WO2001005498A1 - Reacteur multietage, ses applications et procede de fabrication du peroxyde d'hydrogene - Google Patents

Reacteur multietage, ses applications et procede de fabrication du peroxyde d'hydrogene Download PDF

Info

Publication number
WO2001005498A1
WO2001005498A1 PCT/FR2000/001416 FR0001416W WO0105498A1 WO 2001005498 A1 WO2001005498 A1 WO 2001005498A1 FR 0001416 W FR0001416 W FR 0001416W WO 0105498 A1 WO0105498 A1 WO 0105498A1
Authority
WO
WIPO (PCT)
Prior art keywords
reactor
turbines
diameter
liquid phase
hydrogen
Prior art date
Application number
PCT/FR2000/001416
Other languages
English (en)
Inventor
Michel Devic
Original Assignee
Atofina
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU49311/00A priority Critical patent/AU759296B2/en
Priority to JP2001510577A priority patent/JP2003504193A/ja
Priority to EP00931346A priority patent/EP1204471A1/fr
Priority to PL00352482A priority patent/PL352482A1/xx
Priority to BR0012261-0A priority patent/BR0012261A/pt
Priority to UA2002010368A priority patent/UA74340C2/uk
Application filed by Atofina filed Critical Atofina
Priority to CA002377127A priority patent/CA2377127C/fr
Priority to EA200200171A priority patent/EA003039B1/ru
Priority to NZ515748A priority patent/NZ515748A/en
Publication of WO2001005498A1 publication Critical patent/WO2001005498A1/fr
Priority to NO20016239A priority patent/NO325226B1/no
Priority to US11/403,655 priority patent/US20060198771A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2331Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the introduction of the gas along the axis of the stirrer or along the stirrer elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2336Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer
    • B01F23/23362Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the location of the place of introduction of the gas relative to the stirrer the gas being introduced under the stirrer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/2366Parts; Accessories
    • B01F23/2368Mixing receptacles, e.g. tanks, vessels or reactors, being completely closed, e.g. hermetically closed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • B01J19/1868Stationary reactors having moving elements inside resulting in a loop-type movement
    • B01J19/1881Stationary reactors having moving elements inside resulting in a loop-type movement externally, i.e. the mixture leaving the vessel and subsequently re-entering it
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/005Separating solid material from the gas/liquid stream
    • B01J8/006Separating solid material from the gas/liquid stream by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/222Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid in the presence of a rotating device only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/18Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles
    • B01J8/20Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium
    • B01J8/22Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid
    • B01J8/224Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement
    • B01J8/228Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with fluidised particles with liquid as a fluidising medium gas being introduced into the liquid the particles being subject to a circulatory movement externally, i.e. the particles leaving the vessel and subsequently re-entering it
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B15/00Peroxides; Peroxyhydrates; Peroxyacids or salts thereof; Superoxides; Ozonides
    • C01B15/01Hydrogen peroxide
    • C01B15/029Preparation from hydrogen and oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/20Mixing gases with liquids
    • B01F23/23Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids
    • B01F23/233Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements
    • B01F23/2335Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the direction of introduction of the gas relative to the stirrer
    • B01F23/23352Mixing gases with liquids by introducing gases into liquid media, e.g. for producing aerated liquids using driven stirrers with completely immersed stirring elements characterised by the direction of introduction of the gas relative to the stirrer the gas moving perpendicular to the axis of rotation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/111Centrifugal stirrers, i.e. stirrers with radial outlets; Stirrers of the turbine type, e.g. with means to guide the flow
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/05Stirrers
    • B01F27/11Stirrers characterised by the configuration of the stirrers
    • B01F27/19Stirrers with two or more mixing elements mounted in sequence on the same axis
    • B01F27/191Stirrers with two or more mixing elements mounted in sequence on the same axis with similar elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00176Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles outside the reactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00017Controlling the temperature
    • B01J2208/00106Controlling the temperature by indirect heat exchange
    • B01J2208/00168Controlling the temperature by indirect heat exchange with heat exchange elements outside the bed of solid particles
    • B01J2208/00212Plates; Jackets; Cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/185Details relating to the spatial orientation of the reactor vertical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm

Definitions

  • the present invention relates to a method according to which several gaseous components are reacted in the presence of a solid suspended in a liquid phase.
  • the invention also relates to a device for implementing the method.
  • the invention more particularly relates to a device and a method for manufacturing hydrogen peroxide directly from oxygen and hydrogen with a catalyst suspended in an aqueous phase.
  • the present invention therefore aims to provide a process comprising a reaction step involving several gaseous components in the presence of a solid suspended in a liquid phase and in particular a process for the direct manufacture of hydrogen peroxide safely and with optimal productivity in hydrogen peroxide, as well as a device allowing its implementation.
  • the device according to the invention comprises a vertical stirred reactor of cylindrical shape, provided with means for injecting gaseous reagents at the bottom, with outlet means at the top for discharging the gaseous reagents and with several centrifugal turbines arranged, preferably regularly, the along a single vertical stirring tree.
  • the vertical shaft is generally driven by a geared motor group, which most often is located either at the top or below the reactor. Depending on its length, the shaft can be supported by one or more bearings.
  • the reactor can also be equipped with counter-blades and / or heat exchanger.
  • the perfectly stirred reactor consists of a single capacity without a horizontal fixed partition.
  • the height of the reactor is generally between 1, 5 and 10 times the diameter and preferably between
  • the reactor is also provided with a bottom and a cover which can be flat or semi-spherical.
  • FIG. 1 is a simplified diagram of a particular device of the invention.
  • the device comprises a vertical stirred reactor (V) provided with several centrifugal turbines (a) arranged along a stirring shaft driven by a motor (M).
  • the reactor is also equipped with counter-blades (c) and a heat exchanger (R).
  • Injection means (1, 2) of gaseous reagents are provided at the bottom of the reactor and an outlet (3) located at the top of the reactor is used to evacuate the gaseous reagents.
  • any type of centrifugal turbine capable of sucking at the level of the central axis of the reactor a mixture of liquid, gas bubbles and solid in suspension, and of projecting this mixture radially along a horizontal plane in order to ensuring a circulation of liquid mixture, gas bubbles and solid according to FIG. 1, may be suitable.
  • Flanged radial turbines with one or two central openings are preferred. Flanged turbines similar to those used for centrifugal water pumps with the pumping port pointing downwards are particularly suitable.
  • the turbines can be equipped with several blades arranged radially or inclined or in spirals.
  • the number of blades is preferably between 3 and 24.
  • the number of turbines depends on the ratio of the height of the reactor to the diameter of the reactor and is generally between 2 and 20, preferably between 3 and 8.
  • the distance between two turbines is preferably between 0.5 and 1.5 times the outside diameter of the turbine; this is preferably between 0.2 and 0.5 times the diameter of the reactor.
  • the thickness of the turbines is preferably between 0.07 and
  • thickness is meant the distance between the two flanges of the turbine.
  • the device according to the invention can also include a filter installed inside or outside the reactor.
  • the lower part of the reactor In operating mode, the lower part of the reactor is occupied by a liquid phase comprising solid catalysts in suspension and a multitude of small bubbles of gaseous reactants, while the upper part is occupied by a continuous gas phase.
  • the volume occupied by the continuous gas phase represents between 10 to 30% of the total volume of the reactor and preferably 20 to 25%.
  • the turbines are arranged along the stirring shaft so that they are immersed, and preferably completely submerged, in the liquid phase when the stirring is stopped.
  • the speed of rotation of the turbine is chosen so as to obtain both the maximum possible gas bubbles per unit volume of liquid phase and a minimum diameter of bubbles.
  • the reactor is equipped with counter-blades, preferably made up of several vertical rectangular plates, arranged around the turbines.
  • the counter-blades are generally located between the cylindrical wall of the reactor and the turbines.
  • the height of these metal plates is generally close to that of the cylindrical part of the reactor.
  • the width is generally between 0.05 and 0.2 times the diameter of the reactor.
  • the number of counter-blades chosen is determined according to their width and is generally between 3 and 24 and preferably between 4 and 8.
  • the counter-blades (c) are preferably placed vertically at a distance between 1 and 10 mm from the wall (p) of the reactor and oriented in the axis of the rays coming from the center of the reactor, as indicated in FIG. 2 which is a cross section of the reactor equipped with a particular turbine with (O) representing the turbine suction port, (f) the turbine flange and (u) the turbine blade.
  • the counter-blades can be replaced, in whole or in part, by a heat exchanger.
  • the exchanger is preferably constituted by a bundle of vertical cylindrical tubes of a height close to or equal to that of the cylindrical part of the reactor. These tubes (t) are generally arranged vertically around the turbines according to FIG. 2.
  • the number and diameter of these tubes are determined in order to keep the temperature of the liquid phase within the desired limits.
  • the number of tubes is often between 8 and 64.
  • the device according to the invention can be used for carrying out a reaction at atmospheric pressure, it is most often preferred to operate under pressure. High pressures of the order of 10 to 80 bar are advantageously chosen to accelerate the reaction speed.
  • the reactor, the stirring means and the exchangers can be made of any standard material from the chemical industry, such as, for example, stainless steel (304 L or 31 6 L).
  • a protective polymer coating like PVDF like PVDF
  • PTFE polytetrafluoroethylene
  • PFA copolymer of C 2 F 4 and perfluorinated vinyl ether
  • FEP copolymer of C 2 F 4 and C 3 F 6
  • the coating can also be limited to certain elements subject to abrasion, such as for example turbines.
  • the device is particularly suitable for the direct manufacture of hydrogen peroxide with hydrogen and oxygen injected in the form of small bubbles, with a diameter of less than 3 mm and preferably between 0.5 and 2 mm, in the aqueous liquid phase with, preferably, molar flow rates such that the molar flow ratio of hydrogen to that of oxygen is greater than 0.041 6, while the hydrogen content in the continuous gas phase is kept below the limit Flammable.
  • the catalysts used in general are those described in US Pat. No. 4,724,458. They are solid catalysts based on palladium and / or platinum, optionally supported on silica, alumina, carbon or silicoaluminates.
  • the aqueous phase made acidic by the addition of a mineral acid can comprise stabilizers of hydrogen peroxide and decomposition inhibitors such as for example halides. Bromide is particularly preferred and it is advantageously used in combination with bromine in the free state (Br 2 ).
  • a second object of the invention is the process comprising a reaction step involving several gaseous components in the presence of a solid suspended in a liquid phase.
  • This process consists in introducing the gaseous components (2 or more) at the bottom of the reactor either separately or in the form of a mixture.
  • the introduction in the form of a mixture is preferred when the composition of the gas mixture is compatible with the requirements of safety.
  • the supply of reagents can be done by a conduit formed in the stirring shaft and then, by a series of small holes drilled in the center of the turbine located at the bottom of the reactor so as to produce a large number of small bubbles in the liquid stream ejected by the turbine.
  • the gaseous reagents are introduced separately into the reactor either by injection through separate nozzles situated in front of the suction orifice of the lowest turbine, either by separate sintered tubes located immediately below the lowest turbine. It is possible to operate both continuously and semi-continuously with the device of the present invention.
  • the gaseous reactants are introduced continuously for a determined time into the lower part of the reactor, occupied by a liquid phase comprising the catalytic solid in suspension.
  • the excess of gaseous reactants arriving in the continuous gas phase of the reactor is generally discharged continuously so as to keep the pressure prevailing inside the reactor constant. At the end of the determined time, the reactor is discharged to recover the reaction products.
  • the filter or filters may be of the sintered metal or ceramic filter candle type, preferably placed vertically in the reactor next to the vertical cooling tubes or counter blades.
  • the filters can also be placed outside the reactor and in this case, preferably consist of a porous hollow tube, of metal or ceramic, inside which circulates in closed circuit the liquid phase of the reactor comprising the catalyst in suspension.
  • a device comprising a filter outside the reactor is illustrated in Figure No. 3.
  • the hollow tube (g) is arranged vertically and is fed at its base by the liquid phase taken from the bottom of the reactor, the liquid phase collected in the top of the tube is returned to the top of the reactor.
  • This continuous circulation can be done under the action of a pump or under the action of local overpressures created by the agitating turbines of the reactor.
  • the clear liquid phase freed from the catalyst is collected in a double envelope (h) placed around the porous hollow tube then, evacuated by a regulating valve (6) so as to keep the level of liquid phase in the reactor constant .
  • Reaction solution is pumped continuously into the reactor at a determined rate to maintain the concentration of reaction product soluble in the liquid phase, at a chosen value.
  • Part of the reaction solution can advantageously be injected sequentially into the jacket (h) through line 7 to unclog the filter.
  • the reaction solution can also be sprayed under high pressure to continuously clean the continuous gas phase of the reactor.
  • the gaseous reagents are continuously introduced into the bottom (b) of the reactor via routes 1 and 2 and those which are unreacted can be recycled via route 4.
  • a selected flow rate d Hydrogen is injected via (1) into the liquid phase and below the lower turbine (b).
  • a selected flow of oxygen containing a small proportion of hydrogen is taken (4) from the continuous gas phase of the reactor and injected into the liquid phase via (2) and below the lower turbine (b).
  • a new oxygen flow (5) is injected into the continuous gas phase of the reactor to compensate for the oxygen consumed and also to keep the continuous gas phase outside the flammability limits.
  • a pressure regulator (spillway) allows the excess gaseous reagents (3) to be removed from the continuous gas phase of the reactor, as well as inert gases such as nitrogen which are possibly present in the fresh oxygen.
  • the device according to the invention has the advantage, in the event of accidental stopping of the agitation, to allow all the bubbles of the gaseous reactants to rise and reach the continuous gaseous phase directly under the sole action of the forces of gravity.
  • the reactor with a capacity of 1,500 cm 3 consists of a cylindrical tank 200 mm high and 98 mm in diameter. The bottom and the cover are flat. A removable 1.5 mm thick PTFE sleeve is placed in the reactor bowl
  • the agitation is ensured by a vertical axis in stainless steel 1 80 mm long and 8 mm in diameter driven by a magnetic coupling placed on the cover of the reactor.
  • One, two or three flanged turbines with an outside diameter of 45 mm, a thickness of 9 mm (between the two flanges) fitted with a suction port of 1 2.7 mm in diameter, facing downwards, and 8 flat radial blades 9 mm wide, 1.5 mm long and 1.5 mm thick, can be fixed to the stirring shaft at different heights chosen so as to divide the liquid phase into substantially equal volumes .
  • the lower turbine is placed 32 mm from the bottom, the second turbine 78 mm from the bottom and the third turbine 125 mm from the bottom.
  • Cooling or heating is provided by eight vertical tubes of 6.35 mm in diameter and 1 50 mm in length arranged in a crown 35 mm from the axis of the tank.
  • This stream is traversed by a stream of water at constant temperature.
  • the injection of hydrogen and oxygen into the liquid phase is done by means of two separate 1.58 mm diameter stainless steel pipes leading the gases to the center of the lower turbine.
  • the injection of gaseous reactants into the aqueous medium as well as that of oxygen into the continuous gas phase are regulated using mass flowmeters. Certain tests are carried out by replacing the oxygen with an oxygen-nitrogen mixture in different proportions.
  • the pressure inside the reactor is kept constant thanks to an overflow valve.
  • the hydrogen, oxygen and optionally nitrogen constituting the gas flow leaving the reactor are dosed online by gas phase chromatography.
  • the catalyst used contains 0.7% by weight of metallic palladium and 0.03% by weight of platinum supported on a microporous silica.
  • An aqueous solution is prepared by adding 1 2 g of H 3 PO 4 , 58 mg of NaBr and 5 mg of Br 2 in 1000 cm 3 of demineralized water.
  • the selected volume of aqueous reaction medium is introduced into the autoclave and then the determined quantity of catalyst is added.
  • the autoclave is pressurized by injecting a selected flow of oxygen into the continuous gas phase.
  • the pressure remains constant thanks to the pressure regulator.
  • the liquid medium is brought to the chosen temperature by circulation of water thermostatically controlled in the bundle of cooling tubes.
  • Stirring is set at 1,900 rpm and the selected flow rates of oxygen and hydrogen are injected into the center of the lower turbine.
  • the flow rate and the hydrogen content of the gas mixture leaving the pressure regulator are measured.
  • the aqueous hydrogen peroxide solution recovered is then weighed, then separated from the catalyst by filtration on a Millipore filter.
  • the resulting solution is then dosed by iodometry thus making it possible to determine the concentration of hydrogen peroxide.
  • the selectivity of the synthesis is defined as being the percentage of the number of moles of hydrogen peroxide formed on the number of moles of hydrogen consumed.
  • the conversion rate is defined as the percentage of the volume of hydrogen consumed over the volume of hydrogen introduced.
  • Examples 1, 2, 3 and 4 show that for identical temperature, pressure and H 2 / O 2 conditions , increasing the number of radial turbines makes it possible to increase the conversion rate with the same efficiency as by the combination of several cascade reactors.
  • Examples 7, 8 and 9 show that, for a reactor and identical reaction conditions, the conversion rate and the content of
  • Examples 5 and 6 show that it is possible to obtain, with the reactor according to the invention, a conversion rate of 80% with only
  • Examples 1 0 and 1 1 show that the reactor according to the invention makes it possible to obtain high conversion rates and H 2 O 2 concentrations when using an oxygen-nitrogen mixture (10% to 20%) instead pure oxygen.
  • Examples 14 and 1 5 also show with another H 2 / O 2 ratio that the passage from 2 turbines to 3 turbines makes it possible to increase the hydrogen conversion rate and to decrease the H 2 concentration in the continuous gas phase of the reactor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

Dispositif comportant un réacteur agité vertical (v) de forme cylindrique, muni de plusieurs turbines centrifuges (a) disposées le long d'un arbre d'agitation unique vertical, et ses applications dans la mise en oeuvre de tout procédé dans lequel on fait réagir plusieurs composants gazeux en présence d'un solide mis en suspension dans une phase liquide. Le dispositif convient tout particulièrement pour la fabrication directe du peroxyde d'hydrogène.

Description

REACTEUR MULTIETAGE, SES APPLICATIONS ET PROCEDE DE FABRICATION DU PEROXYDE D'HYDROGENE
La présente invention concerne un procédé selon lequel on fait réagir plusieurs composants gazeux en présence d'un solide mis en suspension dans une phase liquide. L'invention concerne également un dispositif pour la mise en œuvre du procédé. L'invention a plus particulièrement pour objet un dispositif et un procédé de fabrication de peroxyde d'hydrogène directement à partir d'oxygène et d'hydrogène avec un catalyseur mis en suspension dans une phase aqueuse.
Il est connu, des demandes de brevet WO 96/05138 et WO 92/04277, de faire réagir l'hydrogène et l'oxygène dans un réacteur tubulaire (pipeline reactor) dans lequel circule à grande vitesse un milieu reactionnel aqueux comprenant un catalyseur en suspension. L'hydrogène et l'oxygène sont ainsi dispersés dans le milieu reactionnel dans des proportions dépassant la limite d'inflammabilité de l'hydrogène, c'est-à- dire pour un rapport de concentrations molaires hydrogène sur oxygène supérieur à 0,041 6 (Encyclopédie des Gaz - Air Liquide, page 909). La sécurité d'un tel procédé n'est assurée que si l'hydrogène et l'oxygène demeurent sous forme de petites bulles. Par ailleurs, pour obtenir une conversion raisonnable des réactifs gazeux la longueur du réacteur tubulaire doit être importante et doit comporter un nombre élevé de coudes. Dans ces conditions, il est difficile de garantir l'absence de formation de poche de gaz. De plus, un arrêt de la circulation du milieu reactionnel aqueux peut provoquer l'apparition d'une phase gazeuse continue explosive.
Il est connu, de la demande de brevet européen EP 579 109, de faire réagir l'hydrogène et l'oxygène dans un réacteur à lit fixe arrosé ("tric le bed") rempli de particules solides catalytiques au travers duquel on fait ruisseler à co-courant, le milieu reactionnel aqueux et la phase gazeuse contenant l'hydrogène et l'oxygène. La sécurité d'un tel procédé est également très difficile à assurer en raison des risques d'assèchement d'une partie du lit fixe arrosé et de la difficulté à évacuer les quantités importantes de chaleur générées par la réaction. Par ailleurs, les brevets US 4009252, US 4279883, US 4681751 et US 4772458 divulguent un procédé de fabrication directe de peroxyde d'hydrogène selon lequel on fait réagir dans un réacteur agité l'hydrogène et l'oxygène en présence d'un catalyseur mis en suspension dans un milieu reactionnel aqueux. L'utilisation d'un réacteur agité présente toutefois l'inconvénient de conduire soit à un faible taux de conversion soit à une productivité insuffisante.
On constate de la littérature en général que pour opérer en toute sécurité, la productivité doit être sacrifiée et qu'inversement l'augmentation de la productivité en peroxyde d'hydrogène se fait au dépens de la sécurité.
La présente invention vise donc à fournir un procédé comprenant une étape réactionnelle mettant en jeu plusieurs composants gazeux en présence d'un solide mis en suspension dans une phase liquide et en particulier un procédé de fabrication directe de peroxyde d'hydrogène en toute sécurité et avec une productivité optimale en peroxyde d'hydrogène, ainsi qu'un dispositif permettant sa mise en œuvre.
Le dispositif selon l'invention comporte un réacteur agité vertical de forme cylindrique, muni de moyens d'injection de réactifs gazeux au fond, de moyens de sortie en haut pour évacuer les réactifs gazeux et de plusieurs turbines centrifuges disposées, de préférence régulièrement, le long d'un arbre d'agitation unique vertical. L'arbre vertical est entraîné en général par un groupe moto-réducteur qui, le plus souvent, est situé soit en haut soit en dessous du réacteur. Selon sa longueur, l'arbre peut être supporté par un ou plusieurs paliers.
Le réacteur peut également être équipé de contre-pales et/ou d'échangeur thermique.
Le réacteur parfaitement agité est constitué d'une seule capacité sans cloison fixe horizontale. La hauteur du réacteur est en général comprise entre 1 ,5 et 10 fois le diamètre et de préférence comprise entre
2 et 4 fois le diamètre. Le réacteur est également muni d'un fond et d'un couvercle pouvant être plat ou semi-sphérique.
La figure 1 est un schéma simplifié d'un dispositif particulier de l'invention. Le dispositif comprend un réacteur agité vertical (V) muni de plusieurs turbines centrifuges (a) disposées le long d'un arbre d'agitation entraîné par un moteur (M). Le réacteur est également équipé de contre- pales (c) et d'un échangeur thermique (R). Des moyens d'injection (1 ,2) de réactifs gazeux sont prévus au fond du réacteur et une sortie (3) située en haut du réacteur sert à évacuer les réactifs gazeux.
Selon l'invention, tout type de turbine centrifuge capable d'aspirer au niveau de l'axe central du réacteur un mélange de liquide, de bulles gazeuses et de solide en suspension, et de projeter ce mélange radialement selon un plan horizontal afin d'assurer une circulation de mélange liquide, bulles de gaz et solide suivant la figure 1 , peut convenir.
Les turbines radiales flasquées avec une ou deux ouvertures centrales sont préférées. Les turbines flasquées analogues à celles utilisées pour les pompes à eau centrifuges avec l'orifice de pompage dirigé vers le bas conviennent tout particulièrement.
Les turbines peuvent être équipées de plusieurs aubes disposées radialement ou inclinées ou en spirales. Le nombre d'aubes est de préférence compris entre 3 et 24.
Le nombre de turbines dépend du rapport de la hauteur du réacteur sur le diamètre du réacteur et est en général compris entre 2 et 20, de préférence compris entre 3 et 8.
La distance entre deux turbines est de préférence comprise entre 0,5 et 1 ,5 fois le diamètre extérieur de la turbine ; celui-ci est de préférence compris entre 0,2 et 0,5 fois le diamètre du réacteur. L'épaisseur des turbines est de préférence comprise entre 0,07 et
0,25 fois le diamètre de la turbine. Par épaisseur, on entend la distance entre les deux flasques de la turbine.
Le dispositif selon l'invention peut également comprendre un filtre installé à l'intérieur ou à l'extérieur du réacteur. En mode de fonctionnement, la partie inférieure du réacteur est occupée par une phase liquide comprenant des catalyseurs solides en suspension et une multitude de petites bulles de réactifs gazeux, tandis que la partie supérieure est occupée par une phase gazeuse continue. Le volume occupé par la phase gazeuse continue représente entre 10 à 30 % du volume total du réacteur et de préférence 20 à 25 %.
Les turbines sont disposées le long de l'arbre d'agitation de manière à ce qu'elles soient immergées, et de préférence complètement immergées, dans la phase liquide lorsque l'agitation est à l'arrêt.
La vitesse de rotation de la turbine est choisie de manière à obtenir à la fois le maximum de bulles de gaz possible par unité de volume de phase liquide et un diamètre minimal de bulles.
Pour éviter que l'ensemble de la phase liquide se mette en rotation, le réacteur est équipé de contre-pales, constituées de préférence par plusieurs plaques rectangulaires verticales, disposées autour des turbines.
Les contre-pales sont en général situées entre la paroi cylindrique du réacteur et les turbines.
La hauteur de ces plaques métalliques est en général voisine de celle de la partie cylindrique du réacteur. La largeur est en général comprise entre 0,05 et 0,2 fois le diamètre du réacteur.
Le nombre de contre-pales choisi est déterminé en fonction de leur largeur et est en général compris entre 3 et 24 et de préférence compris entre 4 et 8. Les contre-pales (c) sont de préférence placées verticalement à une distance comprise entre 1 et 1 0 mm de la paroi (p) du réacteur et orientées dans l'axe des rayons issus du centre du réacteur, comme indiqué sur la figure 2 qui est une coupe transversale du réacteur équipé d'une turbine particulière avec (O) représentant l'orifice d'aspiration de la turbine, (f) le flasque de la turbine et (u) l'aube de la turbine.
On peut remplacer les contre-pales, en tout ou en partie, par un échangeur thermique. L'échangeur est, de préférence, constitué par un faisceau de tubes cylindriques verticaux d'une hauteur voisine ou égale à celle de la partie cylindrique du réacteur. Ces tubes (t) sont en général disposés verticalement autour des turbines suivant la figure 2.
Le nombre et le diamètre de ces tubes sont déterminés afin de maintenir la température de la phase liquide dans les limites souhaitées. Le nombre de tubes est souvent compris entre 8 et 64. Bien que le dispositif selon l'invention peut être utilisé pour la mise en œuvre d'une réaction à pression atmosphérique, on préfère le plus souvent opérer sous pression. Des pressions élevées de l'ordre de 10 à 80 bar sont avantageusement choisies pour accélérer la vitesse de réaction. Le réacteur, les moyens d'agitation et les échangeurs peuvent être constitués en tout matériau usuel de l'industrie chimique, comme par exemple les aciers inox (304 L ou 31 6 L).
Un revêtement protecteur de polymère comme le PVDF
(polyfluorure de vinylidène), le PTFE (polytétrafluoroéthylène), le PFA (copolymère de C2F4 et d'éther vinylique perfluoré), ou le FEP (copolymère de C2F4 et de C3F6) peut être appliqué sur toutes les surfaces internes du réacteur, et surfaces externes des moyens d'agitation et échangeurs. On peut également limiter le revêtement à certains éléments soumis à l'abrasion, comme par exemple les turbines. Le dispositif convient tout particulièrement pour la fabrication directe du peroxyde d'hydrogène avec de l'hydrogène et de l'oxygène injectés sous forme de petites bulles, de diamètre inférieur à 3 mm et de préférence compris entre 0,5 et 2 mm, dans la phase liquide aqueuse avec, de préférence, des débits molaires tels que le rapport débit molaire d'hydrogène sur celui d'oxygène soit supérieur à 0,041 6, tandis que la teneur en hydrogène dans la phase gazeuse continue est maintenue en dessous de la limite d'inflammabilité.
Les catalyseurs utilisés en général sont ceux décrits dans le brevet US 4772458. Ce sont des catalyseurs solides à base de palladium et/ou platine, éventuellement supportés sur de la silice, de l'alumine, du carbone ou des silicoaluminates.
Outre les catalyseurs en suspension, la phase aqueuse rendue acide par l'addition d'un acide minéral peut comprendre des stabilisants du peroxyde d'hydrogène et des inhibiteurs de décomposition comme par exemple les halogénures. Le bromure est particulièrement préféré et il est avantageusement utilisé en combinaison avec du brome à l'état libre (Br2).
Un second objet de l'invention est le procédé comprenant une étape réactionnelle mettant en jeu plusieurs composants gazeux en présence d'un solide mis en suspension dans une phase liquide. Ce procédé consiste à introduire les composants gazeux (2 ou plus) au fond du réacteur soit séparément soit sous forme de mélange. L'introduction sous forme de mélange est préféré lorsque la composition du mélange gazeux est compatible avec les exigences de la sécurité. Dans ce cas, l'alimentation en réactifs peut se faire par un conduit ménagé dans l'arbre d'agitation puis, par une série de petits orifices percés au centre de la turbine située au fond du réacteur de manière à produire un grand nombre de petites bulles dans le flux liquide éjecté par la turbine.
Lorsque le procédé nécessite l'alimentation des composants gazeux dans les proportions présentant des risques d'inflammation ou d'explosion, les réactifs gazeux sont introduits séparément dans le réacteur soit par injection par des tuyères distinctes situées devant l'orifice d'aspiration de la turbine la plus inférieure, soit par des tubes frittes distincts situés immédiatement en dessous de la turbine la plus inférieure. On peut opérer aussi bien en continu qu'en semi-continu avec le dispositif de la présente invention.
En mode semi-continu, les réactifs gazeux sont introduits en continu pendant un temps déterminé dans la partie inférieure du réacteur, occupée par une phase liquide comprenant le solide catalytique en suspension.
L'excès de réactifs gazeux parvenant dans la phase gazeuse continue du réacteur est généralement évacué en continu de façon à maintenir la pression régnant à l'intérieur du réacteur constante. A la fin du temps déterminé, le réacteur est déchargé pour récupérer les produits de réaction.
Lorsqu'on opère en continu, on introduit en continu dans le réacteur, initialement chargé du solide catalytique en suspension dans la solution réactionnelle constituant la phase liquide, les réactifs gazeux ainsi que la solution réactionnelle. L'excès de réactifs gazeux est évacué en continu et les produits de réaction sont soutirés en continu par prélèvement continu de la phase liquide par l'intermédiaire d'un ou de plusieurs filtre(s) de façon à maintenir les solides catalytiques en suspension à l'intérieur du réacteur. Le ou les filtres peuvent être du type bougie filtrante en métal fritte ou en céramique placés, de préférence, verticalement dans le réacteur à côté des tubes de refroidissement verticaux ou contre-pales.
Les filtres peuvent aussi être placés à l'extérieur du réacteur et dans ce cas, sont de préférence constitués d'un tube creux poreux, en métal ou en céramique, à l'intérieur duquel circule en circuit fermé la phase liquide du réacteur comprenant le catalyseur en suspension. Un dispositif comprenant un filtre à l'extérieur du réacteur est illustré par la figure N ° 3. Le tube creux (g) est disposé verticalement et est alimenté à sa base par la phase liquide prélevée au fond du réacteur, la phase liquide recueillie en haut du tube est renvoyée dans la partie supérieure du réacteur. Cette circulation continue peut se faire sous l'action d'une pompe ou bien sous l'action des surpressions locales créées par les turbines d'agitation du réacteur. Suivant un dispositif préféré de l'invention représenté à la figure
N ° 3, la phase liquide claire débarrassée du catalyseur est recueillie dans une double enveloppe (h) placée autour du tube creux poreux puis, évacuée par une vanne (6) de régulation de façon à maintenir constant le niveau de phase liquide dans le réacteur. De la solution réactionnelle est pompée en continu dans le réacteur avec un débit déterminé pour maintenir la concentration en produit de réaction soluble dans la phase liquide, à une valeur choisie. Une partie de la solution réactionnelle peut être avantageusement injectée de manière séquentielle dans la double enveloppe (h) par le conduit 7 pour décolmater le filtre. La solution réactionnelle peut également être pulvérisée sous haute pression pour nettoyer en continu la phase gazeuse continue du réacteur.
Les réactifs gazeux sont introduits en continu dans le fond (b) du réacteur par les voies 1 et 2 et ceux non réagis peuvent être recyclés par la voie 4. Dans le cas de la synthèse directe du peroxyde d'hydrogène, un débit choisi d'hydrogène est injecté via (1 ) dans la phase liquide et en dessous de la turbine inférieure (b) . Un débit choisi d'oxygène contenant une faible proportion d'hydrogène est prélevé (4) dans la phase gazeuse continue du réacteur et injecté dans la phase liquide via (2) et en dessous la turbine inférieure (b) . Un débit d'oxygène neuf (5) est injecté dans la phase gazeuse continue du réacteur pour compenser l'oxygène consommé et aussi pour maintenir la phase gazeuse continue en dehors des limites d'inflammabilité. Un régulateur de pression (déverseur) permet d'évacuer de la phase gazeuse continue du réacteur l'excès de réactifs gazeux (3) ainsi que les gaz inertes comme l'azote qui sont éventuellement présents dans l'oxygène neuf.
Le dispositif, selon l'invention, présente l'avantage, en cas d'arrêt accidentel de l'agitation de permettre à toutes les bulles des réactifs gazeux de remonter et d'atteindre directement la phase gazeuse continue sous la seule action des forces de la gravité.
PARTIE EXPERIMENTALE (exemples)
Dispositif pour la synthèse directe d'une solution aqueuse de peroxyde d'hydrogène
Le réacteur d'une capacité de 1 500 cm3 est constitué d'une cuve cylindrique de 200 mm de hauteur et de 98 mm de diamètre. Le fond et le couvercle sont plats. Un manchon amovible en PTFE de 1 ,5 mm d'épaisseur est placé dans le bol du réacteur
L'agitation est assurée par un axe vertical en acier inox de 1 80 mm de long et de 8 mm de diamètre entraîné par un accouplement magnétique placé sur le couvercle du réacteur. Une, deux ou trois turbines flasquées de 45 mm de diamètre extérieur, de 9 mm d'épaisseur (entre les 2 flasques) munies d'un orifice d'aspiration de 1 2,7 mm de diamètre, orienté vers le bas, et de 8 aubes radiales plates de 9 mm de largeur, de 1 5 mm de longueur et d'épaisseur 1 ,5 mm, peuvent être fixées sur l'arbre d'agitation à différentes hauteurs choisies de manière à diviser la phase liquide en volume sensiblement égaux.
La turbine inférieure est placée à 32 mm du fond, la deuxième turbine à 78 mm du fond et la troisième à 125 mm du fond.
Quatre contre-pales de 1 90 mm de hauteur, de 1 0 mm de largeur et de 1 mm d'épaisseur sont placées verticalement dans la cuve perpendiculairement à la paroi intérieure du réacteur et maintenues à 1 mm de cette paroi par deux anneaux centreurs.
Le refroidissement ou le chauffage est assuré par huit tubes verticaux de 6,35 mm de diamètre et de 1 50 mm de longueur disposés en couronne à 35 mm de l'axe de la cuve.
Ce serpentin est parcouru par un courant d'eau à température constante.
L'injection de l'hydrogène et de l'oxygène dans la phase liquide se fait au moyen de deux tuyaux distincts en inox de 1 ,58 mm de diamètre conduisant les gaz au centre de la turbine inférieure. L'injection des réactifs gazeux dans le milieu aqueux ainsi que celle de l'oxygène dans la phase gazeuse continue sont régulées à l'aide de débitmètres massiques. Certains essais sont effectués en remplaçant l'oxygène par un mélange oxygène-azote en différentes proportions. La pression régnant à l'intérieur du réacteur est maintenue constante grâce à un déverseur.
L'hydrogène, l'oxygène et éventuellement l'azote constituant le flux gazeux sortant du réacteur sont dosés en ligne par chromatographie en phase gaz.
Préparation du catalyseur
Le catalyseur utilisé contient 0,7 % en poids de palladium métallique et 0,03 % en poids de platine supportés sur une silice microporeuse.
Il est préparé par imprégnation de la silice (Aldrich réf. 28,851 -9) de caractéristiques suivantes :
- Taille moyenne des particules = 5 à 1 5 μm
- Surface BET = 500 m2/g - Volume des pores = 0,75 cm3/g
- Diamètre moyen des pores ≈ 60 A, avec une solution aqueuse contenant PdCI2 et H2PtCI6, suivi d'un séchage et enfin d'un traitement thermique sous balayage d'hydrogène à 300°C pendant 3 heures. Le catalyseur est ensuite mis en suspension (1 0 g/l) dans une solution, contenant 60 mg de NaBr, 5 mg de Br2 et 1 2 g de H3PO4, chauffée à 40 °C pendant 5 heures, puis est filtré, lavé à l'eau déminéralisée et séché.
Milieu reactionnel aqueux
On prépare une solution aqueuse par ajout de 1 2 g de H3PO4, 58 mg de NaBr et 5 mg de Br2 dans 1 000 cm3 d'eau déminéralisée.
Mode opératoire général
On introduit dans l'autoclave le volume choisi de milieu reactionnel aqueux puis on ajoute la quantité déterminée de catalyseur. L'autoclave est pressurisé par injection d'un débit choisi d'oxygène dans la phase gazeuse continue. La pression reste constante grâce au régulateur de pression. Le milieu liquide est porté à la température choisie par circulation d'eau thermostaté dans le faisceau de tubes de refroidissement.
L'agitation est réglée à 1 900 t/min et les débits choisis d'oxygène et d'hydrogène sont injectés au centre de la turbine inférieure.
On mesure le débit et la teneur en hydrogène du mélange gazeux sortant du régulateur de pression.
Après 1 heure de réaction, on coupe l'arrivée d'hydrogène et d'oxygène dans le milieu reactionnel aqueux et on maintient l'injection d'oxygène dans la phase gazeuse continue jusqu'à la disparition totale d'hydrogène dans cette dernière. On coupe alors l'arrivée d'oxygène, puis on décomprime le réacteur et enfin on récupère la solution aqueuse de peroxyde d'hydrogène.
La solution aqueuse de peroxyde d'hydrogène récupérée est ensuite pesée, puis séparée du catalyseur par filtration sur un filtre Millipore . La solution résultante est alors dosée par iodométrie permettant ainsi de déterminer la concentration en peroxyde d'hydrogène. La sélectivité de la synthèse est définie comme étant le pourcentage du nombre de moles de peroxyde d'hydrogène formé sur le nombre de moles d'hydrogène consommé. Le taux de conversion est défini comme étant le pourcentage du volume d'hydrogène consommé sur le volume d'hydrogène introduit. Les conditions opératoires et les résultats obtenus lors des différents essais sont regroupés dans le tableau ci-après.
On opère avec les deux turbines inférieures pour les exemples 2, 3, 7, 8, 9 et 1 4.
Figure imgf000014_0001
Les exemples 1 , 2, 3 et 4 montrent que pour des conditions de température, de pression et de rapport H2/O2 identiques, l'augmentation du nombre de turbines radiales permet d'augmenter le taux de conversion avec la même efficacité que par la combinaison de plusieurs réacteurs en cascade.
En effet, si l'on désigne par "C, le taux de conversion d'un étage (réacteur avec 1 turbine), τ2 le taux de conversion global du réacteur avec
2 turbines et T3 le taux de conversion du réacteur avec 3 turbines, on constate que l'on vérifie bien la règle de calcul de la conversion des réacteurs agités montés en cascade : d-τ2) = d-τ d-τ^ et d-τ3) = d-τ d-τ.Jd-τ,)
Cette relation permet d'extrapoler le nombre de turbines nécessaires pour obtenir le taux de conversion élevé recherché par l'invention.
Les exemples 7, 8 et 9 montrent que, pour un réacteur et des conditions de réaction identiques, le taux de conversion et la teneur en
H2O2 de la solution après 1 heure de réaction augmente fortement avec la concentration en hydrogène du mélange gazeux introduit dans la phase liquide.
Les exemples 5 et 6 montrent qu'il est possible d'obtenir, avec le réacteur selon l'invention, un taux de conversion de 80 % avec seulement
3 turbines avec une productivité dépassant 100 kg de H2O2 par heure et par m3 utile de réacteur avec une sélectivité très élevée. Les exemples 1 0 et 1 1 montrent que le réacteur selon l'invention permet d'obtenir des taux de conversion et des concentrations en H2O2 élevés lorsqu'on utilise un mélange oxygène-azote ( 10 % à 20 %) au lieu d'oxygène pur.
L'utilisation d'air (exemple 1 2 et 1 3) donne encore des résultats intéressants.
Les exemples 14 et 1 5 montrent également avec un autre rapport H2/O2 que le passage de 2 turbines à 3 turbines permet d'augmenter le taux de conversion en hydrogène et de diminuer la concentration en H2 dans la phase gazeuse continue du réacteur.

Claims

R E V E N D I C AT I O N S
1 . Dispositif comportant un réacteur agité vertical de forme cylindrique, pourvu de moyens d'injection de réactifs gazeux au fond, de moyens de sortie gazeuse en haut et, éventuellement équipé de contre- pales et/ou d'échangeur thermique caractérisé en ce que le réacteur est muni de plusieurs turbines centrifuges disposées, de préférence régulièrement, le long d'un arbre d'agitation unique vertical.
2. Dispositif selon la revendication 1 caractérisé en ce que la hauteur du réacteur est comprise entre 1 ,5 et 10 fois le diamètre et de préférence comprise entre 2 et 4 fois le diamètre.
3. Dispositif selon la revendication 1 ou 2 caractérisé en ce que les turbines sont radiales.
4. Dispositif selon la revendication 3 caractérisé en ce que les turbines sont flasquées.
5. Dispositif selon la revendication 4 caractérisé en ce que les turbines ont une ou deux ouvertures centrales.
6. Dispositif selon l'une quelconque des revendications 1 à 5 caractérisé en ce que le nombre de turbines est compris entre 2 et 20 et de préférence compris entre 3 et 8.
7. Dispositif selon l'une quelconque des revendications 1 à 6 caractérisé en ce que le diamètre extérieur des turbines est compris entre
0,2 et 0,5 fois le diamètre du réacteur.
8. Dispositif selon l'une quelconque des revendications 1 à 7 caractérisé en ce que l'épaisseur des turbines est comprise entre 0,07 et 0,25 fois le diamètre des turbines.
9. Dispositif selon l'une quelconque des revendications 1 à 8 caractérisé en ce que les turbines sont équipées de plusieurs aubes en spirales ou inclinées ou disposées radialement.
10. Dispositif selon l'une des revendications 1 à 9 caractérisé en ce que la partie inférieure du réacteur est occupée, en mode de fonctionnement, par une phase liquide comprenant des catalyseurs solides en suspension et une multitude de petites bulles de réactifs gazeux, et la partie supérieure est occupée par une phase gazeuse continue.
1 1 . Dispositif selon la revendication 10 caractérisé en ce que la phase gazeuse continue représente 1 0 à 30 % du volume du réacteur et de préférence 20 à 25 %.
12. Dispositif selon la revendication 10 ou 1 1 caractérisé en ce que les turbines sont immergées et de préférence complètement immergées dans la phase liquide lorsque l'agitation est à l'arrêt.
13. Dispositif selon l'une des revendications 1 à 1 2 caractérisé en ce que le réacteur est muni d'un ou plusieurs filtre(s).
14. Dispositif selon la revendication 1 3 caractérisé en ce que le ou les filtre(s) est à l'intérieur ou à l'extérieur du réacteur.
15. Procédé comprenant une étape réactionnelle mettant en jeu plusieurs réactifs gazeux en présence d'un solide mis en suspension dans une phase liquide caractérisé en ce que les réactifs gazeux arrivent au fond du réacteur du dispositif selon l'une des revendications 1 à 14.
16. Procédé de préparation d'une solution aqueuse de peroxyde d'hydrogène à partir d'hydrogène et d'oxygène caractérisé en ce que l'on utilise un dispositif selon l'une des revendications 1 à 14.
PCT/FR2000/001416 1999-07-16 2000-05-25 Reacteur multietage, ses applications et procede de fabrication du peroxyde d'hydrogene WO2001005498A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP2001510577A JP2003504193A (ja) 1999-07-16 2000-05-25 多段反応器、その使用及び過酸化水素の製造方法
EP00931346A EP1204471A1 (fr) 1999-07-16 2000-05-25 Reacteur multietage, ses applications et procede de fabrication du peroxyde d'hydrogene
PL00352482A PL352482A1 (en) 1999-07-16 2000-05-25 Multiple-stage reactor, application thereof as well as method of obtaining hydrogen peroxide
BR0012261-0A BR0012261A (pt) 1999-07-16 2000-05-25 Dispositivo e processo para a manufatura de peróxido de hidrogênio a partir de oxigênio e de hidrogênio, com um catalisador suspenso em fase aquosa
UA2002010368A UA74340C2 (uk) 1999-07-16 2000-05-25 Пристрій для використання у реагуванні газових компонентів та спосіб одержання водного розчину пероксиду водню
AU49311/00A AU759296B2 (en) 1999-07-16 2000-05-25 Multistage reactor, uses and method for making hydrogen peroxide
CA002377127A CA2377127C (fr) 1999-07-16 2000-05-25 Reacteur multietage, ses applications et procede de fabrication du peroxyde d'hydrogene
EA200200171A EA003039B1 (ru) 1999-07-16 2000-05-25 Устройство и способ получения пероксида водорода
NZ515748A NZ515748A (en) 1999-07-16 2000-05-25 Multistage reactor, uses and method for making hydrogen peroxide
NO20016239A NO325226B1 (no) 1999-07-16 2001-12-19 Multinivareaktor og fremgangsmate for fremstilling av hydrogenperoksyd
US11/403,655 US20060198771A1 (en) 1999-07-16 2006-04-13 Multilevel reactor, its uses, and process for manufacturing hydrogen peroxide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9909260A FR2796311B1 (fr) 1999-07-16 1999-07-16 Reacteur multietage, ses applications et procede de fabrication du peroxyde d'hydrogene
FR99/09260 1999-07-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/403,655 Division US20060198771A1 (en) 1999-07-16 2006-04-13 Multilevel reactor, its uses, and process for manufacturing hydrogen peroxide

Publications (1)

Publication Number Publication Date
WO2001005498A1 true WO2001005498A1 (fr) 2001-01-25

Family

ID=9548191

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001416 WO2001005498A1 (fr) 1999-07-16 2000-05-25 Reacteur multietage, ses applications et procede de fabrication du peroxyde d'hydrogene

Country Status (16)

Country Link
US (1) US20060198771A1 (fr)
EP (1) EP1204471A1 (fr)
JP (1) JP2003504193A (fr)
KR (1) KR100436790B1 (fr)
CN (3) CN1170627C (fr)
AU (1) AU759296B2 (fr)
BR (1) BR0012261A (fr)
CA (1) CA2377127C (fr)
EA (1) EA003039B1 (fr)
FR (1) FR2796311B1 (fr)
NO (1) NO325226B1 (fr)
NZ (1) NZ515748A (fr)
PL (1) PL352482A1 (fr)
TR (1) TR200200074T2 (fr)
UA (1) UA74340C2 (fr)
WO (1) WO2001005498A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1443020A1 (fr) 2003-02-03 2004-08-04 Repsol Quimica S.A. Procédé integré pour l'oxydation sélective de composés organiques
US6808481B1 (en) 1996-10-15 2004-10-26 Erth Technologies, Inc. Concentric tubular centrifuge
US6966874B2 (en) 1997-10-14 2005-11-22 Erth Technologies, Inc. Concentric tubular centrifuge
US7179440B2 (en) 2002-03-14 2007-02-20 Repsol Quimica, S.A. Process to obtain hydrogen peroxide
US7241256B2 (en) 2003-08-30 2007-07-10 Erth Technologies, Inc. Centrifuge
WO2013010835A1 (fr) 2011-07-15 2013-01-24 Solvay Sa Procédé pour obtenir du peroxyde d'hydrogène, et supports de catalyseur pour ledit procédé
EP3511295A1 (fr) 2018-01-15 2019-07-17 Univerza V Ljubljani Procédé de préparation de péroxyde d'hydrogène étiqueté isotopiquement

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI1011148C8 (pt) * 2009-06-05 2018-12-18 Solvay processo para separar líquido a partir de uma mistura multifásica contida em um vaso, uso do processo, e, processo para a preparação de peróxido de hidrogênio.
JP2012532182A (ja) 2009-07-06 2012-12-13 ソルヴェイ(ソシエテ アノニム) 特有の条件下でのアルケノンのハロゲン化前駆体の製造方法
US8957254B2 (en) 2009-07-06 2015-02-17 Solvay Sa Process for chemical synthesis from an alkenone made from a halogenated precursor
US20120020847A1 (en) * 2010-07-20 2012-01-26 Lurgi, Inc. Retention Of Solid Powder Catalyst By In-Situ Cross Flow Filtration In Continuous Stirred Reactors
CN102358760B (zh) * 2011-07-22 2012-12-19 浙江大学 一种搅拌釜反应器
EP2607343A1 (fr) 2011-12-22 2013-06-26 Solvay Sa Procédé pour la fabrication de précurseurs halogénés d'alcénones et d'alcénones
CN105960277A (zh) * 2014-02-10 2016-09-21 霍尼韦尔国际公司 用于液相氟化的反应器设计
CN109310998A (zh) * 2016-07-19 2019-02-05 三菱瓦斯化学株式会社 过氧化氢制造用贵金属催化剂和过氧化氢的制造方法
CN111282531A (zh) * 2018-12-06 2020-06-16 张存续 微波处理装置
CN113828206B (zh) * 2021-07-13 2024-03-22 重庆大学 一种提高流体混合效果的喷气式射流搅拌桨
CN115739202B (zh) * 2022-11-22 2024-02-23 太仓斯迪克新材料科技有限公司 催化剂浸渍设备
CN118122247B (zh) * 2024-03-07 2024-08-23 科立鑫(珠海)新能源有限公司 一种锂电池回收提取设备及使用方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2334622A1 (fr) * 1975-12-10 1977-07-08 Tokuyama Soda Kk Procede de preparation du peroxyde d'hydrogene
US4438074A (en) * 1981-07-21 1984-03-20 Phillips Petroleum Company Continuous polymerization reactor
EP0475062A1 (fr) * 1990-08-17 1992-03-18 A. Ahlstrom Corporation Appareil et procédé de nettoyage à pulsation pour éliminer des particules d' un gaz à haute température
EP0523842A1 (fr) * 1991-06-21 1993-01-20 Konica Corporation Appareil de production de grains cristallins de sel peu aquasoluble
EP0622117A1 (fr) * 1993-04-26 1994-11-02 Shin-Etsu Chemical Co., Ltd. Dispositif de polymérisation
EP0633060A1 (fr) * 1993-07-08 1995-01-11 Biazzi Sa Appareillage de réaction gaz-liquide
EP0702033A1 (fr) * 1994-09-14 1996-03-20 Shin-Etsu Chemical Co., Ltd. Procédé de préparation d'un polymère de type chlorure de vinyle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54109939A (en) * 1978-02-15 1979-08-29 Mitsui Petrochem Ind Ltd Oxidation reactor for preparing aromatic carboxylic acid
US4681751A (en) * 1983-06-22 1987-07-21 E. I. Du Pont De Nemours And Company Catalytic process for making H2 O2 from hydrogen and oxygen
US4772458A (en) * 1986-11-19 1988-09-20 E. I. Du Pont De Nemours And Company Catalytic process for making hydrogen peroxide from hydrogen and oxygen employing a bromide promoter
US4935539A (en) * 1988-03-17 1990-06-19 Amoco Corporation Method for increasing yield and product quality while reducing power costs in oxidation of an aromatic alkyl hydrocarbon to an aromatic carboxylic acid
US4889705A (en) * 1988-05-13 1989-12-26 E. I. Du Pont De Nemours And Company Hydrogen peroxide method using optimized H+ and BR- concentrations
US5135731A (en) * 1991-05-15 1992-08-04 E. I. Du Pont De Nemours And Company Method for catalytic production of hydrogen peroxide
FR2774674B1 (fr) * 1998-02-10 2000-03-24 Atochem Elf Sa Procede de preparation d'une solution aqueuse de peroxyde d'hydrogene directement a partir d'hydrogene et d'oxygene et dispositif permettant sa mise en oeuvre

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2334622A1 (fr) * 1975-12-10 1977-07-08 Tokuyama Soda Kk Procede de preparation du peroxyde d'hydrogene
US4438074A (en) * 1981-07-21 1984-03-20 Phillips Petroleum Company Continuous polymerization reactor
EP0475062A1 (fr) * 1990-08-17 1992-03-18 A. Ahlstrom Corporation Appareil et procédé de nettoyage à pulsation pour éliminer des particules d' un gaz à haute température
EP0523842A1 (fr) * 1991-06-21 1993-01-20 Konica Corporation Appareil de production de grains cristallins de sel peu aquasoluble
EP0622117A1 (fr) * 1993-04-26 1994-11-02 Shin-Etsu Chemical Co., Ltd. Dispositif de polymérisation
EP0633060A1 (fr) * 1993-07-08 1995-01-11 Biazzi Sa Appareillage de réaction gaz-liquide
EP0702033A1 (fr) * 1994-09-14 1996-03-20 Shin-Etsu Chemical Co., Ltd. Procédé de préparation d'un polymère de type chlorure de vinyle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6808481B1 (en) 1996-10-15 2004-10-26 Erth Technologies, Inc. Concentric tubular centrifuge
US6966874B2 (en) 1997-10-14 2005-11-22 Erth Technologies, Inc. Concentric tubular centrifuge
US7189196B2 (en) 1997-10-14 2007-03-13 Erth Technologies, Inc. Method of separating materials with a concentric tubular centrifuge
US7179440B2 (en) 2002-03-14 2007-02-20 Repsol Quimica, S.A. Process to obtain hydrogen peroxide
EP1443020A1 (fr) 2003-02-03 2004-08-04 Repsol Quimica S.A. Procédé integré pour l'oxydation sélective de composés organiques
US6822103B2 (en) 2003-02-03 2004-11-23 Repsol Quimica, S.A. Integrated process for selective oxidation of organic compounds
US7241256B2 (en) 2003-08-30 2007-07-10 Erth Technologies, Inc. Centrifuge
WO2013010835A1 (fr) 2011-07-15 2013-01-24 Solvay Sa Procédé pour obtenir du peroxyde d'hydrogène, et supports de catalyseur pour ledit procédé
US9610573B2 (en) 2011-07-15 2017-04-04 Solvay Sa Process to obtain hydrogen peroxide, and catalyst supports for the same process
EP3511295A1 (fr) 2018-01-15 2019-07-17 Univerza V Ljubljani Procédé de préparation de péroxyde d'hydrogène étiqueté isotopiquement

Also Published As

Publication number Publication date
FR2796311A1 (fr) 2001-01-19
EA003039B1 (ru) 2002-12-26
JP2003504193A (ja) 2003-02-04
NO325226B1 (no) 2008-02-25
NO20016239D0 (no) 2001-12-19
NZ515748A (en) 2003-05-30
AU4931100A (en) 2001-02-05
AU759296B2 (en) 2003-04-10
KR20020023411A (ko) 2002-03-28
BR0012261A (pt) 2002-03-12
CA2377127A1 (fr) 2001-01-25
NO20016239L (no) 2001-12-19
UA74340C2 (uk) 2005-12-15
CA2377127C (fr) 2006-07-25
CN100490969C (zh) 2009-05-27
CN1361717A (zh) 2002-07-31
EP1204471A1 (fr) 2002-05-15
TR200200074T2 (tr) 2002-06-21
FR2796311B1 (fr) 2001-09-14
US20060198771A1 (en) 2006-09-07
CN100460316C (zh) 2009-02-11
KR100436790B1 (ko) 2004-06-24
PL352482A1 (en) 2003-08-25
CN1739851A (zh) 2006-03-01
CN1880215A (zh) 2006-12-20
EA200200171A1 (ru) 2002-06-27
CN1170627C (zh) 2004-10-13

Similar Documents

Publication Publication Date Title
WO2001005498A1 (fr) Reacteur multietage, ses applications et procede de fabrication du peroxyde d'hydrogene
EP1053209B1 (fr) Procede de preparation d'une solution aqueuse de peroxyde d'hydrogene directement a partir d'hydrogene et d'oxygene et dispositif pour sa mise en oeuvre
CA2402803C (fr) Procede d'obtention directe du peroxyde d'hydrogene
FR2849031A1 (fr) Procede de fabrication d'oxyde d'ethylene
EP0002543A1 (fr) Particules solides contenant du peroxyde de calcium, leur préparation et leur utilisation pour le traitement des eaux
FR2547744A1 (fr) Procede et appareil pour la production de produits gazeux par decomposition de liquides
EP1347827A1 (fr) Procede et dispositif pour la mise en oeuvre d'une reaction en milieu liquide avec degagement gazeux
FR2858618A1 (fr) Procede et reacteur de fabrication d'hydroxymethylfurfural
CA1161063A (fr) Fabrication de chlorures d'alcane sulfonyles
EP3280693B1 (fr) Méthode de synthèse simultanée de l'acide azelaïque et de l'acide pelargonique par l'ozone
EP2882530B1 (fr) Catalyseur solide pour ozonation catalytique de composes organiques en milieu aqueux
FR2478626A1 (fr) Procede catalytique continu d'oxydation en phase liquide de butane en acide acetique
FR2619804A1 (fr) Procede continu de reduction de la pollution dissoute dans un liquide par voie biologique
EP0885872A1 (fr) Procédé continu de fabrication de solutions aqueuses de sels alcalins d'acides arylacétiques.
CH382130A (fr) Procédé et appareil pour la fabrication continue de nitrocellulose
CH409904A (fr) Procédé pour préparer de manière continue des composés nitrés aromatiques et appareil pour la mise en oeuvre de ce procédé
CH350276A (fr) Procédé de préparation d'oxyde d'éthylène
BE705962A (fr)
FR2738754A1 (fr) Procede et appareil pour la cristallisation et la filtration d'un materiau cristallisable en solution

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2000931346

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 515748

Country of ref document: NZ

WWE Wipo information: entry into national phase

Ref document number: 2377127

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020027000080

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: IN/PCT/2002/35/CHE

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 49311/00

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 00810400X

Country of ref document: CN

Ref document number: 2002/00074

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: 200200171

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 1020027000080

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10018594

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2000931346

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWG Wipo information: grant in national office

Ref document number: 49311/00

Country of ref document: AU

WWG Wipo information: grant in national office

Ref document number: 1020027000080

Country of ref document: KR