WO2001006662A1 - Verfahren und vorrichtung zur iterativen decodierung von verketteten codes - Google Patents

Verfahren und vorrichtung zur iterativen decodierung von verketteten codes Download PDF

Info

Publication number
WO2001006662A1
WO2001006662A1 PCT/DE2000/002211 DE0002211W WO0106662A1 WO 2001006662 A1 WO2001006662 A1 WO 2001006662A1 DE 0002211 W DE0002211 W DE 0002211W WO 0106662 A1 WO0106662 A1 WO 0106662A1
Authority
WO
WIPO (PCT)
Prior art keywords
transformation
codes
bits
extrinsic
decoder
Prior art date
Application number
PCT/DE2000/002211
Other languages
English (en)
French (fr)
Inventor
Jörg VOGT
Jochen Ertel
Adolf Finger
Original Assignee
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Dresden filed Critical Technische Universität Dresden
Priority to DE10082067T priority Critical patent/DE10082067D2/de
Priority to AU69793/00A priority patent/AU6979300A/en
Publication of WO2001006662A1 publication Critical patent/WO2001006662A1/de

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6502Reduction of hardware complexity or efficient processing
    • H03M13/6505Memory efficient implementations
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/29Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes combining two or more codes or code structures, e.g. product codes, generalised product codes, concatenated codes, inner and outer codes
    • H03M13/2957Turbo codes and decoding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6577Representation or format of variables, register sizes or word-lengths and quantization
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M13/00Coding, decoding or code conversion, for error detection or error correction; Coding theory basic assumptions; Coding bounds; Error probability evaluation methods; Channel models; Simulation or testing of codes
    • H03M13/65Purpose and implementation aspects
    • H03M13/6577Representation or format of variables, register sizes or word-lengths and quantization
    • H03M13/6588Compression or short representation of variables

Definitions

  • the invention relates to a method for the iterative decoding of chained codes in which reliability information is exchanged between the partial decoders.
  • the code word is formed by combining several subcodes.
  • Iteratively decoded codes are e.g. Turbo codes, serial chained codes and product codes.
  • Soft-in-soft-out symbol or sequence estimators which exchange reliability information with one another, are generally used to decode the partial codes.
  • Turbo codes have been used for a few years and have been proposed as a basic method for channel coding for the third-generation “IMT-2000” mobile radio standard. Turbo codes have the advantage of a high coding gain and can be flexibly adapted to the channel requirements.
  • decoders for the partial codes are used, which, in addition to the reliability values of the transmitted code word, can also use a-priori information.
  • the result of the decoding is extrinsic information, which in turn is available to the decoders of the other partial codes as a-priori information.
  • SISO Soft-In-Soft-Out
  • MAP MAP
  • SOVA Simple Adaptive Binary Arithmetic Coding
  • the SISO decoder is usually designed in such a way that whole numbers (integers) are used for the extrinsic information.
  • this object is achieved by a method with the features mentioned in the preamble of claim 1 in that the calculated extrinsic information with a number of m bits is transformed into a number representation with a smaller number of n bits before being stored in a buffer and When reading out from the buffer memory by means of a jerk transformation, the original number representation is restored
  • the transformation is carried out in such a way that the calculated extrinsic values are subjected to quantization and then binary coded
  • the transformation is carried out so that the quantization is non-linear
  • the quantization characteristic is designed in such a way that small amplitude values of the extrinsic information are subdivided more finely than large values. With a suitable division of the intervals, there is no significant deterioration in the decoding result
  • the object is also achieved by a device in connection with the features mentioned in the preamble of claim 8 in that means between a partial decoder and a buffer means for transforming a number of m bits into a number of n bits and between a buffer and a partial decoder means for jerk-transforming a number n bits into a number m bits is provided, the number m bits being greater than the number n bits
  • the method can in principle be used for all decoding methods that temporarily store extrinsic information
  • FIG. 1 shows a block diagram of a turbo code encoder.
  • FIG. 2 shows a block diagram of a turbo code decoder.
  • FIG. 3 shows a block diagram when performing transformation and jerk transformation 4 shows a quantization characteristic of the extrinsic information
  • turbo codes play an important role due to the high achievable coding gain.
  • Turbo codes are concatenated recursive systematic convolutional codes.
  • the structure of a conventional turbo code encoder with two convolutional codes with the influence length of three symbols is shown in FIG. 1.
  • a convolutional encoder uses the Information symbols k processed directly while the other convolutional encoder interleaves these information symbols.
  • the redundancy symbols of the first convolutional encoder are called if i and the redundancy symbols of the second convolutional encoder are referred to as ⁇ p k2 to achieve
  • the remaining redundancy symbols together with the information symbols form the code word to be transmitted
  • the iterative turbo decoder is a decoder arrangement which is suitable for the decoding of turbo codes and is used there.
  • FIG. 2 shows a conventional turbo decoder structure.
  • the data coming from the demodulator are the individual SISO convolution decoders that correspond to the respective encoders.
  • the decoding process is carried out iteratively, i.e. after the decoding of one partial code, the other partial code is decoded, taking into account the decoding result (extrinsic information) of the previous process.
  • the turbo decoder can be operated with a single SISO decoder, which is time-multiplexed, or in parallel (two SISO for one iteration level) Mixed forms are also possible
  • FIG. 3 shows a block diagram which results when transformation and reverse transformation are carried out in the form of boxes used for this purpose.
  • a SISO decoder is followed by a T-box, with the aid of which a number of m-bits is transformed to a number of n-bits This reduced number of bits is temporarily stored for processing. After processing, the reduced number is retransformed into the original format using a T _1 box, which is connected downstream of the buffer, before it is further processed by another SISO decoder
  • SISO soft input soft output decoder
  • Logarithmic probability ratios (L values) are generally used for the software.
  • the amount ⁇ L (ü k ) ⁇ indicates the reliability of the decision, the sign sign (__. (_. Fc )) represents the hard decision
  • L (ü k ) represents the reliability of the kth information symbol
  • L (u k ) the a priori information about the bit to be decoded
  • L c y the channel information of the bit to be decoded
  • the calculated extrinsic values are quantized with the help of a table or by logical links and binary coded. This task can be carried out by reading out the table in one step, as shown in FIG. 5. The determined values are then stored in the extrinsic buffer
  • the method according to the invention allows the use of 3-bit wide extrinsic buffers without significant deterioration in the decoding performance.
  • the simulation result of the bit error rate (BER) with and without extrinsic transformation is shown in FIG. 7.

Landscapes

  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Error Detection And Correction (AREA)

Abstract

Verfahren und Vorrichtung zur iterativen Decodierung von verketten Codes, wobei die extrinsic Information, die zwischen den Soft-In-Soft-Out-Decodern (SISO) der Teilcodes während der Decodierung ausgetauscht wird, in ihrem Speicherbedarf minimiert wird. Dies wird dadurch gelöst, dass nach der Berechnung der extrinsic Werte in den SISO-Decodern eine Transformation auf diese angewendet wird. Diese Transformation bewirkt eine Verringerung der Grösse des Zwischenspeichers der extrinsic Information. Beim nächsten Zugriff auf die extrinsic Information wird die Transformation durch eine entsprechende inverse Transformation wieder aufgehoben.

Description

Verfahren und Vorrichtung zur iterativen Decodierung von verketteten Codes
Beschreibung
Die Erfindung betrifft ein Verfahren zur iterativen Decodierung von verketteten Codes bei dem Zuverlässigkeitsinformationen zwischen den Teildecodern ausgetauscht werden. Bei diesem Verfahren wird das Codewort durch die Kombination von mehreren Untercodes gebildet.
Iterative Decodierverfahren sind beispielsweise aus der US 5 446 747 und der US 5 563 897 bekannt. In der DE 195 26 416 AI wird die Verwendung eines adaptiven Abbruchkriteriums beim iterativen Decodieren übertragener, multidimensional codierter Information beschrieben.
Iterativ decodierte Codes sind z.B. Turbo-Codes, seriell verkettete Codes und Produktcodes. Zur Decodierung der Teilcodes werden in der Regel Soft-In-Soft-Out Symbol- oder Sequenzschätzer verwendet, die Zuverlässigkeitsinformationen untereinander austauschen.
Bei einem Verfahren zur iterativen Decodierung von verketteten Codes, bei dem Zuverlässigkeitsinformationen (L-Werte) zwischen verschiedenen Teildecodern ausgetauscht werden, wird das Codewort durch die Kombination mehrerer Untercodes gebildet. Die Decodierung dieser Codes erfolgt in der Regel iterativ, d.h. es besteht eine Rückkopplung zwischen den Teildecodern. Dabei werden nacheinander die Teilcodes decodiert und das Decodierergebnis, die sogenannte extrinsic Information, als a-priori Information den anderen Decodern zur Verfügung gestellt. Beispiele für iterativ decodierte Codes sind Turbo-Codes und seriell verkettete Codes. Turbo-Codes wurden erstmalig in G. Berrou, A. Glavieux, P. Thitimajshima, „Near Shannon limit error-correcting coding: Turbo codes" Proc. 1993 International Conference Communication, Genf, Mai 1993, Seiten 1064-1070, vorgestellt. Seriell verkettete iterativ decodierte Codes sind in S. Benedetto, G. Montorsi, „Serial concatenation of block and convolutional codes" Electron. Lett., vol. 32, no. 10, Seiten 887-888, Mai 1996 beschrieben.
Turbo-Codes werden seit wenigen Jahren eingesetzt und sind als grundlegendes Verfahren zur Kanalcodierung für den Mobilfunkstandard der dritten Generation „IMT-2000" vorgeschlagen worden. Turbo-Codes haben den Vorteil eines hohen Codiergewinnes und können flexibel an die Kanalerfordernisse angepaßt werden. Zur iterativen Decodierung werden Decoder für die Teilcodes verwendet, welche neben den Zuverlassigkeitswerten des übertragenen Codeworts außerdem a-priori Informationen nutzen können Als Decodierergebnis wird eine extrinsic Information berechnet, welche den Decodern der anderen Teilcodes wiederum als a-priori Information zur Verfügung steht Diese Decoder werden allgemein SISO (Soft-In-Soft-Out) genannt
Realisierungen eines SISO-Decoders sind z B MAP oder SOVA-Decoder Der MAP- Algorithmus wurde in L Bahl, J Cocke, F Jelinek, and J Raviv, „Optimal decoding of linear codes for minimizing symbol error rate" IEEE Transactions on Information Theory, Seiten 284- 287, März 1974 beschrieben Der SOVA- Algorithmus wurde in J Hagenauer et al, „Iterative („Turbo") decoding of systematic convolutional codes with MAP and SOVA algorithms". ITG Fachtagung „Codierung", München, Okt 1994, beschrieben
Da im Coder die Informationssymbole in der Regel verschachtelt den Teilcodern zugeführt werden, ist bei der Decodierung ein Zwischenspeicher für die extrinsic Information zum Aufheben der Verschachtelung notwendig Dieser Zwischenspeicher verbraucht einen erheblichen Anteil an der für den gesamten Decoder notwendigen Flache auf einem Schaltkreis
Bei einer ASIC Realisierung eines iterativen Decoders wird üblicherweise der SISO-Decoder so gestaltet, daß mit ganzen Zahlen (Integer) für die extrinsic Information gearbeitet wird Die benotigte Wortbreite dieser Darstellung bestimmt zusammen mit der Verschachtelungstiefe die notwendige Große des extrinsic Zwischenspeichers
Der Erfindung liegt die Aufgabe zugrunde, das iterative Decodierverfahren hinsichtlich des Realisierungsaufwandes so zu verbessern, daß der für die Decodierung notwendige extrinsic Zwischenspeicher bei gleicher Leistungsfähigkeit des Decoders kleiner sein kann, als es nach dem Stand der Technik üblich ist
Gemäß der Erfindung wird diese Aufgabe durch ein Verfahren mit den im Oberbegriff des Anspruchs 1 genannten Merkmalen dadurch gelost, daß die berechnete extrinsic Information mit einer Anzahl m-Bit vor der Speicherung in einem Zwischenspeicher in eine Zahlendarstellung mit einer geringeren Anzahl n-Bit transformiert und beim Auslesen aus dem Zwischenspeicher durch eine Rucktransformation die ursprungliche Zahlendarstellung wiederhergestellt wird In einer Ausgestaltung der Erfindung wird die Transformation so vorgenommen, daß die berechneten extrinsic Werte einer Quantisierung unterworfen und danach binar codiert werden
In einer weiteren Ausgestaltung der Erfindung wird die Transformation so vorgenommen, daß die Quantisierung nichtlinear erfolgt
In einer weiteren Ausgestaltung der Erfindung ist die Quantisierungskennline so gestaltet, daß kleine Amplituden werte der extrinsic Information feiner unterteilt werden als große Werte Bei einer geeigneten Einteilung der Intervalle ergibt sich keine signifikante Verschlechterung des Decodierergebnisses
Gemäß der Erfindung wird die Aufgabe außerdem durch eine Vorrichtung in Verbindung mit den im Oberbegriff des Anspruchs 8 genannten Merkmalen dadurch gelost, daß zwischen einem Teildecoder und einem Zwischenspeicher Mittel zur Transformation einer Anzahl m-Bit in eine Anzahl n-Bit und zwischen einem Zwischenspeicher und einem Teildecoder Mittel zur Rucktransformation einer Anzahl n-Bit in eine Anzahl m-Bit vorgesehen ist, wobei die Anzahl m-Bit großer als die Anzahl n-Bit ist
Vorteilhaft ist als Mittel zur Transformation und Rucktransformation jeweils eine Transformationsbox vorgesehen
Der Vorteil der Erfindung besteht dann, daß der erforderliche Speicherbedarf für den Zwischenspeicher reduziert werden kann, ohne die Decodierleistung des Decoders signifikant zu beeinträchtigen
Das Verfahren kann prinzipiell für alle Decodierverfahren verwendet werden, die extrinsic Informationen Zwischenspeichern
Die Erfindung wird nachfolgend anhand eines Ausführungsbeispieles naher erläutert In den zugehörigen Zeichnungen zeigen
Fig 1 ein Blockschaltbild eines Turbo-Code Encoders Fig 2 ein Blockschaltbild eines Turbo-Code Decoders Fig 3 ein Blockschaltbild bei Durchführung von Transformation und Rucktransformation Fig 4 eine Quantisierungskennline der extrinsic Information
Fig 5 ein Beispiel für eine Transformationstabelle
Fig 6 ein Beispiel für eine Rucktransformation
Fig 7 eine Darstellung eines Simulationsergebnisse
Im Bereich der Kanalcodierung spielen Turbo-Codes aufgrund des hohen erzielbaren Codierungsgewinns eine wichtige Rolle Turbo-Codes sind parallel verkettete rekursive systematische Faltungscodes Die Struktur eines herkömmlichen Turbo-Code Encoders mit zwei Faltungscodes der Einflußlange von drei Symbolen ist in Fig 1 dargestellt Ein Faltungscoder verwendet die Informationssymbole k direkt wahrend der anderer Faltungscoder diese Informationssymbole verschachtelt (interleavt) verarbeitet Die Redundanzsymbole des ersten Faltungscoders werden als if i und die Redundanzsymbole des zweiten Faltungscoders werden als ιιpk2 bezeichnet Die Redundanzsymbole können mittels eines optionalen Punktierungsblocks selektiv geloscht werden, um eine bestimmte Coderate zu erzielen Die verbleibenden Redundanzsymbole bilden zusammen mit den Informationssymbolen das zu übertragende Codewort
Der iterative Turbo-Decoder ist eine Decoderanordung, die für die Decodierung von Turbo- Codes geeignet ist und dort Anwendung findet Fig 2 zeigt eine herkömmliche Turbo-Decoder Struktur Die vom Demodulator kommenden Daten werden den einzelnen SISO- Faltungsdecodern, die den jeweiligen Encodern entsprechen, zugeführt Der Decodiervorgang erfolgt iterativ, d h nach der Decodierung eines Teilcodes erfolgt die Decodierung des anderen Teilcodes unter Einbeziehung des Decodierergebnisses (extrinsic Information) des vorherigen Prozesses Der Turbo-Decoder kann mit einem einzigen SISO-Decoder, der zeitmultiplex betrieben wird, oder parallel (zwei SISO für eine Iterationsstufe) aufgebaut werden Auch Mischformen sind möglich
In der Fig 3 ist ein Blockschaltbild dargestellt, das sich bei Durchführung von Transformation und Rucktransformation in Form von dazu eingesetzten Boxen ergibt Einem SISO-Decoder ist eine T-Box nachgeschaltet, mit deren Hilfe eine Anzahl m-Bit auf eine Anzahl n-Bit transformiert wird Diese reduzierte Anzahl von Bit wird zur Verarbeitung zwischengespeichert Nach der Verarbeitung wird die reduzierte Anzahl mittels einer T_1-Box, die dem Zwischenspeicher nachgeschaltet ist, in das ursprungliche Format rucktransformiert, bevor diese von einem weiteren SISO-Decoder weiterverarbeitet wird Zur Decodierung der einzelnen Faltungscodes wird generell ein Soft-Input-Soft-Output Decoder (SISO) verwendet Dieser kann durch verschiedene Algorithmen realisiert werden (MAP, Max- Log-MAP, SOVA)
Für die Softwerte werden allgemein logarithmierte Wahrscheinlichkeitsverhalnisse (L-Werte) verwendet Der Betrag \ L(ük ) \ gibt die Zuverlässigkeit der Entscheidung an, das Vorzeichen sign(__.(_.fc)) stellt die harte Entscheidung dar
Als Decodierergebnis des SISO-Decoders wird die extrinsic Information Lek) für das
Informationssymbol Uk bereitgestellt Diese berechnet sich wie folgt
Lek) = L(ük) - L(uk) - Lcyl (1)
Dabei stellt L(ük ) die Zuverlässigkeit des k-ten Informationssymbols, L(uk) die a-priori Information über das zu decodierende Bit und Lcy[ die Kanalinformation des zu decodierenden Bits dar
Die berechneten extrinsic Werte werden mit Hilfe einer Tabelle oder durch logische Verknüpfungen quantisiert und binar codiert Diese Aufgabe kann durch Tabellenauslese in einem Schritt erfolgen, wie in Fig 5 dargestellt Die ermittelten Werte werden dann in dem extrinsic Zwischenspeicher abgelegt
Bevor die Werte für die nächste Iterationsstufe wieder Verwendung finden, wird die ursprungliche Zahlendarstellung wiederhergestellt Diese Aufgabe kann wiederum durch Tabellenauslese realisiert werden, wie in Fig 6 dargestellt Eine weitere Möglichkeit der Rucktransformation stellt die Realisierung durch logische Verknüpfungen dar In Fig 3 ist das Transformationsverfahren als separates Modul (T-Box) dargestellt Prinzipiell laßt sich die Funktionalitat der T-Box und T_1-Box auch in das SISO-Modul integrieren
Das erfindungsgemaße Verfahren erlaubt die Verwendung von 3-bit breitem extrinsic Zwischenspeicher ohne signifikante Verschlechterung der Decodierleistung Als Beispiel ist in Fig 7 das Simulationsergebnis der Bitfehlerrate (BER) mit und ohne extrinsic Transformation dargestellt Für die Simulation der Bitfehlerrate wurde ein Turbo-Code mit dem Generatorpolynom (gfeedback, gpaπty) = (70_t,50ct) der Teilcodes, die Blocklange 668 bits, ein AWGN-Kanal und als SISO-Decoder ein Max-Log-MAP Decoder verwendet

Claims

Patentansprüche
1 Verfahren zur iterativen Decodierung von verketteten Codes, bei dem nacheinander die einzelnen Teilcodes decodiert werden und eine extrinsic Information zwischen den Teildecodern über einen Zwischenspeicher ausgetauscht wird, dadurch gekennzeichnet, daß die berechnete extrinsic Information mit einer Anzahl m-Bit vor der Speicherung in einem Zwischenspeicher in eine Zahlendarstellung mit einer geringeren Anzahl n-Bit transformiert und beim Auslesen aus dem Zwischenspeicher durch eine Rucktransformation die ursprungliche Zahlendarstellung wiederhergestellt wird
2 Verfahren nach Anspruch 1, dadurch gekennzeichet, daß die Transformation der extrinsic Werte mit Hilfe einer Quantisierung derselben erfolgt
3 Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die Transformation der extrinsic Werte mit Hilfe einer nichlinearen Quantisierungskennlinie erfolgt
4 Verfahren nach einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, daß durch die Quantisierungskennlinie kleine Werte feiner aufgelost werden als große Werte
5 Verfahren nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, daß die Quantisierungsergebnisse binar codiert werden
6 Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Transformation und Rucktransformation der extrinsic Information durch Tabellenauslese erfolgt
7 Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß die Transformation und Rucktransformation der extrinsic Information durch logische Operationen erfolgt
8 Vorrichtung zur iterativen Decodierung von verketteten Codes, bei der eine extrinsic Information zwischen Teildecodern (Decoder 1, 2) über Zwischenspeicher (Interleaver) ausgetauscht wird, dadurch gekennzeichnet, daß zwischen einem Teildecoder (Decoder 1) und einem Zwischenspeicher Mittel zur Transformation einer Anzahl m-Bit in eine Anzahl n-Bit und zwischen einem Zwischenspeicher und einem Teildecoder (Decoder 2) Mittel zur Rücktransformation einer Anzahl n-Bit in eine Anzahl m-Bit vorgesehen ist, wobei die Anzahl m-Bit größer als die Anzahl n-Bit ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß als Mittel zur Transformation und Rücktransformation jeweils eine Transformationsbox (T-Box, T_1-Box) vorgesehen ist.
Hierzu 3 Blatt Zeichnungen
PCT/DE2000/002211 1999-07-16 2000-07-10 Verfahren und vorrichtung zur iterativen decodierung von verketteten codes WO2001006662A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE10082067T DE10082067D2 (de) 1999-07-16 2000-07-10 Verfahren und Vorrichtung zur iterativen Decodierung von verketteten Codes
AU69793/00A AU6979300A (en) 1999-07-16 2000-07-10 Method and device for iterative decoding interlinked codes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19934646.1 1999-07-16
DE1999134646 DE19934646C2 (de) 1999-07-16 1999-07-16 Verfahren und Vorrichtung zur iterativen Decodierung von verketteten Codes

Publications (1)

Publication Number Publication Date
WO2001006662A1 true WO2001006662A1 (de) 2001-01-25

Family

ID=7915856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/002211 WO2001006662A1 (de) 1999-07-16 2000-07-10 Verfahren und vorrichtung zur iterativen decodierung von verketteten codes

Country Status (3)

Country Link
AU (1) AU6979300A (de)
DE (2) DE19934646C2 (de)
WO (1) WO2001006662A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1418697A1 (de) * 2000-11-14 2004-05-12 Interdigital Technology Corporation Empfangsvorrichtung und Verfahren zur Turbodekodierung unter Verwendung eines Signaturdatenvergleichs
WO2005078937A2 (en) * 2004-02-09 2005-08-25 Matsushita Electric Industrial Co., Ltd A method to reduce the memory requirement of the deinterleaver within a digital audio broadcast radio receiver using data compression
US7349540B2 (en) 2002-05-07 2008-03-25 Interdigital Technology Corporation Generation of user equipment identification specific scrambling code for high speed shared control channel
US7533320B2 (en) 2000-11-14 2009-05-12 Interdigital Technology Corporation Wireless transmit/receive unit having a turbo decoder with circular redundancy code signature comparison and method
DE102008040797A1 (de) 2008-07-28 2010-02-11 Secutanta Gmbh Verfahren zum Senden und Empfangen eines Datenblocks
DE102008055139A1 (de) 2008-12-23 2010-07-01 Secutanta Gmbh Verfahren zum Senden und Empfangen eines Datenblocks
EP3002900A1 (de) * 2001-02-01 2016-04-06 Qualcomm Incorporated Decodierungsschema für eine drahtloskommunikationsvorrichtung
US9979580B2 (en) 2001-02-01 2018-05-22 Qualcomm Incorporated Coding scheme for a wireless communication system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2828359A1 (fr) * 2001-07-31 2003-02-07 Koninkl Philips Electronics Nv Emetteur, recepteur, procedes, programme et signal adaptes a des modulations a grand nombre d'etats
US9425922B2 (en) 2014-08-15 2016-08-23 Nxp B.V. Reduced memory iterative baseband processing

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007076A2 (en) * 1997-07-30 1999-02-11 Samsung Electronics Co., Ltd. Adaptive channel encoding method and device
WO1999025069A1 (fr) * 1997-11-10 1999-05-20 Ntt Mobile Communications Network, Inc. Procede et dispositif d'entrelacement, et support d'enregistrement dans lequel on a enregistre un programme de production de motifs d'entrelacement
WO2000027037A2 (en) * 1998-11-05 2000-05-11 Qualcomm Incorporated Efficient iterative decoding
EP1024617A2 (de) * 1999-01-27 2000-08-02 Lucent Technologies Inc. Mehrfachprogrammdekodierung für den digitalen Hörfunk und für andere Anwendungen

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2675971B1 (fr) * 1991-04-23 1993-08-06 France Telecom Procede de codage correcteur d'erreurs a au moins deux codages convolutifs systematiques en parallele, procede de decodage iteratif, module de decodage et decodeur correspondants.
FR2712760B1 (fr) * 1993-11-19 1996-01-26 France Telecom Procédé pour transmettre des bits d'information en appliquant des codes en blocs concaténés.
US5663897A (en) * 1995-06-08 1997-09-02 Strokz Digital Sports, Inc. Method and apparatus for analyzing a swimmer's swim stroke
DE19526416A1 (de) * 1995-07-19 1997-01-23 Siemens Ag Verfahren und Anordnung zur Bestimmung eines adaptiven Abbruchkriteriums beim iterativen Decodieren multidimensional codierter Infomation
DE19736625C1 (de) * 1997-08-22 1998-12-03 Siemens Ag Verfahren zur Datenübertragung auf Übertragungskanälen in einem digitalen Übertragungssystem

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999007076A2 (en) * 1997-07-30 1999-02-11 Samsung Electronics Co., Ltd. Adaptive channel encoding method and device
WO1999025069A1 (fr) * 1997-11-10 1999-05-20 Ntt Mobile Communications Network, Inc. Procede et dispositif d'entrelacement, et support d'enregistrement dans lequel on a enregistre un programme de production de motifs d'entrelacement
WO2000027037A2 (en) * 1998-11-05 2000-05-11 Qualcomm Incorporated Efficient iterative decoding
EP1024617A2 (de) * 1999-01-27 2000-08-02 Lucent Technologies Inc. Mehrfachprogrammdekodierung für den digitalen Hörfunk und für andere Anwendungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BERROU C ET AL: "NEAR SHANNON LIMIT ERROR - CORRECTING CODING AND DECODING: TURBO-CODES (1)", PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC),US,NEW YORK, IEEE, vol. -, 23 May 1993 (1993-05-23), pages 1064 - 1070, XP000371240, ISBN: 0-7803-0950-2 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8230304B2 (en) 2000-11-14 2012-07-24 Interdigital Technology Corporation Wireless transmit/receive unit having a turbo decoder with circular redundancy code signature comparison and method
US6956912B2 (en) 2000-11-14 2005-10-18 David Bass Turbo decoder with circular redundancy code signature comparison
EP1418697A1 (de) * 2000-11-14 2004-05-12 Interdigital Technology Corporation Empfangsvorrichtung und Verfahren zur Turbodekodierung unter Verwendung eines Signaturdatenvergleichs
US7533320B2 (en) 2000-11-14 2009-05-12 Interdigital Technology Corporation Wireless transmit/receive unit having a turbo decoder with circular redundancy code signature comparison and method
US9979580B2 (en) 2001-02-01 2018-05-22 Qualcomm Incorporated Coding scheme for a wireless communication system
US9647733B2 (en) 2001-02-01 2017-05-09 Qualcomm Incorporated Coding scheme for a wireless communication system
EP3002900A1 (de) * 2001-02-01 2016-04-06 Qualcomm Incorporated Decodierungsschema für eine drahtloskommunikationsvorrichtung
US7349540B2 (en) 2002-05-07 2008-03-25 Interdigital Technology Corporation Generation of user equipment identification specific scrambling code for high speed shared control channel
US7970127B2 (en) 2002-05-07 2011-06-28 Interdigital Technology Corporation User equipment identification specific scrambling
US7536013B2 (en) 2002-05-07 2009-05-19 Interdigital Technology Corporation User equipment identification specific scrambling
US9634801B2 (en) 2002-05-07 2017-04-25 Interdigital Technology Corporation User equipment identification specific scrambling
WO2005078937A3 (en) * 2004-02-09 2005-10-13 Matsushita Electric Ind Co Ltd A method to reduce the memory requirement of the deinterleaver within a digital audio broadcast radio receiver using data compression
WO2005078937A2 (en) * 2004-02-09 2005-08-25 Matsushita Electric Industrial Co., Ltd A method to reduce the memory requirement of the deinterleaver within a digital audio broadcast radio receiver using data compression
US8196015B2 (en) 2008-07-28 2012-06-05 Secutanta Gmbh Method for transmitting and receiving a data block and a corresponding transmitter and receiver
DE102008040797A1 (de) 2008-07-28 2010-02-11 Secutanta Gmbh Verfahren zum Senden und Empfangen eines Datenblocks
DE102008055139A1 (de) 2008-12-23 2010-07-01 Secutanta Gmbh Verfahren zum Senden und Empfangen eines Datenblocks

Also Published As

Publication number Publication date
DE19934646A1 (de) 2001-02-01
DE10082067D2 (de) 2002-09-26
AU6979300A (en) 2001-02-05
DE19934646C2 (de) 2001-09-13

Similar Documents

Publication Publication Date Title
DE69736881T2 (de) Parallel verketteter tail-biting-faltungskode und dekoder dafür
DE69838451T2 (de) Verfahren und schaltung zur adaptiven kanalkodierung
DE69923970T2 (de) Kanaldecodiereinrichtung und Verfahren zum Kanaldecodieren
US6298463B1 (en) Parallel concatenated convolutional coding
DE3910739C2 (de)
DE112004002008B4 (de) Vereinheitlichter Viterbi/Turbo-Decoder für mobile Telekommunikationssysteme
WO2003071689A2 (de) Kombinierter ver- und entschachteler sowie turbo-decodierer mit kombiniertem ver- und entschachteler
DE102005010006A1 (de) Verfahren und Vorrichtung zum Terminieren einer iterativen Turbo-Dekodierung
DE19934646C2 (de) Verfahren und Vorrichtung zur iterativen Decodierung von verketteten Codes
DE60111974T2 (de) Abbruchkriterium für einen Turbodekoder
WO2002030073A2 (de) Abschnittsweise entschachtelung
DE10214393A1 (de) Verfahren zur iterativen Decodierung von verketteten Codes
EP1269633A2 (de) Optimierter turbo-decodierer
DE19725275C2 (de) Verfahren zur Decodierung von block- oder faltungscodierten digitalen Signalen
DE10001856A1 (de) Verfahren zur Decodierung eines Datensignals
DE19520987A1 (de) Verfahren zur Terminierung des Trellis bei rekursiven systematischen Faltungscodes
DE102010054228B4 (de) Verfahren zum Übertragen von Daten
EP1269632B1 (de) Turbo-decodierer und turbo-decodierverfahren
DE102015205290B4 (de) Verfahren zur Übertragung von binären Daten über einen Kanal, insbesondere über einen optischen Freiraum-Datenübertragungskanal
WO1998052362A2 (de) Kanalcodierungsverfahren
DE10120155B4 (de) Modulation mit paralleler Turbotrelliscodierung
DE102011018173B4 (de) Verfahren zur Rückgewinnung verlorener oder beschädigter Daten
DE10000932C2 (de) Verfahren und Vorrichtung zum Decodieren einer Folge von Codewörtern variabler Länge, Verfahren und Vorrichtung zum Erzeugen eines Datenstroms und Verfahren und Vorrichtung zum Decodieren eines Datenstroms
DE19815825A1 (de) Analoge Entzerrer und Decoder für verzerrende Nachrichtenübertragungskanäle
EP1593201B1 (de) Verfahren und schaltung zur adressgenerierung von pseudo-zufalls-interleavern oder -deinterleavern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP