforcing bar and can shorten a period by removing a mold. To provide.
  • Another object of the present invention is to provide a method for constructing a concrete structure capable of ensuring work safety and improving the covering accuracy of concrete and the assembling accuracy of reinforcing bars. Disclosure of the invention
  • the present invention provides a step of forming a foundation by building a steel frame to a required height, a step of forming a frame-shaped form member in which a reinforcing bar is arranged via a reinforcing bar mounting tool, and surrounding the steel frame.
  • This is a method of constructing a concrete structure with and.
  • Reinforcing bars can be arranged by a method of arranging a reinforcing bar assembly on the inner surface of the form member and fixing the reinforcing bar to the reinforcing bar assembly.
  • a reinforcing bar and a steel material are arranged so as to be alternately stacked with a space therebetween, and the reinforcing bar is fixed to a reinforcing bar assembly material arranged on the inner surface of the form member, and the steel material is a formwork. It may be fixed in the transverse direction of the member.
  • the steel member protects the formwork member from deformation due to external pressure. Therefore, in the work of stacking the form members, the form members are prevented from being deformed.
  • reinforcing bar a band reinforcing bar and an intermediate reinforcing bar can be used.
  • the band reinforcement is also called a shear reinforcement and has a bar-shaped or plate-shaped cross-section. Since the reinforcement is installed away from the side of the formwork, it is desirable to fix the reinforcement through a band reinforcement.
  • band Casting concrete without placing the rebar in contact with the steel (steel or rebar) installed inside.
  • an L-angle, small H steel, or the like can be used as the band reinforcing bar, and supports the band reinforcing bar and forms an appropriate gap between the formwork and the band reinforcing bar. After casting concrete, this gap becomes concrete cover.
  • the steel frame is preferably an H-beam, but other shapes such as an L-beam may be used, which connect to a steel frame or anchor protruding from the top surface of the foundation.
  • projections are provided on the flange surface of steel frame, etc., the adhesion of concrete is improved, and the integrity with concrete is obtained. This projection may be formed on the surface in the manufacturing stage, not to mention a post-installed one.
  • the precast formwork is constituted by a precast outer frame member arranged outside the steel frame, and a precast inner frame member arranged on the ⁇ side of the steel frame.
  • the concrete frame can be built by attaching the frame for use and the reinforcing bar to one or both of the precast outer frame member and the precast inner frame member.
  • the form member is usually manufactured in a factory or the like and assembled on site. After the cast-in-place concrete is hardened, it will be part of the structure without demolding. The surface may be decorated or left alone. Since this formwork member is an industrial product, it is possible to secure the durability of the structure constructed using the formwork member and to improve the appearance at the factory manufacturing stage.
  • the mold member may a water-cement ratio Ca s 2 0 ⁇ 6 0% of cementitious mortars and child.
  • a mortar having such a low water cement ratio is used, resistance to corrosion factors such as salt, carbon dioxide, oxygen, and water is increased, and the durability of the structure can be improved.
  • the mortar mold member one containing one or two or more reinforcing materials selected from the group consisting of steel fiber, stainless fiber, aramid, vinylon, carbon fiber, and glass fiber is preferably used.
  • Can be Aramid is aromatic It is a polyamide fiber and has a tensile strength more than 5 times that of iron.
  • the carbon fiber for example, a polyacrylonitrile-based carbon fiber made of graphite-like carbon can be used.
  • FIG. 1 is a sectional view of a pier constructed by the method of the present invention.
  • FIG. 2 is a perspective view showing a semi-finished state of a pier constructed by the method of the present invention.
  • FIG. 3 is a diagram showing a part of the inner side surface of a form member to which a band reinforcing bar is attached.
  • FIG. 4 is a side view of a form member to which a band reinforcing bar is attached.
  • FIG. 5 is a conceptual diagram of a form member to which a reinforcing material is added.
  • FIG. 6 is a flowchart showing a construction order in the second embodiment.
  • FIG. 7 is a sectional view of a pier according to the second embodiment.
  • Figure 8 is a diagram showing the installation of a steel frame.
  • FIG. 9 is a cross-sectional view showing a state in which footing has been formed.
  • FIG. 10 is a cross-sectional view showing a step of stacking the form members.
  • FIG. 11 is a cross-sectional view showing a state in which concrete has been poured into formwork ⁇ to form the foundation of the pier.
  • FIG. 12 is a cross-sectional view showing a state where a steel frame is added.
  • FIG. 13 is a cross-sectional view showing a state in which mold members are stacked on a foundation.
  • FIG. 14 is a cross-sectional view showing a state in which the precast inner forms are stacked.
  • FIG. 15 is a cross-sectional view showing a state in which reinforcing bars are arranged.
  • FIG. 16 is a cross-sectional view showing a state in which a concrete is cast in a Brecast formwork.
  • Figure 17 is a cross-sectional view of the completed pier.
  • FIG. 18 is a diagram showing a state where a mesh reinforcing bar is fixed to the inner frame.
  • FIG. 19 is a diagram showing a state in which a belt reinforcing bar is fixed to the inner frame.
  • FIG. 20 is a diagram showing a state where the outer frame is attached.
  • FIG. 21 is a diagram showing a state where a reinforcing bar is attached to the outer frame.
  • FIG. 22 is a diagram showing a state where an intermediate reinforcing bar is attached.
  • FIG. 23 is a flowchart showing a construction order in the third embodiment.
  • FIG. 24 is a diagram showing the construction order in the third embodiment.
  • (b) is the footing construction
  • (c) is the installation of formwork members
  • (d) is the placement of concrete
  • (e) is the diagram showing the completed pier.
  • FIGS. 25A and 25B are views showing a mold member, wherein FIG. 25A is a plan view thereof, FIG.
  • (c) is a side view thereof.
  • Fig. 26 is a diagram showing the order of assembling the reinforcing steel and copper material in the formwork member, (a) showing the state where the steel material is arranged inside, and (b) showing the state where the reinforcing steel is fixed to the steel material.
  • (c) is a diagram showing a state in which a shape-retaining steel material is arranged
  • (d) is a diagram showing a formwork member completed by laminating a reinforcing bar and a steel material.
  • FIG. 27 is a perspective view of a pier in the middle of construction according to the third embodiment.
  • FIG. 28 is a diagram showing the position of the load P in Test Example 1.
  • FIG. 29 is a cross-sectional view of the specimen 1.
  • FIG. 30 is a cross-sectional view of the test piece 2.
  • FIG. 31 is a cross-sectional view of the test piece 3.
  • FIG. 32 is a diagram showing cracks of the test piece 1 to which the load P is applied.
  • FIG. 33 is a diagram showing cracks of the test piece 2 to which the load P is applied.
  • FIG. 34 is a diagram showing cracks of the test piece 3 to which the load P is applied.
  • FIG. 35 is a diagram showing the crack width of the test pieces 1 to 3 in the bending-shear test.
  • C Fig. 36 is a view showing the toughness factor of the test pieces 1 to 3 in the bending-shear test.
  • FIG. 37 is a cross-sectional view showing the structure of the test piece 4.
  • FIG. 38 is a cross-sectional view showing the structure of the test piece 5. As shown in FIG.
  • FIG. 39 is a diagram showing an apparatus for performing Test Example 2.
  • FIG. 40 is a diagram showing the horizontal displacement of the specimen 4 at the unloading point.
  • FIG. 41 is a diagram showing the horizontal displacement of the specimen 5 at the unloading point.
  • FIG. 42 is a diagram showing the relationship between the load and the displacement of the test pieces 4 and 5.
  • a plurality of annular formwork members 1 are stacked to form a pier A in which the surface of the precast formwork 9 becomes an outer wall.
  • a cylindrical precast material 7 made of concrete is provided inside the laminated annular form member 1.
  • the precast material 7 and the steel frame 4 are erected in the center of the foundation 2 before performing the following construction.
  • the installation of the precast material 7 is not an indispensable process, and may be performed after the completion of the steel frame 4 to be described later.
  • the inner diameter of the precast material 7 is 3.1 meters, and the thickness is 0.1 meters.
  • the form member 1 is manufactured in advance in a factory, and is formed by joining curved plates to form an integral annular body. Its cross section is circular, 4.5 meters in diameter, 2.5 meters in height and 5 cm in thickness.
  • the form member 1 is a cement-based mortar having a water-cement ratio of 20% to 60%, and as shown in FIG. % It is mixed.
  • the mold member 1 is provided with vertical copper bars 35 for suspension at predetermined intervals on the inner peripheral surface thereof.
  • a hole 36 is provided at the tip of the flat steel 35, a hook is passed through the hole 36, and the hook is suspended by a crane (not shown). W 1 wornIt is possible to sequentially stack them on the foundation 2. By stacking a plurality of form members 1, a concrete form A having a desired height can be obtained.
  • the reinforcing bars inside the formwork member 1 are set up.
  • Reinforcing bars are arranged as follows. As shown in FIG. 4, mounting strip reinforcing bars 5a made of an L-shaped steel material are attached to the inner surface of the mold member 1 at intervals of 1.2 meters.
  • the belt reinforcing bar fixing device 5 a is fixed on a ring-shaped horizontal flat steel 37 provided at regular intervals in the inner circumferential direction of the form member 1.
  • assembled reinforcing bars 6 are attached to the belt reinforcing bar fixture 5a at predetermined intervals in the height direction.
  • the strip reinforcing bar 3 is attached horizontally so as to be orthogonal to the assembled reinforcing bar 6, and the reinforcing bars are arranged in a lattice shape.
  • the reinforcing bars 3 are provided at intervals of about 15 cm.
  • a steel frame 4 is erected around the precast material 7.
  • a structure (not shown) equal to or more than the steel frame 4 is embedded in the base 2 as an anchor in advance, and the steel frame 4 is connected to this structure by bolting.
  • the steel frame 4 is made of H copper (H-318 x 3 13 x 15 x 24), and its flange surface has a height of 2.1 mm and a pitch of 20 mm in the direction perpendicular to the longitudinal direction. Protrusions are formed on the surface to provide projections. Then, as shown in FIG.
  • the steel frame 4 is erected at a position where it does not come into contact with any of the band reinforcing bar 3 and the precast material 7.
  • the process of erecting the steel frame 4 does not matter before or after the process of stacking the formwork member 1 or the process of setting the precast material 7 and before and after the process.
  • the pier When the above construction is completed, the pier will be in a semi-finished state as shown in Figure 2. In this step, the required number of form members 1 and steel frames 4 are connected to each other to obtain a desired height. Then, a concrete is cast between the precast material 7 and the stacked formwork members 1. When the concrete hardens, the concrete pier is completed without removing the precast formwork 9.
  • the concrete pier A constructed in this way uses the precast formwork 9 and also has a projection on the steel frame, so that the crack width is about the same as or less than that of the reinforced concrete structure. As a result, the amount of deformation of the pier was reduced. It is also expected to have excellent earthquake resistance. (Example 2)
  • FIG. 6 is a flowchart showing a method of constructing a concrete pier. First, the construction order will be described based on this flowchart.
  • a required number of frame-shaped form members 10 are formed in an assembly yard or a manufacturing factory (step 1).
  • the belt reinforcing bar 11 is attached to these form members 10 via the reinforcing bar frame 14 shown in FIG. 7 (step 2).
  • a steel frame 12 such as an H-beam is erected at the concrete pier 1 construction site (step 3).
  • a precast form member 10 is set around the steel frame 12 (step 4).
  • a support (not shown) is assembled (step 5).
  • the precast form members 10 are sequentially stacked to a predetermined height.
  • step 3 of setting up the steel frame 12 and the concrete placing of step 6 are repeated a predetermined number of times n. By doing so, concrete pier 1 is completed (step 7).
  • the steel frame 12 is made into one step, a predetermined number of form members 10 are stacked around the steel frame 12, and then concrete 13 is poured into the concrete pier. Can be completed. This is the case where n is 1 as described above.
  • Figure 7 shows a cross section of a concrete pier B constructed by applying the above construction method.
  • the form member 10 of the concrete pier B is a frame-shaped, in this embodiment, a quadrilateral precast outer frame member 10a, and a precast frame member 1 arranged on one side of the precast outer frame member 10a.
  • a predetermined number of H-shaped steel frames 12 are arranged between the precast outer frame member 10a and the precast frame member 10b.
  • the outer cast frame member 10a and the precast frame member 10b serve as the outer walls of the concrete pier B, and are formed in a rectangular shape by concrete or mortar.
  • the precast outer frame member 10a and the precast frame member 10b are divided into a plurality of pieces in advance in an assembly card manufacturing plant or the like as described above, and these divided pieces are connected to form an integrated body. It can be formed as a frame.
  • the cross-sectional shape is a quadrangle in the present embodiment, but may be any shape such as a circle, an ellipse, and a polygon.
  • a plurality of reinforcing steel frames 14 are provided at appropriate intervals on the outer peripheral side of the precast inner frame member 10b, and the belt reinforcing steel 11 is attached to these reinforcing steel frames 14. I have.
  • the structure and mounting method of the reinforcing bar frame 14 and the belt reinforcing bar 11 will be described later.
  • Fig. 8 to Fig. 17 show the construction procedure of the concrete pier B mentioned above. It is assumed that the mold member 10 is manufactured in advance.
  • the anchoring portion of steel frame 12 such as H-shaped copper is erected on the foundation step 21 of concrete pier B.
  • a concrete for forming the fitting 22 is cast.
  • a predetermined number, in this embodiment, two, of the precast outer frame members 10a are stacked and installed on the fitting 22.
  • Fig. 11 if concrete 13 is poured into the stacked precast outer frame members 10a, 10a, the solid part which becomes the foundation of the concrete pier B is completed.
  • a steel frame 12 is further added to the steel frame 12 and connected by a connecting means such as a bolt.
  • a connecting means such as a bolt.
  • a predetermined number of precast outer frame members 10a are additionally placed on the precast outer frame members 10a already installed as shown in FIG. 13, and then, as shown in FIG.
  • a precast inner frame member 10b is stacked inside by a certain number and placed inside 12.
  • a strip reinforcing bar 11 is attached to the precast frame member 10b as described later.
  • the precast outer frame member 10a and the precast inner frame member 10b are connected by, for example, a bar-shaped connecting member 24.
  • the connecting member 24 can be made of a steel material such as an equilateral mountain steel or a groove steel other than the rod-shaped member.
  • FIG. 18 to FIG. 22 show a procedure for attaching the above-described reinforcing bar frame 14 and reinforcing bar 11 to the precast inner frame member 10b.
  • the reinforcing bar frame 14 is a quadrangle and is vertically divided into two.
  • one inner frame 14a of the reinforcing bar frame 14 is fixed to the outer peripheral surface of the precast inner frame member 10b by an appropriate method.
  • the inner frame 14a has a U-shape, and mesh streaks 25 are provided on the vertical sides.
  • the mesh bars 25 are attached to maintain the pitch of the band reinforcing bars 11 accurately and to facilitate the assembly of the band reinforcing bars 11.
  • a plurality of belt reinforcing bars 11 are attached to the mesh bars 25.
  • the other outer frame 14b is attached to the inner frame 14a as shown in FIG.
  • the outer frame 14 b is also provided with a mesh streak 26.
  • the strip reinforcing bar 11 is attached to the mesh bar 26 of the outer frame 14 b, and as shown in Fig. 22, the strip reinforcing bar 11 of the upper frame 14 a is The intermediate reinforcing bar 27 is connected to the belt reinforcing bar 11 of the outer frame 14 b. This completes the installation of the reinforcing bar frame 14, the belt reinforcing bar 11 and the intermediate reinforcing bar 27.
  • the method for constructing a concrete pier according to the present invention is as follows. Since the reinforcing bar 11 is previously attached to the inner frame member 10b, which is the form member 10, via the reinforcing bar frame 14 and then piled up. Installation of 1 becomes easy. In addition, since it is not necessary to assemble the rebar 11 and disassemble the formwork at the site, it is possible to reduce the number of work steps and the time required for delivery. In addition, rebar assembly work at high places is omitted, and work safety is improved.
  • a reinforcing bar frame 14 is provided on the precast inner frame member 10b, and the reinforcing bar 11 is mounted on the inner frame 14a of the reinforcing bar frame 14, so that the mounting of the reinforcing bar 11 is easy.
  • the reinforcing bar frame 14 and the band reinforcing bar 11 are attached to the precast frame member 10b in the present embodiment, they can be attached to the precast outer frame member 10a. Further, the step of installing the form member 10 and the step of erection of the steel frame 12 can be replaced with each other as appropriate.
  • FIG. 23 is a flowchart showing a method of constructing a concrete leg according to the third embodiment. First, an outline of the construction will be described based on this flowchart and FIG.
  • the pier construction site is excavated, a plurality of steel frames 12 such as H-beams are erected, and concrete is cast to form the foundation of pier C.
  • the assembling of the formwork member 10 is performed in parallel with the work of the footing 22, which is performed in a factory or a yard near the construction site.
  • Predetermined reinforcing bars and copper materials are arranged inside the formwork member 10 to manufacture the required number of pieces for construction.
  • formwork members 10 are sequentially stacked from below along steel frames 12. After forming the precast form 9 by fastening the form members 10 together with bolts or the like, concrete is poured into the precast form 9 through a concrete pumping pipe P from a pump truck. This work is required n times! : Repeat and build the pier C to the specified height to complete the construction.
  • Fig. 24 (a) As shown in Fig. 24 (a), at the construction site of concrete pier C, ground G is excavated to a predetermined depth. 10 H-beams 12 are erected on the excavated surface and inside the formwork members. A reinforcing bar (not shown) is arranged around the H-shaped steel 12 and a concrete formwork is assembled and arranged around the H-shaped copper 12 and the reinforcing bar. Pour concrete. For the steel frame 12, an H-section steel with a protrusion formed on the flange is used.
  • the form member 10 is a rectangular frame having a short side to long side ratio of about 1: 2, and is formed with a predetermined height.
  • a belt reinforcing bar 11 is attached to these precast form members 10 via a reinforcing steel assembly 40 (step 2).
  • the steel rebar assembly steel material 40 is a channel steel or an angle steel that is disposed at a predetermined interval on the inner peripheral surface of the frame-shaped form member 10.
  • the rebar-assembled steel materials 40 are provided at eight locations at predetermined intervals in the vertical direction with respect to the form member 10.
  • the frame-shaped reinforcing bar 11 is fixed to the reinforcing steel assembly 40 by welding or the like, and crosses the reinforcing bar 11 and intersects with the reinforcing bar 11 in a grid pattern. Distribute.
  • the strip reinforcing bar 11 and the intermediate reinforcing bar 27 may be assembled as a single unit, or those previously assembled in a rice cake net shape may be fixed to the reinforcing bar assembled steel material 40.
  • the frame-shaped portion forming the form member 10 is assembled by joining the U-shaped body 43 at the end and the linear body 44 connecting the two U-shaped bodies. To join them, a joint steel member 42 is provided in contact with the reinforcing steel member 40, and the reinforcing steel member 40 and the joint steel member 42 are fastened to each other by bolts.
  • one shape-retaining steel material 41 which is a channel steel or an angle iron, is arranged in the longitudinal direction of the formwork member, and three in the lateral direction. These are arranged so as to be alternately stacked with the above-mentioned belt reinforcing bars 11 and intermediate reinforcing bars 27 as shown in FIG. 26 (d).
  • the strip reinforcing bar 11 and the like and the shape-retaining steel material 40 are arranged at positions where they do not come into contact with the H-shaped steel when the form members 10 are stacked.
  • the shape-retaining steel material 41 is arranged in the transverse direction of the form member 10 to prevent both deformation of the form member 10 at the time of lifting and deformation due to lateral pressure at the time of placing concrete, and the latter is generally used in concrete. It will perform the same function as the separator used for a single formwork.
  • the precast form members 10 are sequentially stacked around the steel frame 12 to a predetermined height, and the stacked precast Pour concrete 13 into form member 10.
  • the scaffold 14 is installed on the uppermost formwork member, and the above-mentioned work (for the formwork member 10 ).
  • the concrete pier C is completed by repeating the installation and concrete casting) a predetermined number of times n.
  • the concrete pier C is completed by stacking all the form members 10 around the steel frame 12 and then placing the concrete 13 thereon.
  • the cross-sectional shape of the form member 10 is substantially quadrangular in this embodiment, but may be any shape such as a circle, an ellipse, or a polygon according to the cross-sectional shape of the pier.
  • each of the specimens is a concrete beam with a length (L) of 4.6 m, width (W) of 0.5 m, and height (H) of 0.8 meter. 120.
  • Specimen 1 has a conventional reinforced concrete structure (R C).
  • a belt reinforcing bar 110 is provided around the main reinforcing bar 100.
  • Specimen 2 has a steel frame concrete structure (S C), and is provided with four H-section steels 130 as shown in FIG.
  • the specimen 3 has a steel frame precast concrete structure (SC + PCa) of the present invention, and has a precast formwork 120a on a side surface and four insides. H steel 130 is provided.
  • Figure 32 through Figure 34 show the state of occurrence of cracks in specimens 1 through 3.
  • the solid line shows the cracks when the tension-side reinforcement reaches the allowable stress
  • the dotted line shows the cracks when the tension-side reinforcement gives the allowable stress to the yield stress.
  • the steel frame precast concrete structure of the present invention has almost the same dispersibility of cracks as the reinforced concrete structure.Also, the structure of the present invention has little difference in allowable stress but cracks in yield stress compared to other structures. I understood that there were few.
  • Figure 35 shows the relationship between the load on specimens 1 to 3 and the maximum crack width.
  • Specimen 3 has a smaller crack width than Specimen 1, and the steel frame precast concrete structure of the present invention has an effect of suppressing cracking.
  • the toughness of the steel frame precast concrete structure of the present invention exceeds that of the steel bar or the steel frame concrete structure.
  • Specimen 4 is a reinforced concrete structure as shown in Figure 37.
  • the main reinforcement 220 and the belt reinforcement 240 are arranged inside this, and the center is hollow.
  • Specimen 5 is a steel frame precast concrete structure of the present invention as shown in FIG.
  • H-shaped copper 230 and its surrounding rebar 250 are provided, and the center is hollow.
  • Each of the specimens 4 and 5 was a cylindrical column having a diameter (D) of 0.9 m, an inner diameter (I) of 0.3 m, and a height (T) of 2.6 m. These were mounted on a 0.75 meter high base 200 as shown in FIG.
  • An axial force loading jack 300 was installed on the upper surface of the test piece, a PC steel rod 310 was hung from this jack 300, and the lower end was embedded and fixed in the base 200. Connected to the NC 320. Also, an actuator 350 was installed between the stub 330 at the upper end and the reaction wall 340, and one end thereof was fixed to the stub 330.
  • FIG. 40 shows the horizontal displacement of the loading point of the specimen 4 and FIG. 41 shows that of the specimen 5 which is the structure of the present invention.
  • the vertical line shows the load (t f)
  • the horizontal line shows the horizontal displacement at the load point in millimeters
  • the dotted line shows the calculated ultimate strength.
  • Fig. 42 shows the relationship between the load and the displacement (envelope) of the test specimens 4 and 5
  • the vertical axis represents the load (tf)
  • the horizontal axis represents the horizontal displacement at the load point.
  • the structure of the present invention has the deformation performance not inferior to the conventional reinforced concrete structure, and has toughness higher than that of the conventional reinforced concrete.
  • the present invention is used in the construction of a concrete structure, and is particularly useful for the construction of a concrete structure such as a pier which requires work at height.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Bridges Or Land Bridges (AREA)

Abstract

A concrete structure capable of reducing a construction term by omitting reinforcement fabricating and form removing operations in construction work, and of securing the safety of the work; and a method of constructing the same. The method comprises forming a basis by building steel frames to a predetermined height, forming frame type form members in which reinforcements are arranged via reinforcement fixing members, piling up a plurality of form members so as to enclose the steel frames therewith, placing concrete in a precast form formed of the piled form members, and uniting in a body the steel frames, tie hoops and precast form by curing the concrete.

Description

明 細 書 発明の名称 コンク リート構造物及びその築造方法 技 術 分 野  Description Title of the invention Concrete structure and method for constructing the same Technical field
本発明は鉄骨コンクリ一ト構造物に関し、 施工の迅速性や安全性に優れたコン クリート構造物及びその築造方法に関する。 背 景 技 術  TECHNICAL FIELD The present invention relates to a steel-frame concrete structure, and more particularly to a concrete structure excellent in quickness and safety of construction and a method of constructing the same. Background technology
従来、 コンクリート構造物の多くは鉄筋コンクリート構造であるが、 その施工 では現場で実施するコンクリ一ト打設前の配筋作業に大変な手間がかかり、 高所 かつ狭い場所での作業では安全性にも問題がある。  Conventionally, most concrete structures are reinforced concrete structures, but in the construction work, it takes a great deal of time to rebar the concrete before placing the concrete, and it is safe to work in high places and in narrow places. There is also a problem.
従来の施工法は次のようなものである。 先ず基礎から主鉄筋を多数立設し、 こ の主鉄筋の周囲を取り囲むよう帯鉄筋を固定する。 この帯鉄筋を固定するときに は、 バインド線等を用いて手作業により主鉄筋に固定する。  The conventional construction method is as follows. First, a number of main reinforcing bars are erected from the foundation, and the belt reinforcing bars are fixed so as to surround the main reinforcing bars. When fixing the belt reinforcing bar, it is fixed to the main reinforcing bar manually using a binding wire or the like.
このような配筋作業が完了した後、 鉄筋の周囲に支保ェを組みコンクリート型 枠を設営する。 そしてこの型枠の完成後、 型枠内部にコンクリートを打設し、 養 生の後、 型枠と支保ェを解体撤去する。 このような工程からなる一連の作業を必 要回数にわたり繰り返して施工する。  After such reinforcement work is completed, a concrete formwork is set up around the rebar by attaching supports. After completion of the formwork, concrete is poured into the formwork, and after curing, the formwork and support are dismantled and removed. A series of operations consisting of such steps are repeatedly performed as many times as necessary.
しかし、 このような施工方法では次のような問題があった。  However, such a construction method has the following problems.
第一に、 鉄筋部分の組立ては熟練を要する上に多くの手間と労力を要するので ェ期が長期化する。  Firstly, assembling the rebar requires a lot of time and effort, and requires a lot of labor and labor, so the period is long.
第二に、 コンクリート型枠の脱型及び支保ェの解体作業が必要であり、 このた めの労力と型枠等の仮設置場所を要する。  Secondly, it is necessary to remove the concrete formwork and dismantle the support, which requires labor and a temporary installation place for the formwork.
第三に、 鉄筋の組立ては高所作業となる場合があり、 安全性、 作業性が低下す る。  Third, assembling the rebar may be a work at height, which reduces safety and workability.
一方、 鉄筋の代わりに組立の容易な鉄骨を使用し、 これをコンク リートと組み 合わせた鉄骨コンク リート構造物とすることが考えられる。 しカゝし、 鉄骨コンク リー ト構造物では、 鉄骨とコンクリートの付着性能が鉄筋に比べて劣るため、 鉄 筋コンクリート構造に比べてひび割れの分散性が悪く、 ひび割れ幅が過大となる 欠点を有している。 また同じ理由から、 鉄骨コンクリート構造物では鉄筋コンク リー卜に比べて変形が過大となる問題もある。 On the other hand, it is conceivable to use steel frames that are easy to assemble instead of reinforcing bars, and combine them with concrete to form a steel frame concrete structure. However, in steel-framed concrete structures, the adhesion between steel frames and concrete is inferior to that of steel bars. Cracks have poor dispersibility compared to reinforced concrete structures, and have the disadvantage of excessive crack width. For the same reason, there is also a problem that the deformation of the steel concrete structure is excessive compared to the reinforced concrete.
かかる事情から、 コンクリート構造物に鉄骨を使用する場合にも鉄筋を併用す ることになり、 面倒な配筋作業が伴うことを避けられない。  Under such circumstances, when steel frames are used for concrete structures, rebars are also used, and it is inevitable that complicated rebar arrangement work is involved.
本発明はこのような問題点を解決することにあり、 その目的は鉄筋の組立が容 易であり、 また脱型を省略してェ期を短縮することができるコンクリート構造物 及びその施工方法を提供することにある。  An object of the present invention is to solve such a problem, and an object of the present invention is to provide a concrete structure and a method of constructing a concrete structure that can easily assemble a reinforcing bar and can shorten a period by removing a mold. To provide.
本発明の他の目的は 作業の安全性を確保し、 かつコンクリートのかぶり精度 や鉄筋の組み立て精度を改善できるようにしたコンクリート構造物の施工方法を 提供することである。 発 明 の 開 示  Another object of the present invention is to provide a method for constructing a concrete structure capable of ensuring work safety and improving the covering accuracy of concrete and the assembling accuracy of reinforcing bars. Disclosure of the invention
本発明は、 鉄骨を所要の高さまで建て込んで基礎を形成する工程と、 内側に鉄 筋取付具を介して鉄筋が配された枠状の型枠部材を形成する工程と、 前記鉄骨を 取り囲むように型枠部材を複数積み重ねる工程と、 積み重ねた型枠部材によって 形成されたプレキャスト型枠內にコンクリートを打設して硬化させ、 前記鉄骨、 前記帯鉄筋及びプレキャス ト型枠を一体化する工程と、 を備えたコンクリート構 造物の築造方法である。  The present invention provides a step of forming a foundation by building a steel frame to a required height, a step of forming a frame-shaped form member in which a reinforcing bar is arranged via a reinforcing bar mounting tool, and surrounding the steel frame. Stacking a plurality of form members as described above, and placing concrete in a precast form formed by the stacked form members and hardening the same to integrate the steel frame, the band reinforcing bar, and the precast form. This is a method of constructing a concrete structure with and.
前記型枠部材の内側面に鉄筋組立材を配置し、 この鉄筋組立材に鉄筋を固定す る方法により、 鉄筋を配筋することができる。  Reinforcing bars can be arranged by a method of arranging a reinforcing bar assembly on the inner surface of the form member and fixing the reinforcing bar to the reinforcing bar assembly.
また前記型枠部材の内側には鉄筋と鋼材とを空間をおいて交互に積み重ねるよ うに配置し、 前記鉄筋は型枠部材の内側面に配置した鉄筋組立材に固定され、 鋼 材は型枠部材の横断方向に固定されるようにしてもよい。 この場合は鋼材によつ て、 外圧による変形から型枠部材を保護する。 よって型枠部材を積み重ねる作業 において、 型枠部材が変形するのを防止する。  Further, inside the form member, a reinforcing bar and a steel material are arranged so as to be alternately stacked with a space therebetween, and the reinforcing bar is fixed to a reinforcing bar assembly material arranged on the inner surface of the form member, and the steel material is a formwork. It may be fixed in the transverse direction of the member. In this case, the steel member protects the formwork member from deformation due to external pressure. Therefore, in the work of stacking the form members, the form members are prevented from being deformed.
前記鉄筋として、 帯鉄筋及び中間鉄筋を使用することができる。  As the reinforcing bar, a band reinforcing bar and an intermediate reinforcing bar can be used.
帯鉄筋は、 せん断補強筋とも呼ばれ、 断面棒状あるいは板状であって、 型枠の 內面から離して設置するため、 帯鉄筋取付具を介して固定するのが望ましい。 帯 鉄筋をその内側に設置する鋼材 (鉄骨または鉄筋) と接触させない状態で中詰コ ンク リートを打設する。 The band reinforcement is also called a shear reinforcement and has a bar-shaped or plate-shaped cross-section. Since the reinforcement is installed away from the side of the formwork, it is desirable to fix the reinforcement through a band reinforcement. band Casting concrete without placing the rebar in contact with the steel (steel or rebar) installed inside.
帯鉄筋取付具は例えば、 Lアングルや小型の H鋼等を使用でき、 前記帯鉄筋を 支持するとともに、 型枠と帯鉄筋との間に適度な間隙を形成するものである。 中 詰コンクリート打設後はこの間隙がコンクリートのかぶりとなる。  For example, an L-angle, small H steel, or the like can be used as the band reinforcing bar, and supports the band reinforcing bar and forms an appropriate gap between the formwork and the band reinforcing bar. After casting concrete, this gap becomes concrete cover.
鉄骨は H形鋼が好適であるが、 L形鋼等の他の形状であっても使用可能であり、 これは前記基礎の上面から突出させた鉄骨やアンカ一に接続する。 また鉄骨のフ ランジ面等に突起を設けるとコンクリートの付着性が向上し、 コンクリートとの 一体性が得られる。 この突起は、 後付けのものは勿論、 これを製造段階で表面に 形成したものであってもよい。  The steel frame is preferably an H-beam, but other shapes such as an L-beam may be used, which connect to a steel frame or anchor protruding from the top surface of the foundation. In addition, if projections are provided on the flange surface of steel frame, etc., the adhesion of concrete is improved, and the integrity with concrete is obtained. This projection may be formed on the surface in the manufacturing stage, not to mention a post-installed one.
このように表面に突起を設けた鉄骨を使用することにより、 構造物のひび割れ 幅の抑制やじん性を改善することができる  By using a steel frame with projections on the surface in this way, it is possible to suppress the crack width of the structure and improve the toughness
さらに、 コンクリート構造物が中空である場合において、 前記プレキャス ト型 枠は前記鉄骨の外側に配置するプレキャスト外枠部材と、 前記鉄骨の內側に配置 するプレキャス ト内枠部材とにより構成され、 前記鉄筋用フレーム及び前記鉄筋 は前記プレキャスト外枠部材と前記プレキャス ト内枠部材の片方または両方に取 り付けてコンクリート構造物を築造することができる。  Further, when the concrete structure is hollow, the precast formwork is constituted by a precast outer frame member arranged outside the steel frame, and a precast inner frame member arranged on the 內 side of the steel frame. The concrete frame can be built by attaching the frame for use and the reinforcing bar to one or both of the precast outer frame member and the precast inner frame member.
前記型枠部材は、 通常、 工場等で製造され現場で組み立てられるものである。 また現場打ちコンクリートの硬化後は、 脱型をしないでそのまま構造物の一部を 構成する。 表面は化粧がされてもよく、 そのままでもよい。 この型枠部材は工業 製品であるので、 これを使用して構築される構造物の耐久性の確保、 美観の向上 を工場製造段階で実現することができる。  The form member is usually manufactured in a factory or the like and assembled on site. After the cast-in-place concrete is hardened, it will be part of the structure without demolding. The surface may be decorated or left alone. Since this formwork member is an industrial product, it is possible to secure the durability of the structure constructed using the formwork member and to improve the appearance at the factory manufacturing stage.
前記型枠部材は、 水セメント比カ s 2 0〜 6 0 %のセメント系モルタルとするこ とができる。 このような低水セメント比のモルタルを使用した場合には、 塩分、 二酸化炭素、 酸素、 水などの腐食因子の侵入に対する抵抗性が大きくなり、 構造 物の耐久性を向上させることができる。 The mold member may a water-cement ratio Ca s 2 0~ 6 0% of cementitious mortars and child. When a mortar having such a low water cement ratio is used, resistance to corrosion factors such as salt, carbon dioxide, oxygen, and water is increased, and the durability of the structure can be improved.
またこのモルタル製の型枠部材として、 スチールファイバ一、 ステンレスファ ィバー、 ァラミ ド、 ビニロン、 炭素繊維、 及びガラス繊維の群から選択される一 または二以上の補強材を混入したものが好適に用いられる。 ァラミ ドとは芳香族 ポリアミ ド繊維を示し、 鉄の 5倍以上の引張強度を有する。 炭素繊維はグラファ ィ ト状の炭素からできた例えば、 ポリアクリロニトリル系のものが使用できる。 このような補強材を混入することにより、 プレキャスト型枠の引長強度を増加さ せることができ、 さらに ¾面に突起を形成した鉄骨を使用することによりコンク リートと鉄骨の付着性、 一体性を向上させて、 構造物のひび割れ幅の抑制やじん 性を改善することができる。 Further, as the mortar mold member, one containing one or two or more reinforcing materials selected from the group consisting of steel fiber, stainless fiber, aramid, vinylon, carbon fiber, and glass fiber is preferably used. Can be Aramid is aromatic It is a polyamide fiber and has a tensile strength more than 5 times that of iron. As the carbon fiber, for example, a polyacrylonitrile-based carbon fiber made of graphite-like carbon can be used. By incorporating such a reinforcing material, the tensile strength of the precast formwork can be increased, and by using a steel frame with projections formed on the surface, the adhesion and integrity of the concrete and steel frame can be improved. And the crack width of the structure can be suppressed and the toughness can be improved.
上記のようにして強化された型枠部材を使用するときは、 通常、 鉄骨コンクリ 一ト構造で問題となるひび割れ幅が大きく、 変性が過大である等の問題を解決す ることができる。  When the form member reinforced as described above is used, problems such as a large crack width, which is a problem in the steel frame concrete structure, and excessive deformation can be solved.
またな脱型不要なコンクリート型枠及び組立の容易な鉄骨を併用すれば、 現場 における作業の大幅な省力化が図られる。 図面の簡単な説明  If a concrete formwork that does not need to be removed and a steel frame that is easy to assemble are used together, the labor at the site can be greatly reduced. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の方法により構築される橋脚の断面図である。  FIG. 1 is a sectional view of a pier constructed by the method of the present invention.
図 2は、 本発明の方法により構築される橋脚の半完成状態を示す斜視図である。 図 3は、 帯鉄筋を取り付けた型枠部材の内側面の一部を示す図である。  FIG. 2 is a perspective view showing a semi-finished state of a pier constructed by the method of the present invention. FIG. 3 is a diagram showing a part of the inner side surface of a form member to which a band reinforcing bar is attached.
図 4は、 帯鉄筋を取り付けた型枠部材の側面図である。  FIG. 4 is a side view of a form member to which a band reinforcing bar is attached.
図 5は、 補強材を加えた型枠部材の概念図である。  FIG. 5 is a conceptual diagram of a form member to which a reinforcing material is added.
図 6は、 実施例 2における施工順序を示すフロ一チヤ一トである。  FIG. 6 is a flowchart showing a construction order in the second embodiment.
図 7は、 実施例 2による橋脚の断面図である。  FIG. 7 is a sectional view of a pier according to the second embodiment.
図 8は、 鉄骨の建て込みを示す図である。  Figure 8 is a diagram showing the installation of a steel frame.
図 9は、 フーチングを形成した状態を示す断面図である。  FIG. 9 is a cross-sectional view showing a state in which footing has been formed.
図 1 0は、 型枠部材を積み重ねる工程を示す断面図である。 FIG. 10 is a cross-sectional view showing a step of stacking the form members.
図 1 1は、 型枠內にコンクリートを打設して橋脚の基礎を形成した状態を示す断 面図である。 FIG. 11 is a cross-sectional view showing a state in which concrete has been poured into formwork 內 to form the foundation of the pier.
図 1 2は、 鉄骨を継ぎ足す状態を示す断面図である。 FIG. 12 is a cross-sectional view showing a state where a steel frame is added.
図 1 3は、 基礎上に型枠部材を積み重ねる状態を示す断面図である。 FIG. 13 is a cross-sectional view showing a state in which mold members are stacked on a foundation.
図 1 4は、 プレキャス ト内型枠を積み重ねる状態を示す断面図である。 FIG. 14 is a cross-sectional view showing a state in which the precast inner forms are stacked.
図 1 5は、 配筋をした状態を示す断面図である。 図 1 6は、 ブレキャス ト型枠内にコンクリ一卜を打設した状態を示す断面図であ る。 FIG. 15 is a cross-sectional view showing a state in which reinforcing bars are arranged. FIG. 16 is a cross-sectional view showing a state in which a concrete is cast in a Brecast formwork.
図 1 7は、 完成した橋脚の断面図である。 Figure 17 is a cross-sectional view of the completed pier.
図 1 8は、 内側フレームにメッシュ鉄筋を固定した状態を示す図である。 FIG. 18 is a diagram showing a state where a mesh reinforcing bar is fixed to the inner frame.
図 1 9は、 内側フレームに帯鉄筋を固定した状態を示す図である。 FIG. 19 is a diagram showing a state in which a belt reinforcing bar is fixed to the inner frame.
図 2 0は、 外側フレームを取り付けた状態を示す図である。 FIG. 20 is a diagram showing a state where the outer frame is attached.
図 2 1は、 外側フレームに鉄筋を取り付けた状態を示す図である。 FIG. 21 is a diagram showing a state where a reinforcing bar is attached to the outer frame.
図 2 2は、 中間鉄筋を取り付けた状態を示す図である。 FIG. 22 is a diagram showing a state where an intermediate reinforcing bar is attached.
図 2 3は、 実施例 3における施工順序を示すフローチヤ一トである。 FIG. 23 is a flowchart showing a construction order in the third embodiment.
図 2 4は、 実施例 3における施工順序を示す図であり、 (a ) は鉄骨の建て込み、FIG. 24 is a diagram showing the construction order in the third embodiment.
( b ) はフーチングの施工、 (c ) は型枠部材の設置、 (d ) はコンクリートの 打設、 (e ) は完成した橋脚をそれぞれ示す図である。 (b) is the footing construction, (c) is the installation of formwork members, (d) is the placement of concrete, and (e) is the diagram showing the completed pier.
図 2 5は、 型枠部材を示す図であり、 (a ) はその平面図、 (b ) はその正面図、FIGS. 25A and 25B are views showing a mold member, wherein FIG. 25A is a plan view thereof, FIG.
( c ) はその側面図である。 (c) is a side view thereof.
図 2 6は、 型枠部材内の鉄筋及び銅材の組立順序を示す図であり、 (a ) は内部 に鋼材を配置した状態を示す図、 (b ) は鋼材に鉄筋を固定した状態.を示す図、Fig. 26 is a diagram showing the order of assembling the reinforcing steel and copper material in the formwork member, (a) showing the state where the steel material is arranged inside, and (b) showing the state where the reinforcing steel is fixed to the steel material. Figure showing
( c ) は形状保持鋼材を配した状態を示す図、 (d ) は鉄筋及び鋼材を積層して 完成した型枠部材を示す図である。 (c) is a diagram showing a state in which a shape-retaining steel material is arranged, and (d) is a diagram showing a formwork member completed by laminating a reinforcing bar and a steel material.
図 2 7は、 実施例 3における施工途中の橋脚の斜視図である。 FIG. 27 is a perspective view of a pier in the middle of construction according to the third embodiment.
図 2 8は、 試験例 1における荷重 Pの位置を示す図である。 FIG. 28 is a diagram showing the position of the load P in Test Example 1.
図 2 9は、 試験体 1の断面図である。 FIG. 29 is a cross-sectional view of the specimen 1.
図 3 0は、 試験体 2の断面図である。 FIG. 30 is a cross-sectional view of the test piece 2.
図 3 1は、 試験体 3の断面図である。 FIG. 31 is a cross-sectional view of the test piece 3.
図 3 2は、 荷重 Pを負荷した試験体 1のひび割れを示す図である。 FIG. 32 is a diagram showing cracks of the test piece 1 to which the load P is applied.
図 3 3は、 荷重 Pを負荷した試験体 2のひび割れを示す図である。 FIG. 33 is a diagram showing cracks of the test piece 2 to which the load P is applied.
図 3 4は、 荷重 Pを負荷した試験体 3のひび割れを示す図である。 FIG. 34 is a diagram showing cracks of the test piece 3 to which the load P is applied.
図 3 5は、 試験体 1から 3の曲げせん断試験におけるひび割れ幅を示す図である c 図 3 6は、 試験体 1から 3の曲げせん断試験におけるじん性率を示す図である。 図 3 7は、 試験体 4の構造を示す断面図である。 図 3 8は、 試験体 5の構造を示す断面図である。 Fig. 35 is a diagram showing the crack width of the test pieces 1 to 3 in the bending-shear test. C Fig. 36 is a view showing the toughness factor of the test pieces 1 to 3 in the bending-shear test. FIG. 37 is a cross-sectional view showing the structure of the test piece 4. As shown in FIG. FIG. 38 is a cross-sectional view showing the structure of the test piece 5. As shown in FIG.
図 3 9は、 試験例 2を実施する装置を示す図である。 FIG. 39 is a diagram showing an apparatus for performing Test Example 2.
図 4 0は、 試験体 4の裁荷点水平変位を示す図である。 FIG. 40 is a diagram showing the horizontal displacement of the specimen 4 at the unloading point.
図 4 1は、 試験体 5の裁荷点水平変位を示す図である。 FIG. 41 is a diagram showing the horizontal displacement of the specimen 5 at the unloading point.
図 4 2は、 試験体 4と試験体 5の荷重と変位の関係を示す図である。 発明を実施するための最良の形態 FIG. 42 is a diagram showing the relationship between the load and the displacement of the test pieces 4 and 5. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好適具体例を図面に基づいて説明する。  Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
〔実施例 1〕  (Example 1)
本発明の実施例を図 1から図 5に基づいて説明する。 ここではコンクリート構 造物を橋脚とした場合を説明する。  An embodiment of the present invention will be described with reference to FIGS. Here, the case where a concrete structure is used as a pier will be described.
図 1に示すように、 環状の型枠部材 1を複数、 積み上げることによってプレキ ヤスト型枠 9の表面が外壁となる橋脚 Aが形成されていくが、 まずその施工工程 から説明する。  As shown in FIG. 1, a plurality of annular formwork members 1 are stacked to form a pier A in which the surface of the precast formwork 9 becomes an outer wall. First, the construction process will be described.
なお、 この実施例では筒状のコンクリート製のプレキャス ト材 7が、 積層され た環状の型枠部材 1の内側に設けられる。 このプレキャスト材 7及び鉄骨 4は、 以下の施工を行う前に予め基礎 2の中央部分に立設される。 ただしこのプレキヤ スト材 7の設置は必須の工程ではなく、 また後述する鉄骨 4の建て込み終了後に 設けることとしてもよレ、。 なお、 前記プレキャスト材 7の内径は 3 . 1メートノレ、 厚みは 0 . 1メートルである。  In this embodiment, a cylindrical precast material 7 made of concrete is provided inside the laminated annular form member 1. The precast material 7 and the steel frame 4 are erected in the center of the foundation 2 before performing the following construction. However, the installation of the precast material 7 is not an indispensable process, and may be performed after the completion of the steel frame 4 to be described later. The inner diameter of the precast material 7 is 3.1 meters, and the thickness is 0.1 meters.
前記型枠部材 1は、 工場において予め製造され、 湾曲した板を接合して一体の 環状体としたものである。 その断面は円形であり、 直径は 4 . 5メートル、 高さ が 2 . 5メートル、 厚みが 5センチメートルとなっている。 この型枠部材 1は、 水セメント比カ s 2 0 %ないし 6 0 %のセメント系モルタルであるとともに、 図 5 に示すように、 ステンレスファイバー製の補強材 8を、 体積比で 1 %ないし 4 % 混入してある。  The form member 1 is manufactured in advance in a factory, and is formed by joining curved plates to form an integral annular body. Its cross section is circular, 4.5 meters in diameter, 2.5 meters in height and 5 cm in thickness. The form member 1 is a cement-based mortar having a water-cement ratio of 20% to 60%, and as shown in FIG. % It is mixed.
また型枠部材 1は、 図 3 , 4に示すように、 その内周面に所定間隔をおいて吊 り下げ用の縦平銅 3 5が設けられている。 この平鋼 3 5の先端には穴 3 6が設け られ、 この穴 3 6にフックを揷通させ、 ク レーン (図示せず) で吊り下げて、 基 W 1 „ 礎 2の上に順次積み重ねることが可能である。 型枠部材 1を複数積み上げること により、 所望の高さのコンクリ一ト型枠 Aを得ることができる。 Further, as shown in FIGS. 3 and 4, the mold member 1 is provided with vertical copper bars 35 for suspension at predetermined intervals on the inner peripheral surface thereof. A hole 36 is provided at the tip of the flat steel 35, a hook is passed through the hole 36, and the hook is suspended by a crane (not shown). W 1 „It is possible to sequentially stack them on the foundation 2. By stacking a plurality of form members 1, a concrete form A having a desired height can be obtained.
なお、 型枠部材 1について、 積み重ね作業を行う前、 あるいはその作業に平行 して型枠部材 1内部の鉄筋を設営する。  Before or concurrently with the stacking work of the formwork member 1, the reinforcing bars inside the formwork member 1 are set up.
鉄筋は次のようにして配筋される。 前記型枠部材 1の内面には図 4に示すよう に、 L型鋼材で形成した取り付け帯鉄筋固定具 5 aが 1 . 2メートル間隔で取り 付けられている。 この帯鉄筋固定具 5 aは、 型枠部材 1の内側円周方向に一定間 隔で設けたリング状の横平鋼 3 7の上に固定される。 この帯鉄筋固定具 5 aには、 図 4に示すように所定の間隔をおいて高さ方向に組立鉄筋 6が取り付けられてい る。 この組立鉄筋 6に直交するように、 水平方向に帯鉄筋 3が取り付けられ、 鉄 筋は格子状に配される。 この帯鉄筋 3は略 1 5センチメートル間隔で設けられる。 この工程と前後して前記プレキャスト材 7の周囲に鉄骨 4を立設する。 前記基 礎 2には予めアンカ一として鉄骨 4と同等以上の構造体 (図示せず) が埋設され ており、 この構造体に鉄骨 4をボルト締めで接続する。 鉄骨 4は H銅 (H— 3 1 8 X 3 1 3 X 1 5 X 2 4 ) が使用されており、 そのフランジ面に長手方向と直角 方向に高さ 2 . 1 ミリメートル、 2 0ミリメートルピッチの突起を設けて表面に 凹凸を形成している。 そして、 この鉄骨 4を図 1に示すように、 帯鉄筋 3及びプ レキャスト材 7のいずれにも接触しない位置に建て込む。 この鉄骨 4を立設する 工程は前記型枠部材 1の積み重ね工程あるいはプレキャス ト材 7の設営工程とそ の施工の前後は問わない。  Reinforcing bars are arranged as follows. As shown in FIG. 4, mounting strip reinforcing bars 5a made of an L-shaped steel material are attached to the inner surface of the mold member 1 at intervals of 1.2 meters. The belt reinforcing bar fixing device 5 a is fixed on a ring-shaped horizontal flat steel 37 provided at regular intervals in the inner circumferential direction of the form member 1. As shown in FIG. 4, assembled reinforcing bars 6 are attached to the belt reinforcing bar fixture 5a at predetermined intervals in the height direction. The strip reinforcing bar 3 is attached horizontally so as to be orthogonal to the assembled reinforcing bar 6, and the reinforcing bars are arranged in a lattice shape. The reinforcing bars 3 are provided at intervals of about 15 cm. Before or after this step, a steel frame 4 is erected around the precast material 7. A structure (not shown) equal to or more than the steel frame 4 is embedded in the base 2 as an anchor in advance, and the steel frame 4 is connected to this structure by bolting. The steel frame 4 is made of H copper (H-318 x 3 13 x 15 x 24), and its flange surface has a height of 2.1 mm and a pitch of 20 mm in the direction perpendicular to the longitudinal direction. Protrusions are formed on the surface to provide projections. Then, as shown in FIG. 1, the steel frame 4 is erected at a position where it does not come into contact with any of the band reinforcing bar 3 and the precast material 7. The process of erecting the steel frame 4 does not matter before or after the process of stacking the formwork member 1 or the process of setting the precast material 7 and before and after the process.
以上の施工が完了すると、 橋脚は図 2に示すような半完成状態になる。 このェ 程では、 型枠部材 1と鉄骨 4を必要な数だけ接続して所望の高さとする。 その後、 前記プレキャスト材 7と積み上げた型枠部材 1 との間にコンクリ一トを打設する。 コンクリートが硬化したらプレキャスト型枠 9を脱型することなく、 コンクリ一 ト橋脚が完成する。  When the above construction is completed, the pier will be in a semi-finished state as shown in Figure 2. In this step, the required number of form members 1 and steel frames 4 are connected to each other to obtain a desired height. Then, a concrete is cast between the precast material 7 and the stacked formwork members 1. When the concrete hardens, the concrete pier is completed without removing the precast formwork 9.
このようにして構築されたコンクリ一ト橋脚 Aは、 プレキャス ト型枠 9を使用 し、 併せて鉄骨に突起を設けたことで、 ひび割れ幅を鉄筋コンクリート構造の場 合と同程度、 またはそれ以下に抑えることが可能となり、 橋脚の変形量も少なく することができた。 また優れた耐震性を有するものと期待される。 〔実施例 2〕 The concrete pier A constructed in this way uses the precast formwork 9 and also has a projection on the steel frame, so that the crack width is about the same as or less than that of the reinforced concrete structure. As a result, the amount of deformation of the pier was reduced. It is also expected to have excellent earthquake resistance. (Example 2)
図 6は、 コンクリート橋脚の施工方法を示すフローチャートである。 先ずこの フローチヤ一トに基づいて施工順序を説明する。  FIG. 6 is a flowchart showing a method of constructing a concrete pier. First, the construction order will be described based on this flowchart.
この施工では、 最初に組み立てヤードや製造工場などで枠状の型枠部材 1 0を 必要な数だけ形成する (ステップ 1 ) 。 次に、 これらの型枠部材 1 0に、 図 7に 示す鉄筋用フレーム 1 4を介して、 帯鉄筋 1 1を取り付ける (ステップ 2 ) 。 上記ステップ 1, 2と並行して、 あるいはその後に、 コンクリート橋脚 1の施 ェ現場において、 H型鋼などの鉄骨 1 2を建て込む (ステップ 3 ) 。 この鉄骨 1 2の周囲にプレキャスト型枠部材 1 0を設置する (ステップ 4 ) 。 その後、 支保 ェ (図示せず) を組み立てる (ステップ 5 ) 。  In this construction, first, a required number of frame-shaped form members 10 are formed in an assembly yard or a manufacturing factory (step 1). Next, the belt reinforcing bar 11 is attached to these form members 10 via the reinforcing bar frame 14 shown in FIG. 7 (step 2). In parallel with or after steps 1 and 2 above, a steel frame 12 such as an H-beam is erected at the concrete pier 1 construction site (step 3). A precast form member 10 is set around the steel frame 12 (step 4). Then, a support (not shown) is assembled (step 5).
以下、 上述のステップ 4の型枠部材 1 0の設置、 及びステップ 5の支保ェの組 立を所定数 m回にわたり繰り返して行うことにより、 プレキャス ト型枠部材 1 0 を順次積み上げて所定の高さにする。  Hereinafter, by repeatedly performing the above-described installation of the form member 10 in step 4 and the assembling of the support in step 5 a predetermined number of times, the precast form members 10 are sequentially stacked to a predetermined height. To
次に、 積み上げられたプレキャス ト型枠部材 1 0内にコンクリート 1 3を打設 する (ステップ 6 ) 。  Next, concrete 13 is poured into the stacked precast form members 10 (step 6).
このようにして、 コンクリート橋脚 B (図 7参照) の一部分を所定の高さまで 施工した後、 上述のステップ 3の鉄骨 1 2の建て込み〜ステップ 6のコンクリー ト打設を所定回数 nだけ繰り返して行うことにより、 コンクリート橋脚 1が完成 する (ステップ 7 ) 。  In this way, after a part of concrete pier B (see Fig. 7) has been constructed to the specified height, the above-mentioned step 3 of setting up the steel frame 12 and the concrete placing of step 6 are repeated a predetermined number of times n. By doing so, concrete pier 1 is completed (step 7).
なお、 比較的低いコンクリート橋脚の場合は、 鉄骨 1 2を一段とし、 この鉄骨 1 2の周囲に所定数の型枠部材 1 0を積み上げてから、 コンクリート 1 3を打設 することによりコンクリート橋脚 1を完成することもできる。 これは、 上述の n を 1とした場合である。  In the case of a relatively low concrete pier, the steel frame 12 is made into one step, a predetermined number of form members 10 are stacked around the steel frame 12, and then concrete 13 is poured into the concrete pier. Can be completed. This is the case where n is 1 as described above.
図 7は、 上述の施工方法を適用して築造されるコンクリート橋脚 Bの横断面を 示す。 このコンクリート橋脚 Bの型枠部材 1 0は、 枠状、 本実施例では 4角形の プレキャスト外枠部材 1 0 aと、 このプレキャスト外枠部材 1 0 aの內側に配置 されるプレキャスト內枠部材 1 0 bによって構成され、 これらのプレキャスト外 枠部材 1 0 aとプレキャスト內枠部材 1 0 bとの間に所定数の H形鋼である鉄骨 1 2が配置されている。 ブレキャスト外枠部材 1 0 a及びプレキャス ト內枠部材 1 0 bは、 コンクリー ト橋脚 Bの外壁となるものであり、 コンクリート又はモルタルによって 4角形に 形成されている。 このプレキャスト外枠部材 1 0 a及びプレキャスト內枠部材 1 0 bは、 上述のように組み立てャ一ドゃ製造工場等において予め複数に分割して 製造し、 これらの分割片を接続して一体の枠状体として形成することができる。 そして、 その断面形状は本実施例では 4角形としたが、 円形、 楕円形、 多角形 など任意の形状にすることができる。 また、 本実施例では、 プレキャス ト内枠部 材 1 0 bの外周側に鉄筋用フレーム 1 4が適宜な間隔で複数設けられ、 これらの 鉄筋用フレーム 1 4に帯鉄筋 1 1が取り付けられている。 鉄筋用フレーム 1 4及 び帯鉄筋 1 1の構造及び取り付け方法については後述する。 Figure 7 shows a cross section of a concrete pier B constructed by applying the above construction method. The form member 10 of the concrete pier B is a frame-shaped, in this embodiment, a quadrilateral precast outer frame member 10a, and a precast frame member 1 arranged on one side of the precast outer frame member 10a. A predetermined number of H-shaped steel frames 12 are arranged between the precast outer frame member 10a and the precast frame member 10b. The outer cast frame member 10a and the precast frame member 10b serve as the outer walls of the concrete pier B, and are formed in a rectangular shape by concrete or mortar. The precast outer frame member 10a and the precast frame member 10b are divided into a plurality of pieces in advance in an assembly card manufacturing plant or the like as described above, and these divided pieces are connected to form an integrated body. It can be formed as a frame. The cross-sectional shape is a quadrangle in the present embodiment, but may be any shape such as a circle, an ellipse, and a polygon. Further, in the present embodiment, a plurality of reinforcing steel frames 14 are provided at appropriate intervals on the outer peripheral side of the precast inner frame member 10b, and the belt reinforcing steel 11 is attached to these reinforcing steel frames 14. I have. The structure and mounting method of the reinforcing bar frame 14 and the belt reinforcing bar 11 will be described later.
図 8〜図 1 7は、 上述のコンクリート橋脚 Bの施工手順を示す。 なお、 型枠部 材 1 0は予め製造されているものとする。 ここでは、 まず図 8に示すように、 コ ンクリ一ト橋脚 Bの基礎段 2 1に H形銅などの鉄骨 1 2の定着部分を建て込む。 次に、 図 9に示すようにフ一チング 2 2を形成するコンク リートを打設する。 続 いて、 図 1 0に示すようにフ一チング 2 2上に所定数、 本実施例では 2個のプレ キャス ト外枠部材 1 0 aを積み重ねて設置する。 その後、 図 1 1に示すように積 み重ねたプレキャスト外枠部材 1 0 a、 1 0 a内にコンクリート 1 3を打設すれ ば、 コンクリート橋脚 Bの基礎となる中実部分が完成する。  Fig. 8 to Fig. 17 show the construction procedure of the concrete pier B mentioned above. It is assumed that the mold member 10 is manufactured in advance. Here, first, as shown in Fig. 8, the anchoring portion of steel frame 12 such as H-shaped copper is erected on the foundation step 21 of concrete pier B. Next, as shown in FIG. 9, a concrete for forming the fitting 22 is cast. Subsequently, as shown in FIG. 10, a predetermined number, in this embodiment, two, of the precast outer frame members 10a are stacked and installed on the fitting 22. After that, as shown in Fig. 11, if concrete 13 is poured into the stacked precast outer frame members 10a, 10a, the solid part which becomes the foundation of the concrete pier B is completed.
次に、 図 1 2に示すように鉄骨 1 2上にさらに鉄骨 1 2を継ぎ足して、 ボルト 等の連結手段で結合する。 続いて、 図 1 3に示すように設置済みのプレキャス ト 外枠部材 1 0 a上に、 さらに所定数のプレキャスト外枠部材 1 0 aを上乗せして から、 図 1 4に示すように、 鉄骨 1 2の内側にプレキャス ト内枠部材 1 0 bを所 定数だけ積み重ねて配置する。 このプレキャス ト內枠部材 1 0 bには、 後述のよ うに帯鉄筋 1 1が取り付けられている。  Next, as shown in FIG. 12, a steel frame 12 is further added to the steel frame 12 and connected by a connecting means such as a bolt. Subsequently, a predetermined number of precast outer frame members 10a are additionally placed on the precast outer frame members 10a already installed as shown in FIG. 13, and then, as shown in FIG. A precast inner frame member 10b is stacked inside by a certain number and placed inside 12. A strip reinforcing bar 11 is attached to the precast frame member 10b as described later.
次に、 図 1 5に示すようにプレキャスト外枠部材 1 0 a とプレキャス ト内枠部 材 1 0 bとを、 例えば棒状の連結部材 2 4で連結する。 この連結部材 2 4は、 棒 状部材以外に等辺山型鋼、 溝型鋼等の鋼材を使用できる。 このように連結部材 2 4で連結することにより、 プレキャス ト外枠部材 1 0 a及びプレキャスト內枠部 材 1 0 b力 S、 コンクリート 1 3がもたらす側圧で撓むのを防止できる。 次に、 図 1 6に示すように、 プレキャス ト外枠部材 1 0 aとプレキャス ト内枠部材 1 0 b との間に、 コンクリート 1 3を打設する。 Next, as shown in FIG. 15, the precast outer frame member 10a and the precast inner frame member 10b are connected by, for example, a bar-shaped connecting member 24. The connecting member 24 can be made of a steel material such as an equilateral mountain steel or a groove steel other than the rod-shaped member. By connecting with the connecting member 24 in this way, it is possible to prevent the precast outer frame member 10a, the precast / frame member 10b force S, and the lateral pressure caused by the concrete 13 from bending. Next, As shown in 16, concrete 13 is cast between the precast outer frame member 10a and the precast inner frame member 10b.
以下同様にして、 鉄骨 1 2の建て込み、 プレキャス ト外枠部材 1 0 a及びプレ キャス ト內枠部材 1 0 bの設置及びコンクリート 1 3の打設を繰り返すことによ り、 図 1 7に示すように、 コンクリート橋脚 Bを完成することができる。  In the same way, by repeatedly installing the steel frame 12, installing the precast outer frame member 10a and the precast frame member 10b, and pouring concrete 13 in the same manner, Figure 17 As shown, concrete pier B can be completed.
図 1 8〜図 2 2は、 プレキャスト内枠部材 1 0 bに上述の鉄筋用フレーム 1 4 及び鉄筋 1 1を取り付ける手順を示す。 ここでは、 鉄筋用フレーム 1 4を 4角形 とし、 これを縦に 2分割した場合について説明する。 まず、 図 1 8に示すように プレキャスト内枠部材 1 0 bの外周面に、 適宜な方法で鉄筋用フレーム 1 4の片 方の内側フレーム 1 4 aを固定する。 内側フレーム 1 4 aはコ字状であり、 縦辺 部分にメッシュ筋 2 5が設けられている。 このメッシュ筋 2 5は、 帯鉄筋 1 1の ピッチを正確に保つと共に、 帯鉄筋 1 1の組立を容易にするために取り付けられ る。  FIG. 18 to FIG. 22 show a procedure for attaching the above-described reinforcing bar frame 14 and reinforcing bar 11 to the precast inner frame member 10b. Here, a description will be given of a case where the reinforcing bar frame 14 is a quadrangle and is vertically divided into two. First, as shown in FIG. 18, one inner frame 14a of the reinforcing bar frame 14 is fixed to the outer peripheral surface of the precast inner frame member 10b by an appropriate method. The inner frame 14a has a U-shape, and mesh streaks 25 are provided on the vertical sides. The mesh bars 25 are attached to maintain the pitch of the band reinforcing bars 11 accurately and to facilitate the assembly of the band reinforcing bars 11.
次に、 図 1 9に示すようにメッシュ筋 2 5に複数の帯鉄筋 1 1を取り付ける。 続いて、 図 2 0に示すように内側フレーム 1 4 aに他方の外側フレーム 1 4 bを 取り付ける。 この外側フレーム 1 4 bにもメッシュ筋 2 6が設けられている。 次 に、 図 2 1に示すように外側フレーム 1 4 bのメッシュ筋 2 6に帯鉄筋 1 1を取 り付け、 さらに図 2 2に示すように內側フレーム 1 4 aの帯鉄筋 1 1と、 外側フ レーム 1 4 bの帯鉄筋 1 1 とを中間鉄筋 2 7で連結する。 これにより鉄筋用フレ —ム 1 4と、 帯鉄筋 1 1及び中間鉄筋 2 7との取り付けが完了する。  Next, as shown in FIG. 19, a plurality of belt reinforcing bars 11 are attached to the mesh bars 25. Subsequently, the other outer frame 14b is attached to the inner frame 14a as shown in FIG. The outer frame 14 b is also provided with a mesh streak 26. Next, as shown in Fig. 21, the strip reinforcing bar 11 is attached to the mesh bar 26 of the outer frame 14 b, and as shown in Fig. 22, the strip reinforcing bar 11 of the upper frame 14 a is The intermediate reinforcing bar 27 is connected to the belt reinforcing bar 11 of the outer frame 14 b. This completes the installation of the reinforcing bar frame 14, the belt reinforcing bar 11 and the intermediate reinforcing bar 27.
本発明に係るコンクリート橋脚の施工方法は、 型枠部材 1 0であるブレキャス ト内枠部材 1 0 bに、 予め鉄筋用フレーム 1 4を介して鉄筋 1 1を取り付けてか ら積み上げるので、 鉄筋 1 1の取り付けが容易になる。 また現場における鉄筋 1 1の組立作業及び型枠の解体が不要なので、 作業工数の低減、 及ぴェ期の短縮が 可能となる。 さらに高所における鉄筋組立作業が省略され、 作業の安全性が向上 する。  The method for constructing a concrete pier according to the present invention is as follows. Since the reinforcing bar 11 is previously attached to the inner frame member 10b, which is the form member 10, via the reinforcing bar frame 14 and then piled up. Installation of 1 becomes easy. In addition, since it is not necessary to assemble the rebar 11 and disassemble the formwork at the site, it is possible to reduce the number of work steps and the time required for delivery. In addition, rebar assembly work at high places is omitted, and work safety is improved.
また、 プレキャス ト内枠部材 1 0 bに鉄筋用フレーム 1 4を設け、 この鉄筋用 フレーム 1 4の内側フレーム 1 4 aに帯鉄筋 1 1を取り付けたので、 帯鉄筋 1 1 の取り付けが容易になる。 この鉄筋用フレーム 1 4を設けたことにより、 プレキ n ヤス ト型枠 1 0を吊り上げる際、 これが変形しにく くなり所定形状が保持できる。 なお、 本実施例では鉄筋用フレーム 1 4及び帯鉄筋 1 1をプレキャス ト內枠部 材 1 0 bに取り付けたが、 これをプレキャスト外枠部材 1 0 aに取り付けること もできる。 さらに型枠部材 1 0の設置工程、 鉄骨 1 2の建て込み工程は、 適宜入 れ替えて実施できる。 In addition, a reinforcing bar frame 14 is provided on the precast inner frame member 10b, and the reinforcing bar 11 is mounted on the inner frame 14a of the reinforcing bar frame 14, so that the mounting of the reinforcing bar 11 is easy. Become. By providing this reinforcing bar frame 14, When lifting the n -type form 10, it is difficult to deform, and the predetermined shape can be maintained. Although the reinforcing bar frame 14 and the band reinforcing bar 11 are attached to the precast frame member 10b in the present embodiment, they can be attached to the precast outer frame member 10a. Further, the step of installing the form member 10 and the step of erection of the steel frame 12 can be replaced with each other as appropriate.
〔実施例 3〕  (Example 3)
図 2 3は、 実施例 3のコンクリート撟脚の施工方法を示すフローチヤ一トであ る。 先ず、 このフローチャート及び図 2 4に基づいて施工の概要を説明する。 フーチング 2 2の施工では、 橋脚の施工場所を掘削し、 複数の H形鋼等の鉄骨 1 2を建て込み、 コンクリートを打設して橋脚 Cの基礎を形成する。  FIG. 23 is a flowchart showing a method of constructing a concrete leg according to the third embodiment. First, an outline of the construction will be described based on this flowchart and FIG. In the construction of footing 22, the pier construction site is excavated, a plurality of steel frames 12 such as H-beams are erected, and concrete is cast to form the foundation of pier C.
型枠部材 1 0の組立は、 フーチング 2 2の施工の作業と並行してを実施し、 こ れは工場、 または施工場所近くのヤードにおいて行う。 型枠部材 1 0の内側には、 所定の鉄筋、 銅材を配して施工に必要な個数を製造する。  The assembling of the formwork member 10 is performed in parallel with the work of the footing 22, which is performed in a factory or a yard near the construction site. Predetermined reinforcing bars and copper materials are arranged inside the formwork member 10 to manufacture the required number of pieces for construction.
橋脚 Cの施工では、 鉄骨 1 2に沿って下方から順次型枠部材 1 0を積み上げる。 型枠部材 1 0同士を、 ボルト等を用いて締結してプレキャスト型枠 9を形成した 後、 ポンプ車からコンクリート圧送管 Pを通して、 プレキャス ト型枠 9の内部に コンクリートを打設する。 この作業を必要回数 nに!:つて繰り返し、 橋脚 Cを所 定の高さまで構築して施工が完了する。  In the construction of pier C, formwork members 10 are sequentially stacked from below along steel frames 12. After forming the precast form 9 by fastening the form members 10 together with bolts or the like, concrete is poured into the precast form 9 through a concrete pumping pipe P from a pump truck. This work is required n times! : Repeat and build the pier C to the specified height to complete the construction.
以下、 図 2 3〜図 2 4に基づいて各工程をさらに詳しく説明する。  Hereinafter, each step will be described in more detail with reference to FIGS.
(フーチングの施工)  (Construction of footing)
図 2 4 ( a ) のように、 コンクリート橋脚 Cの施工現場において、 所定の深さ にわたり地盤 Gを掘削する。 掘削面であって型枠部材の内側となる範囲に、 H形 鋼 1 2を 1 0本を建て込む。 H形鋼 1 2の周囲には図示しない鉄筋を配して、 さ らにこれらの H形銅 1 2と鉄筋の周囲にコンクリ一ト型枠を組み立てて配置し、 コンク リート型枠 9內にコンクリートを打設する。 鉄骨 1 2は、 フランジ部に突 起が形成された H形鋼を使用する。  As shown in Fig. 24 (a), at the construction site of concrete pier C, ground G is excavated to a predetermined depth. 10 H-beams 12 are erected on the excavated surface and inside the formwork members. A reinforcing bar (not shown) is arranged around the H-shaped steel 12 and a concrete formwork is assembled and arranged around the H-shaped copper 12 and the reinforcing bar. Pour concrete. For the steel frame 12, an H-section steel with a protrusion formed on the flange is used.
図 2 4 ( b ) のように、 コンクリートが硬化してフ一チングが形成されたら掘 削部分を埋め戻す。  As shown in Fig. 24 (b), when the concrete hardens and the fitting is formed, the excavated part is backfilled.
(型枠部材の組立) i2 上記のフ一チングの施工と同時に、 施工現場以外の場所、 例えば組み立てヤー ドゃ製造工場などで、 図 2 5に示す枠状の型枠部材 1 0を必要な数だけ形成する (ステップ 1 ) 。 型枠部材 1 0は、 短辺と長辺の比が約 1 : 2の長方形の枠体で、 所定の高さを有して形成される。 (Assembly of form members) i2 At the same time as the above-mentioned fitting, the required number of frame-shaped form members 10 shown in Fig. 25 are formed in a place other than the construction site, for example, in an assembly yard ゃ a manufacturing factory (step 1). ). The form member 10 is a rectangular frame having a short side to long side ratio of about 1: 2, and is formed with a predetermined height.
これらのプレキャスト型枠部材 1 0に、 鉄筋組立鋼材 4 0を介して帯鉄筋 1 1 を取り付ける (ステップ 2 ) 。 鉄筋組立鋼材 4 0は、 枠状の型枠部材 1 0の内周 面に所定間隔をおいて配置した溝形鋼または山形鋼である。 この鉄筋組立鋼材 4 0は、 型枠部材 1 0に対して垂直方向に所定間隔をおいて 8個所に設けられてい る。 フレーム状の帯鉄筋 1 1は鉄筋組立鋼材 4 0に溶接等の手段によって固定さ れ、 その帯鉄筋 1 1を横断し、 帯鉄筋 1 1と互いに格子状になるように交差する 中間鉄筋 2 7を配する。 この帯鉄筋 1 1と中間鉄筋 2 7はそれぞれ単体のものを 組立てもよく、 また予め餅網状に組み上げておいたものを鉄筋組立鋼材 4 0に固 定してもよレ、。  A belt reinforcing bar 11 is attached to these precast form members 10 via a reinforcing steel assembly 40 (step 2). The steel rebar assembly steel material 40 is a channel steel or an angle steel that is disposed at a predetermined interval on the inner peripheral surface of the frame-shaped form member 10. The rebar-assembled steel materials 40 are provided at eight locations at predetermined intervals in the vertical direction with respect to the form member 10. The frame-shaped reinforcing bar 11 is fixed to the reinforcing steel assembly 40 by welding or the like, and crosses the reinforcing bar 11 and intersects with the reinforcing bar 11 in a grid pattern. Distribute. The strip reinforcing bar 11 and the intermediate reinforcing bar 27 may be assembled as a single unit, or those previously assembled in a rice cake net shape may be fixed to the reinforcing bar assembled steel material 40.
なお、 型枠部材 1 0を形成する枠状部は、 端部のコ字状体 4 3と、 二つのコ字 状体を連結している直線体 4 4とを接合することにより組み立てられる。 これら の接合するには、 前記鉄筋組立鋼材 4 0に接してジョイン ト鋼材 4 2を設け、 こ れら鉄筋組立鋼材 4 0とジョイント鋼材 4 2を互いにボルトにて締結する。  The frame-shaped portion forming the form member 10 is assembled by joining the U-shaped body 43 at the end and the linear body 44 connecting the two U-shaped bodies. To join them, a joint steel member 42 is provided in contact with the reinforcing steel member 40, and the reinforcing steel member 40 and the joint steel member 42 are fastened to each other by bolts.
一方、 溝形鋼または山形鋼である形状保持鋼材 4 1を、 型枠部材の長手方向に 1本、 短手方向に 3本をそれぞれ配置する。 これらは図 2 6 ( d ) のように、 前 記帯鉄筋 1 1及び中間鉄筋 2 7と交互に積み重ねるように配置される。  On the other hand, one shape-retaining steel material 41, which is a channel steel or an angle iron, is arranged in the longitudinal direction of the formwork member, and three in the lateral direction. These are arranged so as to be alternately stacked with the above-mentioned belt reinforcing bars 11 and intermediate reinforcing bars 27 as shown in FIG. 26 (d).
なお、 帯鉄筋 1 1等と形状保持鋼材 4 0は、 図 2 7のように、 型枠部材 1 0を 積み重ねる際に H形鋼に接触しない位置に配置する。  Note that, as shown in FIG. 27, the strip reinforcing bar 11 and the like and the shape-retaining steel material 40 are arranged at positions where they do not come into contact with the H-shaped steel when the form members 10 are stacked.
形状保持鋼材 4 1は、 型枠部材 1 0の横断方向に配置され、 吊り上げ時の型枠 部材 1 0の変形防止及びコンクリート打設時の側圧による変形の両方を防止し、 後者は、 一般にコンクリ一ト型枠に使用されるセパレ一タと同様の機能を果たす ことになる。  The shape-retaining steel material 41 is arranged in the transverse direction of the form member 10 to prevent both deformation of the form member 10 at the time of lifting and deformation due to lateral pressure at the time of placing concrete, and the latter is generally used in concrete. It will perform the same function as the separator used for a single formwork.
(脚柱部の施工)  (Construction of pillar)
次に、 図 2 4 ( c ) 〜 (d ) に示すように、 鉄骨 1 2の周囲に、 プレキャス ト 型枠部材 1 0を順次積み上げて所定の高さにして、 積み上げられたプレキャス ト 型枠部材 1 0内にコンク リート 1 3を打設する。 Next, as shown in FIGS. 24 (c) to (d), the precast form members 10 are sequentially stacked around the steel frame 12 to a predetermined height, and the stacked precast Pour concrete 13 into form member 10.
このようにして、 コンクリート橋脚 Cの一部を所定の高さまで施工した後、 そ の最上部の型枠部材の上に足場 1 4を設置して、 さらに上述の作業 (型枠部材 1 0の設置とコンクリ一ト打設) を所定回数 nにわたり繰り返して行うことにより、 コンクリート橋脚 Cが完成する。 なお、 比較的低いコンク リート橋脚の場合は、 鉄骨 1 2の周囲に全ての型枠部材 1 0を積み上げてから、 コンク リート 1 3を打 設することにより、 コンクリート橋脚 Cが完成する。  In this way, after constructing a part of the concrete pier C to a predetermined height, the scaffold 14 is installed on the uppermost formwork member, and the above-mentioned work (for the formwork member 10 The concrete pier C is completed by repeating the installation and concrete casting) a predetermined number of times n. In the case of a relatively low concrete pier, the concrete pier C is completed by stacking all the form members 10 around the steel frame 12 and then placing the concrete 13 thereon.
前記型枠部材 1 0の断面形状は、 本実施例では略 4角形としたが、 橋脚の断面 形状に従って円形、 楕円形、 多角形など任意の形状にすることができる。  The cross-sectional shape of the form member 10 is substantially quadrangular in this embodiment, but may be any shape such as a circle, an ellipse, or a polygon according to the cross-sectional shape of the pier.
〔試験例 1〕  (Test Example 1)
本発明のコンクリート構造物と、 従来の鉄筋コンクリート構造物及び鉄骨コン クリ一ト構造物を比較するため、 これらについて曲げせん断試験を実施した。 (試験体)  In order to compare the concrete structure of the present invention with conventional reinforced concrete structures and steel-frame concrete structures, bending and shear tests were performed on these structures. (Specimen)
試験体は図 2 8に示すように、 いずれも長さ (L ) 4 . 6メートル、 幅 (W) 0 . 5メートル、 高さ (H) 0 . 8メ一トルのコンクリ一ト製の梁 1 2 0とした。 試験体 1は、 従来の鉄筋コンクリ一ト構造 (R C ) であり、 図 2 9に示すよう に主鉄筋 1 0 0の周囲に帯鉄筋 1 1 0を設けたものである。 試験体 2は鉄骨コン クリート構造 (S C ) であり、 図 3 0に示すように、 4本の H形鋼 1 3 0が設け られている。 また試験体 3は、 図 3 1に示すように、 本発明の鉄骨プレキャス ト コンクリ一ト構造 (S C + P C a ) であり、 プレキャスト型枠 1 2 0 aを側面に 備え、 その内部に 4本の H鋼 1 3 0を設けてある。  As shown in Fig. 28, each of the specimens is a concrete beam with a length (L) of 4.6 m, width (W) of 0.5 m, and height (H) of 0.8 meter. 120. Specimen 1 has a conventional reinforced concrete structure (R C). As shown in FIG. 29, a belt reinforcing bar 110 is provided around the main reinforcing bar 100. Specimen 2 has a steel frame concrete structure (S C), and is provided with four H-section steels 130 as shown in FIG. Further, as shown in FIG. 31, the specimen 3 has a steel frame precast concrete structure (SC + PCa) of the present invention, and has a precast formwork 120a on a side surface and four insides. H steel 130 is provided.
(試験方法)  (Test method)
試験は両端部からそれぞれ 0 . 4メートルの位置に設けた支承部 1 2 1から、 それぞれ 1 . 1メートル内側のボイント 1 2 2を荷重 Pにより押圧した。  In the test, from the bearings 121 provided at a position of 0.4 m from both ends, a point 122 inside each 1.1 m was pressed by a load P.
(試験結果)  (Test results)
( 1 ) 試験体 1ないし試験体 3のひび割れ発生状況を図 3 2ないし図 3 4に示す。 図中、 実線は引張側鉄筋が許容応力に達するまで与えた場合のひび割れ、 点線は 引張側鉄筋が許容応力から降伏応力に達するまで与えたときに生じたひび割れを それぞれ示す。 本発明の鉄骨プレキャス トコンクリート構造は、 鉄筋コンクリート構造とほぼ 同等のひび割れ分散性を有し、 また本発明のものは他の構造に比較して、 許容応 力時には大差ないものの、 降伏応力時にはひび割れが少ないことがわかつた。 (1) Figure 32 through Figure 34 show the state of occurrence of cracks in specimens 1 through 3. In the figure, the solid line shows the cracks when the tension-side reinforcement reaches the allowable stress, and the dotted line shows the cracks when the tension-side reinforcement gives the allowable stress to the yield stress. The steel frame precast concrete structure of the present invention has almost the same dispersibility of cracks as the reinforced concrete structure.Also, the structure of the present invention has little difference in allowable stress but cracks in yield stress compared to other structures. I understood that there were few.
( 2 ) 試験体 1ないし試験体 3の荷重と最大ひび割れ幅の関係を図 3 5に示す。 試験体 3は試験体 1に比べてひび割れ幅が小さく、 本発明の鉄骨プレキャス ト コンクリート構造ではひび割れの抑制効果が認められる。  (2) Figure 35 shows the relationship between the load on specimens 1 to 3 and the maximum crack width. Specimen 3 has a smaller crack width than Specimen 1, and the steel frame precast concrete structure of the present invention has an effect of suppressing cracking.
( 3 ) 試験体 1ないし試験体 3について、 鋼材の降伏荷重で基準化した荷重と試 験体の降伏変位で基準化した変位の関係 (じん性率) を図 3 6に示す。  (3) For specimens 1 to 3, the relationship between the load normalized by the yield load of steel and the displacement normalized by the yield displacement of the specimen (toughness factor) is shown in Fig. 36.
これらの結果から、 本発明の鉄骨プレキャス トコンクリート構造は、 じん性率 が鉄筋または鉄骨コンクリ一ト構造のそれを上回ることがわかる。  From these results, it is understood that the toughness of the steel frame precast concrete structure of the present invention exceeds that of the steel bar or the steel frame concrete structure.
〔試験例 2〕  (Test Example 2)
本発明の鉄骨プレキャストコンクリート構造物と、 鉄筋コンクリート構造物に ついて、 正負交番载荷試験を実施した。  Positive and negative alternating load tests were performed on the steel frame precast concrete structure and the reinforced concrete structure of the present invention.
(試験体)  (Specimen)
試験体 4は、 図 3 7に示すように鉄筋コンクリート構造である。 この内部には 主筋 2 2 0及び帯鉄筋 2 4 0が配筋され、 中心は中空である。  Specimen 4 is a reinforced concrete structure as shown in Figure 37. The main reinforcement 220 and the belt reinforcement 240 are arranged inside this, and the center is hollow.
試験体 5は、 図 3 8に示すように本発明の鉄骨プレキャストコンクリート構造 である。  Specimen 5 is a steel frame precast concrete structure of the present invention as shown in FIG.
この内部には、 8本の H形銅 2 3 0及ぴその周囲の帯鉄筋 2 5 0が設けられ、 中 心は中空である。 Inside this, eight H-shaped copper 230 and its surrounding rebar 250 are provided, and the center is hollow.
それぞれの試験体 4, 5は、 それぞれ直径 (D ) 0 . 9メートル、 内径 ( I ) 0 . 3メートル、 高さ (T ) 2 . 6メートルの円筒柱とした。 これらは、 図 3 9 に示すように高さ 0 . 7 5メ一トルのベース 2 0 0上に設置された。  Each of the specimens 4 and 5 was a cylindrical column having a diameter (D) of 0.9 m, an inner diameter (I) of 0.3 m, and a height (T) of 2.6 m. These were mounted on a 0.75 meter high base 200 as shown in FIG.
(試験方法)  (Test method)
前記試験体の上面には軸力負荷用ジャッキ 3 0 0を設置し、 このジャッキ 3 0 0から P C鋼棒 3 1 0を垂下させてその下端をべ一ス 2 0 0内に埋設固定したァ ンカー 3 2 0に接続した。 また上端のスタブ 3 3 0と反力壁 3 4 0の間にァクチ ユエ一タ 3 5 0を設置し、 その一端をスタブ 3 3 0に固定した。  An axial force loading jack 300 was installed on the upper surface of the test piece, a PC steel rod 310 was hung from this jack 300, and the lower end was embedded and fixed in the base 200. Connected to the NC 320. Also, an actuator 350 was installed between the stub 330 at the upper end and the reaction wall 340, and one end thereof was fixed to the stub 330.
かかる状況で、 軸力負荷用ジャッキ 3 0 0によって P C鋼棒 3 1 0を引っ張る ことにより、 試験体全体に所定の軸力を付加しつつ、 ァクチユエータ 3 5 0を作 動させ、 このスタブ 3 3 0に水平方向の正負加力を繰り返して与えた。 In such a situation, the PC steel rod 3 10 is pulled by the axial load jack 3 0 0 As a result, the actuator 350 was actuated while applying a predetermined axial force to the entire test piece, and a positive and negative horizontal force was repeatedly applied to the stub 330.
(試験結果)  (Test results)
試験体 4の载荷点水平変位を図 4 0に、 本発明の構造物である試験体 5のそれ を図 4 1にそれぞれ示す。 なお縦線は荷重 ( t f ) 、 横線は载荷点水平変位をミ リメ一トル単位で示し、 点線は終局耐力の計算値を示している。  FIG. 40 shows the horizontal displacement of the loading point of the specimen 4 and FIG. 41 shows that of the specimen 5 which is the structure of the present invention. The vertical line shows the load (t f), the horizontal line shows the horizontal displacement at the load point in millimeters, and the dotted line shows the calculated ultimate strength.
また図 4 2は、 試験体 4及び試験体 5の荷重と変位 (包絡線) の関係を示し、 縦軸は荷重 ( t f ) 、 横軸は载荷点水平変位である。  Fig. 42 shows the relationship between the load and the displacement (envelope) of the test specimens 4 and 5, the vertical axis represents the load (tf), and the horizontal axis represents the horizontal displacement at the load point.
上記の結果では、 試験体 4と試験体 5はほぼ同等の変形性能を示しているとと もに、 試験体 5は試験体 4を上回るじん性を示している。  In the above results, Specimen 4 and Specimen 5 show almost the same deformation performance, and Specimen 5 shows toughness exceeding Specimen 4.
以上のように、 本発明の構造物は従来の鉄筋コンクリ一ト構造物に劣らない変 形性能を有するとともに、 従来の鉄筋コンクリートを上回るじん性を有すること がわかる。 産業上の利用可能性  As described above, it can be seen that the structure of the present invention has the deformation performance not inferior to the conventional reinforced concrete structure, and has toughness higher than that of the conventional reinforced concrete. Industrial applicability
本発明は、 コンクリート構造物の築造において使用され、 特に高所作業が伴う 橋脚等のコンクリ一ト構造物の施工に有用である。  INDUSTRIAL APPLICABILITY The present invention is used in the construction of a concrete structure, and is particularly useful for the construction of a concrete structure such as a pier which requires work at height.

Claims

請 求 の 範 囲 The scope of the claims
1 . 鉄骨を所要の高さまで建て込んで基礎を形成する工程と、 内側に鉄筋取付具 を介して鉄筋が配された枠状の型枠部材を形成する工程と、 前記鉄骨を取り囲む ように型枠部材を複数積み重ねる工程と、 積み重ねた型枠部材によって形成され たプレキャス ト型枠内にコンクリートを打設して硬化させ、 前記鉄骨、 前記帯鉄 筋及びプレキャスト型枠を一体化する工程と、 を備えたコンクリート構造物の築 造方法。 1. A step of forming a foundation by embedding a steel frame to a required height, a step of forming a frame-shaped form member in which a reinforcing bar is arranged via a reinforcing bar fitting inside, and a mold surrounding the steel frame. Stacking a plurality of frame members, casting concrete into a precast form formed by the stacked form members and hardening, and integrating the steel frame, the band reinforcing bar and the precast form, For building concrete structures with
2 . 前記型枠部材の内側面に鉄筋組立材を配置し、 この鉄筋組立材に鉄筋を固定 する請求項 1に記載のコンクリート構造物の築造方法。  2. The method for constructing a concrete structure according to claim 1, wherein a reinforcing bar assembly is disposed on an inner surface of the form member, and a reinforcing bar is fixed to the reinforcing bar assembly.
3 . 前記型枠部材の内側には鉄筋と鋼材とを空間をおいて交互に積み重ねるよう に配置し、 前記鉄筋は型枠部材の內側面に配置した鉄筋組立材に固定され、 鋼材 は型枠部材の横断方向に固定される請求項 1に記載のコンクリ一ト構造物の築造 方法。  3. Inside the form member, a reinforcing bar and a steel material are arranged so as to be alternately stacked with a space therebetween, and the reinforcing bar is fixed to a reinforcing bar assembly material arranged on one side of the form member, and the steel material is a formwork. 2. The method according to claim 1, wherein the concrete structure is fixed in a transverse direction of the member.
4 . 前記鉄筋は帯鉄筋及び中間鉄筋である請求項 1に記載のコンクリ一ト構造物 の築造方法。  4. The method for building a concrete structure according to claim 1, wherein the reinforcing bars are a band reinforcing bar and an intermediate reinforcing bar.
5 . コンクリートと接する表面に突起が形成されている鉄骨を使用する請求項 1 に記載のコンクリート構造物の築造方法。  5. The method for constructing a concrete structure according to claim 1, wherein a steel frame having a projection formed on a surface in contact with the concrete is used.
6 . 前記鉄骨コンクリート構造物は中空であり、 前記プレキャス ト型枠は前記鉄 骨の外側に配置するプレキャスト外枠部材と、 前記鉄骨の内側に配置するプレキ ヤス ト内枠部材とにより構成され、 前記鉄筋用フレーム及び前記鉄筋は前記プレ キャスト外枠部材と前記プレキャスト内枠部材の片方または両方に取り付ける請 求項 1に記載のコンクリート構造物の築造方法。  6. The steel concrete structure is hollow, and the precast formwork is composed of a precast outer frame member arranged outside the steel frame, and a precast inner frame member arranged inside the steel frame, 2. The method for constructing a concrete structure according to claim 1, wherein the rebar frame and the rebar are attached to one or both of the precast outer frame member and the precast inner frame member.
7 . 前記型枠部材に鉄筋用フレームを介して鉄筋を取り付ける請求項 6に記載の コンクリート構造物の築造方法。  7. The method for constructing a concrete structure according to claim 6, wherein a reinforcing bar is attached to the form member via a reinforcing bar frame.
8 . プレキャスト型枠と、 このプレキャスト型枠の内側に設けた鉄骨と、 前記プ レキャスト型枠内に打設されたコンクリートとカゝらなり、 前記プレキャスト型枠 はモルタル製であって、 スチールファイバー、 ステンレスファイバ一、 ァラミ ド、 ビニロン、 炭素繊維、 及びガラス繊維の群から選択される一または二以上の補強 材が混入されていることを特徴とするコンクリート構造物。 8. Precast formwork, steel frame provided inside the precast formwork, concrete and cast in the precast formwork, the precast formwork is made of mortar, steel fiber One or more reinforcements selected from the group consisting of, stainless steel fiber, aramide, vinylon, carbon fiber, and glass fiber Concrete structure characterized by mixing wood.
9 . 前記鉄骨が H形鋼であるとともに、 そのフランジ面に突起を形成した請求項 8記載のコンクリ一ト構造物。  9. The concrete structure according to claim 8, wherein the steel frame is an H-shaped steel, and a projection is formed on a flange surface thereof.
1 0 . 内側面に帯鉄筋取付具を設け、 この帯鉄筋取付具に帯鉄筋を取り付けて枠 状に形成し、 補強材としてスチールファイバ一、 ステンレスファイバー、 ァラミ ド、 ビニロン、 炭素繊維、 及びガラス繊維のうちいずれか一つ、 または二以上を 混入した型枠部材。  10. Attach a reinforcing bar on the inner surface, attach a reinforcing bar to the reinforcing bar, form a frame, and use steel fiber, stainless fiber, aramid, vinylon, carbon fiber and glass as reinforcement Formwork material containing one or more fibers.
1 1 . 基材モルタルが水セメント比カ 2 0〜6 0 %のセメント系モルタルである 請求項 1 0に記載の型枠部材。  11. The mold member according to claim 10, wherein the base mortar is a cement-based mortar having a water-cement ratio of 20 to 60%.
PCT/JP1999/004954 1999-09-10 1999-09-10 Concrete structure and method of constructing the same WO2001020089A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004954 WO2001020089A1 (en) 1999-09-10 1999-09-10 Concrete structure and method of constructing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP1999/004954 WO2001020089A1 (en) 1999-09-10 1999-09-10 Concrete structure and method of constructing the same

Publications (1)

Publication Number Publication Date
WO2001020089A1 true WO2001020089A1 (en) 2001-03-22

Family

ID=14236680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004954 WO2001020089A1 (en) 1999-09-10 1999-09-10 Concrete structure and method of constructing the same

Country Status (1)

Country Link
WO (1) WO2001020089A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852746B2 (en) 2001-12-06 2005-02-08 Pfizer Inc Crystalline drug form
CN102011508A (en) * 2010-08-19 2011-04-13 常熟风范电力设备股份有限公司 High strength concrete pole
CN102031890A (en) * 2010-08-19 2011-04-27 常熟风范电力设备股份有限公司 High-strength resin composite pole

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978763A (en) * 1995-09-18 1997-03-25 Maeda Corp Work execution method for concrete structure and precast form
JPH0978762A (en) * 1995-09-18 1997-03-25 Maeda Corp Steel framed concrete structure
JPH0978532A (en) * 1995-09-18 1997-03-25 Maeda Corp Work execution method for concrete bridge pier
JPH11241311A (en) * 1998-02-23 1999-09-07 Maeda Corp Construction method of concrete bridge pier

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0978763A (en) * 1995-09-18 1997-03-25 Maeda Corp Work execution method for concrete structure and precast form
JPH0978762A (en) * 1995-09-18 1997-03-25 Maeda Corp Steel framed concrete structure
JPH0978532A (en) * 1995-09-18 1997-03-25 Maeda Corp Work execution method for concrete bridge pier
JPH11241311A (en) * 1998-02-23 1999-09-07 Maeda Corp Construction method of concrete bridge pier

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6852746B2 (en) 2001-12-06 2005-02-08 Pfizer Inc Crystalline drug form
CN102011508A (en) * 2010-08-19 2011-04-13 常熟风范电力设备股份有限公司 High strength concrete pole
CN102031890A (en) * 2010-08-19 2011-04-27 常熟风范电力设备股份有限公司 High-strength resin composite pole

Similar Documents

Publication Publication Date Title
KR100423757B1 (en) Prestressed composite truss girder and construction method of the same
KR101050956B1 (en) Rebar prefabricated column method
JP5620344B2 (en) Construction method of pier
KR101045929B1 (en) Pro-environment prestressed long span light-weight precast concrete panel and this construction technique
KR101663132B1 (en) Self-supporting type column structure
KR101258842B1 (en) On-site Joint of the Prefabricated Re-bar Column to Re-bar Girders
JPH1030212A (en) Reinforced concrete structure and its construction method
JP2005097946A (en) Construction method of bridge pier
JP2003041708A (en) Member for structure
WO2016020932A2 (en) Deployable pre-fabricated reinforcement cage system
JP4136049B2 (en) Concrete pier construction method
JPH09310405A (en) Reinforced concrete column and precast form
WO2001020089A1 (en) Concrete structure and method of constructing the same
JP3031530B2 (en) How to build a concrete pier
JP4035027B2 (en) Bridge girder structure and bridge girder construction method
KR102213216B1 (en) Construction method for precast column structure and precast column structure
JP2947736B2 (en) Concrete columnar structure
KR102149335B1 (en) apparatus for making pretension type bridge girder
JPH0978532A (en) Work execution method for concrete bridge pier
JPH10102423A (en) Pca form and construction method of pier using the same pca form
JPH1136229A (en) Construction method for reinforced concrete bridge pier
JP3586121B2 (en) Mixed structure of reinforced concrete column and steel beam and its construction method
JPH08100464A (en) Joint structure and work execution method for structure using it
JP3275017B2 (en) Method of manufacturing caisson using precast member
JP7413233B2 (en) How to construct panel units and structures

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN