WO2001019483A1 - Partikelgängige vorrichtung zur durchführung von stofftrennungen mittels poröser flächiger adsorptionsmembranen - Google Patents

Partikelgängige vorrichtung zur durchführung von stofftrennungen mittels poröser flächiger adsorptionsmembranen Download PDF

Info

Publication number
WO2001019483A1
WO2001019483A1 PCT/EP2000/008678 EP0008678W WO0119483A1 WO 2001019483 A1 WO2001019483 A1 WO 2001019483A1 EP 0008678 W EP0008678 W EP 0008678W WO 0119483 A1 WO0119483 A1 WO 0119483A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
membranes
liquid
layers
layer
Prior art date
Application number
PCT/EP2000/008678
Other languages
English (en)
French (fr)
Inventor
Wolfgang Demmer
Dietmar Nussbaumer
Original Assignee
Sartorius Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sartorius Ag filed Critical Sartorius Ag
Priority to US09/936,065 priority Critical patent/US6911148B1/en
Priority to JP2001523105A priority patent/JP2003509184A/ja
Priority to EP00960610A priority patent/EP1212129A1/de
Publication of WO2001019483A1 publication Critical patent/WO2001019483A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28033Membrane, sheet, cloth, pad, lamellar or mat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/18Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28052Several layers of identical or different sorbents stacked in a housing, e.g. in a column
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28078Pore diameter
    • B01J20/28085Pore diameter being more than 50 nm, i.e. macropores

Definitions

  • Particle-permeable device for carrying out material separations by means of porous flat adsorption membranes.
  • the invention relates to a particle-permeable device for carrying out substance burns by means of permeation of liquids through more than one layer of porous flat adsorption membranes.
  • Porous flat adsorption membranes are understood to mean microporous flat membranes which have functional groups and / or ligands or reactants on their surface which are capable of interacting with at least one substance in a liquid phase in contact with it (WO-Al-92 / 00805, Sartorius AG). The liquid phase is transported convectively through the adsorption membranes.
  • adsorption membranes is to be understood as a generic term for various types of adsorption membranes such as ion exchange membranes, ligand membranes, afanity membranes and activated membranes, which in turn are divided into different types of adsorption membranes depending on the functional groups, ligands and reactants.
  • the devices of the invention can be used for the treatment of particle-containing liquids, such as z. B. in biotechnology, in the pharmaceutical, food and chemical industries or in the water and wastewater sector.
  • particle-containing liquids such as z. B. in biotechnology, in the pharmaceutical, food and chemical industries or in the water and wastewater sector.
  • biologically active substances are produced using cell cultures.
  • the cells In order to obtain them, the cells generally have to be disrupted and separated by centrifugation and / or filtration so that the desired substance can be isolated from the remaining liquid.
  • KH Kroner et al. describe an additional step of particle separation. a process for crossflow filtration with adsorption (affinity) membranes for primary separation of proteins using the example of the isolation of the enzyme malate dehydrogenase from E.
  • DE-PS 197 11 083 but it has the disadvantage that it is of complex construction and has to be operated with a high energy input, on the one hand a high permeate flow and on the other hand a sufficient overflow rate for discharging the particles with the liquid flow is ensured. Otherwise the first membrane layer would block and the entire permeation would come to a standstill.
  • the dead-end filtration units known from DE-PS 197 11 083 and DE-OS 44 32 628 on the other hand, have a more uniform breakthrough of the target substance at high adsorption capacities due to the use of several layers of porous adsorption membranes, but the supplied fluids must be particle-free to prevent the filtration units from clogging.
  • the invention is based on the object of creating a device for carrying out material separations by permeation of particle-containing liquids through porous adsorption membranes, which is characterized by a high adsorption capacity, a uniform breakthrough of the target substance and a simple structure.
  • the remaining part of the liquid flows together with the particles through the at least one hole of the first layer into the space formed by the first and the next spaced layer, where it combines with the permeate that has passed through the first layer.
  • the combined parts of the liquid now flow over the surface of the second layer of the flat adsorption membrane until a part together with the particles flow through the at least one hole of this second layer.
  • a first part of the liquid is permeated particle-free through the pores of this second layer of the flat membrane. Both parts of the liquid collect in the space formed by the second and the next spaced layer.
  • the process described is repeated until the liquid loaded with particles and combined with the permeates leaves the last layer of the flat adsorption membrane through the at least one hole.
  • the liquid derived from the particle-permeable device is completely or almost completely freed from the substance to be obtained.
  • these are arranged in a regular or irregular arrangement in the membrane system. They are of such a size that they allow passage of the particles present in the liquids.
  • Their diameter is a multiple of the nominal pore size of the microporous adsorption membranes used. However, it should be smaller than 100 times the diameter of the largest particles in the liquids.
  • the holes of adjacent layers are arranged offset from one another, in particular if the number of holes in a membrane system is small and / or their diameter is large.
  • the at least one hole can have an area fraction of up to 20%, preferably of up to 4%, based on the area of a layer of the adsorption membranes.
  • the holes can be designed in any shape, but they preferably have the shape of a slot or a circle with a diameter of 0.01 to 20 mm, preferably 0.5 to 2 mm.
  • the adjacent layers of the porous flat adsorption membranes are arranged parallel to one another at a distance in the range between 0.1 to 5 mm, preferably between 0.2 to 1 mm, by means of spacers. Webs, grids, woven fabrics, knitted fabrics or nonwovens are considered as spacers, which are characterized by good particle permeability.
  • the flat adsorption membranes should have a pore diameter in the range between 0.1 to 10 ⁇ m, preferably between 3 to 5 ⁇ m. Adsorption membranes with smaller pore diameters have a permeability that is too low for practical applications, while adsorption membranes with larger pores run the risk of rapid blocking due to the penetration of small particles into the pores.
  • Flat membranes which carry functional groups and / or ligands or reactants which are capable of interacting with at least one substance, preferably the substance to be obtained, from the liquids are used as adsorption membranes.
  • the device can be designed as a flat module or, in a preferred embodiment of the invention, as a winding module in which the layers are formed into a winding together with the spacers.
  • FIG. 1 schematically shows a section through an embodiment of the device according to the invention
  • Fig. 2 shows a variant of the arrangement of holes in a position of a flat
  • FIG. 3 shows the course of a typical separation
  • Fig. 4 in an exploded view of a further embodiment of the arrangement of the holes in adjacent layers of the flat adsorption membranes.
  • the particle-permeable device 1 consists of a housing 2 with a liquid inlet 3 and a liquid outlet 4.
  • a housing 2 with a liquid inlet 3 and a liquid outlet 4.
  • more than one layer of porous flat adsorption membranes 5 are arranged such that the liquids from the liquid inlet 3 to the liquid outlet during operation of the device 1 4 must pass through the layers 5 one after the other.
  • the layers of the adsorption membrane 5 are provided with holes 6 for the passage of particles 8 contained in the feed liquid 7. For reasons of clarity, only a few holes 6 are shown.
  • the layers of the adsorption membranes 5 are sealed in their peripheral edge area with respect to the housing 2 by means of a seal 9.
  • the layers of the adsorption membrane 5 are arranged at a distance from one another to form a space 10 for the collection of a first part 11 of the liquid 7 permeating through the adsorption membranes and the remaining part 12 of the liquid laden with particles, which liquid passes through the holes 5 through the layers 5.
  • the spacing of the layers of the adsorption membrane 5 is stabilized by means of spacers 13, which are introduced between the layers 5 in the form of particle-compatible lattices, woven fabrics, knitted fabrics or nonwovens.
  • Corresponding flow control devices, for example in the form of the spacers 13, are arranged for better flow onto the first layer 5 and for better collection of the liquid 7 after the last layer of the adsorption membranes 5.
  • FIG. 4 shows a further embodiment of the arrangement of the holes 6 in the spaced-apart layers of the flat adsorption membranes 5, as well as the associated spacers 13.
  • These elements are introduced, for example, in a housing (not shown) with a liquid inlet and outlet so as to seal the edges.
  • Example 1 Two meters of a 6 cm wide strip of a strongly basic adsorption membrane of the SARTOBIND Q type (Sartorius AG) was provided with holes in an arrangement shown in FIG. 2. The holes were about 1.8 cm apart and 3.5 mm in diameter. The proportion of holes in the frontal membrane area was approximately 1.8%.
  • This membrane tape was processed together with a 6 cm wide fabric tape made of polypropylene to form a cylinder module according to DE-PS 197 11 083.
  • a particle-laden liquid (feed solution) made of commercially available bovine serum albumin (RSA) from Kraber, Hamburg and air-dried baker's yeast in a buffer of the composition 0.01 M Tris (hydroylmethyl) aminomethane (TRIS) was adjusted with the peristaltic module using a peristaltic pump concentrated hydrochloric acid to a pH of 8.3 at a rate of 0.6 1 / min.
  • the liquid leaving the cylinder module was passed through a flow photometer from Wedgewood, San Carlos, USA, and the absorption of the solution was determined at 280 nm and recorded continuously.
  • the buffer was washed until the absorption at 280 nm had reached 0 again. Then the RSA was first eluted from the cylinder module with a solution of 0.25 M sodium chloride in the buffer and finally the bound yeast was removed with 1 M sodium chloride in the buffer. There was no significant increase in pressure throughout the procedure. After that, the cylinder module was available for another cycle. The attempt was repeated.
  • Figure 3 shows the course of a typical experiment. There is an immediate breakthrough of the yeast particles through the cylinder module, which can be seen from the steep rise in the curve at the beginning. After rinsing out all UV-absorbing particles, the RSA was eluted with 0.25 M NaCl in the buffer (first large peak), then yeast retained in the cylinder module with 1 M NaCl in the buffer was desorbed (second peak). The dynamic binding capacity (reaching 10% of the concentration of the 01/19483
  • the cylinder module was rinsed with 1 M NaCl in the buffer, then charged with 1 M NaOH and left to stand for 10 min, then was rinsed with 1 M NaOH and then with 1 M NaCl in the buffer, then only with buffer.
  • the cylinder module was loaded again with RSA.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die Erfindung betrifft eine partikelgängige Vorrichtung (1) zur Durchführung von Stofftrennungen mittels Permeation von Flüssigkeiten durch mehr als ein Lage poröser flächiger Adsorptionsmembranen (5). Sie zeichnet sich durch eine hohe Adsorptionskapazität, einen gleichmässigen Durchbruch der Zielsubstanz und einen einfachen Aufbau aus. Die Lagen der Adsorptionsmembranen (5) sind von einander beabstandet und mit mindestens einem Loch (6), vorzugsweise einer Vielzahl von Löchern (6), zur Passage der Partikel (8) versehen. Die erfindungsgemässen Vorrichtungen sind einsetzbar zur Behandlung partikelhaltiger Flüssigkeiten, wie sie z. B. in der Biotechnologie, in der pharmazeutischen, Lebensmittel- und chemischen Industrie oder im Wasser- und Abwasserbereich anfallen.

Description

Partikelgängige Vorrichtung zur Durchführung von Stofftrennungen mittels poröser flächiger Adsorptionsmembranen.
Die Erfindung betrifft eine partikelgängige Vorrichtung zur Durchfuhrung von Stofrbrennungen mittels Permeation von Flüssigkeiten durch mehr als eine Lage poröser flächiger Adsorptionsmembranen.
Unter porösen flächigen Adsorptionsmembranen (Membranadsorber) werden mikroporöse Flachmembranen verstanden, die an ihrer Oberfläche funktioneile Gruppen und/oder Liganden oder Reaktanden tragen, die zur Wechselwirkung mit mindestens einem Stoff einer mit ihm in Kontakt stehenden flüssigen Phase befähigt sind (WO-Al- 92/00805, Sartorius AG). Der Transport der flüssigen Phase durch die Adsorptionsmembranen hindurch erfolgt dabei konvektiv. Die Bezeichnung Adsorptionsmembranen ist als Oberbegriff für verschiedene Arten von Adsorptionsmembranen wie Ionenaustauschermembranen, Ligandenmembranen, AfAnitätsmembranen und aktivierte Membranen zu verstehen, die ihrerseits wieder je nach den funktionellen Gruppen, Liganden und Reaktanden in unterschiedliche Adsorptionsmembrantypen eingeteilt werden.
Die erfindungsgemäßen Vorrichtungen sind einsetzbar zur Behandlung partikelhaltiger Flüssigkeiten, wie sie z. B. in der Biotechnologie, in der pharmazeutischen, Lebensmittel- und chemischen Industrie oder im Wasser- und Abwasserbereich anfallen. So werden zum Beispiel biologisch wirksame Substanzen mittels Zellkulturen hergestellt. Zu ihrer Gewinnung müssen die Zellen in der Regel aufgeschlossen und durch Zentrifugieren und/oder Filtrieren abgetrennt werden, damit aus der verbleibenden Flüssigkeit der gewünschte Stoff isoliert werden kann. Zur Vermeidung dieses zusätzlichen Schrittes der Partikelabtrennung beschreiben K. H. Kroner et al. ein Verfahren zur Crossflow-Filtration mit Adsorptions-(Affinitäts-)membranen zur Primärseparation von Proteinen am Beispiel der Isolierung des Enzyms Malat- Dehydrogenase aus E.coli und Bäckerhefe mit Hilfe einer Cibacronblau modifizierten Membran (Bioforum 12, 455- 458 (1992)). Dabei wird der partikelbelastete Fluidstrom direkt zur Zelltrümmerableitung tangential über eine Membranlage geströmt, während die im Filtrat befindliche Zielsubstanz bei Passage durch die Membran in dieser gebunden wird. Nach Entfernen der Partikel durch Spülen der Membranen, kann die Zielsubstanz mit geeigneten Lösungen gewonnen werden. Ein Nachteil dieses Verfahrens liegt in dem ungleichmäßigen Durchbruch der Zielsubstanz durch die eine Membranlage. Dieser Nachteil kann durch eine in der Figur 12 der DE-PS 197 11 083 dargestellte Crossflow- Filtrationsvorrichtung überwunden werden, jedoch besitzt sie den Nachteil, daß sie kompliziert aufgebaut ist und mit einem hohen Energieeintrag betrieben werden muß, damit einerseits ein hoher Permeatstrom und andererseits eine ausreichende Überströmungsgeschwindigkeit zur Austragung der Partikel mit dem Flüssigkeitsstrom gewährleistet wird. Andernfalls würde die erste Membranlage verblocken und die gesamte Permeation zum Erliegen kommen. Die aus der DE-PS 197 11 083 und der DE- OS 44 32 628 bekannten Dead-End-Filtrationseinheiten weisen dagegen auf Grund der Verwendung mehrerer Lagen poröser Adsorptionsmembranen einen gleichmäßigeren Durchbruch der Zielsubstanz bei hohen Adsorptionskapazitäten auf, die zugeführten Fluide müssen allerdings partikelfrei sein, um ein Verblocken der Filtrationseinheiten zu verhindern.
Der Erfindung liegt nunmehr die Aufgabe zu Grunde, eine Vorrichtung zur Durchführung von Stofftrennungen mittels Permeation partikelhaltiger Flüssigkeiten durch poröse Adsorptionsmembranen zu schaffen, die sich durch eine hohe Adsorptionskapazität, einen gleichmäßigen Durchbruch der Zielsubstanz und einen einfachen Aufbau auszeichnet.
Diese Aufgabe wird durch den Gegenstand des Anspruchs 1 gelöst. Überraschenderweise wurde gefunden, daß Stofftrennungen mittels Adsorptionsmembranen auch aus stark partikelhaltigen Flüssigkeiten realisiert werden können, wenn die Vorrichtung mehr als eine Lage poröser flächiger Adsorptionsmembranen enthält, welche von einander beabstandet sind und mit mindestens einem Loch, vorzugsweise einer Vielzahl von Löchern, zur Passage der Partikel versehen sind. Im Betrieb wird die erste Lage einer porösen Membran, die mindestens ein Loch enthält, mit einer partikelbelasteten Flüssigkeit, aus der ein darin gelöster Stoff abgetrennt werden soll, unter Druck angeströmt. Ein erster Teil der Flüssigkeit permeiert partikelfrei durch die Poren der ersten Lage der Membran hindurch, wobei der zu gewinnende Stoff im Inneren der Membran adsorbiert wird. Der übrige Teil der Flüssigkeit strömt zusammen mit den Partikeln durch das mindestens eine Loch der ersten Lage hindurch in den von der ersten und der nächsten beabstandeten Lage gebildeten Raum hinein, wo er sich mit dem Permeat, das durch die erste Lage hindurchgetreten ist, vereinigt. Die vereinigten Teile der Flüssigkeit überströmen nunmehr die Oberfläche der zweiten Lage der flächigen Adsorptionsmembran bis ein Teil zusammen mit den Partikeln durch das mindestens eine Loch dieser zweiten Lage hindurchströmen. Dabei ist wiederum ein erster Teil der Flüssigkeit partikelfrei durch die Poren dieser zweiten Lage der Flachmembran hindurch permeiert.. Beide Teile der Flüssigkeit sammeln sich in dem von der zweiten und der nächsten beabstandeten Lage gebildeten Raum. Der beschriebene Prozeß wiederholt sich solange, bis die mit Partikeln belastete und mit den Permeaten vereinigte Flüssigkeit die letzte Lage der flächigen Adsorptionsmembran durch das mindestens eine Loch verläßt. Die aus der partikelgängigen Vorrichtung abgeleitete Flüssigkeit ist von dem zu gewinnenden Stoff vollständig oder nahezu vollständig befreit. Bei einer Vielzahl von Löchern sind diese in einer regulären oder irregulären Anordnung in der Membranlage angebracht. Sie sind von einer derartigen Größe, die eine Passage der in den Flüssigkeiten vorhandenen Partikel gestattet. Ihr Durchmesser beträgt dabei ein Vielfaches der nominellen Porenweite der verwendeten mikroporösen Adsorptionsmembranen. Er sollte jedoch kleiner sein als das 100-Fache des Durchmessers der größten Partikel in den Flüssigkeiten. Für eine optimale Ausnutzung des gesamten Membranvolumens zur Adsorption hat es sich als zweckmäßig erwiesen, wenn die Löcher benachbarter Lagen zu einander versetzt angeordnet sind, insbesondere dann, wenn die Anzahl der Löcher in einer Membranlage gering und/oder ihr Durchmesser groß ist. Das mindestens eine Loch kann einen Flächenanteil von bis zu 20 %, vorzugsweise von bis zu 4 %, bezogen auf die Fläche einer Lage der Adsorptionsmembranen einnehmen. Die Löcher können in beliebiger Form ausgebildet sein, vorzugsweise weisen sie jedoch die Form eines Schlitzes oder eines Kreises mit einen Durchmesser von 0,01 bis 20 mm, vorzugsweise von 0,5 bis 2 mm auf. Die benachbarten Lagen der porösen flächigen Adsorptionsmembranen sind mittels Abstandshalter parallel zu einander in einem Abstand im Bereich zwischen 0, 1 bis 5 mm, vorzugsweise zwischen 0,2 bis 1 mm, angeordnet. Als Abstandshalter kommen Stege, Gitter, Gewebe, Gewirke oder Vliese in Betracht, die sich durch eine gute Partikelgängigkeit auszeichnen.
Die flächigen Adsorptionsmembranen sollen einen Porendurchmesser im Bereich zwischen 0,1 bis 10 μm, vorzugsweise zwischen 3 bis 5 μm besitzen. Adsorptionsmembranen mit geringeren Porendurchmessern weisen eine für praktische Anwendungen zu geringe Permeabilität auf, während bei Adsorptionsmembranen mit größeren Poren die Gefahr einer raschen Verblockung durch das Eindringen kleiner Partikel in die Poren besteht. Als Adsorptionsmembranen werden Flachmembranen eingesetzt, die funktioneile Gruppen und/oder Liganden oder Reaktanden tragen, die zur Wechselwirkung mit mindestens einem Stoff, vorzugsweise dem zu gewinnenden Stoff, aus den Flüssigkeiten befähigt sind.
Die Vorrichtung kann als Flachmodul oder in einer bevorzugten Ausführungsform der Erfindung als Wickelmodul ausgebildet sein, bei der die Lagen zusammen mit den Abstandshaltern zu einem Wickel geformt sind. Besonders bevorzugt ist eine als Zylindermodul ausgeführte Bauform, wie sie in der DE-PS 197 11 083 beschrieben ist.
Die Erfindung soll nun anhand der Figuren 1 bis 4 und der Ausführungsbeispiele näher erläutert werden. Dabei zeigen die
Fig. 1 schematisch einen Schnitt durch eine Ausführungsform der erfindungsgemäßen Vorrichtung, Fig. 2 eine Variante der Anordung von Löchern in einer Lage einer flächigen
Adsorptionsmembran, Fig. 3 den Verlauf einer typischen Stofftrennung und
Fig. 4 in Explosionsdarstellung eine weitere Ausführungsform der Anordnung der Löcher in benachbarten Lagen der flächigen Adsorptionsmembranen.
Gemäß Figur 1 besteht die partikelgängige Vorrichtung 1 aus einem Gehäuse 2 mit einem Flüssigkeitseinlaß 3 und einem Flüssigkeitsauslaß 4. In dem Gehäuse 2 sind mehr als eine Lage poröser flächiger Adsorptionsmembranen 5 derart angeordnet, daß bei Betrieb der Vorrichtung 1 die Flüssigkeiten vom Flüssigkeitseinlaß 3 zum Flüssigkeitsauslaß 4 die Lagen 5 nacheinander passieren müssen. Die Lagen der Adsorptionsmembran 5 sind mit Löchern 6 zur Passage von in der Feedflüssigkeit 7 enthaltenen Partikeln 8 versehen. Aus Gründen der Übersichtlichkeit sind nur wenige Löcher 6 dargestellt. Die Lagen der Adsorptionsmemranen 5 sind in ihrem peripheren Randbereich gegenüber dem Gehäuse 2 mittels einer Dichtung 9 abgedichtet. Die Lagen der Adsorptionsmembran 5 sind von einander beabstandet angeordnet zur Ausbildung eines Raumes 10 für die Sammlung eines durch die Adsorptionsmembranen permeierenden ersten Teils 11 der Flüssigkeit 7 und des übrigen Teils 12 der mit Partikeln belasteten Flüssigkeit, der die Lagen 5 durch die Löcher 6 passiert. Die Beabstandung der Lagen der Adsorptionsmembran 5 wird mittels Abstandshaltern 13 stabilisert, die in Form partikelgängiger Gitter, Gewebe, Gewirke oder Vliese zwischen den Lagen 5 eingebracht sind. Zur besseren Anströmung der ersten Lage 5 und zur besseren Sammlung der Flüssigkeit 7 nach der letzten Lage der Adsorptionsmembranen 5 sind entsprechende Strömungsleiteinrichtungen, beispielsweise in Form der Abstandshalter 13 angeordnet.
Die Explosionsdarstellung der Figur 4 zeigt eine weitere Ausführungsform der Anordnung der Löcher 6 in den beabstandeten Lagen der flächigen Adsorptionsmembranen 5, sowie die dazugehörigen Abstandshalter 13. Diese Elemente werden zum Beispiel in ein nicht dargestelltes Gehäuse mit Flüssigkeitsein- und -auslaß randdichtend eingebracht. Beispiel 1 Zwei Meter eines 6 cm breiten Streifens einer stark basischen Adsorptionsmembran vom Typ SARTOBIND Q (Sartorius AG) wurde mit Löchern in einer in Figur 2 dargestellten Anordung versehen. Die Löcher hatten einen Abstand von ca. 1,8 cm und einen Durchmesser von 3,5 mm. Der Anteil der Löcher an der frontalen Membranfläche war ca. 1,8%. Dieses Membranband wurde zusammen mit einem 6 cm breiten Gewebeband aus Polypropylen zu einem Zylindermodul gemäß der DE-PS 197 11 083 verarbeitet. Über den Zylindermodul wurde mittels einer Schlauchpumpe 1 Liter einer partikelbelasteten Flüssigkeit (Feedlösung) aus kommerziell erhältlichem Rinderserumalbumin (RSA) der Fa. Kräber, Hamburg und luftgetrockneter Bäckerhefe in einem Puffer der Zusammensetzung 0,01 M Tris(Hydroylmethyl)aminomethan (TRIS) eingestellt mit konzentrierter Salzsäure auf einen pH-Wert von 8,3 mit einer Geschwindigkeit von 0,6 1/min gefördert. Die den Zylindermodul verlassende Flüssigkeit wurde durch ein Durchflußphotometer der Fa. Wedgewood, San Carlos, USA geleitet und die Absorption der Lösung bei 280 nm bestimmt und kontinuierlich aufgezeichnet. Nach Passage des Liters Flüssigkeit wurde mit dem Puffer gewaschen bis die Absorption bei 280 nm wieder den Wert 0 erreicht hatte. Dann wurde zunächst mit einer Lösung von 0,25 M Natriumchlorid in dem Puffer das RSA vom Zylindermodul eluiert und schließlich mit 1 M Natriumchlorid in dem Puffer die gebundene Hefe entfernt. Es fand während der gesamten Prozedur keine signifikante Erhöhung des Druckes statt. Danach stand der Zylindermodul für einen weiteren Zyklus zur Verfügung. Der Versuch wurde wiederholt.
Figur 3 zeigt den Verlauf eines typischen Versuchs. Es findet ein sofortiger Durchbruch der Hefepartikel durch den Zylindermodul statt, was am steilen Anstieg der Kurve zu Beginn zu erkennen ist. Nach dem Ausspülen aller UV- absorbierenden Partikel wurde das RSA mit 0,25 M NaCl im Puffer eluiert (erster großer Peak), dann wurde mit 1 M NaCl im Puffer noch im Zylindermodul zurückgehaltene Hefe desorbiert (zweiter Peak). Die dynamische Bindungskapazität (Erreichen von 10% der Konzentration der 01/19483
zugeführten RSA- Lösung im Ablauf) betrug 0,38 mg/cm2 Membranfläche. Die statische Bindekapazität war 0,5 mg/cm2 Membranfläche. Es wurden die folgenden Ergebnisse erzielt:
l . Lauf
Figure imgf000009_0001
2. Lauf
Figure imgf000009_0002
Beispiel 2
In einem weiteren Versuch wurden 10 g luftgetrocknete kommerziell erhältliche Bächerhefe in 1 1 des in Beispiel 1 beschriebenen Puffers suspendiert und diese Suspension im Kreislauf über den Zylindermodul gemäß Beispiel 1 geführt. Der durchschnittliche Eingangsdruck betrug 0,1 bar und änderte sich nicht signifikant während der 30 minütigen Versuchsdauer. Danach wurden der Suspension 1 g RSA zugegeben und dieses Gemisch über den Zylindermodul geführt. Nach Freispülen, wie oben in Beispiel 1 beschrieben, wurde das RSA mit 0,25 M NaCl im Puffer eluiert. Es 01/19483
8 wurden 0,41 g RSA wiedergefunden. Damit hatte die dynamische Bindungskapazität um
48 % abgenommen.
Der Zylindermodul wurde mit 1 M NaCl im Puffer gespült, dann mit 1 M NaOH beaufschlagt und 10 min stehen gelassen, anschließend wurde mit 1 M NaOH und danach mit 1 M NaCl im Puffer, danach nur mit Puffer gespült.
Der Zylindermodul wurde erneut mit RSA beladen.
Es wurden die folgenden Ergebnisse erzielt:
1. Lauf
Figure imgf000010_0001
Die statische Bindungskapazität betrug noch 90 % des Wertes aus dem 1. Lauf des Beispiels 1.

Claims

Patentansprüche
1. Partikelgängige Vorrichtung (1) zur Durchführung von Stofftrennungen mittels Permeation von Flüssigkeiten durch mehr als eine Lage poröser flächiger Adsorptionmembranen (5), welche von einander beabstandet und mit mindestens einem Loch (6) zur Passage der Partikel (8) versehenen sind, wobei die Vorrichtung (1) über einen der ersten Lage benachbarten Flüssigkeitseinlaß (3) und über einen der letzten Lage benachbarten Flüssigkeitsauslaß (4) verfugt und die beabstandeten Lagen der Flachmembranen (5) in ihren peripheren Randbereichen für die Flüssigkeiten undurchlässig sind derart, daß die zu behandelnden Flüssigkeiten (7) vom Flüssigkeitseinlaß (3) zum Flüssigkeitsauslaß (4) die Lagen (5) nacheinander passieren muß, wobei in jeder Membranlage (5) jeweils ein erster Teil (11) der zu behandelnden Flüssigkeit (7) partikelfrei durch die Poren der flächigen Adsorptionsmembran und der restliche Teil (12) der zu behandelnden Flüssigkeit (7) mit den Partikeln (8) durch das zumindest eine Loch (6) der Membran (5) strömt und beide Teilströme (11, 12) auf der nächsten Membranlage (5) wieder vereinigt werden.
2. Vorrichtung (1) nach Anspruch 1 bei der das mindestens eine Loch (6) benachbarter Lagen (5) zu einander versetzt angeordnet ist.
3. Vorrichtung (1) nach Anspruch 1 oder 2 bei der das mindestens eine Loch (6) einen Flächenanteil von bis zu 20 %, vorzugsweise von bis zu 4 %, bezogen auf die Fläche der Lage der Flachmembranen (5) einnimmt.
4. Vorrichtung (1) nach einen der vorstehenden Ansprüche bei der das mindestens eine Loch (6) kreisförmig ausgebildet ist und einen Durchmesser von 0,01 bis 20 mm, vorzugsweise von 0,5 bis 2 mm aufweist.
5. Vorrichtung (1) nach einen der vorstehenden Ansprüche bei der die benachbarten Lagen der porösen Flachmembranen (5) mittels Abstandshalter (13) parallel zu einander einen Abstand im Bereich zwischen 0, 1 bis 5 mm, vorzugsweise zwischen 0,2 bis 1 mm, einnehemen.
6. Vorrichtung (1) nach Anspruch 5 bei der die Abstandshalter (13) aus Stegen, Gittern, Geweben, Gewirken oder Vliesen bestehen.
7. Vorrichtung nach Anspruch 1 bei der die Flachmembranen (5) einen Porendurchmesser im Bereich zwischen 0,1 bis 10 μm, vorzugsweise zwischen 3 bis 5 μm besitzen.
8. Vorrichtung (1) nach Anspruch 1 bei der die Flachmembranen (5) funktionelle Gruppen und/oder Liganden oder Reaktanden tragen, die zur Wechselwirkung mit mindestens einem Stoff aus den Flüssigkeiten (7) befähigt sind.
9. Vorrichtung (1) nach einen der vorstehenden Ansprüche, bei der die Lagen (5) zu einem Wickel geformt sind und die Vorrichtung (1) als Wickelmodul ausgebildet ist.
PCT/EP2000/008678 1999-09-14 2000-09-06 Partikelgängige vorrichtung zur durchführung von stofftrennungen mittels poröser flächiger adsorptionsmembranen WO2001019483A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US09/936,065 US6911148B1 (en) 1999-09-14 2000-09-06 Adsorptive membrane device for treating particle-laden liquid feeds
JP2001523105A JP2003509184A (ja) 1999-09-14 2000-09-06 多孔性平面状の吸着膜によって物質分離を実行するための粒子通過可能な装置
EP00960610A EP1212129A1 (de) 1999-09-14 2000-09-06 Partikelgängige vorrichtung zur durchführung von stofftrennungen mittels poröser flächiger adsorptionsmembranen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19943921.4 1999-09-14
DE19943921A DE19943921C1 (de) 1999-09-14 1999-09-14 Partikelgängige Vorrichtung zur Durchführung von Stofftrennungen mittels poröser flächiger Adsorptionsmembranen

Publications (1)

Publication Number Publication Date
WO2001019483A1 true WO2001019483A1 (de) 2001-03-22

Family

ID=7921927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2000/008678 WO2001019483A1 (de) 1999-09-14 2000-09-06 Partikelgängige vorrichtung zur durchführung von stofftrennungen mittels poröser flächiger adsorptionsmembranen

Country Status (5)

Country Link
US (1) US6911148B1 (de)
EP (1) EP1212129A1 (de)
JP (1) JP2003509184A (de)
DE (1) DE19943921C1 (de)
WO (1) WO2001019483A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513992B2 (en) 2003-02-03 2009-04-07 Millipore Corporation Filtration device with pressure-activated means for bypassing serial filter layers

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2514471C (en) 2003-02-19 2013-09-10 Mcmaster University Composite materials comprising supported porous gels
DE10344819B4 (de) * 2003-09-26 2017-06-29 Sartorius Stedim Biotech Gmbh Adsorptionsmembranen, Verfahren zur Herstellung derselben und Vorrichtungen, welche die Adsorptionsmembranen umfassen
DE10344820B4 (de) * 2003-09-26 2009-04-16 Sartorius Stedim Biotech Gmbh Adsorptionsmembranen, Verfahren zur Herstellung derselben und Verwendung der Adsorptionsmembranen in Vorrichtungen
CA2558859C (en) * 2004-04-08 2014-02-04 Mcmaster University Membrane stacks
WO2005120701A1 (en) 2004-06-07 2005-12-22 Mcmaster University Stable composite material comprising supported porous gels
EP2334413A4 (de) * 2008-09-02 2013-09-18 Natrix Separations Inc Chromatografische membranen, vorrichtungen damit und verfahren zu ihrer verwendung
WO2011058439A1 (en) * 2009-11-13 2011-05-19 Natrix Separations, Inc. Hydrophobic interaction chromatography membranes, and methods of use thereof
CA2836460C (en) 2011-05-17 2021-09-21 Natrix Separations Inc. Methods of using a fluid treatment device
DE102014104984A1 (de) * 2014-04-08 2015-10-08 Sartorius Stedim Biotech Gmbh Filtrationsvorrichtung
GB201703383D0 (en) 2017-03-02 2017-04-19 Gargle Tech Ltd Testing for particulates
WO2020049569A2 (en) 2018-09-05 2020-03-12 Hero Scientific Ltd. Testing for particulates
WO2022149135A2 (en) 2021-01-06 2022-07-14 Hero Scientific Ltd. Filtration sampling devices
CN113694585B (zh) * 2021-08-26 2023-01-03 杭州科百特过滤器材有限公司 一种切向流过滤组件、切向流过滤装置及灌流系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255263A (en) * 1978-08-10 1981-03-10 Costruzioni E Impianti S.P.A. Fiat Engineering Stacked assembly for reverse osmosis
US4551435A (en) * 1983-08-24 1985-11-05 Immunicon, Inc. Selective removal of immunospecifically recognizable substances from solution
US4895806A (en) * 1987-02-14 1990-01-23 Millipore Ireland B.V. Device for liquid chromatography or immobilized enzyme reaction
DE4012972A1 (de) * 1989-04-26 1990-10-31 Sartorius Gmbh Filterstapel fuer den einbau in einer nach dem crossflow-prinzip betreibbaren filtervorrichtung fuer fluide
US5575910A (en) * 1994-09-14 1996-11-19 Sartorius Ag Membrane adsorber filter module
DE19711083A1 (de) * 1997-03-18 1998-09-24 Sartorius Gmbh Vorrichtung für die adsorptive Stofftrennung mit Adsorptionsmembranen

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3909418A (en) * 1973-01-15 1975-09-30 Universal Oil Prod Co Method for forming a laminate member and apparatus utilizing the same
DE3327431A1 (de) * 1983-07-29 1985-02-14 Wilhelm 2000 Hamburg Heine Vorrichtung zum filtern und trennen von stroemungsmedien, insbesondere zur wasserentsalzung und wasserreinigung durch umkehrosmose und ultrafiltration
US5244578A (en) * 1989-09-28 1993-09-14 Terumo Kabushiki Kaisha Blood plasma-separating membrane and blood plasma separator using the membrane
DE4432628B4 (de) * 1994-09-14 2008-01-10 Sartorius Biotech Gmbh Dead-End-Filtrationseinheit zur Abtrennung von Stoffen mit Membranadsorbern

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4255263A (en) * 1978-08-10 1981-03-10 Costruzioni E Impianti S.P.A. Fiat Engineering Stacked assembly for reverse osmosis
US4551435A (en) * 1983-08-24 1985-11-05 Immunicon, Inc. Selective removal of immunospecifically recognizable substances from solution
US4895806A (en) * 1987-02-14 1990-01-23 Millipore Ireland B.V. Device for liquid chromatography or immobilized enzyme reaction
DE4012972A1 (de) * 1989-04-26 1990-10-31 Sartorius Gmbh Filterstapel fuer den einbau in einer nach dem crossflow-prinzip betreibbaren filtervorrichtung fuer fluide
US5575910A (en) * 1994-09-14 1996-11-19 Sartorius Ag Membrane adsorber filter module
DE19711083A1 (de) * 1997-03-18 1998-09-24 Sartorius Gmbh Vorrichtung für die adsorptive Stofftrennung mit Adsorptionsmembranen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7513992B2 (en) 2003-02-03 2009-04-07 Millipore Corporation Filtration device with pressure-activated means for bypassing serial filter layers
US8002975B2 (en) 2003-02-03 2011-08-23 Millipore Corporation Filtration device with a pressure-activated means for bypassing serial filter layers

Also Published As

Publication number Publication date
US6911148B1 (en) 2005-06-28
JP2003509184A (ja) 2003-03-11
EP1212129A1 (de) 2002-06-12
DE19943921C1 (de) 2001-01-11

Similar Documents

Publication Publication Date Title
EP0989904B1 (de) Membranmodul mit einseitig eingebetteten hohlfasermembranen
DE4432627B4 (de) Filtrationseinheit zur Abtrennung von Stoffen mit Membranadsorbern
EP1289630B1 (de) Modul mit membranelementen in cross-flow und in dead-end anordnung
EP0956147B1 (de) Membranmodul mit schichtförmig angeordneten hohlfasermembranen
DE69530682T2 (de) Methode zur Isolierung und Reinigung eines Biomakromoleküls
DE69828597T2 (de) Filter mit darin enthaltener filtrationskassette
DE19943921C1 (de) Partikelgängige Vorrichtung zur Durchführung von Stofftrennungen mittels poröser flächiger Adsorptionsmembranen
DE10236664B4 (de) Verfahren und Vorrichtung zur adsorptiven Stofftrennung
DE2722025A1 (de) Membraneinheit, vorrichtung mit membraneinheit und verfahren zur blutreinigung
DE10034386A1 (de) Verfahren und Vorrichtung zur Elektrofiltration
DE2529614A1 (de) Rotationsfilterseparator vorzugsweise fuer die membranfiltration
EP1120150A2 (de) Membrantrennvorrichtung
DE4432628B4 (de) Dead-End-Filtrationseinheit zur Abtrennung von Stoffen mit Membranadsorbern
EP0787523A1 (de) Vorrichtung und Verfahren zur stoffspezifischen Behandlung von Fluiden
DE69815688T2 (de) Verfahren zur hohlfasern filtration
DE3916744A1 (de) Rohrfoermiges filterelement
EP0951343B1 (de) Membranmodul zur stoffspezifischen fluidbehandlung
DE102018006286B3 (de) Bioreaktor mit Filtereinheit und Verfahren zur Behandlung einer Zellbrühe
EP0968038B1 (de) Verfahren und anlage für die adsorptive stofftrennung
EP0925104A1 (de) Filtrationseinheit mit plissierten filterelementen
WO1999054022A1 (de) Filtrationseinheit zur entfernung von schadstoffen aus fluiden
EP0968037B1 (de) Vorrichtung für die behandlung von flüssigkeiten
DE4028357C2 (de) Verfahren und Vorrichtung zur adsorptiven Stofftrennung
DE1205491B (de) Verfahren und Vorrichtung zur kontinuierlichen elektrophoretischen Behandlung von Suspensionen und kolloidalen Loesungen
EP4185400A1 (de) Vorrichtung zur membranfiltration und zur entfernung von mikroschadstoffen mittels eines reaktivstoffes aus flüssigkeiten

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000960610

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 09936065

Country of ref document: US

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 523105

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000960610

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2000960610

Country of ref document: EP